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RANDOMIZED RESIDUAL-BASED ERROR ESTIMATORS FOR
PARAMETRIZED EQUATIONS∗

KATHRIN SMETANA† , OLIVIER ZAHM‡ , AND ANTHONY T. PATERA§

Abstract. We propose a randomized a posteriori error estimator for reduced order approxi-
mations of parametrized (partial) differential equations. The error estimator has several important
properties: the effectivity is close to unity with prescribed lower and upper bounds at specified high
probability; the estimator does not require the calculation of stability (coercivity, or inf-sup) con-
stants; the online cost to evaluate the a posteriori error estimator is commensurate with the cost to
find the reduced order approximation; the probabilistic bounds extend to many queries with only
modest increase in cost. To build this estimator, we first estimate the norm of the error with a
Monte-Carlo estimator using Gaussian random vectors whose covariance is chosen according to the
desired error measure, e.g. user-defined norms or quantity of interest. Then, we introduce a dual
problem with random right-hand side the solution of which allows us to rewrite the error estimator
in terms of the residual of the original equation. In order to have a fast-to-evaluate estimator, model
order reduction methods can be used to approximate the random dual solutions. Here, we propose
a greedy algorithm that is guided by a scalar quantity of interest depending on the error estimator.
Numerical experiments on a multi-parametric Helmholtz problem demonstrate that this strategy
yields rather low-dimensional reduced dual spaces.

Key words. A posteriori error estimation, parametrized equations, projection-based model
order reduction, Monte-Carlo estimator, concentration phenomenon, goal-oriented error estimation.

AMS subject classifications. 65N15, 65C05, 65N30, 68Q25, 62G15

1. Introduction. Many models for engineering applications, life sciences, en-
vironmental issues, or finance depend on parameters which account for variation in
the material or geometry but also uncertainty in the data. Often the respective ap-
plications require low marginal (i.e. per parameter) computational costs. This is
for instance the case in “many query” settings where we require the computation of
the solution of the corresponding parametrized equation for many different parameter
values. Examples for model order reduction techniques that aim at computation-
ally feasible approximations of such parametrized models are tensor-based methods
[11, 24] and the reduced basis (RB) method [14, 26, 9, 27, 30]. In order to ensure say
functional safety of a structure, certification of such approximation is of high impor-
tance. Moreover, bounding the approximation error to get a handle on the uncertainty
induced by the approximation is crucial when using it in the context of uncertainty
quantification. The subject of this paper is thus certification of approximations to
parametrized equations via an a posteriori error estimator for a large number of pa-
rameter queries. Our method is also well-suited to real-time contexts. Employing the
a posteriori error estimator say within a greedy algorithm to construct the reduced
space requires some (minor) modifications, which we will touch on only very briefly
in this paper.

One of the most commonly used error estimators for inf-sup stable problems is
the product of the dual norm of the residual and the inverse of the inf-sup con-
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stant. While the former can usually be computed rapidly, accurate estimation of the
inf-sup constant is in general rather costly. For instance, the Successive Constraint
Method (SCM) [17, 5, 16] computes a parameter-dependent lower bound of the inf-
sup constant by employing the successive solution to appropriate linear optimization
problems. This procedure is usually computationally demanding and can lead to
pessimistic error bounds [12].

In this paper we introduce a random a posteriori error estimator which does not
require the estimation of stability constants. The error estimator features several other
desirable properties. First, it is both reliable and efficient at given high probability
and often has an effectivity close to one. Secondly, the effectivity can be bounded from
below and above at high probability with constants selected by the user, balancing
computational costs and desired sharpness of the estimator. Moreover, the presented
framework yields error estimators with respect to user-defined norms, for instance the
L2-norm or the H1-norm; the approach also permits error estimation of linear quan-
tities of interest (QoI). Finally, depending on the desired effectivity the computation
of the error estimator is in general only as costly as the computation of the reduced
order approximation or even less expensive, which makes our error estimator strategy
attractive from a computational viewpoint.

To derive this error estimator, we consider a Gaussian random vector whose co-
variance matrix is chosen depending on the respective norm or QoI we wish to esti-
mate. Summing the squares of the inner products of K independent copies of that
random vector with the approximation error yields an unbiased Monte Carlo esti-
mator. Using concentration inequalities, we control the effectivity of the resulting
random error estimator with high probability. This type of random subspace em-
bedding is typically encountered in compressed sensing [7]. The motivation for using
these techniques is to create a high-to-low dimensional map which, in high probability,
nearly preserves distances and is thus well-suited for norm estimation. By exploit-
ing the error-residual relationship we recognize that these inner products equal the
inner products of the residual and the dual solutions of K dual problems with ran-
dom right-hand sides. Approximating the dual problems via projection-based model
order reduction yields an a posteriori error estimator of low marginal computation
cost. To construct the dual reduced space we introduce a greedy algorithm driven by
a scalar QoI that assesses how good the fast-to-evaluate a posteriori error estimator
approximates the original Monte Carlo estimator. This goal-oriented strategy out-
performs standard dual-residual based greedy algorithms or the Proper Orthogonal
Decomposition (POD). We emphasize that the dual reduced space so obtained does
generally not contain the primal reduced space as a subspace; the intersection can
even be empty. Furthermore, the dimension of the dual reduced space can be smaller
than the dimension of the primal reduced space.

Our a posteriori error estimator is inspired by the probabilistic error estimator for
the approximation error in the solution of a system of ordinary differential equations
introduced in [4] by Cao and Petzold. To estimate the norm of the error, they employ
the small statistical sample method from Kenney and Laub [21], which estimates the
norm of a vector by its inner product with a random vector drawn uniformly at random
on the unit sphere. Rewriting that inner product using the error-residual relationship
results in an adjoint (or dual) problem with random final time, whose solution is then
invoked to estimate the error [4]. This approach is extended to ordinary differential
equations via a POD by Homescu et al in [15] and differential algebraic equations in
[28]. Also, the effect of perturbations in the initial conditions or parameters on the
quality of the approximation of the reduced model is investigated [15, 28]. In our
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work we extend these concepts to address the general norms of interest within the
PDE context, to explicitly address accurate error estimation for any given parameter
value within a finite parameter domain, and to address the limit of many queries.

Randomized methods for error estimation are gaining interest in the reduced or-
der modeling community. For instance in [1], randomized techniques are used to
speed-up the computation of the dual norm of the residual used as an error indicator.
By exploiting the fact that the residual manifold is included in a low-dimensional
subspace, the authors need appeal to only a few random samples when constructing
the random subspace embedding. Instead, our approach targets the true error which,
in contrast to the residual, is in general not exactly included in a low-dimensional
subspace for the problems we have at hand. Therefore, in our approach, we use dif-
ferent techniques and we determine the number of random sample we need via the
cardinality of the parameter set on which we wish to estimate the error. In [19] a
probabilistic a posteriori error bound for linear scalar-valued quantities of interest is
proposed, with application in sensitivity analysis. Contrary to the method presented
in our work, the right-hand side of the dual problem in [19] is the linear functional
associated with the QoI and randomization is done by assuming that the parameter
is a random variable on the parameter set. Another application of randomized tech-
niques, in particular randomized numerical linear algebra [13], to (localized) model
order reduction is considered in [3]: a reliable and efficient probabilistic a posteriori
error estimator for the difference between a finite-dimensional linear operator and its
orthogonal projection onto a reduced space is derived; the main idea is to apply the
operator to standard Gaussian random vectors and consider the norm of the result.
Also in [32], an interpolation of the operator inverse is built via a Frobenius-norm
projection and computed efficiently using randomized methods. An error estimator
is obtained by measuring the norm of residual multiplied by the interpolation of the
operator inverse, used here as a preconditioner.

We note that also the hierarchical error estimator for the RB method presented
in [12] does not require the estimation of any stability constants, such as the inf-sup
constant. In [12] the error is estimated by the distance between two reduced approx-
imations of different accuracies and the computational costs depend highly on the
dimension of the (primal) reduced space and are always higher than the costs for the
computation of the RB approximation. In contrast, in our approach, the costs associ-
ated with the dual problems, and hence estimator evaluation, are commensurate with
the cost associated with the (primal) RB approximation. Finally, the reduced-order-
model error surrogates (ROMES) method introduced in [8] and the closely related
approaches [22, 29, 23] aim at constructing a statistical model for the approximation
error. In [8] the statistical model is learned via stochastic-process data-fit methods
from a small number of computed error indicators.

The remainder of this article is organized as follows. In section 2 we derive a
randomized a posteriori error estimator that estimates the error for a finite number
of parameter values at given high probability. As this error estimator still depends on
the high-dimensional solutions of dual problems, section 3 is devoted to the reduced
order approximation of the dual problems and the analysis of the fast-to-evaluate a
posteriori error estimator. In section 4 we demonstrate several theoretical aspects of
the error estimator numerically and finally draw some conclusions in section 5.
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2. Randomized error estimator for parameter-dependent equation.

2.1. Parameter-dependent equations and error measurement. Consider
a real-valued1 parameter-dependent equation

(2.1) A(µ)u(µ) = f(µ),

where the parameter µ belongs to a parameter set P ⊂ RP . For every queried
parameter µ ∈ P, A(µ) ∈ RN×N is an invertible matrix and f(µ) ∈ RN . We assume
we are given an approximation ũ(µ) of the solution u(µ). In this paper, the goal is to
estimate the error

‖u(µ)− ũ(µ)‖Σ.

Here, ‖ · ‖Σ is either a norm defined by means of a symmetric positive-definite (SPD)
matrix Σ ∈ RN×N via ‖v‖2Σ = vTΣv for all v ∈ RN , or a semi-norm if Σ is only
symmetric positive semi-definite. We highlight that the framework presented in this
paper encompasses the estimation of the error in various different norms or the error
in some QoI as will be discussed in the remainder of this subsection; see Table 1 for
a brief summary.

