
HAL Id: hal-01851340
https://hal.science/hal-01851340v1

Submitted on 31 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probing Cosmology with Dark Matter Halo Sparsity
Using X-ray Cluster Mass Measurements

P.S. Corasaniti, S. Ettori, Y. Rasera, M. Sereno, S. Amodeo, M. -A. Breton,
V. Ghirardini, D. Eckert

To cite this version:
P.S. Corasaniti, S. Ettori, Y. Rasera, M. Sereno, S. Amodeo, et al.. Probing Cosmology with Dark
Matter Halo Sparsity Using X-ray Cluster Mass Measurements. The Astrophysical Journal, 2018, 862
(1), pp.40. �10.3847/1538-4357/aaccdf�. �hal-01851340�

https://hal.science/hal-01851340v1
https://hal.archives-ouvertes.fr


DRAFT VERSION JUNE 14, 2018
Typeset using LATEX twocolumn style in AASTeX61

PROBING COSMOLOGY WITH DARK MATTER HALO SPARSITY USING X-RAY CLUSTER MASS
MEASUREMENTS

P.S. CORASANITI,1 S. ETTORI,2, 3 Y. RASERA,1 M. SERENO,2, 4 S. AMODEO,5 M.-A. BRETON,1 V. GHIRARDINI,2, 4 AND D. ECKERT6

1LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Sorbonne Paris Cité, 5 Place Jules Janssen, 92195 Meudon, France
2INAF, Osservatorio Astronomico di Bologna, via Piero Gobetti 93/3, I-40129 Bologna, Italy
3INFN, Sezione di Bologna, viale Berti Pichat 6/2, 40127 Bologna, Italy
4Dipartimento di Fisica e Astronomia, Università di Bologna, via Piero Gobetti 93/2, I-40129 Bologna, Italy
5LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Univ. Paris 6, F-75014 Paris, France
6Max-Planck-Institute for Extraterrestrial Physics (MPE), Giessenbachstrasse 1, 85748 Garching, Germany

Abstract

We present a new cosmological probe for galaxy clusters, the halo sparsity. This characterises halos in terms of the ratio of halo
masses measured at two different radii and carries cosmological information encoded in the halo mass profile. Building upon
the work of Balmes et al. (2014) we test the properties of the sparsity using halo catalogs from a numerical N-body simulation
of (2.6 Gpc/h)3 volume with 40963 particles. We show that at a given redshift the average sparsity can be predicted from prior
knowledge of the halo mass function. This provides a quantitative framework to infer cosmological parameter constraints using
measurements of the sparsity of galaxy clusters. We show this point by performing a likelihood analysis of synthetic datasets
with no systematics, from which we recover the input fiducial cosmology. We also perform a preliminary analysis of potential
systematic errors and provide an estimate of the impact of baryonic effects on sparsity measurements. We evaluate the sparsity
for a sample of 104 clusters with hydrostatic masses from X-ray observations and derive constraints on the cosmic matter density
Ωm and the normalisation amplitude of density fluctuations at the 8 Mpc h−1 scale, σ8. Assuming no systematics, we find
Ωm = 0.42±0.17 and σ8 = 0.80±0.31 at 1σ, corresponding to S8 ≡ σ8

√
Ωm = 0.48±0.11. Future cluster surveys may provide

opportunities for precise measurements of the sparsity. A sample of a few hundreds clusters with mass estimate errors at a few
percent level can provide competitive cosmological parameter constraints complementary to those inferred from other cosmic
probes.

Keywords: X-rays: galaxies: clusters — cosmology: theory — cosmology: cosmological parameters — meth-
ods: numerical
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1. INTRODUCTION

In the standard bottom-up scenario of cosmic structure for-
mation, initially small dark matter (DM) density fluctuations
grow under gravitational instability to eventually form at later
times virialized stable objects, the halos. It is inside these
gravitationally bounded clumps of DM that baryonic gas falls
in to form the visible structures we observe in the universe.
Today, the most massive halos host large clusters of galaxies
resulting from the hierarchical merging process of smaller
mass halos formed at earlier times. Since their assembly de-
pends on the matter content of the Universe, the state of cos-
mic expansion and the initial distribution of matter density
fluctuations, there is a consensus that observations of galaxy
clusters can provide a wealth of cosmological information
(see e.g. Allen, Evrard & Mantz 2011; Kravtsov & Borgani
2012, for a review of galaxy cluster cosmology).

