
HAL Id: hal-01851404
https://hal.science/hal-01851404

Submitted on 30 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Per Channel Automatic Annotation of Sign Language
Motion Capture Data

Lucie Naert, Clément Reverdy, Caroline Larboulette, Sylvie Gibet

To cite this version:
Lucie Naert, Clément Reverdy, Caroline Larboulette, Sylvie Gibet. Per Channel Automatic Anno-
tation of Sign Language Motion Capture Data. Workshop on the Representation and Processing
of Sign Languages: Involving the Language Community, LREC 2018, May 2018, Miyazaki Japan.
�hal-01851404�

https://hal.science/hal-01851404
https://hal.archives-ouvertes.fr


Per Channel Automatic Annotation of Sign Language Motion Capture Data

Lucie Naert, Clément Reverdy, Caroline Larboulette, Sylvie Gibet
IRISA Lab., Université Bretagne Sud
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Abstract
Manual annotation is an expensive and time consuming task partly due to the high number of linguistic channels that usually compose
sign language data. In this paper, we propose to automatize the annotation of sign language motion capture data by processing each
channel separately. Motion features (such as distances between joints or facial descriptors) that take advantage of the 3D nature of
motion capture data and the specificity of the channel are computed in order to (i) segment and (ii) label the sign language data. Two
methods of automatic annotation of French Sign Language utterances using similar processes are developed. The first one describes the
automatic annotation of thirty-two hand configurations while the second method describes the annotation of facial expressions using a
closed vocabulary of seven expressions. Results for the two methods are then presented and discussed.
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1. Introduction
Whether we want to linguistically study sign languages,
use digital data to identify salient linguistic components,
recognize or synthesize continuous signing, an annotation
of the data is needed. The annotation of sign language is a
two-step process. The first step, called segmentation, con-
sists in dividing the stream of data in segments of interest.
Those segments are then identified in a second step called
labeling. This annotation might be done manually but is a
fastidious, time consuming and expensive task. Not only
does it require the skills of language experts, but it is also
subject to inaccuracies and mistakes as the experts may
not have exactly the same segmentation criteria. In the
particular case of sign language, the annotation process
needs to be done by experts in sign language and gesture
annotation. In addition, sign languages are expressed
simultaneously on multiple channels (manual configura-
tion, wrist orientation, body posture, facial expression,
etc.), thus complicating the task of the annotators. When
comparing the duration of the annotation process to the
duration of the data to annotate, (Dreuw and Ney, 2008)
introduces a real-time factor of 100 (i.e. all the manual
and non manual features of a 1 minute video of sign
language will be annotated in 100 minutes). We propose to
automatically annotate each channel separately following
the scheme of Figure 1.

Automatic annotation of sign languages could reduce the
annotation costs but is still a challenging and yet to be
solved task. One way to tackle this problem is the machine
learning approach (e.g. use of Bayesian/statistical models
or artificial neural networks) which aims at automatically
learning the parameters of a model from a sample of
manually annotated data. This model is then used to
automatically annotate new data. The corpus intended to
train the machine learning model must thus be designed
carefully before recording sign language data using either
video or motion capture technologies. Despite being
easy to use and relatively cheap, video does not preserve
the third spatial dimension of motion. Furthermore, the

Figure 1: Our intended annotation scheme: currently, we
automatically annotate the hand configuration and affect
channels (boxes with bold borders).

resolution of classic video recordings is rarely high enough
to obtain a precise segmentation. Motion capture (MoCap)
technologies offer a better precision, both spatially and
temporally, and spatial information that is not available
with 2D cameras. MoCap data can be used for sign lan-
guage analysis – using motion descriptors computed from
the 3D data, such as distances between joints, velocity or
curvature of selected joints – as well as for synthesis by
using the captured motions to animate a signing avatar. In
this paper, we will address the problem of the automatic
annotation of sign language MoCap data, focusing more
specifically on two main channels: facial expression, and
hand configuration.

