
HAL Id: hal-01851536
https://hal.science/hal-01851536

Preprint submitted on 1 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantum selection for spin systems
Alix Deleporte

To cite this version:

Alix Deleporte. Quantum selection for spin systems. 2018. �hal-01851536�

https://hal.science/hal-01851536
https://hal.archives-ouvertes.fr


Quantum selection for spin systems

Alix Deleporte
Université de Strasbourg, CNRS, IRMA UMR 7501, F-67000 Strasbourg, France

(Dated: August 1, 2018)

We report mathematical results on the process by which quantum order by disorder takes place for
spin systems. The selection rules follow the influence of several competing contributions. Moreover
there is no link between quantum selection and thermal selection. We present work in the general
setting as well as toy models and examples for which quantum selection has an interesting behaviour.

I. INTRODUCTION

A. Order by disorder

The understanding of low-energy states of non-
integrable quantum systems is a notoriously difficult task,
with applications to the design of both quantum and reg-
ular computers, supraconductivity as well as superfluid-
ity. In particular, the Anderson RVB model for high
Tc supraconductivity2 has drawn attention to frustrated
quantum spin systems.

In an effort to tackle this problem from a theoretical
perspective, various approximation procedure are used,
such as restriction to finite size systems12,25,32 or gener-
alizations to SU(N) with N large30. In this paper we
are interested in semiclassical methods7,14,17, which are
inspired by Villain’s “order by disorder” principle31.

This approach is motivated by the fact that, for frus-
trated spin systems, the classical minimal set does not
consist of a single class of configurations given by a global
symmetry. Spin ices1,18,24,27 feature a discrete set of clas-
sical minimal configurations, with extensive cardinality.
For the Heisenberg AntiFerromagnetic model (HAF) on
the Kagome lattice (see Figure 1), they form a contin-
uous set which is not regular: the dimension of allowed
infinitesimal moves is not constant on this set.

The idea behind “order by disorder” is that low-
temperature classical states, as well as quantum low-
energy eigenstates, are not exactly located on the classi-
cal minimal set but are spread out; in particular, their
energies are shifted up by a factor depending on the be-
haviour of the classical energy near its minimal set. The
flattest the classical energy landscape, the lowest the en-
ergy contribution. As a consequence, those states must
concentrate only on the subset of the classical minimal set
where the local energy landscape is the flattest. In short,
the presence of thermal or quantum fluctuations actually
restrict the possible locations of low-energy states.

At this point we already make an emphasis on the ge-
ometrical data needed to define what it means for the
classical energy to be flatter near one minimal point
than near another. As was already pointed out14, in
the setting of classical low-temperature, the Gibbs mea-
sure depends on the classical energy itself and the vol-
ume element on the phase space. To the contrary, quan-
tum states depend on the symplectic structure on the
phase space, which is a finer geometrical notion: some

FIG. 1. Pieces of the Husimi tree (left) and the Kagome
lattice (right)

phase space transformations preserve the volume form
but not the symplectic structure. Thus, though thermal
and quantum selection stem from the same intuition, the
“flattest” classical points may not be the same in the two
cases.

B. Results

In this article we clarify the process under which quan-
tum selection takes place, and examine the links with
thermal selection. A common heuristics states that quan-
tum selection and thermal selection follow the same rules.
This intuition, which leads to the claim that on the
Kagome HAF low-energy states are coplanar, is some-
times misleading. Another claim states that quantum
selection is determined by the classical frequencies in the
linear spin-wave approximation. In fact there are ad-
ditional terms, which do not play a role on antiferro-
magnetic systems but which appear in more general spin
systems. We describe in detail those additional terms.

We report mathematical results, which define a func-
tion µ under which quantum selection takes place: as the
spin grows, low-energy quantum states localize on the set
of phase space on which both the classical energy and this
function µ are minimal. We then analyse various model
situations of irregular minimal classical sets in order to
understand the link with thermal selection.

This article is organised as follows: Section II presents
the general mathematical framework for the treatment
of quantum selection in the context of spin systems. In
Section III we use three toy models to illustrate the con-
cepts and difficulties associated with quantum order by
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disorder. In Section IV we analyse practical examples
such as the semiclassical HAF on the Kagome lattice.
Section V presents a discussion of the consequences and
applications of our work. The Appendix consists of ex-
act computations which relate spin systems and Toeplitz
quantization.