Galaxy clusters can be observed through a variety of
probes, such as the detection of the X-ray emission of the
intra-cluster gas (e.g. Vikhlinin et al. 2005; Ebeling et al.
2010; Piffaretti et al. 2011; Pierre et al. 2016), the Sunyaev-
Zeldovich effect in the microwave (e.g. Staniszewski et al.
2009; Menanteau et al. 2013; Reichardt et al. 2013; Planck
Collaboration 2015), the distribution of the member galaxies
in the optical and IR bands (Koester et al. 2007; Rykoff et al.
2014), and the distorsion of the background galaxies induced
by the halo gravitational potential (e.g. Umetsu et al. 2011;
Postman et al. 2012; Hoekstra et al. 2012).

Due to the highly non-linear nature of the gravitational col-
lapse driving the formation of DM halos, theoretical model
predictions, which are necessary to interpret the data and in-
fer cosmological parameter constraints have been mainly ob-
tained through cosmological simulations. A remarkable re-
sult of these studies is the fact that DM halos exhibit a univer-
sal density profile well approximated by the Navarro-Frenk-
White formula (Navarro, Frenck & White 1997). This en-
tirely characterises the halo profile in terms of the halo mass
M and the concentration parameter c. Numerical simulations
have shown that the concentration encodes cosmological in-
formation. In particular, it has been found that the median
concentration of an ensemble of halos is a power-law func-
tion of the halo mass with the overall amplitude of the rela-
tion varying with redshift and cosmology (see e.g. Bullock et
al. 2001; Zhao et al. 2003; Dolag et al. 2004; Zhao et al. 2009;
Giocoli, Sheth & Tormen 2011). This has suggested that es-
timates of the concentration and halo mass from a sample
of galaxy clusters can provide constraints on cosmological
models (see e.g Ettori et al. 2010, for a cosmological data
analysis using cluster concentration-mass measurements).

However, several factors can limit the use of the cluster
concentration as cosmological proxy. On the one hand as-
trophysical effects may alter the original c − M relation and
introduce a systematic bias in the cosmological analysis (see

e.g. Duffy et al. 2010; Mead et al. 2010; King & Mead 2011).
On the other hand, theoretical model predictions, despite re-
cent progress (see e.g. Diemer & Kravtsov 2015; Correa et
al. 2015; Klypin et al. 2016; Ludlow et al. 2016; Renneby,
Hilbert & Angulo 2017), have yet to converge into a single
model capable of reproducing the ensemble of numerical re-
sults currently available for different cosmological scenarios
(Meneghetti & Rasia 2013).

Another limiting factor may result of the large intrinsic
dispersion of the halo concentration. N-body simulation
studies have found a significant scatter of the concentra-
tion at fixed halo mass (Bullock et al. 2001; Wechsler et
al. 2002). For example Maccio et al. (2006) have found
σln c ≈ 0.25, while Bhattacharya et al. (2013) quotes a scatter
σln c ≈ 0.33. A similar result has been found in Diemer &
Kravtsov (2015), which quotes σln c ≈ 0.37, while a smaller
value was only found for a sample of relaxed halos. Account-
ing for such a large intrinsic dispersion may strongly relax
cosmological parameter constraints from measurements of
the concentration-mass relation.

A further point of concern is the case of very massive clus-
ters. These are often easier to detect because they are very
luminous and rich. Nonetheless, because of their recent for-
mation they are also more likely to be perturbed by the pres-
ence of other structures that are still in the process of merg-
ing with the main DM halo. In such a case, the halo density
profile may deviate from the NFW formula and the concen-
tration parameter no longer encodes information of the halo
mass distribution and its cosmological dependence.

Finally, the measurement of the mass-concentration rela-
tion is strongly affected by selection effects as shown by
Sereno, Ettori, Giocoli & Moscardini (2015).