By choosing Σ = IN , the identity matrix of size N , ‖ · ‖Σ becomes the canonical
norm ‖ · ‖2 of RN . If problem (2.1) stems from the discretization of a parameter-
dependent linear partial differential equation, there is usually a natural norm ‖ · ‖X
associated with a Hilbert space of functions X ⊂ H1(D) for some spatial domain
D ⊂ Rd, d ∈ {1, 2, 3}. In such a case, there exists a discrete Riesz map RX ∈ RN×N
which is a SPD matrix such that

√
(·)TRX(·) = ‖ · ‖X . The choice Σ = RX implies

‖ · ‖Σ = ‖ · ‖X , which means that the error is measured with respect to the natural
norm of the problem. We may also consider for instance the error in the L2-norm
by choosing Σ = RL2(D), where the discrete Riesz map RL2(D) is chosen such that
(·)TRL2(D)(·) = ‖ · ‖2L2(D).

In some cases one is not interested in the solution u(µ) itself but rather in some
QoI defined as a linear function of u(µ), say

s(µ) = Lu(µ) ∈ Rm,

for some L ∈ Rm×N . In this situation one would like to estimate the error ‖s(µ) −
L ũ(µ)‖W , where ‖ · ‖W is a given natural norm on Rm associated with a SPD matrix
RW so that ‖w‖2W = wTRWw for all w ∈ Rm. With the choice Σ = LTRWL we can
write

‖u(µ)− ũ(µ)‖2Σ = (u(µ)− ũ(µ))T
(
LTRWL

)
(u(µ)− ũ(µ)) = ‖s(µ)− Lũ(µ)‖2W ,

so that measuring the error with respect to the norm ‖ · ‖Σ gives the error associated
with the QoI. Notice that if m < N the matrix Σ is singular and ‖ ·‖Σ is a semi-norm.
Finally, consider the scalar-valued QoI given by s(µ) = lTu(µ) where l ∈ RN . This
corresponds to previous situation with m = 1 and L = lT . The choice Σ = l lT yields
‖u(µ)− ũ(µ)‖2Σ = |s(µ)− Lũ(µ)|, where | · | denotes the absolute value.

2.2. Estimating norms using Gaussian maps. In this section we show how
the (semi-)norm ‖ · ‖Σ can be approximated by ‖Φ · ‖2 for some random matrix
Φ ∈ RK×N with K � N .

1Throughout the paper we consider real-valued equations: the extension of our method to the
case of complex-valued problems is straightforward using the isomorphy C = R2.
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Target error Choice of Σ
‖u(µ)− ũ(µ)‖2 Σ = IN
‖u(µ)− ũ(µ)‖X Σ = RX
‖u(µ)− ũ(µ)‖L2(D) Σ = RL2(D)

‖s(µ)− Lũ(µ)‖W Σ = LTRWL
|s(µ)− lT ũ(µ)| Σ = l lT

Table 1: Possible choices for Σ depending on the target error.

Let Z ∼ N (0,Σ) be a zero mean Gaussian random vector in RN whose covariance
matrix is chosen to be the matrix Σ ∈ RN×N which defines the (semi-)norm ‖ · ‖Σ,
cf Table 1. Given a vector v ∈ RN , for example v = u(µ) − ũ(µ) for some (fixed)
parameter µ ∈ P, we can write

‖v‖2Σ = vTΣv = vTE(ZZT )v = E((ZT v)2),

where E(·) denotes the expected value. This means that (ZT v)2 is an unbiased esti-
mator of ‖v‖2Σ. Let Z1, . . . , ZK be K independent copies of Z and define the random

matrix Φ ∈ RK×N whose i-th row is (1/
√
K)ZTi . The matrix Φ is sometimes called a

Gaussian map. Denoting by ‖ · ‖2 the canonical norm of RK , we can write

(2.2) ‖Φv‖22 =
1

K

K∑
i=1

(ZTi v)2 for any v ∈ RN .

In other words, ‖Φv‖22 is a K-sample Monte-Carlo estimator of E((ZT v)2) = ‖v‖2Σ.
By the independence of the Zi’s, we have Var(‖Φv‖22) = 1

K Var(ZT v) so that ‖Φv‖22 is
a lower variance estimator of ‖v‖2Σ compared to (ZT v)2. However, the variance is not
always the most relevant criteria to assess the performance of an estimator. In the
context of this paper, we rather want to quantify the probability that ‖Φv‖22 deviates
from ‖v‖2Σ. This can be done by noting that, provided ‖v‖Σ 6= 0, the random variables
(ZTi v)/‖v‖Σ for i = 1, . . . ,K are independent standard normal random variables so
that we have

‖Φv‖22 =
‖v‖2Σ
K

K∑
i=1

( ZTi v
‖v‖Σ

)2

∼ ‖v‖
2
Σ

K
Q,

where Q ∼ χ2(K) follows a chi-squared distribution with K degrees of freedom.
Denoting by P{A} the probability of an event A and by A the complementary event
of A, the previous relation yields

P
{
w−1‖v‖Σ ≤ ‖Φv‖2 ≤ w‖v‖Σ

}
= 1− P

{
Kw−2 ≤ Q ≤ Kw2

}
,

for any w ≥ 1. Then for any given (fixed) vector v ∈ RN , the probability that a
realization of ‖Φv‖2 lies between w−1‖v‖Σ and w‖v‖Σ is independent of v but also
independent of the dimension N . The following proposition gives an upper bound
for P

{
Kw−2 ≤ Q ≤ Kw2

}
in terms of w and K. The proof, given in Appendix A.1,

relies on the fact that we have closed form expressions for the law of Q ∼ χ2(K).

Proposition 2.1. Let Q ∼ χ2(K) be a chi-squared random variable with K ≥ 3
degrees of freedom. For any w >

√
e we have

P
{
Kw−2 ≤ Q ≤ Kw2

}
≤
(√e
w

)K
.
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w = 1.5
w = 2
w = 4
w = 10

w K = 3
1.1 8.2× 10−1 −
2 1.4× 10−1 5.6× 10−1

5 1.0× 10−2 3.5× 10−2

10 1.3× 10−3 4.4× 10−3

50 1.1× 10−5 3.5× 10−5

w K = 10
1.1 6.7× 10−1 −
2 9.1× 10−3 1.4× 10−1

5 2.2× 10−6 1.5× 10−5

10 2.4× 10−9 1.4× 10−8

50 2.6× 10−16 1.5× 10−15

Fig. 1: Exact value of P
{
Kw−2 ≤ Q ≤ Kw2

}
(solid curves on the graph, left column

on the table) and its upper bound (
√
e/w)K given by Proposition 2.1 (dashed curves

on the graph, right column on the table) for different values of K and w.

Proposition 2.1 shows that the probability P
{
Kw−2 ≤ Q ≤ Kw2

}
decays at least

exponentially with respect to K, provided w ≥
√
e and K ≥ 3. Then for any v ∈ RN ,

the relation

(2.3) w−1‖v‖Σ ≤ ‖Φv‖2 ≤ w‖v‖Σ,

holds with a probability greater than 1− (
√
e/w)K . As expected, a large value of w

is beneficial to ensure the probability of failure (
√
e/w)K to be small. For instance

with w = 4 and K = 6, relation (2.3) holds with a probability larger than 0.995.
However, we observe in Figure 1 that this theoretical result is rather pessimistic since
it overestimates the true probability by one order of magnitude for small values of w.
Also, we conjecture on Figure 1 that there is an exponential decay even when w ≤

√
e

(see the blue curve with w = 1.5), which is not predicted by Proposition 2.1.
In many situations we want to estimate the norm of several vectors rather than

just one vector solely. This is for instance the case if one has to estimate the norm of
the error v = u(µ) − ũ(µ) for many different parameter values µ ∈ P. In that case,
one would like to quantify the probability that relation (2.3) holds simultaneously for
any vector in a set M⊂ RN . Assuming M is finite, a union bound argument — for
a detailed proof see Appendix A.2 — yields the following result:

Corollary 2.2. Given a finite collection of vectors M = {v1, v2, . . . , v#M} ⊂
RN and a failure probability 0 < δ < 1. Then, for any w >

√
e and

(2.4) K ≥ min

{
log(#M) + log(δ−1)

log(w/
√
e)

, 3

}
we have

(2.5) P
{
w−1‖v‖Σ ≤ ‖Φv‖2 ≤ w‖v‖Σ , ∀v ∈M

}
≥ 1− δ.

Table 2 gives numerical values of K that satisfy (2.4) depending on δ, w and
#M. For example with δ = 10−4 and w = 10, estimating simultaneously the norm
of 109 vectors requires only K = 17 samples. Again, we emphasize that this result is
independent on the dimension N of the vectors to be estimated.

Remark 2.3 (Comparison with the Johnson-Lindenstrauss lemma [6, 20]). The
Johnson-Lindenstrauss (JL) lemma states that for any 0 < ε < 1 and any finite
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δ = 10−2 w = 2 w = 4 w = 10 δ = 10−4 w = 2 w = 4 w = 10
#M = 100 24 6 3 #M = 100 48 11 6
#M = 103 60 13 7 #M = 103 84 19 9
#M = 106 96 21 11 #M = 106 120 26 13
#M = 109 132 29 15 #M = 109 155 34 17

Table 2: Minimal value of K for which Condition (2.4) is satisfied.

set M ⊂ RN , the condition K ≥ 8ε−2 log(#M) ensures the existence of a linear
map Φ : RN → RK such that (1 − ε)‖v − u‖22 ≤ ‖Φv − Φu‖22 ≤ (1 + ε)‖v − u‖22,
holds for all u, v ∈ M. Replacing M by M∪ {0} and letting u = 0, one has that
K ≥ 8ε−2 log(#M+ 1) is sufficient to ensure the existence of a Φ ∈ RK×N such that

(2.6)
√

1− ε‖v‖2 ≤ ‖Φv‖2 ≤
√

1 + ε‖v‖2, for all v ∈M.

The above relation differs from (2.3) in the sense that the deviation of ‖Φv‖2 from
‖v‖2 is controlled in an additive manner via a parameter ε instead of a multiplicative
way via w. We highlight also the different dependencies of K on ε and w. In contrast
to the requirement in the JL lemma Condition (2.4) permits reduction in the number
of required copies K of the random vectors by considering an increased w. Note that
the computational complexity of the a posteriori error estimator we propose in this
paper crucially depends on K, see subsection 3.3. Since the goal in this paper is to
estimate the error we do in general not have to insist on a very accurate estimation of
‖v‖2. Instead, in many situtations it might be preferable to accept a higher effectivity
w of the a posteriori error estimator in favour of a faster computational time. We
emphasize that the user has the choice here.

