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Semantic Verbal Fluency (SVF) tests are common neuropsychological tasks, in which patients are asked to name as many words belonging to a semantic category as they can in 60 seconds. These tests are sensitive to even early forms of dementia caused by e.g. Alzheimer's disease. Performance is usually measured as the total number of correct responses. Clinical research has shown that not only the raw count, but also production strategy is a relevant clinical marker. We employed language modelling (LM) as a natural technique to model production in this task. Comparing different LMs, we show that perplexity of a persons SVF production predicts dementia well (F1 = 0.83). Demented patients show significantly lower perplexity, thus are more predictable. Persons in advanced stages of dementia differ in predictability of word choice and production strategy -people in early stages only in predictability of production strategy.

Introduction

Verbal fluency is among one of the most widely used neuropsychological standard tests. Category fluency, or semantic verbal fluency (SVF), requires a participant to produce as many different items from a given category, e.g. animals, as is possible, in a given time frame. Over the past years, a growing body of research substantiates the discriminative power of semantic fluency for multiple different pathologies: neurodegenerative diseases such as Alzheimer's disease [START_REF] Pakhomov | Characterizing Cognitive Performance in a Large Longitudinal study of Aging with Computerized Semantic Indices of Verbal Fluency[END_REF][START_REF] Raoux | Clustering and switching processes in semantic verbal fluency in the course of Alzheimer's disease subjects: Results from the PAQUID longitudinal study[END_REF][START_REF] Auriacombe | A Longitudinal Study of Quantitative and Qualitative Features of Category Verbal Fluency in Incident Alzheimer's Disease Subjects: Results from the PAQUID Study[END_REF][START_REF] Gomez | Using verbal fluency to detect very mild dementia of the Alzheimer type[END_REF]Henry et al., 2004), Parkinson's disease (Henry and Crawford, 2004), psychiatric disorders such as schizophrenia [START_REF] Robert | Clustering and switching strategies in verbal fluency tasks: Comparison between schizophrenics and healthy adults[END_REF], Primary Progressive Aphasia (PPA) and its subforms [START_REF] Bonner | The New Classification of Primary Progressive Aphasia into Semantic, Logopenic, or Nonfluent/Agrammatic Variants[END_REF][START_REF] Marczinski | Category and letter fluency in semantic dementia, primary progressive aphasia, and alzheimer's disease[END_REF], as well as focal lesions [START_REF] Troyer | Clustering and switching on verbal fluency: the effects of focal frontal-and temporallobe lesions[END_REF]. Traditionally, SVF is one of the most broadly used test to diagnose dementia and it's multiple subforms (see Figure 1). As is standard clinical procedure, performance in this test is evaluated as the raw word count (count of correct responses). In order to differentiate between multiple pathologies, qualitative measures have been established which serve as additional indicators in tandem with the raw word count [START_REF] Gruenewald | The Free Recall of Category Examples[END_REF][START_REF] Troyer | Clustering and Switching as Two Components of Verbal Fluency: Evidence From Younger and Older Healthy Adults[END_REF]. There is broad evidence that those qualitative SVF measures serve as indicators for underlying cognitive processes; this has been investigated to the extent that verbal fluency can be considered as a multifactorial task, comprising both executive control and memory retrieval processes [START_REF] Henry | A meta-analytic review of verbal fluency deficits in huntington's disease[END_REF][START_REF] Robert | Clustering and switching strategies in verbal fluency tasks: Comparison between schizophrenics and healthy adults[END_REF][START_REF] Troyer | Clustering and Switching as Two Components of Verbal Fluency: Evidence From Younger and Older Healthy Adults[END_REF]. Considering the involvement of the two distinct cognitive processes, [START_REF] Troyer | Clustering and Switching as Two Components of Verbal Fluency: Evidence From Younger and Older Healthy Adults[END_REF] first introduced a systematic framework to calculate measure for both processes from the response behaviour of a subject. In general, production of words is organised in spurts-temporal clustersfollowed by pauses, implying the lexical search for semantic fields or subcategories between clusters, and re- trieval/production of words within clusters [START_REF] Gruenewald | The Free Recall of Category Examples[END_REF][START_REF] Troyer | Clustering and Switching as Two Components of Verbal Fluency: Evidence From Younger and Older Healthy Adults[END_REF]. This means, that between temporal clusters, executive search processesswitching-and within temporal clusters, semantic memory retrieval processes-clustering-are engaged. The underlying notion is that temporal clusters correspond to semantic clusters; in other words, "words that comprise these temporal clusters tend to be semantically related" (Troyer et al., 1997, p. 139). In this paper we use statistical language models (LMs) as a tool for modelling production of SVF responses of healthy patients, those with a diagnosis of mild cognitive impairment (MCI 1 ) and Alzheimer's disease or related dementia (ADRD). LMs intuitively model production of words in SVF, as production of the next word depends on the previously produced words. Given a corpus of SVF performances, we use LMs to learn these probabilities from data, and then test the model, by estimating the likelihood of a patient's SVF performance. We use the LM's perplexity of a given SVF performance -a score for how well the model is able to predict a given sequence -as a feature for classification of a person's cognitive health. This paper is structured as follows: Section 2. discusses prior work on clinical applications of language models and perplexity scores. Section 3. introduces language models. Section 4. describes the data for further experiments, how the language models were trained and evaluated in a classification experiment. Section 5. presents results of the conducted experiments. Lastly, Section 6. discusses implications and concludes the paper.