II. SPIN WAVE FREQUENCIES AND
TOEPLITZ QUANTIZATION

In this section we expose the main mathematical ideas
behind Toeplitz quantization, which allows to study spin
operators in the large S limit from a rigorous point of
view. We report our recent results on the topic and clar-
ify the exact procedure under which quantum selection
takes place.

A. Harmonic oscillators in Bargmann-Fock
representation

The point of view of Bargmann on the quantum har-
monic oscillator5,20, is that quantum states should be
seen as holomorphic functions on the complex space Cd
instead of the common choice L2(Rd). This idea can in
fact be generalized to other phases spaces than Cd, and
allows to understand the large spin limit as a semiclassi-
cal limit from a rigorous point of view.

For positive k (which is seen as the inverse Planck con-
stant), holomorphic functions on Cd form a Hilbert space
Bk with the following scalar product

〈u|v〉Bk
=

∫
u(z)v(z) exp(−k|z|2)dz.

We naturally exclude from the space Bk the functions
with infinite norm. Example of functions in Bk are the
monomials z 7→ zν11 . . . zνdd which, once normalized, form
a Hilbert base of Bk. Under this definition, Bk naturally
sits inside the space Lk of all (not necessarily holomor-
phic) functions which are square-integrable with respect
to the exponential weight above. The orthogonal pro-
jector Πk from Lk to Bk is used to define the quantum
harmonic oscillator, which is the following operator on
Bk:

Tk(|z|2)|u〉 = Πk(z 7→ |z|2u(z)).

This is a Toeplitz operator: the composition of a multi-
plication operator and a projection. The matrix elements
are simply

〈u|Tk(|z|2)|v〉Bk
=

∫
Cd

u(z)v(z)|z|2 exp(−k|z|2)dz.

The monomials zν are eigenfunctions of this operator,
with eigenvalues k−1(ν1 + . . . + νd + d). This con-
trasts with the L2(Rd) point of view on the harmonic
oscillator, where the eigenvalues are the half-integers

~(ν1+. . .+νd+ d
2 ). This does not mean that this Toeplitz

operator is not natural, or that other terms should be
added; in experiments one can only measure gaps be-
tween eigenvalues, which coincide for the two settings.

The definition of the Toeplitz operator can be gener-
alized. If H is any function on Cd (which represents the
classical energy on the phase space Cd = R2d), the asso-
ciated Toeplitz operator on Bk is defined as

Tk(H)|u〉 = Πk(z 7→ H(z)u(z)).

This defines a quantization: Tk(H1 + H2) = Tk(H1) +
Tk(H2), and in the large k limit, the commutator
[Tk(H1), Tk(H2)] becomes close to −ik−1Tk({H1, H2}).
The function H associated with the operator Tk(H),
which is unique, is called the symbol of Tk(H). In the
context of spin systems it coincides with the notion of
upper symbol.

Toeplitz quantization follows the Wick order: if H :
z 7→ zαzβ , then

Tk(H) = k−
∑
αi∂αzβ .

The Wick rule allows explicit computations for the
Toeplitz quantization of any polynomial function in the
coordinates.

Of great interest are Toeplitz operators associated with
semipositive definite forms Q ≥ 0. As in the harmonic
case, the infimum of the spectrum is linked with the clas-
sical frequencies, but is shifted with respect to the usual
quantization procedure: if λ1, . . . , λr are the non-zero
classical frequencies for Q, then

µ(Q) := inf Spec(Tk(Q)) = k−1

(
1

2

r∑
i=1

λi +
1

4
tr(Q)

)
.

(1)
The factor tr(Q) is specific to Bargmann quantization.

In the Weyl representation, one has instead

inf Spec(Op~W (Q)) =
~
2

r∑
i=1

λi.

B. Toeplitz operators on spheres

Toeplitz quantization can be generalized from Cd to
other phase spaces, using tools of complex geometry6. In
particular, this allows to define a quantization procedure
on product of spheres: to any classical energy on a prod-
uct of spheres, and any k, one can associate a quantum
operator, acting on the tensor product of spaces Ck+1.
Previously k was any positive real number, but now it
needs to be an integer: the topology of the phase space
only allows quantized values of the inverse Planck con-
stant.

