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Differential Dynamic Programming
for Multi-Phase Rigid Contact Dynamics

Rohan Budhiraja, Justin Carpentier, Carlos Mastalli, Nicolas Mansard

Abstract— A common strategy today to generate efficient
locomotion movements is to split the problem into two con-
secutive steps: the first one generates the contact sequence
together with the centroidal trajectory, while the second one
computes the whole-body trajectory that follows the centroidal
pattern. Yet the second step is generally handled by a simple
program such as an inverse kinematics solver. In contrast,
we propose to compute the whole-body trajectory by using
a local optimal control solver, namely Differential Dynamic
Programming (DDP). Our method produces more efficient
motions, with lower forces and smaller impacts, by exploiting
the Angular Momentum (AM). With this aim, we propose an
original DDP formulation exploiting the Karush-Kuhn-Tucker
constraint of the rigid contact model. We experimentally show
the importance of this approach by executing large steps
walking on the real HRP-2 robot, and by solving the problem
of attitude control under the absence of external forces.

I. INTRODUCTION

A. Goal of the paper

Trajectory optimization based on reduced centroidal dy-
namics [1] has gained a lot of attention in the legged robotics
community. Some approaches use it after precomputing
the contact sequence and placements [2], [3], [4], [5], [6]
while other strategies optimize the centroidal trajectory and
contact information together [7], [8], [9]. In both cases, the
transfer from centroidal dynamics to whole-body dynamics
is achieved using instantaneous feedback linearization to
locally take into account the constraints of the robot. These
solvers are usually solve quadratic optimization problems
written with task-space dynamics (Inverse Kinematics (IK)
/ Inverse Dynamics (ID)) [10], [11]. While this scheme
has shown great experimental results (e.g. [3], [12]), it is
still not able to correctly handle the angular momentum
produced by the body extremities. This is notably important
for humanoid robots which have heavy masses in the limbs,
as the angular momentum mostly varies during locomotion
due to the motions of the legs and arms. This effect is
neither properly handled by the centroidal model, nor by
the instantaneous time-invariant linearization.

In [11] an alternative scheme aims to compensate the
angular momentum variations. Indeed, it properly compen-
sates the momentum changes produced by the flying limbs,
however it is not yet able to trigger additional momentum
to enable very dynamic movements. This would be needed
for generating long steps, running, jumping or salto motions.
To properly handle the angular momentum, it is necessary
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to jointly optimize the whole-body kinematics and the cen-
troidal dynamics [2]. However whole-body trajectory opti-
mization approaches suffer from two problems that prevent
the replacement of IK/ID solvers. Namely, they have trouble
in discovering a valid motion, in particular the gait and its
timings; and they are slow to converge.

In this paper, we propose to combine the advantages of
centroidal dynamics optimization (to decide the gait, the
timings and the main shape of the centroidal trajectory)
with a whole-body trajectory optimizer based on multi-phase
rigid contact dynamics. In what follows, we first discuss
the importance of properly handling the angular momentum
during locomotion, before introducing our method.

B. On the importance of angular momentum

Consider an astronaut, floating in space, without any
external forces. If he/she mimics the normal human walk,
he/she will start spinning in his/her sagittal plane. Indeed,
contact forces are not the only way to change the robot
orientation. It is known [13] that robot orientation can be
controlled without the need of contact forces (i.e. only with
the internal joint actuators). Under the action of only internal
forces, the angular momentum conservation can be seen
as a nonholonomic constraint on the robot orientation. Of
course, one can design a control law that counterbalances
the lower-body angular momentum. However this will create
tracking errors (and potentially instabilities) without men-
tioning the cases where the arms can be used for multi-
contact locomotion. In fact, as shown in [14], a system
under nonholonmic constraints cannot be controlled with a
time-invariant feedback law. Therefore, angular momentum
quantity requires a preview control strategy to be correctly
regulated or triggered.

It is often (wrongly) understood that centroidal optimiza-
tion provides the answer to this problem. The centroidal opti-
mizer can neither anticipate nor modify the limb movements
in order to change, as needed, the angular momentum. For
instance, the centroidal optimizer cannot anticipate a high
demand of the linear part by delaying the limb movement,
or exploit the movement of the arms to compensate for
excessive forces during a short instant. Nonetheless, these
methods are still valid since they provide an efficient way to
compute the Center of Mass (CoM) motion while keeping
balance and avoiding slippage.

