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Introduction

The topological sensitivity analysis has been derived for various operators ; one can see [16] for the Laplace equation, [17,19] for the Stokes system, [20] for the quasi-Stokes problem, [15] for the elasticity problem, [23,24] for the Helmholtz equation, [12] for the acoustic problem, ... etc. However, the most significant contributions in this context have been focused on problems associated with stationary partial differential equations (PDE). Until recently, there have been very few investigations dealing with the non-stationary case. The existing research works for this case (one can see [7] or [11]) have been examined the shape function variation caused by the presence of a small inhomogeneity (or a cavity) inside the background domain. In this particular case, the perturbed solution is defined in the entire domain with a continuity condition on the boundary of the inhomogeneity.

In this work, we generalize the topological sensitivity analysis concept for the parabolic case. We derive a topological asymptotic expansion for the three dimensional nonstationary Stokes system. The obtained formula describes the variation of a given shape function with respect to the presence of a small obstacle inserted in the fluid flow domain.

More precisely, we consider a viscous and incompressible fluid flow in a bounded domain Ω with regular boundary Γ = ∂Ω. We assume that the fluid flow is in laminar regime, in such way that the convection term can be neglected and the Navier-Stokes equations can be approximated by the Stokes system. Then, the velocity w and the pressure p satisfy the following problem

         ∂w ∂t -ν∆w + ∇p = F in Ω×]0, T [, div w = 0 in Ω×]0, T [, w = w d on Γ×]0, T [, w(., 0) = w 0 in Ω, (1) 
where ν is the kinematic viscosity coefficient of the fluid, F is a given body force per unit of mass, w d is a given Dirichlet boundary data and w 0 is the initial fluid flow velocity.

Because of the divergence free condition on w, w d must necessary satisfy the compatibility condition Γ w d (x, t).nds(x) = 0, p.p. t ∈]0, T [ where n is the unit outward normal vector along the boundary Γ.

The topological sensitivity analysis method consists in studying the variation of a shape function j with respect to the creation of a small geometric perturbation in the fluid flow domain Ω. In fluid mechanics, the Dirichlet perturbation is described by a small obstacle of the form O z, ε = z + εO characterized by its center z, its size ε and its shape O, with O is a given, fixed, and bounded domain of R 3 containing the origin, whose boundary ∂O is connected and piecewise of class C 1 . The topological sensitivity analysis method leads to an asymptotic expansion of the shape function j on the form

j(Ω \ O z, ε ) -j(Ω) = ρ(ε)δj(z) + o ρ(ε) , ∀z ∈ Ω,
where -ε → ρ(ε) is a scalar positive function going to zero with ε.

the function x → δj(x) is defined in Ω and commently called topological gradient (or topological sensitivity function). It is the leading term measuring the variation of the shape function j when a small obstacle is inserted in the fluid flow domain.

The first part of this paper is focused on some theoretical results. It starts with a preliminary estimate describing the velocity field variation caused by the presence of the obstacle. The leading term of the velocity field variation play an important role in the derivation of the topological gradient expression.

The second part of this paper is concerned with a numerical application issued from a lake oxygenation problem. In order to treat the water eutrophication phenomena, the dynamic aeration process consists in inserting some injectors at the bottom of the lake in order to generate a vertical motion mixing up the water of the bottom with that in the top, thus oxygenating the lower part by bringing it in contact with the surface air. In this application, we aim to optimize the injectors location in order to generate the best fluid flow in the eutrophicated lake. In order to apply the theoretical previous results, each injector Inj k is modeled as a small hole O k z k ,ε around a point z k , having an injection velocity u k inj . The best locations and orientations are the ones for which the cost function decrease most, i.e. the topological sensitivity function δj is as negative as possible.

The rest of this paper is organized as follows. In section 2, we present the formulation of the problem. The main theoretical results are summarized in Section 3. In Section 3.1, we discuss the velocity field variation due to the presence of the geometry perturbation O z,ε in the fluid flow domain Ω. In Section 3.2, we derive a topological sensitivity analysis for the non-stationary Stokes system valid for a large class of shape functions. We present in Section 3.3, three particular examples of shape functions. The Section 4 is devoted to the mathematical justifications of the main results. As a numerical application, we consider in Section 5 the optimization problem of the injectors location in an eutrophicated lake.