Toeplitz operators on product of spheres include spin
systems (with spin S = k

2 ). However the quantization
procedure requires some care in the computations as can
be seen on Table I.
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classical quantum (S = k
2
)

z k
k+2

Sz

x k
k+2

Sx

z2 k2

(k,3)
S2
z + 1

k+3

zx k2

2(k,3)
(SxSz + SzSx)

z2x k3

(k,4)
SzSxSz + 1

(k+3)
Sx

z3 k3

(k,4)
S3
z + k(3k+8)

(k,4)
Sz

TABLE I. Quantization of some symbols on the sphere.
The operator Sz has entries −1,−1 + S−1, . . . , 1− S−1, 1.
We denote (k, j) = (k + 2)(k + 3) . . . (k + j).

The corrective terms of order k−1 are crucial for quan-
tum order from disorder. The details for the computa-
tions in Table I are presented in the Appendix.

C. Quantum selection for Toeplitz operators

In a recent paper9, we developed mathematical tools in
order to study quantum selection for general Toeplitz op-
erators in the large k limit. We report that, in a general
case (even if the set of minimal classical energy is irregu-
lar), quantum selection takes place for Toeplitz operators
following a general criterion.

In order to apply our results to usual spin operators, as
seen above, we need to consider Toeplitz operators with
classical energy depending on k in the following way:

f = f0 + k−1f1 + k−2f2 + . . . ,

where each term fj is a real function on the phase space.
Indeed, the quantization of symbols which do not depend
on k only yield a deformation of the usual spin operators.
The Toeplitz operator Tk(f) is well-defined by linearity.

Quantum states with energy less than min(f0) +Ck−1

are known to localize on Z = {f0 is minimal} as k grows.
In a neighbourhood of any point P0 of Z, the function
f0 can be approximated by its quadratic Taylor estimate
min(f0)+Q, where Q is a semidefinite positive quadratic
form which depends on P0.

The selection criterion is then

µ̃ = µ(Q) + f1,

in following sense: if (uk) denotes a sequence of ground
states of Tk(f), if a set V lies at positive distance from

{x ∈ Z, µ̃(x) = min(µ̃)},

then for every j one has, as k → +∞,∫
V

|uk(z)|2 - k−j .

The meaning of |uk(z)|2 depends on the underlying man-
ifold (for instance, on Cd a factor exp(−k|z|2) must be

added), but as our quantum states are defined on the
whole phase space, localisation properties can be formu-
lated in a more elementary way than in the space repre-
sentation.

The quantum ground state localizes, in the large k
limit, only on the part of Z where µ̃ is minimal; at any
positive distance from this set, the ground state decays
faster than any negative power of k. In fact, if E0 is the
energy of the ground state, then any quantum eigenstate
with energy less than E0 + εk−1 for any ε localizes where
µ̃ is minimal.28

In order to apply this result from a standard “operator-
presented” quantum spin Hamiltonian in the large spin
limit, one needs first to compute, not only the associ-
ated classical energy at the main order, but also the so-
called “subprincipal symbol” which contains the next-
order terms in the quantization procedure. For instance,
starting with the operator S2

z , the principal symbol is of
course z2, and from Table I one can compute that a more
accurate representation is

z2 + k−1(5z2 + 1).

This subprincipal part, added to the trace and to the
sum of symplectic eigenvalues of the quadratic part of the
energy, yields the function µ̃ which is the selection rule.
In section III we apply this method to several models.

The physical interpretation of µ̃ is the following: sup-
pose that one wants to minimise the energy of a quantum
state while constraining it to be localised at a precise
point, where the classical energy has a local minimum.
Then the energy of this minimal constrained state is nat-
urally close to the classical energy, but is lifted up by
quantum fluctuations. Indeed, quantum states have to
spread out somewhat, and to reach parts of the phase
space where the classical energy is not minimal. This
energy lift is of the same order as the semiclassical pa-
rameter (here, k−1). Then µ̃, at this point, is the k−1

contribution to this energy lift.
In the context of spin systems, the selection rule is de-

termined by the classical frequencies of the spin waves,
and by non-trivial additional terms which must be taken
care of. For the particular case of HAF systems, if each
spin has the same number of neighbors, then the addi-
tional terms are constant, but on other systems on which
quantum selection is studied, they can play an important
role.

III. TOY MODELS

In order to understand quantum selection in the gen-
eral case and in the particular case of spin systems, we
first look at three simple toy models.