Previous work on automatic annotation on video and Mo-
Cap data are described in section 2. The specification, cap-
ture and manual annotation of the input sign language data



used in this study is introduced in section 3. In section 4, the
annotation methodology is presented and illustrated with
the examples of the automatic annotation of the hand con-
figurations and the facial expressions in French Sign Lan-
guage. Section 5 describes the results of the automatic an-
notation applied to those two channels. Finally, section 6
discusses the perspectives and challenges of our method.

2. Related Work
In this section, previous studies on automatic annotation of
sign language are presented. For gesture segmentation in
general, a very complete framework is developed in (Lin et
al., 2016). It provides a general overview and a comparison
of several works in human motion segmentation using dif-
ferent data sources (camera, MoCap, sensors, etc.) but does
not address the problem of ”per channel segmentation” or
the particular application of sign language processing.

Continuous signing segmentation and recognition can be
opposed to isolated sign language recognition. Coartic-
ulation effects present in continuous signing and absent
from isolated signs make the segmentation of the former
harder. Most of the existing work on the automatic seg-
mentation of continuous signing relies on video footage to
segment at a gloss-level. (Kim et al., 2002) take advantage
of Hidden Markov Model (HMM) to segment a continu-
ous stream in Korean Sign Language into signs segments.
Similarly, (Yang and Sarkar, 2006) perform sign segmen-
tation of continuous American Sign Language using Con-
ditional Random Fields (CRF). In their article they demon-
strate the superiority of the CRF approach (85% accuracy)
compared to HMM (60%). A different approach was de-
veloped by (Lefebvre-Albaret et al., 2008). It presents a
computer-aided segmentation of sign language sequences
based on the detection of motion cues such as symmetry,
repetition and hand trajectories templates. The algorithm is
helped by the punctual intervention of an operator who has
to specify one frame belonging to each sign.
However, those segmentation approaches do not take into
account the multichannel aspect of sign languages and lead
to segmentation schemes highly dependent on the context
of the utterance, i.e. the segments implicitly contain the
coarticulation effects of the sequential signs. The resulting
segmentation is thus hardly reusable in a different context,
for example to synthesize new utterances. A lower-level
segmentation, based in particular on phonological elements
would facilitate sign composition in various contexts in
order to produce new utterances. However, although
several studies address the issue of the annotation of sign
language video data at a gloss level, little attention has
been given to the automatic annotation of the different
linguistic channels of sign languages. The work of (Stokoe,
1960) gives a phonological structure to signs by specifying
three linguistic parameters to describe all signs: hand
motion, hand configuration and hand placement. Each
feature can take a discrete value in a limited vocabulary.
Two complementary features were later added, hand
orientation (Battison, 1978) and non manual features such
as shoulder tilt or facial expressions. Many phonological
structures use those five features to define signs which can

be used as a basis for video annotation : the segments are
of a finer level than the gloss segmentation and retain a
linguistic value. In an early work, (Vogler and Metaxas,
2001) break signs into ”phonemes” (close to the previous
five features) and use HMM on the combination of the
phonemes to recognize signs. The channels are processed
separately but the ultimate purpose is gloss recognition and
not channel annotation. In addition, this work is based on
the Movement-Hold model which has been later replaced
by a more precise phonetic model (Johnson and Liddell,
2011). Furthermore, due to the difficulty of capturing the
finger movements, the hand configuration channel was not
processed and the authors of the article also chose not to
deal with non manual features. More recently, (Dilsizian et
al., 2014) propose to add some linguistic knowledge about
the composition of lexical signs to considerably improve
the performances of the recognition system.

Work on sign language MoCap data is scarcer than on
video. For gloss-level segmentation, (Naert et al., 2017)
use some kinematic properties of the two wrists that can be
extracted from MoCap data. At a finer level, (Héloir et al.,
2005) focused on the segmentation of hand configurations
using Principal Composant Analysis (PCA) but the work is
restricted to fingerspelling segmentation.