In Balmes et al. (2014), two of the authors have introduced
the concept of halo sparsity, a directly measurable proxy of
the DM halo mass profile that overcomes most of the limi-
tations described above. In this work, we present a detailed
study of the validity of the halo sparsity as a new cosmologi-
cal probe. As a proof-of-concept application, we specifically
focus on sparsity measurements based on hydrostatic mass
estimates from X-ray cluster observations. We show that the
redshift evolution of the average halo sparsity carries cosmo-
logical information which can be retrieved from prior knowl-
edge of the halo mass function. To this purpose we perform
a likelihood analysis over a set of ideal sparsity data with no
systematic errors from which we recover the input fiducial
cosmology. We discuss various sources of systematic un-
certainty. Using results from state of the art simulations of
galaxy clusters we show that mass bias effects due to bary-
onic feedback processes alter the sparsity of massive systems
at a few percent level. When analysing cluster sparsity, this
source of systematic error is therefore subdominant with re-
spect to that affecting mass estimates from currently available
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cluster datasets. As a first cosmological application, we per-
form a cosmological parameter inference analysis of sparsity
measurements based on hydrostatic mass estimates of a sam-
ple of X-ray clusters from XMM and Chandra observations.

The article is organised as follows. In Section 2, we re-
view the basic properties of the halo sparsity and test its va-
lidity as a cosmological proxy. In Section 3, we discuss sev-
eral sources of systematic errors that can affect the sparsity
data analysis. In Section 4, we present the cosmological pa-
rameter constraints inferred from sparsity measurements of
a sample of X-ray clusters. In Section 5, we perform a cos-
mological parameter forecast for sparsity data expected from
future X-ray cluster surveys. Finally, in Section 6 we present
our conclusions.

2. DARK MATTER HALO SPARSITY

2.1. Definition & Properties

The sparsity of a halo is defined as the ratio of the halo
mass enclosing two different overdensities ∆1 and ∆2

(Balmes et al. 2014):

s∆1,∆2 ≡
M∆1

M∆2

, (1)

where ∆1 < ∆2 and M∆ is the mass enclosed in a sphere
of radius r∆ containing an overdensity ∆ with respect to
the critical density ρc or the mean background density ρm.
In the following we will consider ρc, however as shown in
Balmes et al. (2014) the general properties of the sparsity
are independent of such a choice. Notice that from Eq. (1)
we can also interpret the sparsity of a halo as a measure of
the mass excess between r∆1 and r∆2 (∆M = M∆1 − M∆2 )
relative to the mass enclosed in the inner radius r∆2 , i.e.
s∆1,∆2 = ∆M/M∆2 + 1.

It is easy to show that there is a one-to-one correspondence
between the halo sparsity and the concentration parameter
(assuming that the halo follows the NFW profile). For in-
stance to be conform with the standard definition of concen-
tration let us set ∆1 = 200 and let be ∆2 = ∆, using the NFW
formula we can write the sparsity as:

s−1
∆ ≡ x3

∆

∆

200
=

ln(1 + c200 x∆) −
c200 x∆

1+c200 x∆

ln (1 + c200) −
c200

1+c200

, (2)

where x∆ = r∆/r200 and c200 = r200/rs with rs the scale radius
of the NFW profile. For a given set of values of the concen-
tration c and overdensity ∆, the above equation can be solved
numerically to obtain x∆ and thus the corresponding value of
s∆. However, notice that in defining the sparsity as in Eq. (1)
no explicit assumption has been made concerning the form
of the halo density profile. Balmes et al. (2014) have shown
that this is sufficient to characterise the mass profiles of halos
even when their density profile deviates from NFW.

A key feature of the halo sparsity is the fact that its ensem-
ble average value at a given redshift is nearly independent of
the halo mass M∆1 (even if some of the halos in the ensemble
have profiles which deviates from NFW), but depends on the
underlying cosmological model with a scatter that is much
smaller than that of the halo concentration. Because of this it
can provide a robust cosmological proxy, without requiring
any modelling of the halo density profile.