In the first toy model, which is the first historical exam-
ple of quantum selection, thermal and quantum selection
play the same role. In the second toy model, which has
an irregular minimal set as does the HAF on the Kagome
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lattice, thermal selection is sharper than quantum selec-
tion: some classical configurations are equivalent from a
quantum point of view (they share the same value of µ̃),
but are discriminated by the Gibbs measure. Conversely,
on the third toy model, there is no thermal selection, but
quantum selection takes place.

A. Miniwells

The general study of quantum selection for the ground
state of a Schrödinger operator was performed by Helffer
and Sjöstrand19 who exposed a WKB construction for
a quasimode associated to the lowest energy. Quantum
selection occurs when the potential V is minimal on a
degenerate set Z. If Z is a smooth manifold on which V
vanishes at order 2, the criterion for quantum selection
is the trace of the square root of the Hessian matrix of
V at the minimal points; in this Weyl setting, it corre-
sponds exactly to the sum of the classical frequencies for
the linearized system. Even in this case it does not cor-
respond to the criterion for thermal selection (which is
the product of these frequencies).

The simplest example is the operator P~ = −~2∆ + V
acting on L2(R2), with V (x, y) = y2(1+x2), vanishing at
order two on the horizontal axis. It is already interesting
to note that, though V itself is not a confining potential,
Ph only has discrete spectrum because of the quantum
selection.

Around every point (x0, 0) of the horizontal axis, the
quadratic terms in the potential are y2(1 + x20). For this
quadratic potential there is one non-zero classical fre-
quency,

√
1 + x20. This frequency is minimal at x0 = 0,

which is called the “miniwell” for this potential. Hence,
the ground state of this operator concentrates on the
point (0, 0), in the previous sense (for the Husimi trans-
form).

In this setting, the value µ̃ coincides with the effec-
tive potential given by the intuition of the adiabatic
approximation14. At (x0, 0) one can approximate the
behaviour of a low-energy state in the second variable
as the ground state of the quadratic transverse operator
−~2∂2y + (1 + x20)y2; if ex0

(y) is the ground state of this
operator, then the energy of a state of the form ex(y)f(x)
is

~〈f, (−~∂2x + µ̃)f〉,

so that µ̃ acts as an effective potential (with new semi-

classical parameter
√
~).

B. Crossing points

With the Kagome lattice in mind, let us consider toy
models where the minimal set of the classical energy is
not a smooth manifold.

The first of this model is again a Schrödinger opera-
tor on R2, with potential V (x, y) = x2y2. The minimal

set consists in the two axes, which meet at zero. On the
horizontal branch (x0, 0), there is only one non-zero lin-
ear classical frequency, which is |x0|. This frequency is
minimal at zero (note that this frequency is not smooth
at zero). The same applies for the vertical axis. Once
again, the operator P~ = −~2∆ + V only has discrete
spectrum and the first eigenfunction localizes at the ori-
gin, which is also the point of thermal selection (since
the local dimension of the zero modes is maximal at this
point). Because of the non-regularity of the classical fre-
quency at the crossing point, for a potential W close to
V which is also minimal on the two axes, the quantum
system will still select the crossing point.

In this setting, the Born-Oppenheimer approximation
fails at the crossing point, so that there is no simpler
effective model. However µ̃ still acts as an energy barrier,
independently on the geometry.

A more general crossing is the Schrödinger operator on
R3, with potential V (x, y, z) = x2y2z2. The minimal set
is the union of the three planes {x = 0}, {y = 0}, {z = 0},
and the local zero dimension is maximal at the origin.
However, on the plane {x = 0} the classical frequency
is |yz|. All classical frequencies vanish identically on the
three axes.

For this particular potential, there is a hierarchy of per-
turbations, and investigating the sub-sub-principal (or-
der k−2) terms will lead to concentration at the origin
and discrete spectrum. However, if non-degenerate trans-
verse modes are added, they correspond (in the adiabatic
regime) to a perturbation of order k−1, in front of which
the k−2 confinement at the origin is negligible; in the gen-
eral setting, even for small perturbations, the quantum
selected point can be any point on the three axes. This
illustrates the discrepancy between quantum and ther-
mal selection and shows that for the Kagome lattice, the
points of quantum selection might not necessarily be the
planar configurations, though those configurations have
the maximal number of zero modes.

C. Cancelling terms

We propose an example which serves to illustrate the
effects of the different terms in the process by which
quantum selection takes place.

Let us consider the following one-spin Hamiltonian:

H = S2
z + ∆SzSxSz.

The principal symbol of this operator is

h0 = z2(1 + ∆x).