The recognition of facial expressions has received increas-
ing attention in recent years, mainly from the computer
vision community. Regarding the existing datasets, the
availabiliy of 2D recording devices made possible the
creation of large data collections, such as the Cohn-Kanade
Dataset (posed facial expressions) and its extension (Lucey
et al., 2010) (posed + non-posed facial expressions) or the
MUG database (Aifanti et al., 2010) (posed + non posed)
with many (up to hundreds) actors. High resolution 3D
facial databases with expressions have also been created
using binocular/structured light cameras (Zhang et al.,
2014), (Yin et al., 2008). The frame rate of such optical
device is often limited to 60 or less frames per second
(usually 20/30 fps) which may be insufficient for those
who are interested in dynamic expressive variations.
MoCap techniques can capture movements up to 200 fps
and more, which makes them much more powerful for
analyzing fine expressive variations. Nevertheless, the
publicly available facial MoCap databases are still scarce.
The multimodal database described in (Busso et al., 2008),
which includes facial MoCap with speech and elicited
emotional expressions is one of the few existing ones.

This paper presents the automatic annotation of continuous
signing in French Sign Language using MoCap data on two
linguistic channels : the hand configurations and the facial
expressions.

3. Input Data

This section describes the definition and recording of sign
language data as well as the specification of the two corpora
that have been used for the studies.



3.1. General Considerations
To develop models for automatic annotation, the first solu-
tion that might come to mind is to record all the existing
signs in all the possible contexts in order to cover exhaus-
tively all the possible cases of sign production. While this
can be attempted (with varying degrees of success) for oral
languages by, for example, retrieving huge databases from
the Internet (e.g. Wikipedia pages, Twitter posts, etc.), this
is impossible for sign languages. Indeed, (i) sign language
databases are scarce, especially MoCap databases, (ii) sign
languages use the 3D space and the temporal dimension
which leads to the production of an infinite number of
combinations of the different physical channels, and (iii)
sign language cannot be limited to their standard, reference
signs: many sign language mechanisms such as classifier-
predicates are as important as standard signs and depend
strongly on the context of the sentence.
Instead of collecting a large set of random data, it might
be more relevant to design a corpus specifically suited to
the studied problem. One way to reduce the complexity of
the capture is to consider each chosen channel separately.
Indeed, each channel can display a limited number of dif-
ferent behaviors. For example, we can enumerate a limited
number of different hand configurations in sign languages
(often less than fifty in French Sign Language). As a con-
sequence, a corpus designed to study and automatically an-
notate the hand configurations would focus only on a small
number of signs to cover all the possible hand configura-
tions.
To sum up, for the application of automatic annotation,
a corpus containing many repetitions of a limited num-
ber of different occurrences of the studied element will be
preferred. The variability induced by a different context
in the element production (for example, by capturing the
same hand configuration in different signs) or by a different
signer, must be recorded in order to improve the generaliza-
tion capacity of the resulting model.

3.2. Corpora
Two different corpora were used for the presented work:
Sign3D (Gibet et al., 2015) to annotate hand configurations,
and FEeL, a novel corpus that is still under development,
for the facial expressions.

Characteristics
The Sign3D corpus contains eight sequences of motion.
Each of these sequences is composed of one to five French
Sign Language utterances. The utterances are messages
about the opening hours and entrance fees of various town
places (swimming pool, museum, etc.), as well as the de-
scription of various events (exhibitions, theatre play etc.).
The capture was performed on one signer using a Vicon
MoCap system and an eye-tracking device to follow gaze
direction. Facial expressions, body and finger motions were
simultaneously recorded during approximately 9 minutes at
100 fps (around 54000 frames in total).
The FEeL corpus has been captured using two signers
(learner level). Three kinds of sequences - corresponding
to different sets of instructions given to the signers - were
recorded. We worked exclusively on the affect channel of