Formulation of the problem

Let us consider a shape function j of the form

j(Ω \ O z, ε ) = T 0 J ε (w ε (., t)) dt,
where J ε is a given cost function defined in H 1 (Ω \ O z, ε ) and w ε is the velocity field solution to the non stationary Stokes problem in the perturbed fluid flow domain

Ω z, ε = Ω \ O z, ε              ∂w ε ∂t -ν∆w ε + ∇p ε = F in Ω z, ε ×]0, T [, div w ε = 0 in Ω z, ε ×]0, T [, w ε = w d on Γ×]0, T [, w ε = 0 on ∂O z, ε ×]0, T [, w ε (., 0) = w 0 in Ω z, ε .
(2)

In the absence of any obstacle (i.e. ε = 0), we have Ω 0 = Ω and the shape function j is given by j(Ω) = T 0 J 0 (w 0 (., t)) dt, with (w 0 , p 0 ) is solution to

         ∂w 0 ∂t -ν∆w 0 + ∇p 0 = F in Ω 0 ×]0, T [, div w 0 = 0 in Ω 0 ×]0, T [, w 0 = w d on Γ×]0, T [, w 0 (., 0) = w 0 in Ω 0 .
(3) Next, we will present a mathematical analysis valid for all function J ε verifying the following assumptions :

Assumptions (A) i) ∀ε ≥ 0, t → J ε (w ε (., t)) ∈ L 1 (0, T ).
ii) J 0 is differentiable in H 1 (Ω), its derivative being denoted by DJ 0 (w).

iii) There exist a positive scalar function ρ : R + -→ R + and δJ ∈ R such that ∀ε ≥ 0 T 0 J ε (w ε (., t))-J 0 (w 0 (., t)) dt = T 0 DJ 0 (w 0 (., t)) w ε (., t)-w 0 (., t) dt+ρ(ε) δJ +o (ρ(ε)).

We start our analysis by estimating the velocity perturbation caused by the presence of a small obstacle O z, ε inside the fluid flow domain. More precisely, we will derive an estimate of the velocity field variation w ε -w 0 with respect to the obstacle size. We will prove in the next section that the leading term of the velocity variation can be expressed with the help of the fundamental solution of the stationary Stokes system.

The velocity field variation

This section is concerned with the influence of the obstacle on the velocity field. We will study the behavior of the velocity field variation w ε -w 0 with respect to ε (the obstacle size). To this end, we introduce the following auxiliary problem : find U j solution to the following Stokes exterior problem

       -ν∆U j + ∇P j = 0 in R 3 \O, div U j = 0 in R 3 \O, U j -→ 0 at ∞, U j = -e j on ∂O. (4) 
Here {e j } j=1,2,3 is the canonical basis of R 3 .

The existence of (U j , P j ) can be easily established using a single layer potential (one can see [13])

U j (y) = ∂O E(y-x) η j (x) ds(x), P j (y) = ∂O Π(y-x) η j (x) ds(x), ∀y ∈ R 3 \O,
where E, Π) is the fundamental solution to the Stokes equations in R 3 E(y) = 1 8πνr (I + e r e T r ), Π(y) = y 4πr 3 ∀ y ∈ R 3 , with r = y , e r = y r and e T r is the transposed vector of e r .

The function η j ∈ H -1/2 (∂O) 3 is a solution to the boundary integral equation

∂O E(y -x) η j (x) ds(x) = -e j , ∀ y ∈ ∂O. (5) 
One can remark that the function η j is determined up to a function proportional to the normal n, hence it is unique in the space H -1/2 (∂O) 3 /Rn.

The following theorem gives an estimate of the velocity field variation.

Theorem 1 There exists a real number c > 0 independent on ε, such that

w ε -w 0 -W L 2 (0,T ; H 1 (Ωz, ε )) ≤ cε,
where the leading term

W = (W 1 , W 2 , W 3 ) ∈ H 1 (Ω z, ε ) 3 is defined by W j (x, t) = U j ( x -z ε ).w 0 (z, t), ∀(x, t) ∈ R 3 \O z,ε ×]0, T [. (6) 
The obtained estimate describes the velocity perturbation caused by inserting a small obstacle. It plays a crucial role in the derivation of the topological asymptotic expansion.