If 0 < ∆ < 1, then h0 is minimal on {z = 0}. It looks like
h0 is smaller near (−1, 0, 0) than near any other point, so
that, at first sight, quantum order from disorder seems
to take place in this setting.

Let us look at the three terms appearing in quantum
selection:
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1. For any minimal point, the associated linear classi-
cal frequency is zero, since the linear classical ap-
proximation is that of a free massive particle in
one-dimensional space.

2. The trace of the quadratic form near a minimal
point is non-zero; this term has contribution

µ = 1 + ∆x

3. The next-order term in the expansion is

h1 = 5z2 − 1 + ∆(9z2x− x)

In particular, on the set where h0 is minimal, one
has

h1 = −1−∆x.

The set selected by quantum order by disorder is the
set where h1 + µ is minimal, but the two terms cancel
out. Hence there is no quantum selection at this order of
expansion.

It can readily be seen that, if the spin S is even, then
Sz|0〉 = 0, so that H|0〉 = 0 and |0〉 is the ground state
of H. As expected, the magnetization of |0〉 along the x
axis is exactly zero. Hence, there is no quantum selection
in the large spin limit for this model.

More involved theoretical examples where the classical
degeneracy is not lifted at any order of S−1 include spin
textures13. In other situations, there could be no quan-
tum selection at first order, but next-order terms could
break the degeneracy. In practice, one expects additional
terms (such as second nearest neighbours interactions)
which will destroy exact degeneracies.

IV. EXAMPLES

A. Kagome lattice

The quantum HAF on the Kagome lattice is the
Toeplitz quantization of the classical energy∑

i∼j
ei · ej .

Here i ∼ j means that the two sites i and j are linked
by an edge. The Toeplitz quantization of the symbol
above is

S2

(S + 1)2

∑
i∼j

Si · Sj ,

so that, up to a multiplicative factor, the quantization
of the classical HAF is the quantum HAF. As we wish
to study quantum selection, it is important that in this
case h1 = 0.

The low-temperature properties of the S = 1
2 HAF

are still unknown. Various numerical Ansätze or exact
diagonalizations12,21–23,25,32,34 predict a spin liquid phase
with polynomial decay of correlations, which is consistent
with experiments33. The large S analysis sheds some
light on this behaviour as we will see.

If ei = (xi, yi, zi), since sites in the Kagome lattice
are connected in triangles, up to a constant the classical
energy reads ∑

triangles

‖ei + ej + ek‖2.

The minimal classical set consists in configurations
where, on each triangle of sites, spins form a great equi-
lateral triangle on the sphere. This set has a highly non-
trivial structure: the presence of loops of triangles makes
it non-smooth. The classical minimal set for one hexagon
of triangles already has a crossing point as one of the toy
models, on which two smooth manifolds cross.

An interesting subset of classical minimal configura-
tions consists in planar configurations, which form a dis-
crete set. It is believed that quantum order by disorder
selects these configurations, thus reducing the semiclassi-
cal study to a 3 colours Potts model on the Kagome lat-
tice (with Hamiltonian unknown so far). Some of those
planar configurations have been proven7 to be local min-
ima for the function µ which is the criterion for quantum
selection, but it is unknown whether these are the global
minima for µ or not. The results in the S = 1

2 case are
compatible with this approach as there is an extensive
number of coplanar states, the majority of which hav-
ing no long-range order; this contrasts with the SU(N)-
case30 which would predict a unique, ordered, selected
configuration.

B. Simple models for the Kagome lattice

An easy case which allows to understand the large S
behavior of the HAF on the Kagome lattice consists in a
loop of four triangles. In this situation the classical min-
imal set is (once accounted for the global SO(3) action)
the union of three circles C1, C2, C3, two of each crossing
at exactly one point. The crossing points correspond to
planar configurations. There is a symmetry exchanging
C2 and C3. In Figure 2 we plot the value of µ along C1

and along C2, with parameter an angle which is 0 or π
on the crossings; this confirms the general belief that µ
is minimal on planar configurations.

The Husimi tree, proposed by Douçot and Simon14,
also serves as a toy model for the study of the Kagome
lattice. It is depicted on Figure 1.