C. Overview of our method

Rather than relying on IK/ID, we propose to use the op-
timal control framework for computing the whole-body mo-
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tion while tracking the centroidal trajectory. Concretely, we
propose a local optimal controller solver, namely Differential
Dynamic Programming (DDP). DDP has been made popular
by the proof of concept [15], and by the demonstration in
simulation that it can meet the control-loop timings constraint
[16]. Yet it has not been possible to transfer locomotion
movements computed by DDP on a real full-size humanoid.
Contrary to [15] that optimizes the motion from scratch with
a regularized dynamics (thanks to a smooth contact model
[17]), we propose to impose the contact phases as decided
by the centroidal optimization. As the DDP does not need
to discover the contact switching instants, we can then use a
rigid contact dynamics which is faster to compute and easier
to implement.

Other works have shown that DDP is able to discover
locomotion gaits applied on a real quadruped [18]. In [19],
DDP is coupled with Monte Carlo tree search to compute
the bipedal locomotion pattern of an avatar. While not yet
demonstrated on a real humanoid, we might wonder whether
this should be pushed further, instead of relying on a decou-
pling between contact computation, centroidal and whole-
body optimization. We believe that DDP is a mature solution
to replace IK/ID and is very complementary to centroidal
optimization. Indeed, contact and centroidal problems can
be efficiently handled within a global search thanks to the
low dimension, while DDP is efficient to accurately handle
the whole-body dynamics in large space but locally.

The rest of the paper is organized as follows: after
discussing the locomotion framework in which our method
takes place, we describe and justify in deep our technical
choices in Section II. Section III briefly introduces the DDP
algorithm, we then describe our novel DDP formulation for
rigid contact dynamics in Section IV. Then, in Section V
we show experimental trials and realistic simulation on the
HRP-2 robot and compare them against a whole-body IK
solver. Last, Section VI summarizes the work conclusions.

II. MULTI-CONTACT MOTION GENERATION

Locomotion synthesis is a hard problem because of a)
the combinatorial nature of contact planning, b) the high-
dimensionality of the search-space, c) the instabilities, dis-
continuities and non-convexity of the robot dynamics, d)
the non-convexity of the terrain environment, among others.
To synthesize a multi-contact motion, we follow a multi-
stage strategy that decouples the global problem into various
subproblems of smaller dimensions which are easier to solve
in real-time as introduced in [20]. The first two stages
describe an interactive acyclic contact planner [21]. Later a
third stage computes a dynamic-physical centroidal trajectory
while taking the discrete contact sequence as input. The
centroidal pattern generator is formulated inside an Optimal
Control (OC) framework [20], [4]. Fig. 1 illustrates the
scheme of our multi-stage locomotion pipeline.

Henceforth, we focus on the whole-body motion gen-
eration. For that, we present an OC formulation under a
generic form in order to describe this problem. This form
is not suitable for efficient resolution of the problem, but it

helps us to sustain our particular technical choices. Finally
we describe our proposed formulation which makes an
interesting trade-off between efficiency and complexity.

A. Generic whole-body OC problem

We consider a floating-base system of 6 + nj Degrees of
Freedom (DoF). Its configuration vector q ∈ SE(3) × Rnj

describes the placement of the floating-base relatively to
the inertial frame W , p = (R, r) ∈ SE(3), and the
joint configuration qj ∈ Rnj . The first and second time
derivatives of q belong to the so-called tangent bundle of the
configuration manifold and they generally have a dimension
different from the one of q; we choose to describe them
as v and v̇, respectively. These derivatives correspond to
v = (ṙ,ω, q̇j) and v̇ = (r̈, ω̇, q̈j), where r and ω are
the floating-base linear and angular velocity, respectively. As
shown in [22], the Lagrangian dynamics may get simplified
if it is expressed using centroidal coordinates:mI3×3 03×3 03×nj

03×3 Īr 03×nj

0nj×3 0nj×3 M̄j

 r̈
ω̇
q̈j

+

mg
˙̄Irω
h̄j

=

00
τ

+ J̄Tc λ,

(1)
where m is the total mass, Īr ∈ R3×3 is the total ro-
tational inertia expressed around the robot CoM, and the
contact Jacobian expressed in centroidal coordinates has the
form J̄ci =

[
I3×3

[
rbi − r

]
× Ji − Jc

]
∈ R3×6+nj . Note

that [̄·] operator denotes matrices/vectors recomputed after
the coordinate transform, and [.]× is the skew-symmetric
operator. Additionally, rbi ∈ R3 is the ith contact point
position expressed in B, Jc = ∂r/∂qj maps joint velocities
into CoM velocities expressed in B, Ji maps joint velocities
into the Cartesian velocity of the ith contact, g is the gravity
vector, M̄j and h̄j are respectively the joint-space inertia
matrix and the Coriolis and centrifugal terms resulting from
the centroidal coordinate transform.