Related Work

There is a growing body of research using language modelling and perplexity scores for classification of neurocognitive disorders including Alzheimer's disease (AD), varying types of dementia, and frontotemporal lobar degeneration (FTLD). In previous work, perplexity scores have been used to automatically classify between AD patients' and healthy controls' speech [START_REF] Wankerl | An N-Gram Based Approach to the Automatic Diagnosis of Alzheimer's Disease from Spoken Language[END_REF]. Language models were built on transcripts from spontaneous speech of subjects describing the Cookie Theft Picture from the Boston Diagnostic Aphasia Examination battery. The resulting language models based on AD speech and control subjects' speech were then used to compute different perplexity scores per patient including perplexity of an AD language model given an AD speech sample and perplexity of an AD language model given a control speech sample. The authors conclude that perplexity in such a free speech task is higher for AD samples than healthy controls, which could be interpreted as evidence for the deterioration of expressive language capabilities over the course of AD. Using free speech from autobiographic interviews -a more liberal scenario for natural language -Weiner et al. used perplexity scores to automatically discriminate between general dementia patients and healthy controls [START_REF] Weiner | Manual and Automatic Transcriptions in Dementia Detection from Speech[END_REF]. Multiple-hour interviews (98 subjects, 230 hours) were cleaned of experimenter speech interventions and transcribed both manually and by an automatic speech recognition (ASR) system. Based on the raw audio signal and transcripts, the authors compared classification results using both automatically and manually generated feature sets divided into acoustic features, linguistic features and ASR features. Perplexity scores were reported as ASR features, differentiated into within and between subject perplexity. The authors concluded that automatic classification is feasible and report within/between speaker perplexity as two of their best performing features. Similarly to [START_REF] Wankerl | An N-Gram Based Approach to the Automatic Diagnosis of Alzheimer's Disease from Spoken Language[END_REF], other researchers used manual transcripts from speech of the Cookie Theft Picture description task and language models built on healthy controls' speech to differentiate between different forms of FTLD [START_REF] Pakhomov | A computerized technique to assess language use patterns in patients with frontotemporal dementia[END_REF]. Results show that perplexity scores discriminate well between different subforms of FTD: behavioural variant of the FTLD and semantic dementia. This is in line with the notion that the behavioural FTD variant manifests not primarily in corrupted language but semantic dementia does. The authors also correlated perplexity scores with results from common neuropsychological tests, such as SVF: the free speech task perplexity scores negatively correlate with the SVF task. This is perfectly in line with the semantic retrieval problems in semantic dementia, manifesting in a very low SVF word count (i.e., high perplexity due to corrupted free speech and low SVF score). The underlying latent objective of free speech tasks is, by nature, to produce syntactically correct speech. Using a language model trained on healthy controls, perplexity measures how people are not able to produce such an output following the given objective. In the semantic verbal fluency task however, the inherent objective is to produce as many items as possible which necessarily requires to exploit deeper semantic stock. As the objective is also to not produce repetitions, to be successful one has to produce sequences of increasingly rare items to maintain a high production rate towards the end of the task; this follows as the common easy-to-access semantic items are typically produced at the beginning of the timed task. There is broad evidence, proving that demented persons have significant difficulties in the SVF task which manifests not only in a lower SVF raw count, but also in inefficient semantic stock exploitation strategies. In other words, demented patients are, especially towards the second half of such a task, not able to produce rare/repetition-free sequences of correct item responses. This lack of strategic semantic memory exploitation can be observed through multiple computational approaches [START_REF] Woods | Computerized Analysis of Verbal Fluency: Nor-mative Data and the Effects of Repeated Testing, Simulated Malingering, and Traumatic Brain Injury[END_REF], allowing to automatically compute semantic exploitation measures which compare the patient's sequence of words to a global semantic representation inferred from large text corpora leveraging either graph theory [START_REF] Clark | Novel verbal fluency scores and structural brain imaging for prediction of cognitive outcome in mild cognitive impairment[END_REF] or neural word embeddings (Linz et al., 2017a). Recent work on the qualitative computational analysis of the SVF in demented patients shows that features based on neural word embeddings discriminate well between healthy controls and dementia types. Especially semantic densitythe lexical coverage of a patients semantic exploitationand word frequency-the lexical rareness of a patients produced items-have been shown to be very predictive and highly significant features in this task [START_REF] Linz | Predicting Dementia Screening and Staging Scores From Semantic Verbal Fluency Performance[END_REF]. In general, demented persons are less successful in the SVF task as they are less able to systematically exploit a large distributed semantic stock and produce sequences of relatively rare items. Therefore the aim of this study was to explore the possibility of a SVF language model to detect inefficient SVF production strategies, thus dementia. This represents a novel approach, as to the authors' knowledge, perplexity has so far only been used to detect language corruption.