Notice also that with the choice w = 1/
√

1− ε, Equation (2.6) implies (2.3).
Then, the JL lemma ensures that (2.3) holds true if K ≥ 8(1 − w−2)−2 log(#M +
1). Even if we have the same logarithmic dependence on #M, this is much larger
than what we obtained in (2.4), already for moderate but especially for large values
of w. For example with w = 4, #M = 103 and δ = 10−2, JL lemma requires
K ≥ 63 whereas Condition (2.4) requires only K ≥ 13. Finally, we highlight that a
similar result to (2.3) has been obtained in [21] for random vectors that are uniformly
and randomly selected from the sphere. The multiplicative type of estimates in [21]
motivated us to derive similar results for Gaussian vectors.

Remark 2.4 (Drawing Gaussian vectors). In actual practice we can draw effi-
ciently from Z ∼ N (0,Σ) using a factorization of the covariance matrix of the form
of Σ = UTU , e.g. a (sparse) Cholesky decomposition. It is then sufficient to draw a

standard Gaussian vector Ẑ and to compute the matrix-vector product Z = UT Ẑ. As
pointed-out in [1, Remark 2.9], one can take advantage of a potential block structure
of Σ to build a (non-square) factorization U with a negligible computational cost.

2.3. Randomized a posteriori error estimator. We apply the methodology
described in the previous subsection to derive a residual-based randomized a posteriori
error estimator for the error ‖u(µ)−ũ(µ)‖Σ. Let Φ = K−1/2[Z1, . . . ZK ]T be a random
matrix in RK×N where Z1, . . . ZK are independent copies of Z ∼ N (0,Σ), and consider
the error estimator ∆(µ) = ‖Φ

(
u(µ)− ũ(µ)

)
‖2, or equivalently

(2.7) ∆(µ) =

(
1

K

K∑
k=1

(
ZTi
(
u(µ)− ũ(µ)

))2
)1/2

.
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If the parameter set P is finite, Corollary 2.2 withM = {u(µ)− ũ(µ);µ ∈ P} permits
control of the quality of the estimate ∆(µ) uniformly over µ ∈ P. But in actual
practice the parameter set is often of infinite cardinality. Using more sophisticated
techniques than just a simple union bound argument should provide results also when
P has infinite cardinality. In this paper, we are however only interested in the case of
a finite set of parameter values, as restated in the following corollary.

Corollary 2.5. Let 0 < δ < 1 and w >
√
e. Given a finite set of parameter

values S ⊂ P, the condition

(2.8) K ≥ min

{
log(#S) + log(δ−1)

log(w/
√
e)

, 3

}
,

is sufficient to ensure

P
{
w−1∆(µ) ≤ ‖u(µ)− ũ(µ)‖Σ ≤ w∆(µ) , ∀µ ∈ S

}
≥ 1− δ.

It is important to note that Condition (2.8) depends only on the cardinality of
S. This means that K can be determined only knowing the number of parameters for
which we need to estimate the error. However, computing ∆(µ) requires the solution
u(µ) of problem (2.1), which is infeasible in practice. By introducing the residual

(2.9) r(µ) = f(µ)−A(µ)ũ(µ),

associated with Problem (2.1) and, similar to [4, 15], exploiting the error residual
relationship we may albeit rewrite the terms ZTi (u(µ)− ũ(µ)), 1 ≤ i ≤ K as follows:

(2.10) ZTi (u(µ)− ũ(µ)) = ZTi A(µ)−1r(µ) = (A(µ)−TZi)
T r(µ).

The terms ZTi (u(µ)− ũ(µ)) thus equal the inner products of the (primal) residual and
the solutions Yi(µ) ∈ RN of the random dual problems

(2.11) A(µ)TYi(µ) = Zi, 1 ≤ i ≤ K.

Because of the random right hand side in (2.11), the solutions Y1(µ), . . . , YK(µ)
are random vectors. Thanks to the above the error estimator ∆(µ) (2.7) can be
rewritten as

(2.12) ∆(µ) =

(
1

K

K∑
i=1

(
Yi(µ)T r(µ)

)2)1/2

.

This shows that ∆(µ) can be computed by applying K linear forms to the residual
r(µ). In that sense, ∆(µ) can be considered as an a posteriori error estimator. Notice
that computing the solutions to (2.11) is in general as expensive as solving the primal
problem (2.1). In the next section we show how to approximate the dual solutions
Y1(µ), . . . , YK(µ) in order to obtain a fast-to-evaluate a posteriori error estimator.

Remark 2.6 (Scalar-valued QoI). When estimating the error in scalar-valued QoIs
of the form of s(µ) = lTu(µ), the covariance matrix is Σ = l lT , see subsection 2.1.
In that case the random vector Z ∼ N (0,Σ) follows the same distribution as X l
where X ∼ N (0, 1) is a standard normal random variable (scalar). The random dual
problem (2.11) then becomes A(µ)TYi(µ) = Xi l and the solution is Yi(µ) = Xi q(µ)
where q(µ) is the solution of the deterministic dual problem A(µ)T q(µ) = l. Dual
problems of this form are commonly encountered for estimating linear quantities of
interest, see [25] for a general presentation and [9, 27, 31] for the application in reduced
order modeling.
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Remark 2.7 (Considerations when employing ∆(µ) to enrich the reduced space).
Say that we use the a posteriori error estimator ∆(µ) to select a new parameter and
use the associated solution to enrich the reduced space. Then, we wish to use ∆(µ)
again for the enriched reduced space. However, now the problem occurs that the
error between u(µ) and the reduced solution that uses the newly selected snapshot
depends on the error estimator and thus Z1, . . . , ZK ; we lose independence. One so-
lution would be to redraw the samples in each iteration, which is in general however
computationally infeasible. Alternatively, as suggested in [1], we can adapt the num-
ber of samples K in order to take into account (using union bound arguments) all
possible outcomes of the greedy algorithm; for further details we refer to [1, Section
5.1].

3. A fast-to-evaluate randomized a posteriori error estimator. In order
to obtain a fast-to-evaluate a posteriori error estimator whose computational complex-
ity is independent of N , we employ projection-based model order reduction (MOR)
techniques to compute approximations of the solutions Y1(µ), . . . , YK(µ) of the dual
problems (2.11). To that end, let us assume that we are given a fixed realization

of the K random vectors Z1, . . . , ZK and that we have a reduced space Ỹ ⊂ RN at
our disposal. Different ways to construct Ỹ will be discussed in subsection 3.2 and
compared numerically in section 4. In any case, Ỹ will be built from dual solutions
Yi(µ), i = 1, . . . ,K of (2.11) for random right-hand sides Z1, . . . , ZK , the latter being

fixed before constructing the dual reduced space. Ỹ should thus be considered as a
random subspace. Then, we define Ỹi(µ) as the Galerkin projection of Yi(µ) on Ỹ,
meaning

(3.1) Ỹi(µ) ∈ Ỹ : 〈A(µ)T Ỹi(µ), v〉 = 〈Zi, v〉 , ∀v ∈ Ỹ.

Here, 〈v, w〉 := vTw for all v, w ∈ RN . We emphasize that we employ the same reduced

space Ỹ for the approximation of the K dual solutions Y1(µ), . . . , YK(µ). Needless to
say that a segregated strategy, where we construct and use K different dual reduced
spaces Ỹi for the K different right-hand sides Zi and associated dual reduced solutions
Yi(µ), i = 1, . . . ,K, can also be considered. The advantage of a segregated strategy is
that one can easily parallelize the computations, if needed. However, in this paper we
focus exclusively on the monolithic approach (3.1), employing one single dual reduced
space.

By replacing Yi(µ) in (2.12) by the fast-to-evaluate approximation Ỹi(µ), we define
a fast-to-evaluate a posteriori error estimator as

(3.2) ∆̃(µ) :=

(
1

K

K∑
i=1

(Ỹi(µ)T r(µ))2

)1/2

.

We highlight that, in constrast to for instance the “standard” a posteriori error esti-
mator being defined as the product of the reciprocal of a stability constant and the
dual norm of the primal residual, ∆̃(µ) does not contain any constants that require
estimation. Moreover, unlike hierarchical error estimators [2, 12] the quality of the
approximation used for the error estimator does not depend on the quality of the
primal approximation; the dual reduced space does not in general contain the primal
reduced space as a subspace and can even be of smaller dimension than the latter.
For a more elaborate comparison we refer to subsection 3.3.

Additionally, we shall show in subsection 3.3 that evaluating µ 7→ ∆̃(µ) requires

only the solution of one linear system of size nỸ := dim(Ỹ), instead of K linear



10 K. SMETANA, O. ZAHM AND A. T. PATERA

systems of size nỸ as suggested by (3.1). However, before discussing the computational

complexity of ∆̃(µ), we show in subsection 3.1 that under certain conditions ∆̃(µ) is
both a reliable and efficient error estimator at high probability. Based on this analysis
we propose in subsection 3.2 different greedy algorithms for constructing the reduced
space Ỹ.

3.1. Analysis of the fast-to-evaluate a posteriori error estimator. First,
we relate the relative error in the a posteriori error estimator to the error in the dual
residual:

Proposition 3.1. Assume Σ is invertible. The fast-to-evaluate error estimator
∆̃(µ) defined by (3.2) satisfies

|∆(µ)− ∆̃(µ)|
‖u(µ)− ũ(µ)‖Σ

≤ max
1≤i≤K

‖AT (µ)Ỹi(µ)− Zi‖Σ−1 for all µ ∈ P.(3.3)

Here, ‖ · ‖Σ−1 denotes the norm on RN such that ‖v‖2Σ−1 = vTΣ−1v for all v ∈ RN .