Generating a whole-body trajectory requires to find a valid
trajectory of the centroidal momenta along its joint motion.
A valid trajectory might be defined whenever it satisfies the
dynamic-consistency, the friction-cone constraints, the self-
collision avoidance and the joint limits. From (1) the first
two rows describe the evolution of the centroidal linear and
angular momenta H = (P ,L) ∈ R6, and they represent the
under-actuated part of the dynamics (a.k.a. centroidal dy-
namics). One can formulate this huge dimensional problem
as a single OC problem:{

x∗0, · · · ,x∗N
u∗0, · · · ,u∗N

}
= arg min

X,U

N∑
k=1

∫ tk+∆t

tk

lk(x,u)dt

s.t. ẋ = f(x,u,λ),

x ∈ X ,u ∈ U ,λ ∈ K.
(2)

The state and its time derivative are x = (q,v) and
ẋ = (v, v̇), respectively, and the control is defined as the
torque commands u = τ . Additionally, X , U and K are
the admissible sets: joint configurations and joint velocities
bounds, joint torque commands limits, and contact forces
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Fig. 1: Overview of our multi-stage locomotion framework [20]. Given a requested path request between start and goal
positions (left image), P1 is the problem of computing a guide path in the space of equilibrium feasible root configurations.
We achieve this by defining a geometric condition, the reachability condition (abstracted with the transparent cylinders on
the middle image). P2 is then the problem of extending the path into a discrete sequence of contact configurations. Finally,
P3 attends to compute a dynamic-physical whole-body trajectory given as input the discrete contact sequence.

constraints (e.g. the friction cone constraint), respectively.
Despite the fact that it represents a compact and unified
formulation, it is not the most efficient way of solving it
as we discuss below.

In our previously explained centroidal trajectory optimiza-
tion [4], we enforce friction cone constraints and the kine-
matics feasibility of the trajectory (self-collision and joint
limits) using data-driven techniques. However, we are unable
to consider the right angular momentum effect produced by
the limb motions. Consider the second row of (1). If the
contact forces are zero, then we observe a conservation of
the angular momentum as a non-holonomic constraint i.e.

nj∑
k=0

mi[rk − r]×ẋk + RkIkωk = Constant, (3)

where k denotes the index of a rigid limb and Ik corresponds
to its inertia matrix expressed in the body’s CoM frame. ẋk
and ωk are the linear and angular velocities of the body in
W . From this equation, we can conclude that it is possible
to regulate the robot orientation by only changing the joint
configuration. As a consequence of this, in [4] we aim to
lower this quantity (regulation around a zero reference).

While, we would like to account for this effect during
the optimization process, it is a hard problem to solve in
real-time. Instead we can assume that this effect is small,
but yet important to consider, and track it with a whole-
body Model Predictive Control (MPC). DDP is a reasonable
choice between the two, because it allows us to optimize
both trajectory and control commands [23], and it uses
the Bellman principle to exploit the sparse structure of the
problem. DDP has been shown [24] to be efficient in solving
online OC in legged systems.

III. DIFFERENTIAL DYNAMIC PROGRAMMING

In this section, we give a formal description of the DDP
algorithm for completeness. For more elaborate explanations
and derivations, the reader is referred to [23]. DDP belongs to
the family of OC handled with a sparse structure thanks to the
Bellman principle. Concretely speaking, instead of finding
the entire optimal trajectory (2), the Bellman principle makes
recursively individual decisions:

Vi(xi) = min
ui

[l(xi,ui) + Vi+1(f(xi,ui))], (4)

This is possible through a forward simulation of the system
dynamics xi+1 = f(xi,ui). Note that Vi denotes the value
function which describes the minimum cost-to-go:

Vi(xi) = min
ui:N−1

Ji(xi,ui:N−1). (5)

DDP searches locally the optimal state and control sequences
of the above problem. For that aim, it uses a quadratic
approximation Q(δx, δu) of the differential change in (4),
i.e.