From Theorem 1, we deduce the following Corollary. It gives an estimate of the velocity field in the perturbed fluid flow domain Ω \ O z, ε .

Corollary 1 The perturbed velocity field satisfies the estimate

w ε (x, t) = w 0 (x, t) + 3 j=1 [U j ( x -z ε ).w 0 (z, t)]e j + O(ε), x ∈ Ω z, ε , t ∈]0, T [.
In the next section, we present the main results of this paper.

Topological asymptotic expansion

Our analysis is based on a preliminary estimate describing the leading term of the velocity field variation. Such an estimate leads to a very simplified mathematical analysis. Particularly, we will deal with the explicit stationary Stokes fundamental solution instead of the non stationary one. Based on the previous estimate, we establish an asymptotic expansion valid for all shape function satisfying the Assumption (A).

Asymptotic Formula

In order to give the obtained formula, we introduce the matrix M O defined by

M O ij = - ∂O η j i (y)ds(y), 1 ≤ i, j ≤ 3,
where η j ∈ H -1/2 (∂O) 3 is a solution to the boundary integral equation ( 5).

Theorem 2 Let O z, ε = z + εO be a small obstacle inserted in the fluid flow domain Ω and let j be a shape function of the form j

(Ω \ O z, ε ) = T 0 J ε (w ε (., t)) dt.
If J ε satisfies the Assumption (A) with ρ(ε) = ε, then the shape function j admits the following asymptotic expansion

j(Ω \ O z, ε ) = j(Ω) + ε δj(z) + o(ε), ( 7 
)
where δj is the topological gradient defined in Ω by

δj(z) = T 0 w 0 (z, t).M O v 0 (z, t)dt + δJ (z),
with v 0 is the solution to the following associated adjoint problem

             - ∂v 0 ∂t -ν ∆v 0 + ∇q 0 = -DJ 0 (u 0 ) in Ω×]0, T [, div(v 0 ) = 0 in Ω×]0, T [, v 0 = 0 on Γ d ×]0, T [, σ(v 0 , q 0 ). n = 0 on Γ n ×]0, T [, v 0 (., T ) = 0 in Ω. (8) 
In the previous formula, the term δJ (z) depends on the considered cost function J ε .

The particular case of spherical obstacle is discussed in the following Corollary. If the fixed domain O coincides with the unit ball B(0, 1), the density η j , solution to the integral equation ( 5), can be calculated explicitly and we have η j (y) = -3ν 2 e j , ∀y ∈ ∂O, j = 1, 2, 3.

Corollary 2 Assume that we have a spherical geometric perturbation O z, ε = z+εB(0, 1).

Under the same hypothesis of Theorem 2, we have

j(Ω \ O z, ε ) = j(Ω) + ε T 0 6πνw 0 (z, t).v 0 (z, t) dt + δJ (z) + o(ε).

Shape function examples

In this section, we present some useful examples of shape functions satisfying the assumption (A) and we calculated their variations δJ .

First example

This example is concerned with the L 2 -norm. We consider the shape function defined by

j(Ω \ O z, ε ) = T 0 Ω\Oz, ε |w ε -W d (., t)| 2 dx with W d ∈ L 1 (0, T ; H 1 (Ω)
) is a given desired fluid flow state.

Proposition 1 The cost function J ε defined by

J ε (w) = Ω\Oz, ε |w -W d (., t)| 2 dx, ∀w ∈ H 1 (Ω z, ε ),
satisfies the assumption (A) with

DJ 0 (w 0 (., t))v = 2 Ω (w 0 (., t) -W d (., t)) v dx, ∀v ∈ H 1 (Ω), δJ (z) = 0, ∀z ∈ Ω.