The proof is given in Appendix A.3. Notice that Proposition 3.1 requires Σ to
be invertible, which excludes the cases where one wants to estimate the error in a
vector-valued QoI, see subsection 2.1. Proposition 3.1 allows us to control the error
via ∆̃(µ), where the effectivity w is enlarged in an additive manner, as stated in the
following corollary.

Corollary 3.2. Suppose we are given a finite set of parameter values S ⊂ P for
which we want to estimate the error ‖u(µ) − ũ(µ)‖Σ. Let 0 < δ < 1, w >

√
e and

assume

(3.4) K ≥ min

{
log(#S) + log(δ−1)

log(w/
√
e)

, 3

}
.

Furthermore, assume that Σ is invertible and that we have ε ≤ w−1, where

(3.5) ε = sup
µ∈P

{
max

1≤i≤K
‖AT (µ)Ỹi(µ)− Zi‖Σ−1

}
.

Then, we have

(3.6) P
{

(w + ε)−1∆̃(µ) ≤ ‖u(µ)− ũ(µ)‖Σ ≤
w

1− w ε
∆̃(µ), ∀µ ∈ S

}
≥ 1− δ.

The proof is given in Appendix A.4. Corollary 3.2 gives a sufficient condition to
control the quality of the estimator ∆̃(µ) over a finite set of parameter values S ⊂ P
with high probability. It requires ε ≤ w−1, which is equivalent to ‖AT (µ)Ỹi(µ) −
Zi‖Σ−1 ≤ w−1 for all µ ∈ P and all 1 ≤ i ≤ K. To satisfy this condition, one has

to design an algorithm which builds Ỹi(µ) in a way that AT (µ)Ỹi(µ) is close to Zi
uniformly over S and independently on the value taken by Zi. Obtaining ε ≤ w−1 can
however be challenging (from a computational perspective). To explain this, let us
note that ‖Zi‖Σ−1 is, with high probability2, of the order of

√
N . Therefore ε ≤ w−1

means that the relative dual residual norm ought to be of the order of

‖AT (µ)Ỹi(µ)− Zi‖Σ−1

‖Zi‖Σ−1

' 1

w
√
N
.

2To show this, note that ‖Zi‖2Σ−1 ∼ χ2(N) so that, by Proposition 2.1, relation w′−1
√
N ≤

‖Zi‖Σ−1 ≤ w′
√
N holds with probability 1− (

√
e/w′)N for any w′ ≥

√
e.
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When N � 1, the condition ε ≤ w−1 means that we need a very accurate ap-
proximation of the dual variables. For instance with N = 106, the dual residual
norm ‖AT (µ)Ỹi(µ) − Zi‖Σ−1/‖Zi‖Σ−1 has to be less that 10−3 for all µ ∈ P and all
1 ≤ i ≤ K, which can be too demanding in actual practice.

Next, we give an alternative way of controlling the quality of ∆̃(µ). Contrarily
to Corollary 3.2, which provides a additive type of control, the following proposition
gives a control in an multiplicative manner. The proof in given in Appendix A.5 in
the appendix.

Proposition 3.3. Suppose we are given a finite set of parameter values S ⊂ P
over which we want to estimate the error ‖u(µ) − ũ(µ)‖Σ. Let 0 < δ < 1, w >

√
e

and assume

(3.7) K ≥ min

{
log(#S) + log(δ−1)

log(w/
√
e)

, 3

}
.

Then the fast-to-evaluate estimator ∆̃(µ) satisfies

(3.8) P
{

(αw)−1∆̃(µ) ≤ ‖u(µ)− ũ(µ)‖Σ ≤ (αw) ∆̃(µ), µ ∈ S,
}
≥ 1− δ,

where

(3.9) α := max
µ∈P

(
max

{
∆(µ)

∆̃(µ)
,

∆̃(µ)

∆(µ)

})
≥ 1.

Proposition 3.3 shows that, with high probability, the error estimator ∆̃(µ) de-
parts from the true error ‖u(µ) − ũ(µ)‖Σ at most by a multiplicative factor (αw)−1

or (αw). Notice that α is a measure of the distance from µ 7→ ∆̃(µ) to µ 7→ ∆(µ): if

it is close to 1 then ∆̃(µ) is close to ∆(µ) uniformly over the parameter set P. Unlike
Corollary 3.2, Proposition 3.3 does not require Σ to be invertible and, even more im-
portantly, it does not put any restrictions on α. However, the computation of α can
be expensive since it requires the exact error estimator ∆(µ) over the whole parameter
set P. Therefore, we propose to use α as a stopping criterion when constructing the
dual reduced space to ensure that (αw)−1∆̃(µ) ≤ ‖u(µ)− ũ(µ)‖Σ ≤ (αw) ∆̃(µ) holds
true for a rich training set ⊂ P as we will detail in subsection 3.2.

3.2. Greedy constructions of the dual reduced space Ỹ.

3.2.1. Vector point of view of the dual problems. A popular technique to
build a reduced space is to take the span of snapshots of the solution. In order to
handle the K distinct dual problems, the index “i” in (2.11) in considered as an addi-
tional parameter. Thus, we define the augmented parameter set PK = {1, . . . ,K}×P
and seek a nỸ -dimensional reduced space of the form of

(3.10) Ỹ = span{Yi1(µ1), . . . , YinỸ
(µnỸ )},

where the nỸ elements (i1, µ1), . . . , (inỸ , µnỸ ) are to be chosen in PK . The RB
methodology (see for instance [14, 26, 9, 27] for an introduction) consists in selecting
(i1, µ1), . . . , (inỸ , µnỸ ) in a greedy fashion [30]. In detail, assuming that the j first
parameters are given, the (j + 1)-th parameter is defined as

(3.11) (ij+1, µj+1) ∈ argmax
(i,µ)∈Ptrain

K

‖A(µ)T Ỹi(µ)− Zi‖∗,
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Algorithm 3.1 Greedy construction of the dual reduced space Ỹ
Data: Operator µ 7→ A(µ), samples {Z1, . . . , ZK}, training set Ptrain

K , tolerance tol,
quantile order q

Initialize Ỹ = {0} and j = 0

while q-quantile(i,µ)∈Ptrain
K
{‖A(µ)T Ỹi(µ)− Zi‖∗} > tol do

Compute Ỹi(µ) ∈ Ỹ via (3.1)

Find (ij+1, µj+1) that maximizes (i, µ) 7→ ‖A(µ)T Ỹi(µ)− Zi‖∗ over Ptrain
K

Compute the snapshot Yij+1
(µj+1) = A(µj+1)−TZij+1

Update the dual reduced space Ỹ ← Ỹ + span{Yij+1
(µj+1)}

Update j ← j + 1
end

Result: Dual reduced space Ỹ.

where Ỹi(µ) is the approximation of Yi(µ) given by (3.1) with Ỹ defined as in (3.10).
Here, Ptrain

K ⊂ PK is a sufficiently rich training set with finite cardinality and ‖ · ‖∗
denotes an arbitrary norm of RN . According to Corollary 3.2, it is natural to chose
‖ · ‖∗ = ‖ · ‖Σ−1 , provided Σ is invertible. After having computed the snapshot

Yij+1(µj+1), the reduced space Ỹ is updated using (3.10) with j ← j+1. By selecting
the parameter (ij+1, µj+1) according to (3.11), the idea is to construct a reduced

space that minimizes the dual residual norm ‖A(µ)T Ỹi(µ)− Zi‖∗ uniformly over the
training set (i, µ) ∈ Ptrain

K .
It remains to define a criterion to stop the greedy iterations. Given a user-defined

tolerance tol ≥ 0, the use of the stopping criterion

(3.12) max
(i,µ)∈Ptrain

K

‖A(µ)T Ỹi(µ)− Zi‖∗ ≤ tol,

ensures that, at the end of the iteration procedure, the residual norm of the dual
problem is below tol everywhere on the training set Ptrain

K . One can relax that criterion
by replacing the max in (3.12) by the quantile of order q ∈ [0, 1]:

(3.13) q-quantile
{
‖A(µ)T Ỹi(µ)− Zi‖∗ : (i, µ) ∈ Ptrain

K

}
≤ tol.

Here q-quantile{A} denotes the dq#Ae-th largest entries of a (ordered and finite) set
A. With this stopping criterion, the iterations stop when at least a fraction of q points
in Ptrain

K have a dual residual norm below tol. Notice that the q-quantile and the max
coincides when q = 1 so that (3.13) generalizes (3.12). The resulting greedy algorithm
is summarized in Algorithm 3.1.

3.2.2. Matrix point of view of the dual problems. Next, we propose an-
other greedy algorithm which relies on a matrix interpretation of the K dual problems
(2.11). Let us denote by

Y(µ) = [Y1(µ), . . . , YK(µ)] ∈ RN×K ,

the matrix containing the dual solutions. Instead of constructing the reduced space Ỹ
as the span of vectors Yi(µ), like in Equation (3.10), we now consider reduced spaces
of the form of

(3.14) Ỹ = span{Y(µ1)λ1, . . . ,Y(µnỸ )λnỸ},
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where λ1, . . . , λnỸ are nỸ vectors in RK and where µ1, . . . , µnỸ ∈ P. Notice that if

the vectors λi are canonical vectors of RK we have that Ỹ can be written as in (3.10).
In that sense, the approximation format (3.14) is richer than (3.10) and we can expect
better performance. We also note that the greedy algorithm we propose here shares
some similarities with the POD-greedy algorithm introduced in [10].

We now propose a second greedy algorithm inspired by Proposition 3.3. Let
Ptrain ⊂ P be again a finite training set and suppose that at step r in the greedy
algorithm we have a reduced space Ỹ as in (3.14) at our disposal. The first step is to
define the next evaluation point µj+1 as

(3.15) µj+1 ∈ argmax
µ∈Ptrain

(
max

{
∆(µ)

∆̃(µ)
,

∆̃(µ)

∆(µ)

})
,

where we recall that ∆(µ) = ( 1
K

∑K
i=1[ZTi (u(µ)− ũ(µ))]2)1/2. Finding µj+1 according

to (3.15) requires to compute the solution u(µ) over the training set µ ∈ Ptrain. As this
is in general not computationally efficient, we suggest replacing u(µ) by a reference
solution uref(µ) such that ‖uref(µ) − u(µ)‖Σ � ‖ũ(µ) − u(µ)‖Σ. We can choose
as uref(µ) for instance a hierarchical approximation of u(µ), where we use a larger
primal reduced space to determine uref(µ). Note that we only suggest using such a
reference solution for the construction of the dual reduced space and not afterwards
when certifying the reduced approximation in the online stage. Then, we introduce
the reference error estimator

∆ref(µ) :=

(
1

K

K∑
i=1

(
ZTi (uref(µ)− ũ(µ))

)2)1/2

and seek µj+1 as

(3.16) µr+1 ∈ argmax
µ∈Ptrain

(
max

{
∆ref(µ)

∆̃(µ)
,

∆̃(µ)

∆ref(µ)

})
.