the face and chose to analyze this channel within the Ekman
framework with six categorical classes of basic emotions
(i.e. anger - A, disgust - D, fear - F, joy - J, sadness - Sa,
surprise - Su and neutral - N), which was easier to annotate
and more understandable by humans than continuous mod-
els (e.g. the Pleasure - Arousal - Dominance framework).
Three kinds of sequences were recorded:
i) Isolated Expressions - IE: the signers were asked to per-
form a given expression five times, each expression had to
be maintained several seconds before returning to neutral
(e.g. for joy we have: N − J − N − J − N − J − N −
J −N − J −N ). Six sequences were recorded per signer,
one for each class of affect.
ii) Sequences of Expressions - SE: the signers were asked
to alternate a given expression with each of the five other
expressions (e.g. for joy: N − J −Su− J −A− J −F −
J − Sa− J −D− J −N ). Five sequences were recorded
per signer.
iii) Expressive Utterances - EU: Sign language sentences
with emotional content were prepared. The signers were
asked to repeat three times each sentence with a given af-
fect (e.g. it was asked to the signer to sign the following
sentence with disgust : ”There is a spider on my pizza!
Yuk!”). 18 sequences were recorded per signer, one for
each sentence.
The corpus has been recorded via a Qualysis MoCap sys-
tem. A total of 40 facial markers were tracked at 200 fps.

Manual Annotation
Manual annotations are used as reference and training data
for our automatic annotation. It is thus necessary to have
a thorough annotation. The Sign3D and the FEeL corpora
have been annotated using the ELAN software (Max Planck
Institute for Psycholinguistics, 2017).
The Sign3D corpus has been annotated on several channels
including, but not restricted to, gloss, hand placement, hand
orientation, mouthing, facial expressions and hand config-
urations. To reduce the error rate and to have a more con-
sistent annotation, two annotators knowledgeable in French
Sign Language validated each others’ work.
Concerning the annotations of the FEeL corpus, we focused
our efforts on the affect channel and, so far, a single an-
notator has been involved in the process. This annotator
has been instructed to ”subjectively annotate what he saw”
with respect to the two following rules: (i) we distinguish
two kinds of segments: the transition segments where the
class vary from a starting expression to an ending expres-
sion, and the stable segments where the class doesn’t vary
along time; (ii) the name of a transition segment is the con-
catenation of the name of the starting class and of the name
of the ending class (e.g. NA means that the transition come
from the neutral class to the anger class). A stable segment
is named according to the maintained expression displayed
(e.g. Sa stands for sadness).

4. Automatic Annotation
This section describes the principal steps to automatically
annotate a sign language channel for a given corpus. Mo-
tion descriptors are first computed in order to segment and



then label the sign language data. The examples of the an-
notation of the hand configuration and of the affect channels
are detailed.

4.1. Descriptors
The raw data collected from motion capture is the vector
of the 3D positions of the body markers along time and
might not be the best representation to study either the hand
configurations or the facial expressions. Indeed, it is often
required to transform the initial data in order to get a de-
scriptor that depends only on the phenomenon that we in-
tend to analyze. For instance, if the system is supposed to
recognize hand configurations, it should not be sensible to
morphological differences between the signers.

Hand Configuration Descriptors
While the positions and orientations of the joints vary ac-
cording to the chosen reference frame, the Euclidean dis-
tances between two articulations are invariant. The hand
configurations are therefore described by the vector of the
Euclidean distances between each joints of each hand. In
our model, each hand has 26 joints (five per finger and one
for the wrist) resulting in a total of 325 possible combina-
tions. However, some distances are more relevant than oth-
ers. For example, distances between two consecutive joints
(e.g. the second and third joints of the middle finger) are
physiologically similar to bones. Those distances only un-
dergo small variations (due to noise in the data) and are not
relevant to discriminate hand configurations.
Different subsets of the total number of distances have been
tested in order to find the optimal features. A subset of the
29 most discriminating features was preferred (see. fig. 2).
It consists of the distances between:

(1) the wrist and the extremities of the fingers (5 dis-
tances) to evaluate the bending of the fingers on the
palm,

(2) the extremity of one finger with its neighbors (5 dis-
tances) to measure the gap between the fingers,

(3) the extremity of each finger and its corresponding
knuckle (5 distances) to evaluate the bending of the
fingers with respect to the knuckles, and

(4) the extremity of the thumb and the joints of the other
fingers (14 distances) to specify the behaviour of the
thumb.

The Sign3D corpus that has been used to study the hand
configurations contains the data of a unique signer but, in
order to have more generic results and to give each distance
the same weight, it is necessary to normalize our features.
The normalization was performed by dividing each of the
29 types of distances by its maximal value in the corpus.
All the distances have therefore a value between 0 and 1.
Those distances are then used to segment and label the hand
configurations.