The advantage of this model is that the classical mini-
mal set is much simpler than on the Kagome lattice. In-
deed, on the Husimi tree, once the three vectors on a par-
ent triangle are chosen along a great equilateral triangle
on the sphere, there is one degree of freedom in the choice
of the spins for each child triangle. Thus the minimal set
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FIG. 2. Numerical plot of µ for a loop of 4 triangles (insets),
along C1 (left) and C2 (right).

is a torus of dimension ](triangles)− 1, parametrised by
the angles between the equilateral triangles at neighbour-
ing sites.

Douçot and Simon14 reported that the classical fre-
quencies are not constant on the classical minimal set:
in particular, in this situation there is quantum selection
(the selected points are presumed to be coplanar configu-
rations except for the spins at the leaves which are free),
but there is no thermal selection since there are equiv-
alent for a class of phase space transformations which
preserve the volume.

C. Anisotropic XXZ chain

Let us take up from an example proposed by Douçot
and Simon14 and define the following Hamiltonian acting
on a closed chain of N spins:

H = J
∑
i

Si · Si+1 +
∑
i

Szi (Szi+1 − Szi ).

The principal term in the classical energy is

h0 = J
∑
i

ei · ei+1 +
∑
i

zi(zi − zi+1).

The next-order contribution is

h1 = 2J
∑
i

ei · ei+1 +
∑
i

(−2zizi+1 + 5z2i − 1).

If J < 0, the minimum of h0 is reached on ferromagnetic
configurations {ei = e}, indexed by S2.

Near any of these minimal configurations, the linear
spin wave theory is the same, up to a factor −J + 1− z2
in the potential. Hence µ is minimal as z = 0.

On ferromagnetic ordered configurations, one has

h1 = JN + 3Nz2.

Again h1 is smaller when z = 0. The sum µ+h1, which is
the criterion for quantum selection, is minimal as z = 0,
hence the ground state is located on this set.

V. CONCLUSION

A. Quantum versus thermal selection

In this paper, we reported evidence that quantum or-
der by disorder does not have the same rules as ther-
mal order by disorder. In experimental settings of low-
temperature quantum systems, there is competition be-
tween quantum and thermal selection. We present an
analysis of orders of magnitude.

On the system SrCrGaO which is an experimental
realization of the Kagome lattice, the interaction strength
J is presumed17 to be of order

J

kB
' 50K.

In experimental realizations, the spin S cannot be very
large so that the order of magnitude of the contribution
µ + h1 is also of order 10K × kB . This means that, be-
low these temperatures, quantum selection predominates
over thermal selection, since the magnitude of the quan-
tum fluctuations is much greater. On the Kagome lattice
there is no competition presumed between quantum and
thermal selection, but in other cases it could even lead to
a phase transition from thermal order (at medium tem-
peratures) to quantum order (at very low temperatures).
The temperatures involved in this analysis can be reached
for large systems by modern experimental methods.

In our recent paper9 we also computed the relative
contributions at low temperature on systems for which
the quantum selection criterion µ+ h1 is minimal at two
points, one of which is a regular “miniwell” point, the
other a crossing point. In this situation, if the temper-
ature is such that thermal effects are of the same order
as quantum effects, then the crossing point will be se-
lected (the quantum fluctuations do not see the differ-
ence between the two points, and the thermal fluctua-
tions select the one with maximal local zero dimension).
However at lower temperatures, the regular point will be
selected. The interpretation is that µ + h1 acts as an
effective Hamiltonian, which is smooth on the miniwell,
but which is typically non-regular at the crossing point
(see Figure 2). This confinement leads to an increased
quantum energy (this shift is of order S−4/3). Hence
there are more low-energy quantum states near the mini-
well than near the crossing point. This is a theoretical
instance of a phase transition, which is of course very pe-
culiar (since µ + h1 reaches the same value at two very
different points).

B. Selection on the Kagome lattice

The actual computation of µ on examples, even as sim-
ple as a chain of triangles, requires the full diagonaliza-
tion of a matrix whose size grows with the number of
spins, at each minimal point. Variational approaches al-
low to show that special (usually planar) configurations
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are critical points for µ (the first derivative of µ vanishes
at these points), but to show that these configurations
are global minima requires additional techniques.

As illustrated in Section III, the local geometry of the
minimal classical set plays a very important role. Points
near which the classical minimal set is a smooth mani-
fold are now quite well understood from a mathematical
point of view. On a point where exactly two manifolds
cross, there is a chance that quantum order by disorder
selects the crossing, especially in symmetrical situations
for which the function µ reaches a local minimum at the
crossing. Conversely, if three or more manifolds cross at
a point, with model the boundary of a hypercube, then
the crossing point has no reason to be selected by the
quantum system.