Once the parameter µj+1 is found either with (3.15) of with (3.16), we compute the
dual solutions Y1(µj+1), . . . , YK(µj+1) and assemble Y(µj+1). Here we need to solve
K linear equations with the same operator A(µj+1)T but with K different right-hand
sides, see Equation (2.11). This can be done efficiently say be using a Cholesky or
LU decomposition and reusing the factorization for the K problems.

The second step is to determine the vector λj+1. In order to maximize the im-
provement of the reduced space, we propose to define λj+1 as follows:

(3.17) λj+1 ∈ argmax
λ∈RK

‖Y(µj+1)λ− Ỹ(µj+1)λ‖2
‖λ‖2

,

where Ỹ(µj+1) = [Ỹ1(µj+1), . . . , ỸK(µj+1)]. The rational behind (3.17) is to align

λj+1 with the direction where the matrix Ỹ(µj+1) differs the most from Y(µj+1).
One can easily show that λj+1 defined by (3.17) is the first eigenvector of the K-by-K
matrix

(3.18) M(µj+1) =
(
Y(µj+1)− Ỹ(µj+1)

)T (
Y(µj+1)− Ỹ(µj+1)

)
.
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Algorithm 3.2 Greedy construction of Ỹ with goal oriented greedy selection

Data: Operator µ 7→ A(µ), samples {Z1, . . . , ZK}, training set Ptrain, tolerance tol,
quantile order q, approximation µ 7→ ũ(µ), reference solution µ 7→ uref(µ)

Compute ∆ref(µ) for all µ ∈ Ptrain

Initialize Ỹ = {0} and j = 0

while q-quantileµ∈Ptrain

{
max

{
∆ref (µ)

∆̃(µ)
, ∆̃(µ)

∆ref (µ)

}}
> tol do

Define Ỹi(µ) ∈ Ỹ by (3.1) and ∆̃(µ) by (3.2)

Find µj+1 that maximizes µ 7→ max
{

∆ref (µ)

∆̃(µ)
, ∆̃(µ)

∆ref (µ)

}
over Ptrain

Compute the solutions Yi(µj+1) = A(µj+1)−TZi for all 1 ≤ i ≤ K
Compute the matrix M(µj+1) by (3.18) and its leading eigenvector λj+1

Update the dual reduced space Ỹ ← Ỹ + span{Y(µj+1)λj+1}
Update j ← j + 1

end

Result: Dual reduced space Ỹ.

Once λj+1 is computed, we set j ← j + 1 and we update the reduced space Ỹ using
(3.14). We terminate the algorithm based on the following stopping criteria

q-quantile

{
max

{
∆(µ)

∆̃(µ)
,

∆̃(µ)

∆(µ)

}
: µ ∈ Ptrain

}
≤ tol.

The resulting greedy algorithm is summarized in Algorithm 3.2.

Remark 3.4 (Comparison with POD-greedy). Note that in the POD-greedy al-

gorithm [10] one would consider the orthogonal projection on the reduced space Ỹ
instead of the actual reduced solutions in (3.17). However, for problems where the
Galerkin projection deviates significantly from the orthogonal projection, we would
expect that using the reduced solution gives superior results than the POD-greedy as
the latter does not take into account the error due to the Galerkin projection which
can be significant for instance close to resonances in a Helmholtz problem. We have
performed numerical experiments for the same benchmark problem (parametrized
Helmholtz equation) we consider in section 4 that confirm this conjecture.

3.3. Computational aspects of the fast-to-evaluate error estimator. At
a first glance the complexity for evaluating µ 7→ ∆̃(µ) is dominated by the solution
of the K reduced problems (3.1), meaning K times the solution of a (dense) linear
system of equations of size nỸ . The next proposition, inspired by Lemma 2.7 in [31],

shows that one can actually evaluate µ 7→ ∆̃(µ) by solving only one linear system of
size nỸ , which reduces the previous complexity by a factor K; the proof is provided

in Appendix A.6. Note however that the complexity for evaluating µ 7→ ∆̃(µ) is not
completely independent on K. Indeed, as we employ the same reduced space for the
approximation of K dual problems, the dimension of nỸ depends on K. The rate
of the increase of nỸ for growing K will be investigated in numerical experiments in
section 4.
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Proposition 3.5. The error indicator ∆̃(µ) defined by (3.2) can be written as

(3.19) ∆̃(µ) =

(
1

K

K∑
i=1

(
ZTi ẽ(µ)

)2)1/2

,

where ẽ(µ) ∈ Ỹ is the solution to

(3.20) ẽ(µ) ∈ Ỹ , 〈A(µ)ẽ(µ), v〉 = 〈r(µ), v〉 , ∀v ∈ Ỹ.

Besides giving an alternative way of computing ∆̃(µ), Proposition 3.5 also gives
a new insight into the fast-to-evaluate error estimator. Reformulating Problem (3.20)
as

ẽ(µ) ∈ Ỹ , 〈A(µ)
(
ũ(µ) + ẽ(µ)

)
, v〉 = 〈f(µ), v〉 , ∀v ∈ Ỹ,

demonstrates that ẽ(µ) ∈ Ỹ may be interpreted as a correction of the primal approx-
imation ũ(µ), so that ũ(µ) + ẽ(µ) is an enriched solution of the original problem (2.1)

compared to ũ(µ). Since Ỹ is not designed for improving the primal approximation
ũ(µ), one cannot reasonably hope that the correction ẽ(µ) improves significantly ũ(µ).
However the norm of ẽ(µ), estimated by the fast-to-evaluate error estimator (3.19),
gives relevant information about the error ‖u(µ) − ũ(µ)‖Σ. Finally, we emphasize
again that the primal reduced space is in general not a subspace of the dual reduced
space and that the intersection of the primal and dual reduced space can even be
empty. As a consequence, the right-hand side in (3.20) is in general not zero for test
functions from the dual reduced space.

Remark 3.6. Assume A(µ) =
∑QA

q=1 αq(µ)Aq and f(µ) =
∑Qf

q=1 ζq(µ)fq with
Aq, fq parameter-independent and consider ũ(µ) as the Galerkin projection onto some

primal reduced order space X̃ of dimension nX̃ . Since all inner products involving
high dimensional quantities can be preassembled, the marginal computational com-
plexity of ∆̃(µ) is O(QAn

2
Ỹ

+ QfnỸ + QAnỸnX̃ ) for assembling (3.20), O(n3
Ỹ

) for

solving (3.20) and O(KnỸ) for calculating (3.19). For moderate QA the marginal

computational complexity of ∆̃(µ) is thus dominated by O(n3
Ỹ

), i.e. the costs for

solving (3.20).

Remark 3.7 (Comparison with hierarchical type error estimators [12]). An al-
ternative strategy for estimating the error is to measure the distance between the
approximation ũ(µ) ∈ X̃ and a reference solution uref(µ), which is an improved ap-
proximation of u(µ) compared to ũ(µ). When using projection based model order
reduction uref(µ) can be defined as a Galerkin projection onto an enriched reduced

space of the form of X̃ + Ỹ, as proposed in [12]. Unlike our approach, the space Ỹ
ought to be adapted for capturing the error u(µ)− ũ(µ). The complexity for evaluat-
ing such a hierarchical error estimator is dominated by the solution of a dense system
of equations of size dim(X̃ + Ỹ). In contrast, our approach requires the solution of a
system of equations whose size is independent on the dimension of the primal reduced
space X̃ , see the above Remark 3.6.

4. Numerical experiments. We numerically demonstrate various theoretical
aspects of the proposed error estimator. Our benchmark is a parameterized Helmholtz
equation for which a reduced order solution is obtained by the RB method. Estimating
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Fig. 2: Norm of the solution
‖u(µ)‖Σ over the online set S ⊂ P
with #S = 104 and Σ = RX .
The lines represent the resonances
of the Helmholtz equation (com-
puted analytically).

the error in this reduced order model is challenging because, around the resonances,
we lose the coercivity of the operator which makes a posteriori error estimation quite
difficult with standard methods.

Let us mention here that all the training sets Ptrain (or Ptrain
K ) and all the online

sets S are comprised of snapshots selected independently and uniformly at random
in P (or in PK). Those (random) sets are redrawn at each new simulation, unless
mentioned otherwise.

4.1. Benchmark: Multi-parametric Helmholtz equation. Consider the
parameterized Helmholtz equation

−∂x1x1
u− µ1∂x2x2

u− µ2 u = f in D := (0, 1)× (0, 1),

u = 0 on (0, 1)× {0},
(4.1)

∂x2
u = cos(πx1) on (0, 1)× {1},

∂x1
u = 0 on {0, 1} × (0, 1).

The solution u = u(µ) is parameterized by µ = (µ1, µ2) ∈ P := [0.2, 1.2] × [10, 50],
where µ1 accounts for anisotropy and µ2 is the wavenumber squared. The source term
f is defined by f(x1, x2) = f1(x1)f2(x2) for any (x1, x2) ∈ D, where

f1(x1) :=



5 if 0 ≤ x1 ≤ 0.1,

−5 if 0.2 ≤ x1 ≤ 0.3,

10 if 0.45 ≤ x1 ≤ 0.55,

−5 if 0.7 ≤ x1 ≤ 8,

5 if 0.9 ≤ x1 ≤ 1,

0 else,

and f2(x2) :=

{
1 if 0.5 ≤ x2 ≤ 1,

0 else.