Facial Descriptors
A common approach to animate facial expressions of a vir-
tual character is the blendshapes method. An expression

Figure 2: The subset of the 29 distances.

Expr can be expressed as the sum of the mesh B0 repre-
senting the neutral expression and a weighted linear com-
bination of n basic deformations bi expressed differentially
from the neutral expression (see also fig. 3):

Expr = B0 +

n∑
i=1

wi · bi (1)

This method has the advantage of providing a light repre-
sentation (in our case only 51 basic deformations) which
leads to faster computations and facilitates storing in our
database. In order to automatically obtain the appropriate
set of parameters {w1..n} at each frame we have to face two
problems: i) the targeted avatar and the signer don’t have
exactly the same morphology (the retargeting problem), ii)
for one given expression E there might be multiple existing

linear combinations
n∑

i=1

wi · bi that minimize the distances

between the markers and the corresponding vertices of the
mesh (the non unicity problem).

Figure 3: Synthesizing expressions from a linear combina-
tion of blendshapes.

We dealt with the retargeting problem as in (Bickel et al.,
2007) or (Deng et al., 2006). Given one frame where the
signer shows a neutral expression, a RBF regression is
trained in order to make the link between the position of
any point of the signer’s face and the position it would have
on the avatar’s face:

M̂ = FRBF (M) =

K∑
k=1

ukfk(M) (2)



where M̂ is the estimated position of the signer’s corre-
sponding marker M retargeted on the avatar’s mesh and
{u1..K} are the optimized weights associated to the radial
basis functions {f1..K}.
The non unicity problem is formulated as a minimization
problem in which the parameters {w1..n} are optimized so
that the distances between the retargeted marker positions
M̂1..40 and the corresponding vertices of the mesh V1..40

are reduced. To ensure that the optimal weights found
with this method do not generate visual artifacts, some con-
straints (e.g. non-negativity constraint) and/or some regu-
larization energy that penalizes weights outside the [0, 1]
range can be incorporated. In our case, we introduced the
Thin-shell model (Botsch and Sorkine, 2008) as a regular-
ization energy that doesn’t directly ensure that the weights
stay between 0 and 1 but penalizes the bending and stretch-
ing deformations of the initial mesh:

Ŵ = arg min
{w1..K}

(disteucl(M̂1..40, V1..40)2 + ETS) (3)

with Ŵ the optimal vector of weights {w1..K} for the given
expression and ETS the Thin-shell energy. The vector of
blendshape weights Ŵ is the chosen descriptor for the anal-
ysis of the affect channel.

4.2. Automatic Segmentation
The localization of segments of interest in a stream of sign
language data is called the segmentation. It is done by de-
tecting manually or automatically the temporal points cor-
responding to the beginning and the end of a behaviour
(hand configuration or facial expression in our case). The
coarseness of the behaviour to detect depends on the chosen
annotation scheme. For example, sign language data can be
segmented at a gloss level by detecting the beginning and
end of a sign, or at a finer level such as facial expression,
by detecting the beginning and end of an affect.

Segmentation of the Hand Configuration Channels
While signing, the signer alternates between stable periods
where hand configurations stay the same (no or little mo-
tion of the fingers) and transitions between two consecutive
hand configurations. The segmentation step therefore con-
sists in separating the continuous signing sequences in two
types of segments : hand configuration or transition. Only
the hand configuration segments are labeled in the label-
ing step. To perform the segmentation, we assume that the
variation of the distances is discriminating, i.e. the vari-
ation will be small during stable configurations and high
during transitions. For each frame f , and for each selected
distance SD, the variation of the distances d(i, j) between
two joints (i and j) is computed between the frame f − 1
and f . Those variations are summed (see Equation 4 for the
right hand RH).