Q(δx, δu) ≈

 1
δx
δu

>  0 Qx
> Qu

>

Qx Qxx Qxu

Qu Qux Quu

 1
δx
δu

 (6)

where

Qx = lx + f>x V′x,

Qu = lu + f>u V′x,

Qxx = lxx + f>x V′xxfx + V′xfxx,

Quu = luu + f>u V′xxfu + V′xfuu,

Qux = lux + f>u V′xxfx + V′xfux,

(7)

and the primes denotes the values at the next time-step.

A. Backward pass

The backward pass determines the search direction of the
Newton step by recursively solving (4). In an unconstrained
setting the solution is:

δu∗ = arg min
δu

Q(δx, δu) = k + Kδx, (8)

where k = −Q−1
uuQu and K = −Q−1

uuQuxδx are the
feed-forward and feedback terms. Recursive updates of the
derivatives of the value function are done as follows:

Vx(i) = Qx + K>Quuk + K>Qu + Q>uxk,

Vxx(i) = Qxx + K>QuuK + K>Qux + Q>uxK.
(9)

B. Forward pass

The forward pass determines the step size along the
Newton direction by adjusting the line search parameter α.
It computes a new trajectory by integrating the dynamics
along the computed feed-forward and feedback commands
{ki,Ki}:

ûi = ui + αki + Ki(x̂i − xi),

x̂i+1 = f(x̂i, ûi),
(10)
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in which x̂1 = x1, and {x̂i, ûi} are the new state-control
pair. Note that if α = 0, it does not change the state and
control trajectories.

C. Line search and regularization
We perform a backtracking line search by trying the

full step (α = 1) first. The choice of α is dual to the
choice of regularization terms, and both are updated between
subsequent iterations to ensure a good progress toward the
(local) optimal solution. We use two regularization schemes:
the Tikhonov regularization (over Quu) and its update using
the Lavenberg-Marquardt algorithm are typically used [25].
Tassa et al. [24] propose a regularization scheme over Vxx,
which is equivalent to adding a penalty in the state changes.

IV. DDP WITH CONSTRAINED ROBOT DYNAMICS

A. Contact dynamics
Let’s consider the case of rigid contact dynamics with the

environment. Given a predefined contact sequence, rigid con-
tacts can be formulated as holonomic scleronomic constraints
to the robot dynamics (i.e. equality-constrained dynamics).
The unconstrained robot dynamics is typically represented
as:

Mv̇free = τ b, (11)

where M ∈ Rn×n is the joint-space inertia ma-
trix, v̇free is the unconstrained joint acceleration vector,
τ b = Sτ − b ∈ Rn is the force-bias vector that accounts for
the control τ , the Coriolis and gravitational effects b, and S
is the selection matrix of the actuated joint coordinates.

We can account for the rigid contact constraints by ap-
plying the Gauss principle of least constraint [26], [13].
Under this principle, the constrained motion evolves in such
a way that it minimizes the deviation in acceleration from
the unconstrained motion afree, i.e.:

v̇ = arg min
a

1

2
‖v̇ − v̇free‖M

subject to Jcv̇ + J̇cv = 0,

(12)

in which M is formally the metric tensor over the configura-
tion manifold q1. Note that we differentiate twice the holo-
nomic contact constraint φ(q) in order to express it in the
acceleration space. In other words, the rigid contact condition
is expressed by the second-order kinematic constraints on the
contact surface position. Jc =

[
Jc1 · · · Jcf

]
∈ Rkp×n is

a stack of the f contact Jacobians.

B. Karush-Kuhn-Tucker (KKT) conditions
The Gauss minimization in (12) corresponds to an

equality-constrained convex optimization problem2, and it
has a unique solution if Jc is full-rank. The primal and
dual optimal solutions (v̇,λ) must satisfy the so-called KKT
conditions given by[

M J>c
Jc 0

] [
v̇
−λ

]
=

[
τ b
−J̇cv

]
. (13)

1The dimension of the configuration manifold q and its tangent v are
not the same in general (e.g. system evolving in a SE(3) manifold).

2M is a positive-definite matrix.

These dual variables λk ∈ Rp render themselves nicely
in mechanics as the external forces at the contact level. This
relationship allows us to express the contact forces directly
in terms of the robot state and actuation. In other words, this
would free the solver to find an unconstrained solution to
the KKT dynamics (13), without worrying about the contact
constraint. Fast iterative Newton and quasi-Newton methods
can then be easily applied to achieve real-time performance.