A similar test case with a smaller parameter set has been considered in [16]. The
resonances can be determined analytically and are depicted by the black lines in
Figure 2. Because of the multi-parameter setting, we have resonance surfaces which
are more difficult to deal with than a union of isolated resonance frequencies in the
single-parameter setting; see [16]. Moreover, we observe that in the region [0.2, 0.4]×
[30, 50] ⊂ P there are quite a few resonance surfaces that are also relatively close
together, making this an even more challenging situation both for the construction of
suitable reduced models and even more for a posteriori error estimation.

We employ the Finite Element (FE) method to discretize the weak solution of
(4.1). To that end, we define a FE space Xh ⊂ X := {v ∈ H1(D) : v(x1, 0) = 0} by
means of a regular mesh with square elements of edge length h = 0.01 and FE basis
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Fig. 3: Histograms of {∆(µ)/‖u(µ) − ũ(µ)‖Σ , µ ∈ S} for nX̃ = 10 for five different
realizations of the vectors Z1, . . . , ZK , one color per realization. Dashed lines: value
of 1/w and w, where w is obtained from (2.8) prescribing δ = 10−2.

functions that are piecewise linear in x1 and x2 direction, resulting in a FE space
of N = dim(Xh) = 10100. The FE approximation uh(µ) is defined as the Galerkin
projection of u(µ) on Xh, and we denote by u(µ) ∈ RN the vector containing the
coefficients of uh(µ) when expressing it in the FE basis. Moreover, we denote by
RX ∈ RN×N the discrete Riesz map associated with the H1-norm, which is such that
u(µ)RXu(µ) = ‖uh(µ)‖2H1(D) for any µ ∈ P. By default the covariance matrix Σ is
always chosen to be Σ = RX , unless mentioned otherwise.

We may also consider a QoI defined as the trace of the FE solution on the bound-
ary Γ = {0} × (0, 1) ⊂ ∂D, meaning uh|Γ(µ). We denote by s(µ) ∈ R100 the vector

containing those entries of u(µ) ∈ RN that are associated with the grid points on Γ.
Then, we can write s(µ) = Lu(µ) where L ∈ R100×N is an extraction matrix. To
measure the error associated with the QoI, we use the norm ‖ · ‖W defined as the
discretization of the L2(Γ) norm, which is such that ‖s(µ)‖W = ‖uh|Γ(µ)‖L2(Γ) for any
µ ∈ P.

The primal RB approximation ũ(µ) is defined as the Galerkin projection of u(µ)

onto the space of snapshots, meaning ũ(µ) ∈ X̃ := span{u(µ1), u(µ2), . . .}, where the
parameters µ1, µ2, . . . are selected in a greedy way based on the dual norm of the
residual associated with (4.1). Each time we run Algorithm 3.2, we use a reference
solution uref(µ) defined as an RB approximation of u(µ) using nX̃+10 basis functions,

where nX̃ := dim(X̃ ). Note that this reference solution appears only in the offline
stage.

4.2. Randomized a posteriori error estimation with exact dual. We
demonstrate here the statistical properties of the error estimator ∆(µ) defined by
(2.12). Figure 3 shows histograms of the effectivity indices {∆(µ)/‖u(µ)−ũ(µ)‖Σ , µ ∈
S} for five different realizations of the vectors Z1, . . . , ZK . Here, the same online set
S with #S = 104 is used. We observe that for each of the five realizations, the ef-
fectivity indices ∆(µ)/‖u(µ) − ũ(µ)‖Σ lie in the interval [1/w,w] for any µ ∈ S, as
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predicted by Corollary 2.5. This theoretical bound looks however pessimistic, as the
effectivities for K = 5 (resp. K = 10) lie in the interval [1/w,w] that corresponds
to K = 10 (resp. K = 20). This might be due to the rather crude union bound
argument.

The solid lines on Figure 3 represent the probability density function (pdf) of√
Q/K where Q ∼ χ2(K). This is the pdf of ∆(µ)/‖u(µ) − ũ(µ)‖Σ for any fixed

µ. Even though the histograms depicted on Figure 3 are not representing that pdf
(instead they represent the distribution of the effectivity index among the set S), we
observe good accordance with the black line. In particular we observe a concentration
phenomenon of the histograms around 1 when K increases.

4.3. Approximation of the dual problems.

4.3.1. Construction of the dual space. In Figure 4 we compare the maxi-
mum, the minimum, the 95% quantile and the 99% quantile of {∆̃(µ)/‖u(µ)−ũ(µ)‖Σ :
µ ∈ S} where the dual reduced space is constructed either by Algorithm 3.1 (with
‖ · ‖∗ = ‖ · ‖R−1

X
), by Algorithm 3.2 or by a POD. We observe that by using Algo-

rithm 3.2 we need many fewer dual basis functions than for Algorithm 3.1 and for
the POD. In detail, we see for instance in Figure 4d, Figure 4e and Figure 4f that for
K = 5 employing Algorithm 3.2 requires about nỸ = 20 dual basis functions to have
99% of the samples in the interval [1/3, 3], while when using the Algorithm 3.1 or the
POD we need about 35 or 30 basis functions, respectively. We emphasize that for
K = 20 the difference is even larger. Moreover, when considering the QoI (last row
of Figure 4), the difference between Algorithm 3.2 and the Algorithm 3.1 and POD
is less pronounced but still considerable. This significant disparity can be explained
by the fact that while both the POD and the Algorithm 3.1 try to approximate the
K dual solutions Ỹ1(µ), . . . , ỸK(µ), Algorithm 3.2 is driven by the approximation of
the error estimator ∆(µ) and thus a scalar quantity; compare the selection criteria
(3.11) and (3.15). This also explains why the discrepancy increases significantly for
growing K: While POD and Algorithm 3.1 have to approximate a more complex
object (the K dual solutions), we only obtain an additional summand in ∆̃(µ) for
each additional random right-hand side. Let us also highlight the significant differ-
ence between the maximum value and the 99% quantile over the parameter set and
the somewhat erratic behavior of the maximum, which both seem to be due to the
resonance surfaces. As indicated above this motivates considering for instance the
99% quantile as a stopping criterion in both Algorithm 3.1 and Algorithm 3.2.

4.3.2. Dimension of the dual space. Table 3 shows statistics of the dimension
of the dual reduced space Ỹ obtained by Algorithm 3.1 with different stopping crite-
rion. We consider tol = 0.5 and relax this tolerance by multiplication with a varying
relaxation parameter ρ taking the values 1, 10 and 100. We observe that except for
tol · ρ = 50 and moderate K the dimension of the dual space is in general quite large.
Comparing with Figure 4, we observe that choosing tol · ρ = 50 is albeit sufficient to
obtain an effectivity close to 1. Notice however that the use of Corollary 3.2 requires
tol · ρ ≈ ε ≤ 1/w ≤ 1, which excludes tol · ρ = 5 and tol · ρ = 50. Figure 5 shows
the evolution of the stopping criteria during the first 80 iterations of Algorithm 3.1.
We observe a significant impact of K on the convergence profiles: with K = 20 the
curves do not attain the tolerance tol = 0.5, which explains the results we observed
in Table 3.

In comparison, Algorithm 3.2 yields much smaller dual reduced spaces; compare
Table 3 and Table 4. We see in Table 4 that, except for tol = 1.5 the dimension
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tol · ρ = 0.5 (ρ = 1) tol · ρ = 5 (ρ = 10) tol · ρ = 50 (ρ = 100)
K = 5 47.7 (±1.9) 39.9 (±3.24) 30.6 (±9.3)
K = 10 74.2 (±1.75) 56.2 (±4.4) 43.5 (±10.8)
K = 20 > 80 > 80 65.4 (±9.65)
K = 50 > 80 > 80 > 80

(a) Stopping criterion: max (q = 1) over Ptrain is ≤ tol · ρ

tol · ρ = 0.5 (ρ = 1) tol · ρ = 5 (ρ = 10) tol · ρ = 50 (ρ = 100)
K = 5 45.4 (±2.14) 35.9 (±3.29) 16.9 (±6.99)
K = 10 70.6 (±1.83) 53.7 (±4.17) 31 (±9.4)
K = 20 > 80 > 80 55.1 (±9.43)
K = 50 > 80 > 80 > 80

(b) Stopping criterion: 97.5%-quantile (q = 0.975) over Ptrain is ≤ tol · ρ

Table 3: Mean (±standard deviation) of nỸ over 100 realizations of the K vectors

Z1, . . . , ZK . Here Ỹ is built using Algorithm 3.1 with different stopping criterion, i.e.
with different values for q and ρ.

tol = 1.5 tol = 2 tol = 3 tol = 5
K = 5 26.9 (±4.41) 23 (±5.58) 19 (±6.35) 14.8 (±6.52)
K = 10 28.1 (±7.64) 22.1 (±5.72) 16.4 (±5.25) 12.3 (±3.56)
K = 20 28.4 (±10.2) 22.4 (±9.56) 16.3 (±8.38) 13.1 (±8.04)
K = 50 31.8 (±11.3) 21.8 (±8.06) 14.9 (±4.93) 11.3 (±2.68)

(a) Stopping criterion: max of α (q = 1) over Ptrain is ≤ tol, nX̃ = 10

tol = 1.5 tol = 2 tol = 3 tol = 5
K = 5 18.7 (±4.89) 13.9 (±4.23) 9.7 (±4.25) 6.66 (±3.22)
K = 10 18.2 (±5) 12 (±3.51) 7.64 (±2.08) 6.08 (±1.64)
K = 20 21.9 (±6.96) 13.9 (±4.18) 8.88 (±2.56) 6.02 (±1.9)
K = 50 25.1 (±9.77) 15.7 (±5.74) 9.44 (±3.44) 6.12 (±2.03)

(b) Stopping criterion: 97.5%-quantile (q = 0.975) over Ptrain is ≤ tol, nX̃ = 10

q = 100% (max) q = 99% q = 97.5% q = 95%
K = 5 19 (±6.35) 11.7 (±5.14) 9.7 (±4.25) 8.52 (±3.84)
K = 10 16.4 (±5.25) 9.5 (±2.59) 7.64 (±2.08) 6.8 (±2.01)
K = 20 16.3 (±8.38) 10.5 (±3.29) 8.88 (±2.56) 7.38 (±2.55)
K = 50 14.9 (±4.93) 10.7 (±3.46) 9.44 (±3.44) 7.16 (±2.58)

(c) Stopping criterion: q-quantile over Ptrain is ≤ tol = 3, nX̃ = 10

nX̃ = 10 nX̃ = 20 nX̃ = 30

K = 5 9.7 (±4.25) 6.74 (±1.65) 7.56 (±2.27)
K = 10 7.64 (±2.08) 9.86 (±2.55) 9.62 (±3.1)
K = 20 8.88 (±2.56) 14.2 (±3.57) 13.6 (±2.7)
K = 50 9.44 (±3.44) 22.1 (±5.22) 23.1 (±5.27)

(d) Stopping criterion: 97.5%-quantile (q = 0.975) over Ptrain is ≤ tol = 3

Table 4: Mean (±standard deviation) of nỸ over 100 realizations of the K vectors

Z1, . . . , ZK . Here Ỹ is built using Algorithm 3.2 with different stopping criterion q and
tol, and with different primal approximation nX̃ = 10, 20, 30. Here #Ptrain = 104.