VarDistf,RH =
∑
i∈RH

∑
j∈RHd(i,j)∈SD

|d(i, j)f −d(i, j)f−1|

(4)
The segmentation relies on the use of a threshold. If VarDist
is above this threshold, a transition segment will be de-
tected. If VarDist is below the threshold, the segment will

be recognized as a hand configuration segment. To select
the value of the threshold and to evaluate our segmentation,
we used the Simple Matching Coefficient (SMC) metric. It
measures the similarity between two sets of values (here,
the manual and the automatic segmentations). The SMC
is the ratio of the number of overlapping frames between
the two segmentations on the total number of frames. Fig-
ure 4 shows the variation of the SMC of the whole corpus
with respect to the chosen threshold for the 29 normalized
distances. The maximum (SMC = 81%) is reached for a
threshold of 0.2. As manual annotation is performed by a
human being on video footage, automatic annotation may
be more accurate than manual annotation. Therefore, we
consider this threshold satisfactory and it will be the one
used in the following steps.

Figure 4: SMC with respect to the threshold values. The
maximum (SMC = 81%) is reached for a threshold of 0.2.

Segmentation of the Affect Channel
The affect channel is segmented in a similar way, before the
labeling step . We aim at detecting the frames that are lo-
cated at the border between two segments. Since the border
frames are related to the transitions from one expression to
another we consider the energy curves of the velocity and
acceleration of the n blendshape coefficients:

EV elBS =

n∑
i=1

|dwi

dt
| (5)

EAccBS =

n∑
i=1

|d
2wi

dt2
| (6)

In order to detect the local peaks, we consider the local op-
tima of the curve E2

V elBS
+ E2

AccBS
, and only keep those

for which the local variation is important. This detection
procedure is achieved by computing the derivative values
on a window surrounding the detected optima, and apply-
ing a threshold. The orange and turquoise curves in Figure
5 show an example of segmentation using this method.

4.3. Automatic Labeling
The identification of the previously defined segments of in-
terest is called the labeling. This task is highly dependent



Manually segmented and labeled sequence Automatically segmented and labeled sequence

Figure 5: An example of automatic annotation: ”What? I won 1000 e!” repeated 3 times (white: surprise, blue: joy, cyan:
fear; the orange curve stands for the sum of accelerations, the turquoise one for the sum of velocities; the vertical brown
lines represent the limits of each segment; each vertical black line stands for 0.5 second).

on the chosen annotation scheme. Typically, it will con-
sists in selecting the right label from a closed vocabulary to
identify a segment.

Labeling the Hand Configuration Channels
A supervised machine learning approach is used to iden-
tify the handshape on each frame of the hand configuration
segments. 32 classes were defined corresponding to 32 dif-
ferent handshapes (see fig. 6).

Figure 6: The 32 hand configurations played on an avatar.

Like for the segmentation step, the algorithm takes as in-
put the chosen distances between the joints to characterize
the hand configurations. Our machine learning classifiers
are trained on 23533 manually annotated frames presenting
those 32 configurations. The test set is composed of 3927
frames which amount to 14% of the total number of avail-
able examples. Our labeling approach sorts each frame in
one of the 32 categories. We tested three different machine
learning algorithms : logistic regression, support vector
machine (SVM) with a linear kernel and k-nearest neigh-
bors (kNN) on different subsets of our descriptors. Figure 7
shows the accuracy (number of correct predictions divided
by the total number of predictions) on the test set depend-
ing on the machine learning algorithm and the subset of
distances selected. We can see that the ”29 distances” sub-
set presented in Section 4.1. gives the best results with the
3NN approach (91.2%) while the SVM on the 325 distances
have the overall best accuracy (92.3%) (but the duration of
the classifier training is longer).

Some configurations are more sensible to confusion than
others. For example, the ’K’ and ’V’ configurations are
often mistaken (in the two configurations, the middle and
index fingers are raised; in the ’K’, there is a contact be-
tween the thumb and the base of the middle finger while
there is not in the ’V’). The ’B’ and ’Pi’ configurations are
also confused as only the thumb position is discriminant
between the two configurations.

Figure 7: Accuracy on the test set for the hand configura-
tions channel depending on the machine learning algorithm
and selected distances.