C. KKT-based DDP algorithm

From (13), we can see the augmented KKT dynamics as
a function of the state xi and the control ui:

xi+1 = f(xi,ui),

λi = g(xi,ui),
(14)

where the state x = (q,v) is represented by the configuration
vector and its tangent velocity, u is the torque-input vector,
and g(·) is the dual solution of (13). In case of legged robots,
the placement of the free-floating link is described using the
special Euclidean group SE(3).

Given a reference trajectory for the contact forces, the
DDP backward-pass cost and its respective Hessians (see
(4) and (7)) are updated as follows:

Ji(xi,Ui) = lf (xN ) +

N−1∑
k=i

l(xk,uk,λk), (15)

where Ui = {ui,ui+1, · · · ,uN−1} is the tuple of controls
that acts on the system dynamics at time i, and the Gauss-
Newton approximation of the Q coefficients (i.e. first-order
approximation of g(·) and f(·)) are

Qx = lx + g>x lλ + f>x V′x,

Qu = lx + g>u lλ + f>u V′x,

Qxx ≈ lxx + g>x lλx + f>x V′xxfx,

Quu ≈ luu + g>u lλu + f>u V′xxfu,

Qux ≈ lux + g>u lλx + f>u V′xxfx.

(16)

The set of equations (16) takes into account the trajectory of
the rigid contact forces inside the backward-pass. The system
evolution needed in the forward-pass is described by (14).

V. RESULTS

In this section, we show that our DDP formulation can
generate whole-body motions which require regulation of
the angular momentum. The performance of our algorithm is
assessed on realistic simulations and aggressive experimental
trials on the HRP-2 robot. First, we perform very large
strides (from 80 to 100 cm) which require large amount of
angular momentum (due to the fast swing of the 6-kg leg)
and reach the HRP-2 limits. Then, we show how our method
can regulate the robot attitude in absence of contact forces
and gravitation field. These motions cannot be generated
through a standard time-invariant IK/ID solver, as the system
becomes non-holonomic as shown in (3).

All the motions were computed offline. Contact se-
quence [21] and the centroidal trajectory [27] are pre-
computed and provided to the solver for the large stride
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experiments. We used the standard controller OpenHRP [28]
for tracking the motions on the real robot. The large strides
produced by DDP are compared with those produced by an
IK solver [10], showing the benefit of our approach.

A. Large stride on a flat ground

In these experiments, we generate a sequence of cyclic
contact for 80 cm to 100 cm stride. These are very big steps
for HRP-2 compared to its height (160 cm). For the contact
location, we use the OC solver reported in [3] to compute
the contact timings and the centroidal trajectory. Then we
use our proposed DDP to generate the full robot motion.

The cost function is composed of various tasks in order
to keep balance and to increase efficiency and stability: (a)
CoM, foot position and orientation and contact forces track-
ing of centroidal motion, (b) torque commands minimiza-
tion and (c) joint configuration and velocity regularization.
All these tasks are residual functions of the state, control
and contact forces which are penalized quadratically, i.e.
‖ri(x,u,λ)‖Qi

. The evolution of the different normalized
task costs with iterations is shown in Fig. 2. Our method
adapts the CoM to create a more efficient torque and contact
force trajectory.

Increasing the upper-body angular momentum helps to
counterbalance the swing leg motion, this in turn reduces
GRFs and improves the locomotion stability. Our experimen-
tal results show a reduction on the GRFs peaks compared to
the IK solver. Fig. 3 shows the measured normal contact
forces and the knee torques in case of DDP solver and IK
solvers. Our DDP reduced the normal forces peaks of the
IK solver from 895 N to 755 N. This represents a significant
improvement, considering that the minimum possible contact
forces are 650 N (the total mass of the HRP-2 robot is 65 kg)
and the maximum safe force allowed by the sensors on the
foot is 1000 N. An overview of the motion is shown in Fig. 4.