Background

Statistical Language Models are a common tool for representing the probability distribution of language data, in either written or spoken form. After computing these models, they can be used to determine the probability of a given sequence of words. To train a model, a corpus is split into a list of n-grams, a sequence of words of length n, N = (w 1 . . . w n ). The probability of the ngram, N , is determined using maximum likelihood estimation (MLE):

P (N ) = P (w n |w 1 ...w n-1 ) = P (w 1 ...w n ) P (w 1 ...w n-1 ) (1) 
The model stores the counts of all the n-grams in the corpus, thus 'training' it. To evaluate the probability of getting a certain sequence of words of length m, S = (w 1 ...w m ), from our model, based on the Markov assumption, we can multiply the probability of each ngram in the sequence.

P (S) = m i=1 P (w i |w 1 ...w i-1 ) (2) 
Unigram models are simple models where the probability of every type, or unique word, is equivalent to the relative frequency of the word in the training set. Because unigrams assume that every word does not depend on any of the previous words, they does not capture the relationships between words. This is why we continue with the bigram and trigram models, where conditional probabilities are used in training.

One challenge of language modelling is data sparsity as we will never encounter every possible combination of n-gram that can be generated during training. Data sparsity makes it likely that our model will encounter unseen n-grams during testing and assign them a probability of zero, causing P (S) = 0. To counter this, language models employ a technique known as smoothing, in which some of the probability mass of seen n-grams is shifted to unseen n-grams.

Lidstone smoothing [START_REF] Lidstone | Note on the general case of the bayes-laplace formula for inductive or a posteriori probabilities[END_REF]) is an additive smoothing technique in which an 'unknown' token is added, as a placeholder, to our training set. Then, a predetermined α is added to every n-gram count. Any n-grams that appear in testing, and that were not seen in training, will be accounted for by the 'unknown' token. The counts of the n-grams are then normalized by adding the count of the n-gram's history, C(w 1 ...w n-1 ), to the size of the vocabulary of the n-gram's history, V , multiplied by α. After smoothing, the probability of an n-gram is represented by:

P (w n |w 1 ...w n-1 ) = C(w 1 ...w n ) + α C(w 1 ...w n-1 ) + V α (3)
After calculating the smoothed probability distribution of a training set, language models can be evaluated on a test sample using a measure called perplexity. Perplexity is a score that shows how well a trained model predicts a test sample by taking the probability of the test sample and normalizing it by the number of words in the test sample. Perplexity is computed by the following equation:

P P L(S) = 1 m m n=1 P (w n |w 1 ...w n-1 ) (4) 
Perplexity and probability are inversely related, so when perplexity is minimized, probability is maximized. 