Second example

Here, we deal with the H 1 -semi norm. We consider the shape function

j(Ω \ O z, ε ) = T 0 Ω\Oz, ε |∇w ε -∇W d (., t)| 2 dx
where

W d ∈ L 1 (0, T ; H 2 (Ω)) is a given desired state.
Proposition 2 The cost function J ε defined by

J ε (w) = Ω\Oz, ε ν |∇w -∇W d (., t)| 2 dx, ∀w ∈ H 1 (Ω z, ε ),
satisfies the assumption (A) with

DJ 0 (w 0 (., t))v = 2ν Ω (∇w 0 (., t) -∇W d (., t)) ∇v dx , ∀ v ∈ H 1 (Ω), δJ (z) = - T 0 ∂O
η(y)ds(y) .w 0 (z, t) dt, ∀z ∈ Ω.

Application : the eutrophication problem

During the warmer months of the year many lakes and reservoirs experience some degree of thermal stratification. This phenomena inhibits vertical mixing between the surface layer and the bottom water. This can lead to toxic conditions in the lower region. The lack of oxygen accelerates the eutrophication of the water which is characterized by a number of damaging effects on its quality. The dynamic aeration process seems to be the most promising remedial technique to treat the water eutrophication problem. This technique consists in inserting air by the means of injectors located at the bottom of the lake in order to generate a vertical motion mixing up the water of the bottom with that in the top, thus oxygenating the lower part by bringing it in contact with the surface air.

Stiff gradient of temperature

Optimization problem

The problem that we consider here concerns the optimization of the injectors location in order to generate the best motion in the fluid with respect to the aeration purpose. Each injector Inj k , 1 ≤ k ≤ m, is modeled as a small hole ω z k ,ε = z k + εω k around a point z k and having an injection velocity u k inj , where ε is the shared diameter and ω k ⊂ R 3 are bounded and smooth domains containing the origin. The points z k ∈ Ω, 1 ≤ k ≤ m determine the location of the injectors. The domains ω k describe the injectors geometries.

Then, in the presence of injectors, the velocity w ε and the pressure p ε satisfy the following system

                 ∂w ε ∂t -ν∆w ε + ∇p ε = F in Ω\∪ m k=1 ω z k ,ε ×]0, T [, div w ε = 0 in Ω\∪ m k=1 ω z k ,ε ×]0, T [, w ε = w d on Γ d ×]0, T [, σ(w ε , p ε ).n = 0 on Γ n ×]0, T [, w ε = u k inj on ∂ω z k ,ε , 1 ≤ k ≤ m×]0, T [, w ε (., 0) = 0 in Ω\∪ m k=1 ω z k ,ε . ( 9 
)
where F is the gravitational force, u k inj is the injection velocity of the injector ω z k ,ε and w d is a given boundary data.

The boundaries Γ d and Γ n are described in Figure 2, where Γ d = Γ s ∪Γ w (top surface and wall) and

Γ n = Γ 1 n ∪ Γ 2
n is the free boundary (inlet/outlet). The Dirichlet data w d is defined as : w d = 0 on the wall Γ w (no slip condition) and w d = w win on the top surface Γ s , where w win is the wind velocity.

In the absence of any injector (i.e. ε = 0), the velocity and the pressure satisfy the following system

             ∂w 0 ∂t -ν∆w 0 + ∇p 0 = F in Ω×]0, T [, div w 0 = 0 in Ω×]0, T [, w 0 = w d on Γ d ×]0, T [, σ(w 0 , p 0 ).n = 0 on Γ n ×]0, T [, w ε (., 0) = 0 in Ω. ( 10 
)
For the optimization criteria, we assume that a "good" lake oxygenation can be described by a desired velocity W d . Then, the cost function J ε to be minimized is given by

J ε (u ε ) = Ωm |w ε -W d | 2 dx, (11) 
where Ω m ⊂ Ω is the measurement domain (the top layer, see Figure 2). We denote by j the design function defined by

j(Ω\ ∪ m k=1 ω z k ,ε ) = J ε (w ε ), (12) 
where u ε is the solution of (9).