Labeling the Affect Channel
The facial channel labeling is a supervised learning task
aiming at identifying the correct class among the 7 defined
in section 3.2.. Different methods were tested: kNN (1NN
and 3NN), SVM (linear and RBF kernels) and Random
Forests (RF). The sequences recorded on each signer were
processed separately. For each signer, the sequences IE
and SE which represent roughly 50% of the data were used
as the training set while the EU sequences were used as the
test set. Whereas during the training phase, each frame of
the training set with its corresponding manually annotated
label was considered as a training sample, the test examples
were constituted of the average along time of the frames
composing each segment. These segments have been pre-
viously obtained according to the method presented in sec-



tion 4.2.. Each of these segments was classified as a whole
represented by its average vector of blendshape weights:

¯̂
W =

F∑
f=1

Ŵf

F
(7)

with F the number of frames of the considered segment.
Figure 5 shows an example of classification using this
method; results are detailed in next section.

5. Results
The results of the automatic annotation of the hand config-
urations and of the facial expression channels are presented
in this section.

5.1. Automatic Annotation of the Hand
Configurations

To automatically annotate hand configurations during con-
tinuous signing, (i) the stream is segmented to distin-
guish hand configuration from transitions segments (sec-
tion 4.2.), then, (ii) the hand configuration of each frame of
the hand configuration segments is labeled (section 4.3.),
and finally, (iii) each hand configuration segment is la-
beled according to the predominant class in the segment
(see fig. 8).

Figure 8: Overview of the automatic annotation of hand
configurations.

Figure 9 shows three utterances of French Sign Language
manually and automatically annotated. The segmentation
threshold has been fixed to 0.2 and the machine learning
algorithm used here is 3NN (3-nearest neighbors). We
worked with the 29 distances described in section 4.1..
While the results can differ from one utterance to another,
the recognized labels and segments are mainly consistent
with the manual annotation. The results given by the met-
rics (i.e. accuracy, recall and precision) are computed with
respect to the manual annotation and are therefore limited
by the 80% overlap of the automatic segmentation with the
manual segmentation. There are very few errors in terms
of recognition of hand configurations (accuracy of 90%). A
perceptual evaluation could give a better assessment of our
results.

5.2. Automatic Annotation of the Affect channel
The sequences are first segmented according to the meth-
ods described in section 4.2.. Each segment is then labeled

Figure 9: Result of the automatic annotation of hand con-
figurations on three different utterances.

independently of the others, according to the following pro-
cedure. For each segment, we compute the average vector
descriptor over time: ¯̂

W . This vector is used as input of
the classification model (kNN or SVM or Random Forest)
previously trained on the basis of the learning set. The clas-
sifier then returns the label associated with this segment. In
order to evaluate the error due to the segmentation, the au-
tomatic annotation is performed on both the automatically
detected segments and the manually defined ones. For both
segmentations, Figure 10 gives the accuracy of the classi-
fier for each tested algorithm. It shows that the best results
are obtained with the Random Forest algorithm.

Figure 10: Accuracy on the test set for the affect channel
depending on the machine learning algorithms and the seg-
mentation.

6. Conclusion
We designed an approach to automatically annotate sign
language MoCap data by processing each channel sepa-
rately. We detailed the specific examples of hand config-
uration and facial expression annotation.
There are still many challenges to overcome. Using ma-
chine learning models, the automatic annotation could be
significantly improved by increasing the size of the dataset,
so that the training phase would be more efficient. In addi-
tion, following the approaches developed in language pro-
cessing, we could also use models that learn the dynamics
of the sequences, such as Hidden Markov Models, Con-



ditional Random Fields, or Recurrent Neural Networks.
However, these methods require large databases.
Another challenge concerns the evaluation of the annota-
tion results. Indeed, for the manual annotation, we rely on
a ground truth which may be subject to errors or impre-
cision. This problem occurs for most recognition or an-
notation tasks. One solution could be to define a ground
truth from a set of previously trained annotators, following
strict instructions. In the near future, we plan to validate
our annotations by defining quantitative metrics, both for
hand configurations and facial expressions. As a comple-
ment to assess the quality of the annotation, we also plan to
perceptually evaluate the results.
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