Methods

Data

The data used for the following experiments was collected during the Dem@Care [START_REF] Karakostas | The Dem@Care Experiments and Datasets: a Technical Report[END_REF] and ELE-MENT [START_REF] Tröger | Automated Speech-based Screening for Alzheimer's Disease in a Care Service Scenario[END_REF] projects. All participants were aged 65 or older and were recruited through the Memory Clinic located at the Institute Claude Pompidou in the Nice University Hospital. Speech recordings of elderly people were collected using an automated recording app on a tablet computer and were subsequently transcribed following the CHAT protocol [START_REF] Macwhinney | The CHILDES project: Tools for analyzing talk[END_REF]. Participants completed a battery of cognitive tests, including a 60 second animal SVF test. Furthermore, all participants completed the MMSE [START_REF] Folstein | Mini-Mental State". A Practical Method for Grading the Cognitive State of Patients for the Clinician[END_REF] and CDR [START_REF] Morris | Clinical Dementia Rating: A Reliable and Valid Diagnostic and Staging Measure for Dementia of the Alzheimer Type[END_REF].

Following the clinical assessment, participants were categorised into three groups: Control participants (HC) diagnosed healthy after assessment, patients with MCI and patients that were diagnosed as having Alzheimer's Disease or related disorders (ADRD). AD diagnosis was determined using the NINCDS-ADRDA criteria [START_REF] Mckhann | The diagnosis of dementia due to Alzheimer'??s disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[END_REF]. Mixed/Vascular dementia was diagnosed according to ICD 10 (World Health Organization, 1992) criteria. For the MCI group, diagnosis was conducted according to Petersen criteria [START_REF] Petersen | Mild Cognitive Impairment: Clinical Characterization and Outcome[END_REF]. Participants were excluded if they had any major auditory or language problems, history of head trauma, loss of consciousness, or psychotic or aberrant motor behaviour. Demographic data and clinical test results by diagnostic groups are reported in Table 1. model with α = 1.

Language Modelling

Due to the nature of our training samples, lists of animals, and leave one out method of cross validation, we have a small vocabulary and do not expect a high amount of unseen tokens in the testing sequence, compared to natural language, making this a justifiable method of smoothing on this data set. Perplexity is calculated as described in Equation 4. For models (1) and (2) we discriminate between the training population and the rest. Let A t = a 1 , ..., a m be the training population and A r = a m+1 , ..., a n the rest of the samples. Then we perform leave-one-out cross validation on A t , generating one perplexity value for the held-out sample a i and each sample in A r , per iteration. In the end, every sample in A t has one perplexity value and every sample in A r has m perplexity values. Averaging the m values per sample, leaves us with one perplexity value per sample. For (3) we perform a simple leave-one-out cross validation on the complete set a 1 , ..., a n , yielding one perplexity value per patient.

Classification

To confirm the diagnostic power of perplexity, we perform a simple classification experiment. Each person in the database was assigned a label relating to their diagnosis (HC, MCI and ADRD). Perplexity values from different models were used as input to classification models. All features were normalised using z-standardisation. In all scenarios we use Support Vector Machines (SVMs) [START_REF] Cortes | Support-vector networks[END_REF] implemented in the scikit-learn framework [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF]. We use a radial bases kernel, since there is only one feature [START_REF] Hsu | A Practical Guide to Support Vector Classification[END_REF] and 10-fold cross validation was used for testing. To find a well-performing set of hyperparameters, parameter selection using cross-validation on the training set of the inner loop of each cross validation iteration was performed. Performing cross validation on small data sets only once leads to performance fluctuations between different iterations. To work around this problem, cross validation was performed multiple times and then the mean of all performance metrics was calculated.

Results

Figure which can be attributed to the extreme sparseness of these models given our small data set. 