Our identification problem can be formulated as a topological optimization problem : find the optimal location of the injectors ω z k ,ε = z k + εω k , 1 ≤ k ≤ m, inside the lake domain Ω minimizing the discrepancy between the computed velocity and the desired one :

(O ε ) Find z * k ∈ Ω, 1 ≤ k ≤ m, such that : j(Ω\ ∪ m k=1 ω z * k ,ε ) = min ωz k ,ε ⊂Ω j(Ω\ ∪ m k=1 ω z k ,ε ).
To solve this optimization problem (O ε ) we shall use the topological sensitivity analysis technique. It consists in studying the variation of the shape function j with respect to the presence of a small injector ω z k ,ε inside the fluid flow domain Ω. Using the theoretical results established in Corollary 2 and Proposition 1, one can derive

j(Ω\ω z k ,ε ) -j(Ω) = ε δj k (z) + o(ε). with δj k (z) = 6πν T 0 [w 0 (z, t) -u k inj ].v 0 (z, t)dt, z ∈ Ω.
Next, we present some numerical examples. The first example concerns the identification of well separated small injectors in a water reserve. It is the most favourable situation where there aren't any interaction between injectors. The second example is devoted to the detection of an injector line.

Identification of well separated injectors location

This test concerns the detection of optimal location of well separated small injectors. In the numerical computation, we have considered the case of three injectors ω k = z k + εB(0, 1), 1 ≤ k ≤ 3, where ε is the injector size ε = 0.01.

The wanted velocity field U g is reconstructed using a synthetic data. It is chosen as solution to the non stationary Stokes problem (9) in the presence of the exact injectors ω z * k = z * k + 0.02B(0, 1), 1 ≤ k ≤ 3. The exact locations z * k and the injection velocities u k inj are described in table 5.2. Table 5.2 : The exact locations z * k , 1 ≤ k ≤ 3 and their associated injection velocities.

Injector

We propose here a fast and accurate identification procedure. It is a one iteration algorithm.

Algorithm 1 :

compute u 0 , solution to the non stationary Stokes equations (10), compute v 0 , solution to the associated adjoint problem, deduce the topological sensitivity δj k (z), ∀z ∈ Ω, 1 ≤ k ≤ 3.

The injector Inj k is likely to be located at zone where the topological sensitivity δj k is most negative. The results of this test are presented in Figures 34567.

In Figure 3, we present the initial flow. The wanted flow is shown in Figure 4. The isovalues of the topological sensitivity are plotted in Figure 5. We present for each injector the exact location and the local minimum of the topological sensitivity. One can observe that the local minima of the obtained topological sensitivity δj k coincides with the exact location of the injector Inj k described in table 5.2. The obtained optimal locations are shown in Figure 6. At each local minimum, we introduce a point-wise Dirichlet condition (an inserted injector) and a new resolution of ( 9) is performed. The obtained velocity is shown in Figure 7. Since we have detected the exact location, the obtained velocity is identical to the wanted one.

Identification of an injector line

The aim here is the detection of an injector line Σ. It is approximated by a sequence of non separated small injectors having a constant injection velocity u inj . In order to detect Σ, we propose here an iterative process based on the following algorithm.

Algorithm 2 :

• Initialization : choose Ω 0 = Ω, and set k = 0.

• Repeat until target is reached :

solve ( 14) and ( 15) in Ω k , compute the topological sensitivity δj k , determine the set

σ k = {z ∈ Ω k , δj k (z) ≤ c k < 0},
where c k is chosen in such a way that the cost function decreases, prescribe the velocity at each mesh node of At the k th iteration, the topological gradient δj k is given by :

σ k : u(z) = u inj , ∀z ∈ σ k , -set Ω k+1 = Ω k \σ k , -k ←-k + 1.
δj k (z) = 6πν T 0 (w k (z, t) -u inj ) .v k (z, t)dt ∀z ∈ Ω k , (13) 
where w k and v k are, respectively, solution to

∂w k ∂t -ν∆w k + ∇p k = 0 in Ω k ×]0, T [ ∇.w k = 0 in Ω k ×]0, T [, (14) 
- ∂v k ∂t -ν∆v k + ∇q k = -2 (u k -U g ) χ Ωm in Ω k ×]0, T [ ∇.v k = 0 in Ω k ×]0, T [, (15) 
where χ Ωm is the characteristic function of the measurement domain Ω m .