Another important characteristic of the halo sparsity is that
its independence on M∆1 implies that the ensemble average
value can be predicted from prior knowledge of the halo mass
function at two different mass overdensities. In fact, let us
consider the equality

dn
dM∆2

=
dn

dM∆1

dM∆1

dM∆2

=
dn

dM∆1

s∆1,∆2

d lnM∆1

d lnM∆2

, (3)

where dn/dM∆1 and dn/dM∆2 are the mass functions at ∆1

and ∆2 respectively. We can rearrange the above relation
and integrate over the halo ensemble mass range to derive
the relation between the average inverse halo masses at two
different overdensities. Since the sparsity is independent of
the halo mass, it can be taken out of the integration on the
right-hand-side such that∫ Mmax

∆2

Mmin
∆2

dn
dM∆2

d lnM∆2 = 〈s∆1,∆2〉
∫ 〈s∆1 ,∆2 〉M

max
∆2

〈s∆1 ,∆2 〉M
min
∆2

dn
dM∆1

d lnM∆1 ,

(4)
this equation can be solved numerically for 〈s∆1,∆2〉 given
prior knowledge of dn/dM∆1 and dn/dM∆2 respectively. As
shown in Balmes et al. (2014), this reproduces with great ac-
curacy the mean sparsity inferred from N-body halo catalogs.
Indeed, this is a direct advantage over predicting the me-
dian concentration, since the cosmological and redshift de-
pendence of the mass function are easier to model than the
concentration, as they involve a reduced set of assumptions.
Moreover, since the sparsity is a mass ratio, it is reasonable
to expect that it will be less affected by a constant systematic
bias which may affect cluster mass measurements. Also, no-
tice that selection effects can be included in Eq. (4) by con-
volving the integrands with the appropriate selection func-
tion. We will discuss both these points in detail in Section 3.

A last remark concerns the choice of ∆1 and ∆2 provided
that ∆1 < ∆2. As noticed in Balmes et al. (2014) the larger
the difference, the greater the amplitude of the cosmolog-
ical signal. However, the values of ∆1 and ∆2 cannot be
chosen to be arbitrarily different since the properties of the
sparsity discussed above remain valid only in a limited inter-
val which can be determined by physical considerations. A
lower bound on ∆1 can be inferred by the fact that for very
small overdensities the identification of a halo as an individ-
ual object can be ambiguous, thus suggesting ∆1 & 100. On
the other hand, the range of values for ∆2 can be deduced by
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the fact that at very large overdensities baryonic processes
may alter the DM distribution within the inner core of halos.
These are largely subdominant if one conservatively assumes
∆2 in the range ∆1 <∆2 . 2000. Within this interval of val-
ues one can set ∆1 and ∆2 depending on the availability of
optimal mass measurements.

2.2. N-body Simulation Sparsity Tests

In Balmes et al. (2014) the properties of the halo sparsity
have been tested using halo catalogs from the Dark Energy
Universe Simulations1 (DEUS) with masses defined with re-
spect to the background density covering the mass range
1012 <M200m [h−1 M�]< 1015.

Here, we perform an analysis using halos identified with
the Spherical Overdensity (SOD) halo detection algorithm
(Lacey& Cole 1994) in one of the simulations of the Ray-
GalGroupSims suite (Breton et al. 2017) with masses de-
fined with respect to the critical density. Since we are in-
terested in the application to X-ray clusters we specifically
focus on masses at overdensity ∆1 = 500c and ∆2 = 1000c
from which we derive estimates of the halo sparsity s500,1000.
For completeness, we also consider halo masses measured at
∆1 = 200c and show that the properties of the halo sparsity
also hold for s200,500 and s200,1000 respectively.

The cosmological model of the RayGalGroupSims simu-
lation considered here is a flat ΛCDM with parameters set
consistently with WMAP-7 year data analysis (Komatsu et
al. 2011): Ωm = 0.2573, Ωb = 0.04356, h = 0.72, ns = 0.963
and σ8 = 0.801. The simulation consists of a (2.625 Gpc h−1)3

volume with 40963 particles corresponding to particle mass
resolution mp = 1.88 ·1010 M� h−1.

Halos are first detected using the SOD algorithm with over-
density set to ∆ = 200c and centred on the location of max-
imum density. For each halo we computed SOD masses at
∆ = 200c,500c and 1000c respectively and estimated the cor-
responding halo sparsities. In order to avoid mass resolution
effects we have taken a conservative mass cut and considered
only halos with more than 104 particles.