20 K. SMETANA, O. ZAHM AND A. T. PATERA

0 20 40 60 80
10−2

10−1

100

101

102

103 max and min
quantile(99%)
quantile(95%)

(a) Alg. 3.2, RX , K = 2
0 20 40 60 80

10−2

10−1

100

101

102

103 max and min
quantile(99%)
quantile(95%)

(b) Alg. 3.1, RX , K = 2
0 20 40 60 80

10−2

10−1

100

101

102

103 max and min
quantile(99%)
quantile(95%)

(c) POD, RX , K = 2

0 20 40 60 80
10−2

10−1

100

101

102

103 max and min
quantile(99%)
quantile(95%)

(d) Alg. 3.2, RX , K = 5
0 20 40 60 80

10−2

10−1

100

101

102

103 max and min
quantile(99%)
quantile(95%)

(e) Alg. 3.1, RX , K = 5
0 20 40 60 80

10−2

10−1

100

101

102

103 max and min
quantile(99%)
quantile(95%)

(f) POD, RX , K = 5

0 20 40 60 80
10−2

10−1

100

101

102

103 max and min
quantile(99%)
quantile(95%)

(g) Alg. 3.2, RX , K = 20
0 20 40 60 80

10−2

10−1

100

101

102

103 max and min
quantile(99%)
quantile(95%)

(h) Alg. 3.1, RX , K = 20
0 20 40 60 80

10−2

10−1

100

101

102

103 max and min
quantile(99%)
quantile(95%)

(i) POD, RX , K = 20

0 20 40 60 80
10−2

10−1

100

101

102

103 max and min
quantile(99%)
quantile(95%)

(j) Alg. 3.2, QoI, K = 20
0 20 40 60 80

10−2

10−1

100

101

102

103 max and min
quantile(99%)
quantile(95%)

(k) Alg. 3.1, QoI, K = 20
0 20 40 60 80

10−2

10−1

100

101

102

103 max and min
quantile(99%)
quantile(95%)

(l) POD, QoI, K = 20

Fig. 4: Maximum, minimum, and two quantiles (99% and 95%) of {∆̃(µ)/‖u(µ) −
ũ(µ)‖Σ : µ ∈ S} as a function of nỸ . The dual reduced space Ỹ is constructed by
Algorithm 3.2 (left column), Algorithm 3.1 (middle column), and POD (right column).
The first three rows corresponds to different values of K = 2, 5, 20 with Σ = RX . The
last row corresponds to Σ = LTRWL (the QoI) with K = 20. On each row we use
the same realization of the vectors Z1, . . . , ZK , which allows a fair comparison of the
different algorithms. For each plot we use #Ptrain = 103 and #S = 104.
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Fig. 5: Evolution of the 97.5%-quantile of {‖A(µ)T Ỹi(µ) − Zi‖∗ : (i, µ) ∈ Ptrain
K }

during the first 80 iterations of Algorithm 3.1. Each grey line corresponds to one
realization of Z1, . . . , ZK and the black lines are the mean of the grey lines.
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Fig. 6: Evolution of the 97.5%-quantile of {max{∆ref (µ)

∆̃(µ)
; ∆̃(µ)

∆ref (µ)} : µ ∈ Ptrain} during

the first 80 iterations of Algorithm 3.1. Here, nX̃ = 30. Each grey line corresponds
to one realization of Z1, . . . , ZK and the black lines are the mean of the grey lines.

of the dual RB space Ỹ is smaller than the dimension of the primal RB space X̃
when using the 95%, 97.5%, 99%-quantiles for the stopping criterion. Moreover, for
instance for tol = 3 we see that for nX̃ = 20, 30 we can use (significantly) less dual
than primal basis functions. However, we also see that tight tolerances for tol will
lead in general to dual reduced spaces that have a larger dimension than the primal
RB space. As larger tolerances ≥ 5 may lead to an significant underestimation of
the error (see Figure 8), tolerances for tol between 1 and 4 seem to be preferable.
Figure 6 shows the evolution of the stopping criteria during the first 80 iterations of
Algorithm 3.2. Note that for higher tolerances for tol it may happen for a realization
that Algorithm 3.2 terminates in a valley between two peaks.

Furthermore, we observe in Table 4 a very large standard deviation of about 10 if
we consider the maximum over the offline training set, while for the 95%,97.5%,99%
quantiles we have often a standard deviation of about 2. Additionally, the dimension
of the dual reduced spaces for the maximum is much larger than for the considered
quantiles, but among the considered quantiles we observe only very moderate changes.
Again, it seems that this behavior is due to the resonance surfaces. Moreover, as
we obtain a very satisfactory effectivity of ∆̃(µ) when we use for instance the 99%
quantile (see section 4.3.3), we conclude that using quantiles between 97.5% and 99%
as a stopping criterion in Algorithm 3.2 seems advisable.

Finally, we observe both a very moderate dependency of the dimension of the dual
reduced space constructed by Algorithm 3.2 on K and a rather mild dependency on
nX̃ . Therefore, we conjecture that the proposed error estimator might also be applied
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nỸ = 28± 8

Fig. 7: Histograms of {∆̃(µ)/‖u(µ)−ũ(µ)‖Σ : µ ∈ S} with #S = 104 for 5 realizations
of K random vectors Z1, . . . , ZK (one color per realization). The dual reduced space

Ỹ is built using Algorithm 3.2 with q = 0.99, tol = 2 and #Ptrain = 103. Here
nX̃ = 20 and Σ = RX . The vertical dashed lines corresponds to w−1 and w where
w is obtained from (2.8) prescribing δ = 10−2. The gray area corresponds to the
amplification of the confidence interval due to α ≈ tol, see Proposition 3.3.

rather complex problems.

4.3.3. Performance of ∆̃(µ) on an online parameter set. On Figure 7 we

plot the histograms of {∆̃(µ)/‖u(µ)− ũ(µ)‖Σ : µ ∈ S} for 5 realizations of the random

vectors Z1, . . . , ZK , where the dual reduced space Ỹ is built via Algorithm 3.2. We
observe a similar behavior as for the error estimator ∆(µ) with the exact dual, see

Figure 3. In particular for all µ ∈ S the effectivity index ∆̃(µ)/‖u(µ) − ũ(µ)‖Σ lies
between (αw)−1 and (αw), see Proposition 3.3, where α is estimated by tol = 2.
Finally, we highlight that Figure 7 demonstrates that with near certainty we obtain
effectivities near unity with a dual space dimension on the same order as (or less than)
the primal space dimension. Hence the costs for the a posteriori error estimator are
about the same as those for constructing the primal approximation.

In order to understand the average performance of the online-efficient error indi-
cator, we plot in Figure 8 the histograms of the concatenation of 100 realizations of
the effectivity indices {∆̃(µ)/‖u(µ)− ũ(µ)‖Σ : µ ∈ S}. Here, for each new realization,
we redraw the K vectors Z1, . . . , ZK , the training set Ptrain, then run Algorithm 3.2
to construct the dual reduced space Ỹ, and finally redraw the online set S. We ob-
serve that for a larger tolerance tol the histograms are shifted to the left, which seems
to be a bit stronger for larger K (corresponding to smaller w). This is due to the

fact that Algorithm 3.2 is stopped earlier and the dimension of Ỹ is not sufficiently
large to approximate well the error estimator ∆(µ). Nevertheless, we observe that

the effectivity indices ∆̃(µ)/‖u(µ)− ũ(µ)‖Σ are always in the interval [(αw)−1, (αw)],
where α ≈ tol, as expected thanks to Proposition 3.3. This shows that, even with a
rather crude approximation of the dual solutions, it is safe to use the fast-to-evaluate
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Fig. 8: Histograms of the concatenation of 100 realizations of {∆̃(µ)/‖u(µ)− ũ(µ)‖Σ :
µ ∈ S} where at each realization, the vectors Z1, . . . , ZK , the training set Ptrain and

the online set S are redrawn and Ỹ is rebuilt using Algorithm 3.2 with q = 0.99.
The solid lines are the pdf of

√
Q/K where Q ∼ χ2(K). As on Figure 7, the grey

area corresponds to the amplification of the confidence interval [(αw)−1, (αw)] due to
α ≈ tol. Here nX̃ = 20, Σ = RX , δ = 10−2, #Ptrain = 103 and #S = 104.

error estimator ∆̃(µ), as the grey area is taking into account the approximation error
in the error estimator.

To guarantee that the effectivity indices lie in a user-defined interval of the form
of [c−1, c], it is sufficient to choose α and w such that αw = c, see Proposition 3.3.
As a consequence there is a degree of freedom in the choice of α and w, meaning in
the choice of tol ≈ α and K = K(w) via relation (2.8). To avoid a too large shift of
the histogram to the left as for instance observed for w = 2.1 and tol = 3 it seems
advisable to choose α at least as small as w. Additionally, the plots corresponding
to w = 3.2, 2.1 and α = 2 highlight the importance of choosing α small enough
compared to w if one is interested in rather tight estimates. However, decreasing
α has, as anticipated, a much stronger effect on the dimension of the dual reduced
space (see Figure 8). Therefore, it seems that for the considered test case choosing
α/w ∈ (1/3, 1) seems to be a good compromise between computational costs and
effectivity of the error estimator. We also see that for instance w = 6.5 and α = 3 or
α = 2 yield already very good results in this direction.