The injector Σ is detected iteratively, Σ k+1 = Σ k ∪ σ k , with Σ 0 = ∅. As described in the last algorithm, the set σ k is defined by a level set curve of δj k

σ k = {z ∈ Ω k , δj k (z) ≤ c k < 0} .
The constant c k depends on the most negative value of δj k . In our numerical computation, we have used c k = 0.8 δ k with δ k = min z∈Ω k δj k (z).

We have obtained an interesting result in only three iterations. We present in Figure 8(b) the obtained fluid flow created by the detected injector. It is nearly identical to the wanted one (see Figure 8(a)). In Figure 9 we plot the isovalues of δj k showing the detected zone σ k (where δj k is most negative) during the optimization process. 

Concluding remarks

In this work, we have derived a topological asymptotic expansion for the non-stationary Stokes system with respect to the presence of a small obstacle in the fluid flow domain. The proposed approach is based on a preliminary estimate describing the velocity field perturbation caused by the presence of a small obstacle in the fluid flow domain. The obtained theoretical results are used to built a fast and accurate detection algorithm. Some numerical examples issued from a lake oxygenation problem show the efficiency of the topological sensitivity method. The developed technique is general and can be adapted for various non-stationary partial differential equations (PDE).

Proofs

This section is devoted to the mathematical justifications of the derived theoretical results.

Proof of Theorem 1

In this paragraph, we present the proof of the estimate established in Theorem 1. It consists in studying the influence of the presence of an obstacle on the velocity field w ε .

Let Q be the pressure field associated to the velocity field W :

Q(x, t) = 1 ε P ( x -z ε ).w 0 (z, t) = 1 ε 3 j=1 P j ( x -z ε )w j 0 (z, t),
where P j is the pressure field associated to the velocity field U j solution to (4).

Setting

z ε = w ε -w 0 -W and s ε = p ε -p 0 -Q. (16) 
From ( 1), ( 17) and ( 4), one can check that (z ε , s ε ) is solution to

         ∂z ε ∂t -ν∆z ε + ∇s ε = - ∂W ∂t in Ω z, ε ×]0, T [, div z ε = 0 in Ω z, ε ×]0, T [, z ε = -W on Γ×]0, T [, z ε = -w 0 (x, t) + w 0 (z, t) on ∂O z, ε ×]0, T [,. (17) 
The last boundary condition follows from the fact that U j = -e j on ∂O.

Let R > 0 be such that O z, ε ⊂ B(z, R) and B(z, R) ⊂ Ω. Using trace Theorem, one can obtain

z ε L 2 (0,T ;H 1 (Ωz, ε )) ≤ c ∂W ∂t L 2 (0,T ;L 2 (Ωz, ε )) + W L 2 (0,T ;H 1 (Ω R )) + w 0 (x, t) -w 0 (z, t) L 2 (0,T ;L 2 (Ωz, ε )) , (18) 
where Ω R = Ω\B(z, R).

Using (6) and the change of variable x = z + εy, one can derive

∂W ∂t L 2 (0,T ;L 2 (Ωz, ε )) = ∂w 0 ∂t (z, .) L 2 (0,T ) U ( x -z ε ) L 2 (Ωz, ε ) = ε 3/2 ∂w 0 ∂t (z, .) L 2 (0,T ) U L 2 ((Ωz, ε )/ε) .
Similarly, we have

W L 2 (0,T ;H 1 (Ω R )) ≤ w 0 (z, .) L 2 (0,T ) ( U ( x -z ε ) L 2 (Ω R ) + ∇ x U ( x -z ε ) L 2 (Ω R ) ), ≤ w 0 (z, .) L 2 (0,T ) (ε 3/2 U L 2 ((Ω R )/ε) + ε 1/2 ∇ y U L 2 (Ω R )/ε) ).
It is proved in [20] (see also [17]) that the velocity field U j , solution to the exterior Stokes problem, satisfies the estimates

U j L 2 ((Ω R )/ε) ≤ cε -1/2 and ∇ y U j L 2 (Ω R )/ε) ≤ cε 1/2
Then, using the smoothness of w 0 and the previous estimates, one can deduce