In Fig. 1 we plot the average halo sparsity 〈s500,1000〉∆ ln M500c

in mass bins of size ∆ lnM500c = 0.3 (containing more than
20 halos) as function of M500c at z = 0,0.5,1.0,1.5 and 2.0,
while in the inset plot we show the associated variance. As
we can see, 〈s500,1000〉∆ ln M500c remains constant to very good
approximation across the full mass and redshift range. As far
as the scatter is concerned we find the standard deviation to
be . 20% level, consistently with the findings of Balmes et
al. (2014).

Let us now test the validity of Eq. (4) in predicting the
redshift evolution of the ensemble average sparsity. In
Fig. 2, the solid black circles are the average sparsity val-

1 http://www.deus-consortium.org/deus-data/

Figure 1. Average halo sparsity as function of M500c from SOD halo
catalogs at z = 0 (black filled squares), z = 0.5 (blue filled triangles),
1.0 (red empty squares), 1.5 (cyan solid circles) and 2.0 (magenta
crosses) in mass bins of size ∆ lnM500c = 0.3. The inset plot shows
the variance of the halo sparsity in the same mass bins as function
of M500c for the different redshifts.

ues obtained from the RayGalGroupSims halo catalogs at
z = 0,0.5,0.66,1.0,1.14,1.5 and 2.0 respectively. These have
been computed for each halo catalog by averaging the spar-
sity of halos with M500c & 1013 M� h−1. The solid magenta
squares are the average sparsity values at the redshifts of
the halo catalogs obtained by solving Eq. (4) where we have
assumed the Sheth-Tormen (ST) formula (Sheth & Tormen
1999) with coefficients best-fitting the numerical halo mass
functions at ∆1 = 500c and ∆2 = 1000c respectively (see
Appendix A for a detailed description of the mass function
calibration). As we can see in Fig. 2, the predictions from
Eq. (4) overlap with the average sparsity values directly esti-
mated from the halos in the simulation catalogs with relative
differences < 0.1% level2.

In order to interpolate predictions of the sparsity at red-
shifts other than those tested by the simulation snapshots we
have performed a quadratic fit of the ST best-fit coefficients
as function of x ≡ log10(∆c/∆vir(z)) for ∆c = 500 and 1000
respectively, see Eq. (A5)-(A6) in Appendix A. As suggested
by Despali et al. (2016), parametrising the ST-coefficients

2 In solving Eq. (4) we have set Mmin
1000c = 2 · 1013 M� h−1 consistently

with the mass limit of our halo catalogs, while the upper limit of the integra-
tion interval can be set to an arbitrarily large number. Nevertheless, as the
average sparsity remains approximately constant with mass, we have veri-
fied that the solution of Eq. (4) is largely independent of the specific choice
of Mmin

1000c.
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Figure 2. Average sparsity as function of redshift for halos with
M500c > 1013 M� h−1. The black empty circles correspond to the av-
erage sparsity measured from the halo catalogs at the redshift snap-
shots of the RayGalGroupSims run. The magenta empty squares
correspond to the average sparsity prediction obtained by solving
Eq. (4) assuming a ST mass function with coefficients best-fitting
the halo mass function of the RayGalGroupSims halo catalogs at
M500c and M1000c respectively. The black dotted line corresponds
to the prediction from Eq. (4) using the ST-RayGal mass function,
while the blue short-dashed line and the red long-dashed line cor-
respond to the predictions obtained by assuming the mass function
from Tinker et al. (2008) and Despali et al. (2016), respectively. The
inset plot shows the variance of the halo sparsity from the SOD halo
catalogs with M500c & 1013 M� h−1 at the different redshift snap-
shots.

in terms of x aims to capture the redshift and cosmology
dependence of the mass function, though from the work of
Courtin et al. (2011) it is clear that this may not be sufficient
to model dependencies beyond the ΛCDM scenario. Here-
after, we will refer to the ST formula with coefficients given
by Eq. (A5)-(A6) as the ST-RayGal mass function, the corre-
sponding average sparsity prediction from Eq. (4) is shown in
Fig. 2 as black dotted line. We find differences with respect
to the N-body measurements to be at sub-percent level.