5. Conclusions. In this paper we introduced a randomized a posteriori error es-
timator for low-rank approximations, which is constant-free and is both reliable and
efficient at given high probability. Here, the upper and lower bound of the effectivity
is chosen by the user. To derive the error estimator we exploit the concentration
phenomenon of Gaussian maps. Exploiting the error residual relationship and ap-



24 K. SMETANA, O. ZAHM AND A. T. PATERA

proximating the associated random dual problems via projection-based model order
reduction yields a fast-to-evaluate a posteriori error estimator. We highlight that we
had to put some effort in proving the concentration inequalities but regarding the
parametrized problem we only relied on its well-posedness and the definition of the
adjoint operator. Therefore, there is some chance that the presented framework might
be extended quite easily to more complex problems.

To construct the dual reduced space we employed a greedy algorithm guided by
a quantity of interest that assesses the quality of the fast-to-evaluate error estimator.
The numerical experiments for a multi-parametric Helmholtz problem show that we
obtain much smaller dual reduced spaces than with a standard greedy driven by the
dual norm of the residual or with the POD. Moreover, the numerical experiments
demonstrate that for moderate upper bounds for the effectivities of about 20 the
dimension of the dual reduced space needs only to be a bit more than half of the
dimension of the primal reduced space. If a very tight effectivity bound of about
2 or 3 is desired the dual reduced spaces have to be about twice as large as the
primal approximation spaces. We emphasize however that even for larger bounds
of the effectivity thanks to the concentration of measure the effectivity is still very
often close to one. Furthermore, we observed only a very moderate dependence of
the dimension of the dual reduced space on the number of random vectors K, which
controls the variance of the estimator and a very mild dependence on the dimension
on the (primal) reduced space. This might indicate that the error estimator will also
perform well for challenging problems. Finally, we showed that to compute the fast-
to-evaluate a posteriori error estimator we need to solve one dense linear system of
equations of the size of the dimension of the dual reduced space.

Due to the above the proposed a posteriori error estimator features a very favor-
able computational complexity and its computational costs are often about the same
as the costs for the low-rank approximation or even smaller for moderate effectivity
bounds. The presented error estimator can thus be more advantageous from a com-
putational viewpoint than error estimators based on the dual norm of the residual
and a (costly to estimate) stability constant or hierarchical type error estimators.

Appendix A. Proofs.

A.1. Proof of Proposition 2.1. First we give a bound for P{Q ≤ Kw−2}. This
quantity corresponds to the cumulative distribution function of the χ2(K) distribution
evaluated at Kw−2. We have P{Q ≤ Kw−2} = 1

Γ(K/2)γ(K2 ,
K

2w2 ), where Γ(·) is the

gamma function such that Γ(a) =
∫∞

0
ta−1e−tdt and γ(·, ·) the lower incomplete

gamma function defined by γ(a, x) =
∫ x

0
ta−1e−tdt. Following the lines of [18], we can

write γ(a, x) ≤
∫ x

0
ta−1dt = 1

ax
a and

Γ(a) =

∫ a

0

ta−1e−tdt+

∫ ∞
a

ta−1e−tdt ≥ e−a
∫ a

0

ta−1dt+aa−1

∫ ∞
a

e−tdt = 2aa−1e−a,

whenever a ≥ 1. Then, if K ≥ 2 we have
(A.1)

P{Q ≤ Kw−2} =
1

Γ(K/2)
γ
(K

2
,
K

2w2

)
≤ (K/2)eK/2

2(K/2)K/2
· (K/(2w2))K/2

K/2
=

1

2

(√e
w

)K
.
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Now we give a bound for P{Q ≥ Kw2}. Using a Markov inequality, for any 0 ≤ t <
1/2 we can write

P{Q ≥ Kw2} = P{etQ ≥ etKw
2

} ≤ E(etQ)

etKw2 =
(1− 2t)−K/2

etKw2 ,

where for the last equality we used the expression for the moment-generating function
of χ2(K). The minimum of the above quantity is attained for t = (w2 − 1)/(2w2) so
we can write

P{Q ≥ Kw2} ≤ (w2e1−w2

)K/2 =
(√e
w

)K
(w2e−w

2/2)K ≤
(√e
w

)K 2K

eK
≤ 1

2

(√e
w

)K
,

for any K ≥ 3. Together with (A.1), the previous inequalities allows writing

P
{
Kw−2 ≤ Q ≤ Kw2

}
= P{Q ≤ Kw−2}+ P{Q ≥ Kw2} ≤

(√e
w

)K
,

for any K ≥ 3, which concludes the proof.

A.2. Proof of Corollary 2.2. A union bound allows writing

P
{
w−1‖v‖Σ ≤ ‖Φv‖2 ≤ w‖v‖Σ , ∀v ∈M

}
≥ 1−

∑
v∈M

P
{
w−1‖v‖Σ ≤ ‖Φv‖2 ≤ w‖v‖Σ

}
= 1− (#M) P

{
Kw−2 ≤ Q ≤ Kw2} ≥ 1− (#M)

(√e
w

)K
,

where, for the last inequality, we used Proposition 2.1 (assuming w >
√
e and K ≥

3 hold). Given 0 < δ < 1, condition K ≥ log(#M)+log(δ−1)
log(w/

√
e)

, is equivalent to 1 −
(#M)(

√
e
w )K ≥ 1 − δ and ensures that (2.3) holds for all v ∈ M with probability

larger than 1− δ.
A.3. Proof of Proposition 3.1. Let Ψ(µ) = K−1/2[Y1(µ), . . . , YK(µ)]T and

Ψ̃(µ) = K−1/2[Ỹ1(µ), . . . , ỸK(µ)]T so that, from Equations (2.12) and (3.2), we can

write ∆(µ) = ‖Ψ(µ)r(µ)‖2 and ∆̃(µ) = ‖Ψ̃(µ)r(µ)‖2. Using a triangle inequality we
can write

|∆(µ)− ∆̃(µ)| =
∣∣‖Ψ(µ)r(µ)‖2 − ‖Ψ̃(µ)r(µ)‖2

∣∣ ≤ ‖Ψ(µ)r(µ)− Ψ̃(µ)r(µ)‖2
Dividing by ‖u(µ)− ũ(µ)‖Σ we can write

|∆(µ)− ∆̃(µ)|
‖u(µ)− ũ(µ)‖Σ

≤ ‖(Ψ(µ)− Ψ̃(µ))r(µ)‖2
‖u(µ)− ũ(µ)‖Σ

=
‖(Ψ̃(µ)−Ψ(µ))A(µ)(u(µ)− ũ(µ))‖2

‖u(µ)− ũ(µ)‖Σ

≤ sup
v∈RN\{0}

‖(Ψ̃(µ)−Ψ(µ))A(µ)v‖2
‖v‖Σ

= sup
‖v‖Σ=1

√√√√ 1

K

K∑
i=1

(
(A(µ)T Ỹi(µ)− Zi)T v

)2
≤ sup
‖v‖Σ=1

max
1≤i≤K

|(A(µ)T Ỹi(µ)− Zi)T v|

= max
1≤i≤K

‖(A(µ)T Ỹi(µ)− Zi)T v‖Σ−1 ,

which yields (3.3) and concludes the proof.
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A.4. Proof of Corollary 3.2. By Proposition 3.1 we have |∆(µ) − ∆̃(µ)| ≤
ε‖u(µ)− ũ(µ)‖Σ, which is equivalent to

∆(µ)− ε‖u(µ)− ũ(µ)‖Σ ≤ ∆̃(µ) ≤ ∆(µ) + ε‖u(µ)− ũ(µ)‖Σ.

By Corollary 2.5, it holds with probability larger than 1− δ that w−1∆(µ) ≤ ‖u(µ)−
ũ(µ)‖Σ ≤ w∆(µ) for all µ ∈ S. Then with the same probability we have

(w−1 − ε)‖u(µ)− ũ(µ)‖Σ ≤ ∆̃(µ) ≤ (w + ε)‖u(µ)− ũ(µ)‖Σ,

for all µ ∈ S, which yields (3.6) and concludes the proof.

A.5. Proof of Proposition 3.3. By Corollary 2.5, it holds with probability
larger than 1− δ that w−1∆(µ) ≤ ‖u(µ)− ũ(µ)‖Σ ≤ w∆(µ) for all µ ∈ S. Then with
the same probability we have

‖u(µ)− ũ(µ)‖ ≤ w∆(µ) ≤ w

(
sup
µ′∈S

∆(µ′)

∆̃(µ′)

)
∆̃(µ)

(3.9)

≤ (αw)∆̃(µ),

and

‖u(µ)− ũ(µ)‖ ≥ w−1∆(µ) ≥ w−1

(
inf
µ′∈S

∆(µ′)

∆̃(µ′)

)
∆̃(µ)

(3.9)

≥ (αw)−1∆̃(µ),

for any µ ∈ S, which yields (3.8) and concludes the proof.

A.6. Proof of Proposition 3.5. By construction, both Ỹi(µ) and ẽ(µ) belong

to Ỹ. Then for all i = 1, . . . ,K we can write

Ỹi(µ)T r(µ) = 〈r(µ), Ỹi(µ)〉 (3.20)
= 〈A(µ)ẽ(µ), Ỹi(µ)〉

= 〈ẽ(µ), A(µ)T Ỹi(µ)〉 (3.1)
= 〈ẽ(µ), Zi〉 = ZTi ẽ(µ).

Then, by definition (3.2) we can write

∆̃(µ) =

(
1

K

K∑
k=1

(
Ỹi(µ)T r(µ)

)2)1/2

=

(
1

K

K∑
k=1

(
ZTi ẽ(µ)

)2)1/2

which gives the result.
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