∂W ∂t L 2 (0,T ;L 2 (Ωz, ε )) ≤ cε and W L 2 (0,T ;H 1 (Ω R )) ≤ cε. (19) 
Now, we examine the third term in (18). Expanding w 0 (x, t) = w 0 (z, t)+ε ∇w 0 (ξ y , t)y with ξ y ∈ O z, ε and using the fact that ∇w 0 is uniformly bounded, then it follows that

w 0 (x, t) -w 0 (z, t) L 2 (0,T ;L 2 (Ωz, ε)) ≤ cε. (20) 
Finally, combining ( 19) and ( 20), we obtain

z ε L 2 (0,T ;H 1 (Ωz, ε )) ≤ cε.
which the desired estimate.

Asymptotic analysis

In this section, we present the proofs of the asymptotic expansions established in Section 4. To this we will introduce some notations and we will establish some preliminary estimates.

Preliminary calculus

Let j be a shape function of the form

j(Ω \ O z, ε ) = T 0 J ε (w ε (., t)) dt,
with J ε is a given function defined in H 1 (Ω \ O z, ε ) and satisfying the Assumption (A).

To describe the variation of j with respect to the presence of a small obstacle O z, ε at an arbitrary point z ∈ Ω, we introduce the weak formulation of the problem (17). Using Green formula, one can easily check that the velocity field can be interpreted as the unique solution to the following variational problem

   Find w ε ∈ V ε such that B ε (w ε , v) = L ε (v), ∀v ∈ V ε , w ε (., 0) = 0, in Ω z, ε .
where the functional space V ε , the bilinear form B ε and the linear form L ε are defined by

V ε = w ∈ H 1 (0, T ; H 1 0 (Ω z, ε )), div w = 0 in Ω z, ε , B ε (w, v) = T 0 Ωz, ε ∂w ∂t v dx dt + ν T 0 Ωz, ε ∇w∇v dx dt, ∀w, v ∈ V ε , L ε (v) = T 0 Ωz, ε F v dx dt , ∀v ∈ V ε .
Using the assumption (A), the variation of the shape function can be written as

j(Ω \ O z, ε ) -j(Ω) = T 0 J ε (w ε (., t)) dt - T 0 J 0 (w 0 (., t)) dt = T 0 DJ 0 (w 0 (., t)) w ε (., t) -w 0 (., t) dt + ρ(ε) δJ + o (ρ(ε)) = B 0 (w 0 -w ε , v 0 ) + ρ(ε) δJ + o (ρ(ε)), (21) 
where v 0 is the solution to the following adjoint problem

       Find v 0 ∈ V 0 , such that B 0 (u, v 0 ) = - T 0 DJ 0 (w 0 )(u)dt, ∀u ∈ V 0 , v 0 (., T ) = 0 in Ω. (22) 
In ( 21), the function w ε is extended by zero inside the domain O z, ε .

Next, we present the proof of Theorem 2 describing the leading terms of the shape function variation. It consists in studying the variation of the term B 0 (w 0 -w ε , v 0 ) with respect to ε (see ( 21)). Then, due to Green formula and the fact that

w ε = 0 in O ε , one can derive B 0 (w 0 -w ε , v 0 ) = ν T 0 Ωz, ε ∇(w 0 -w ε )∇v 0 dx dt + T 0 Ωz, ε ∂(w 0 -w ε ) ∂t v 0 dx dt + ν T 0 Oz, ε ∇w 0 ∇v 0 dx dt + T 0 Oz, ε ∂w 0 ∂t v 0 dx dt.
Using the fact that w 0 and v 0 are smooth near z, one can deduce that

ν T 0 Oz, ε ∇w 0 ∇v 0 dx dt + T 0 Oz, ε ∂w 0 ∂t v 0 dx dt = O(ε d ).
By Green formula and the fact that v 0 = 0 on Γ×]0, T [, it follows

ν T 0 Ωz, ε ∇(w 0 -w ε )∇v 0 dxdt+ T 0 Ωz,ε ∂(w 0 -w ε ) ∂t v 0 dxdt = - T 0 ∂Oz, ε σ(w ε -w 0 , p ε -p 0 )nv 0 dsdt.
Consequently, the shape function variation can be rewritten as

j(Ω \ O z, ε ) -j(Ω) = T 0 ∂Oz, ε σ(w ε -w 0 , p ε -p 0 )nv 0 dsdt + ρ(ε) δJ + o (ρ(ε)) (23)
The asymptotic behavior, with respect to ε, of the last integral terms will be examined in the next section.