B. Attitude regulation through joint motion

The angular momentum equation (3) shows that it is
possible to regulate the robot attitude without the need of
contact forces [13]. It can be seen that the gravity field
does not affect this property. Thus, we analyze how our
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Fig. 2: Evolution of the different cost functions (normal-
ized) with respect to iterations. DDP reduces the applied
torques by recalculating the CoM tracking. It improves the
contact force by taking into account the whole-body angular
momentum. The result is a continuous improvement in the
performance as compared to IK. We stop after 100 iterations.
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Fig. 3: Comparison between the IK and DDP trajectory
for 100 cm stride on the HRP-2 robot. Top: Knee torques
generated in the left leg. Bottom: Ground Reaction Forces
(GRFs) generated in the left foot. The DDP formulation
allows us to utilize the angular momentum of the upper body,
which reduces the requirement on the lower body to create
a counterbalancing motion. This results in a lower torque in
the lower body, as well as lower GRFs. Around t = 14s we
can see high peaks for the IK and DDP trajectories of 895 N
and 755 N, respectively.

DDP solver regulates the attitude in zero-gravity condition,
we named this task astronaut reorientation. The astronaut
reorientation (similar to cat falling) is an interesting motor
task due to fact that it depends on a proper exploitation of
the angular momentum based on the coordination of arms
and legs motions. Fig. 5 demonstrates the motion found by
the solver to rotate the body 360◦. Unlike an instantaneous
tracking solver like IK, the solver is willing to bend in the
opposite direction, in order to obtain an ability to create
sufficient angular momentum by the legs. It is important
here to note that such motion cannot be obtained by a time-
invariant control law which does not take the future control
trajectory into account.

The cost matrices for this problem require a barrier
function on the robot configuration to avoid self-collision.
Final cost on the body orientation provides the goal, and a
running cost on the posture is added for regularization. No
warm start is given to the solver, the initial control trajectory
is a set of zero vectors. For the ease of demonstration, we
used only the leg joints in the sagittal plane. Fig. 6 shows the
torques produced by the hip and the knee joints. Our method
creates a rotation of the upper body by a quick initial motion
in the legs. Then it maintains the angular velocity by small
correctional torque inputs during the rest of the trajectory. At
the end, to bring the rotation to a halt, the same behaviour
is repeated in the reverse.

VI. CONCLUSION

Typically, reduced centroidal trajectory optimization does
not take into account the angular momentum produced by the
limb motions. Proper regulation of the angular momentum
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Fig. 4: Snapshots of 100 cm stride on a flat terrain used to evaluate the performance of our whole-body trajectory optimization
method. The DDP trajectory reduces significantly the normal forces peaks compared with classic whole-body IK.

Fig. 5: Attitude adjustment maneuver conducted by the robot in gravity free space. DDP solver takes into account the
non-holonomic angular momentum constraint and uses internal actuation to rotate 360◦ without the need for contact forces.
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Fig. 6: Joint torques for the astronaut maneuver. Our method
plans a smart strategy by kick-starting the rotation, and then
tries to maintain the velocity by small bang-bang control
signals. Towards the end, it changes again the velocity of
the lower legs in order to bring the system to a stop.

exploits the counterbalancing effect in order to reduce the
contact forces and torque commands. It also improves the
stability during flight phases where the momentum control
can only be made through joint motions. Also, it is well
known that under absence of external forces the momen-
tum conservation represents a nonholonomic constraint. And
this system cannot be controlled with simple time-invariant
feedback law. OC provides the required tools for solving
it, however, this big problem is hard to solve in real-time.
Thus, we have proposed a whole-body generation approach
that splits the problem into the under-actuated and actuated
dynamics. Our whole-body locomotion framework is an
extension of our previous work [3].

In this paper, we have also proposed a novel DDP formula-
tion based on the augmented KKT dynamics (see (14)) which
is a product of holonomic contact constraints. It represents
the first application of motion generated by DDP solver
on a real humanoid locomotion. Our whole-body motion
generation pipeline enables us to potentially regulate angular
momentum dynamics during the wholebody motion in real-
time. We have observed a reduction of the contact forces
compared to the IK solver, even though we had to restrict
the angular momentum in the sagittal plane, for the stride
on flat ground task, due to robot limits. While these first

results look promising, there is still a considerable extra work
such as: efficient DDP based on the analytical derivatives
of rigid-body dynamics [29], faster numerical convergence
through a better globalization strategy, robustness study
against model errors, etc. A more revealing experiment, the
astronaut reorientation, demonstrates further the limits of the
previous approaches and the advantages of using DDP. The
solver generates the desired motion from scratch in this case
by manipulating joint velocities within the non-holonomic
angular momentum constraints.
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