Discussion and Conclusion

A general result of this study is that people with MCI or dementia show significantly lower perplexity values in SVF compared to a healthy population, meaning the ngram LMs, regardless of training corpus, are more suited to model a demented person's speech versus that of a healthy person. Thus people with dementia are more predictable in their production of words in the SVF task. This differs from findings about perplexity of demented patients in free speech tasks, where perplexity values of demented speech have been shown to be higher than that of healthy controls [START_REF] Wankerl | An N-Gram Based Approach to the Automatic Diagnosis of Alzheimer's Disease from Spoken Language[END_REF]. This can be explained by the different scenarios where language modelling is applied: on natural language, a LM and its resulting perplexity can be interpreted as a measure for syntactic normality/correctness. When training on and predicting SVF performances, in which production of word sequences is motivated semantically, the perplexity can be viewed as a measure for effective semantic retrieval strategy. Furthermore, we found word production in SVF differed in advancing stages of dementia syndromes. Unigram perplexity approximated on the SVF task, can be seen as a measure of predictability of word choice. Perplexity values of unigram models were found to be good indicators to separate the ADRD group from the HC group, but not the MCI population from the HC. Thus, word choice in SVF is more predictable in late stage dementia and not in early stage. Perplexity of bigram models trained on SVF productionsand for that matter any ngram where n ≥ 2-can be seen as a measure for predictability of production strategy in the task. Both ADRD and MCI groups show significant differences in perplexity of bigram models to the HC group. Consequently, both populations show more predictable production strategies.

When modelling with trigrams, we would expect to see effects of context length-such as people with dementia using less contextual information. Unfortunately, this study is limited in the conclusions that can be drawn about the trigram models as it lack sufficient amounts of SVF data and therefore those models are severly undertrained.

In future experiments, we would like to gather more data to generate well-trained trigram models and possibly draw a more definitive conclusion on the effects of context length in SVF. We would also like to try different smoothing techniques, possibly interpolated methods such as Witten-Bell, that are not as coarse as the Lidstone technique.

Based on the trends shown in the unigram and bigram models, demented patients show significantly lower perplexity values, regardless of training data, and are therefore more predictable. Furthermore, persons in advanced stages of dementia differ in predictability of word choice -as shown by the unigram models -and production strategy -as shown by the bigram models -where as people with mild cognitive impairment only show significant predictability in their production strategy. Perplexities from both the unigram and bigram models also function as adequate diagnositic features in classification tasks where the unigram model differentiates the best between HC and ADRD and the bigram model differentiates best between the more fine-grained distinctions of MCI versus the healthy controls or more severly demented patients.

Figure 1 :

 1 Figure 1: The left panel shows different dementia types and their underlying causes, including Fronto-Temporal Lobar Degeneration (FTLD), and Vascular Dementia (VD); the dotted areas indicate those cases where more than one cause underlies the disorder. The right panel shows other, mostly reversible, causes for dementia-like symptoms.

Figure 2 :

 2 Figure 2: Boxplots of perplexity in relation to diagnostic criteria for all three sets of language models. The HC group is depicted in red, the MCI group in green and the ADRD group in blue. Horizontal brackets indicate group comparisons by a Wilcoxon-Mann-Whitney test ( * : p ≤ 0.05, * * : p ≤ 0.01, * * * : p ≤ 0.001, * * * * : p ≤ 0.0001).

Table 2 :

 2 Classification results for different scenarios and models as F 1 scores. U all = Unigram model trained on all samples; B all = Bigram model trained on all samples; T all = Trigram model trained on all samples.

	2 displays boxplots of perplexity values by diagnos-
	tic groups. Each column corresponds to either uni-, bi-or
	trigram models. Rows indicate the training scenario. In
	general the perplexity decreases with disease progression -
	from HC, to MCI, to ADRD.
	People with ADRD have significantly smaller perplexity
	values compared to the HC population, regardless of the
	context history length considered and training material.
	The same is true for people with ADRD in comparison to
	the MCI population. A significant difference between the
	HC and the MCI population for unigrams is only visible in
	the 'Impaired' model, (3). Bigram models all show signif-
	icant differences between both populations. Trigrams only
	show this effect for models trained on the whole popula-
	tion or the impaired part. Overall, trigrams show less dif-
	ferences between populations and high perplexity values,

  Table 2 shows classification results for different models and scenarios. Following inspection of Figure 2, only models trained on all samples in the population were used in classification experiments, as the inter-group effects seem consistent between different training material. Between the HC and the ADRD group, as well as the MCI and ADRD populations, the unigram and bigram model show comparable performance. For classification of the HC and the MCI population the bigram model clearly shows the best performance.

MCI is associated with an increased risk to develop manifest dementia
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