In Fig. 2 we also plot the average sparsity prediction from
Eq. (4) obtained by assuming the mass function from Tinker
et al. (2008) and Despali et al. (2016) respectively. In the
former case we can see systematic deviations up to ∼ 10%
level with respect to the N-body estimates that decrease from
low to high redshifts. In the latter case differences are within
1% level in the range 0.5< z< 1.5, while they increase up to
∼ 10% level at lower and higher redshifts. Such discrepan-
cies are due to differences in the parameterisations of the halo
mass function which have been calibrated to halo catalogs

from simulations of different cosmological models, volumes
and mass resolutions.

Compared to the simulations used in Tinker et al. (2008);
Despali et al. (2016), the RayGalGroupSims simulation cov-
ers a larger volume with greater mass resolution. This pro-
vides a better calibration of the ST formulae. As it can be
seen in Fig. 14 in Appendix A, we find logarithmic differ-
ences well within 5% level. On the other hand, it is worth
remarking that we have tested the validity of the ST-RayGal
mass function to a set of cosmological simulations with pa-
rameters which are not too different from those of the ΛCDM
best-fit model to the WMAP-7 year data (see discussion at
the end of Appendix A). Consequently, we are not guaranteed
that the ST-RayGal parameterisation can fully capture the
cosmological parameter dependence of the halo mass func-
tion and hence that of the halo sparsity for parameter values
which are far from the concordance ΛCDM model. Such un-
certainty can indeed introduce systematic errors in the spar-
sity analysis, a point which we will discuss in detail in Sec-
tion 3. Here, we are not in a position to solve this issue in a
conclusive manner. Hence, we simply opt to quote the results
obtained assuming the ST-RayGal parameterisation and that
from Despali et al. (2016). We will refer to the latter case as
ST-Despali.

The properties of the halo sparsity summarised by the
trends shown in Fig. 1 and Fig. 2 also hold for other spar-
sity definitions. This can be seen in Fig. 3, where we plot
〈s200,500〉 and 〈s200,1000〉 as function of M200c and redshift re-
spectively. These plots suggest that sparsity estimations from
mass measurements at ∆ = 200c, such as those provided by
gravitational lensing observations that probe clusters at larger
radii than X-ray measurements, can also provide a viable
proxy of the mass distribution in clusters.

2.3. Cosmological Parameter Dependence

The dependence of the halo sparsity on the underlying cos-
mological model has been studied in Balmes et al. (2014)
using N-body halo catalogs from DEUS project simulations
(Alimi et al. 2010; Rasera et al. 2010; Courtin et al. 2011).
Balmes et al. (2014) have shown that the average value of the
sparsity at a given redshift correlates with the linear growth
factor of the underlying cosmological model. This can be
qualitatively understood in terms of the relation between the
growth of structures and the mass assembly of halos. In par-
ticular, at any given time, models which form structures ear-
lier will assemble on average more halo mass at large over-
densities (inner radii) than those which form structures at
later times, thus resulting in smaller values of the average
sparsity. In terms of the cosmological model parameters, this
implies for instance that the larger the cosmic matter density
Ωm or the amplitude of the fluctuations on the 8 Mpc h−1 scale
σ8 and the smaller the average sparsity value.
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Figure 3. Top panels: average halo sparsity 〈s200,500〉 (left panel) and 〈s200,1000〉 as function of M200c at z = 0,0.5,1,1.5 and 2.0 (legend as in
Fig. 1) in mass bins of size ∆ lnM200c = 0.3. The inset plot shows the variance of the halo sparsity in the same mass bins as function of M200c

for the different redshifts. Bottom panels: average halo sparsity 〈s200,500〉 (left panel) and 〈s200,1000〉 as function of redshift for halos (legend as
in Fig. 2) with M500c > 1013 M� h−1 consistently with the mass cut adopted for the s500,1000 case. The inset plot shows the variance of the halo
sparsity at the different redshift snapshots.