Proof of Theorem 2

From the definition of (z ε , s ε ) and the change of variable x = z + ε y, we have

T 0 ∂Oz, ε σ(w ε -w 0 , p ε -p 0 ).n v 0 ds dt = T 0 ∂Oz, ε σ(z ε , s ε )n v 0 dsdt +ε T 0 w 0 (z, t).
∂O σ(U, P )(y)n(y) v 0 (z + ε y, t)ds(y) dt, where σ(U, P )n is the 3 × 3 matrix defined by

(σ(U, P )n) ij = (σ(U j , P j )(y)n(y)) i , 1 ≤ i, j ≤ 3.
By trace theorem, Theorem 1 and the fact that v 0 is smooth in O z, ε , we derive

T 0 ∂Oz, ε σ(z ε , s ε )n v 0 dsdt ≤ z ε L 2 (0,T ;H 1 (Ωz, ε )) v 0 L 2 (0,T ;H 1 (Oz, ε )) = o(ε).
Making the change of variable x = z + ε y, expanding v 0 (z + ε y, t) = v 0 (z, t) + ε ∇v 0 (ξ y , t)y with ξ y ∈ O z, ε and using the fact that ∇v 0 is uniformly bounded, it follows that

T 0 ∂Oz, ε σ(w ε -w 0 , p ε -p 0 )n v 0 dsdt = ε T 0 w 0 (z, t). ∂O σ(U, P )(y)n ds(y) v 0 (z, t)dt +ε T 0 w 0 (z, t). ∂O σ(U, P )(y)n(y)[v 0 (z + ε y, t) -v 0 (z, t)]ds(y) dt + o(ε).
Due to the jump condition of the single layer potential, we have σ(U j , P j )n = -η j + σ(V j , S j )n, where (V j , S j ) is the solution to the associated interior problem

   -ν∆V j + ∇S j = 0 in O, div V j = 0 in O, V j = U j on ∂O.
From the fact that div σ(V j , S j ) = ν∆V j -∇S j = 0 in O, we have ∂O σ(V j , S j )(y)n ds = 0. 

Then, it follows

Proof of Proposition 1

Since the desired fluid flow state W d ∈ L(0, T ; H 1 (Ω)), the function J 0 is differentiable at w 0 (., t) and we have DJ 0 (w 0 (., t))(v) = 2 Ω w 0 (., t) -W d (., t) v dx, ∀v ∈ H 1 (Ω).

The variation of the associated shape function j is given by j(Ω z, ε ) -j(Ω) = Therefore the function J ε satisfies the assumption (A) with DJ 0 (w 0 (., t)) (v) = 2 Ω (w 0 (., t) -W d (., t)) v dx, ∀ v ∈ H 1 (Ω), δJ (z) = 0, ∀z ∈ Ω.

Proof of Proposition 2

The function J 0 is differentiable at w 0 (., t) and we have DJ 0 (w 0 (., t))(v) = 2 ν Ω (∇w 0 (., t) -∇W d (., t)) ∇v dx, ∀ v ∈ H 1 (Ω).

The variation of the associated shape function j is given by j(Ω z, ε ) -j(Ω) = Using Green formula, the last term in (24) can be written as 
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 5 Figure 5. 2D cuts of the topological sensitivity showing the exact location (black dots) and the local minima of δj k (red zones).
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 6 Figure 6. Obtained injectors location.Figure 7. The obtained velocity : a 2D cut on each injector.
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 7 Figure 6. Obtained injectors location.Figure 7. The obtained velocity : a 2D cut on each injector.

  a) The wanted fluid flow.b) The obtained fluid flow after 3 iterations.
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 8 Figure 8. The wanted and obtained fluid flow.
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 9 Figure 9. Isovalues of δj k showing the detected zone σ k (red zone) during the optimization process : a vertical cut (left), an horizontal cut (right).
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