We believe that, near planar configurations on the
Kagome lattice, the local structure of the classical min-
imal set is a direct product of structures with two man-
ifolds crossing29, with quartic non-degenerate part (that
is, they follow the model case above). Indeed, the
quadratic and quartic terms in the energy, near a pla-
nar configuration, do not depend on the particular pla-
nar configuration, so that as soon as for one configuration
one has a product of structures as above, it is the case
for all configurations.

On systems where the classical minimal set is non
smooth, such as the Kagome lattice, the parametrisation
of this set is already a challenge. Numerical techniques
which do not involve knowledge of the minimal set should
be of help in tackling this problem.

C. Tunnelling

To conclude with, we address the issue of exponential
precision in estimates related to Toeplitz operators. This
problem is relevant in the context of tunnelling: it is
generally hoped that, in the presence of symmetries, the
ground state will tunnel between various configurations,
and the spectral gap (or the inverse time needed for a
quantum state to go from one configuration to another)
will be of order exp(−cS) in the large spin limit, where
c is a “tunnelling rate”, related to some classical action.

Various attempts1,3,4,8,11,15,16 have been made to study
this phenomenon in the setting of spin systems, mainly
by removing two antipodal points on the phase space
(the sphere), thus formally transforming the phase space
into R × S1 in which usual (Weyl) quantization takes
place with quantum state space L2(S1). However, it is
doubtful that these attempts yield the correct tunnelling
rate. First, this manipulation changes the quantization
procedure, and it is unclear whether there is a way to
perform the computations which is consistent with the
initial problem up to an error of order S−1, let alone
an exponentially small error. Second, rates of decay of
order exp(−c~−1) are notoriously delicate even in the
simplest geometrical setting of Weyl quantization on R2n,
as detailed by Martinez26. The basic difficulty is that one

needs to extend data in complex space, which can be done
only if the classical energy is real analytic, and only to
a small distance from the real space. This puts a limit
on the actual tunnelling rate. Lower bounds (Agmon
estimates) on the tunnelling rate for Toeplitz operators
were recently obtained by the author10.

Appendix: Computation of Toeplitz operators on
the sphere

For the particular case of the sphere, one can build
Toeplitz operators as on Cd via the stereographic projec-
tion, which maps the sphere minus the north pole onto
C in a holomorphic way.

Via this transformation, quantum states are holomor-
phic functions on C which have finite norm under the
following Hermitian structure:

〈f |g〉Hk
=
k + 1

π

∫
C

f(w)g(w)

(1 + |w|2)k+2
dw.

The space Hk consists of polynomials of degree less than
k. As for the flat case, the monomials are orthogonal but
not normalized. A Hilbert basis of Hk is given by

ej,k : z 7→

√
k + 1

π

(
k

j

)
zj .

To prove this (and perform further computations), we
use the fact that, for 0 ≤ j ≤ k:∫ +∞

0

uj

(1 + u)k+2
=

1

k + 1

(
k

j

)−1
.

Let us compute the Toeplitz quantization of simple func-
tions defined on the sphere.

The height z is mapped, via the stereographic projec-
tion, in the map

w 7→
|w|2 − 1

|w|2 + 1
.

Since this function is radial, the matrix elements
〈ej,k|Tk(z)|ej′,k〉Hk

are zero for j 6= j′. Moreover,

〈ej,k|Tk(z)|ej,k〉Hk
=

2j − k
k + 2

.

Hence, in this basis, the operator Tk(z) is
k

k + 2
times

a diagonal operator with equidistributed diagonal values
from −1 to 1; that is, the spin operator Sz with 2S = k.
The states ej,k corresponds to spin states |S,m〉 with
m = j − S.

The abscissa x is mapped, via the stereographic pro-
jection, into the map

w 7→
2Re(w)

1 + |w|2
.



8

This is the sum of a function of winding number −1 and
a function of winding number 1. Hence the matrix of
Tk(x) in the natural basis is zero except on the over- and
underdiagonal. The matrix elements are

〈ej,k|Tk(x)|ej+1,k〉Hk
=

√
(k − j)(j + 1)

k + 2
.

In this basis the matrix of the operator Tk(x) is k
k+2Sx.

By this method, the Toeplitz quantization of any poly-
nomial in the coordinates can be computed; this yields
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