Here, we do not intend to repeat the analysis of Balmes
et al. (2014), instead we use Eq. (4) to evaluate the relative
change of the average sparsity with respect to a fiducial cos-
mological model for a positive variation of the cosmological
parameters.

We assume as fiducial cosmology a flat ΛCDM model with
parameters set to the best-fit values from the Planck cos-
mological data analysis of Cosmic Microwave Background
(CMB) anisotropy spectra (TT,TE,EE+lowP) (Planck Col-
laboration 2015): Ωm = 0.3156, Ωb h2 = 0.02225, h = 0.6727,
σ8 = 0.831, ns = 0.9645.

We compute 〈s500,1000〉 from Eq. (4) assuming the ST-
RayGal and ST-Despali mass functions respectively3.

In Fig. 4 we plot ∆〈s500,1000〉/〈s500,1000〉fid as function of
redshift in the case of the ST-RayGal mass function (upper
panel) and ST-Despali mass function (lower panel). Indepen-
dently of the adopted mass function parametrisation, we can
see that the variation of the average sparsity is negative for

3 In computing the mass function we evaluate the linear matter power
spectrum of the underlying cosmological model using the approximated for-
mulae from Eisenstein & Hu (1998). We have verified that using power
spectra from numerical solutions of linear perturbation equations, such as
those given by the CAMB code (Lewis, Challinor & Lasenby 2000), leads
to sub-percent difference in the predicted value of the average sparsity.
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Figure 4. Relative variation of the average halo sparsity as func-
tion of redshift for a 5% variation of the cosmological parameters
around the fiducial Planck values. The various lines represent vari-
ations with respect to σ8 (black solid line), ns (blue short-dashed
line), Ωm (magenta dotted line), h (red dotted short-dashed line),
Ωb h2 (cyan long-dashed line) and σ8

√
Ωm (black dotted line). In

the upper panel we plot the relative variation of the average sparsity
obtained assuming the ST-RayGal mass function in Eq. (4), while
that assuming the ST-Despali mass function is shown in the lower
panel.

a positive variation of the cosmological parameters, except
Ωb h2. This is essentially because increasing the value of σ8,
Ωm, ns and h causes structures to form at earlier times, and
consequently assemble more halo mass at larger overdensi-
ties, which results into smaller values of the average sparsity.

This is not the case for a positive variations of Ωb h2. In fact,
as we have assumed a flat geometry, increasing the value of
Ωb h2 corresponds to decreasing the value of Ωm at h con-
stant. In such a case structures form later than in models
with smaller values of Ωb h2, halos assemble on average less
mass at larger overdensities, thus leading to larger values of
the average sparsity.

The trends shown in Fig. 4 provide an estimate of the sen-
sitivity of the average sparsity to the different cosmological
parameters. In the ST-RayGal case we can see that a change
in the value of σ8 produces the largest variation of the aver-
age sparsity in the redshift range 0 < z . 1. At higher red-
shifts a change in the value of ns causes the largest variation,
while Ωm, h and Ωbh2 have smaller effects. A similar trend
occurs in the ST-Despali case, though with different ampli-
tudes for the different parameters. Overall, we can see that
measurements of the average sparsity are most sensitive to
S8 = σ8

√
Ωm, consequently we can expect constraints on Ωm

and σ8 to be degenerate along curves of constant S8 values.
It is worth noticing that the variations of the average spar-

sity predicted by the ST-Despali mass function are slightly
larger in amplitude than that from the ST-RayGal. This
suggests that cosmological constraints inferred by a sparsity
analysis based on the ST-Despali mass function will provide
systematically tighter bounds than those inferred assuming
the ST-RayGal parameterisation. As already mentioned at
the end of Section 2.2, the uncertainties in the modelling
of the halo mass function may induce a systematic error in
the cosmological analysis of sparsity measurements. We will
discuss this in detail in Section 3.

2.4. Synthetic Data Analysis

We now check the validity of the average sparsity as cos-
mological proxy. To this purpose we generate a set of syn-
thetic average sparsity data and perform a cosmological pa-
rameter likelihood analysis to test whether we retrieve the
input parameter values of the fiducial cosmology. As proof-
of-concept, here we limit ourselves to ideal sparsity measure-
ments and neglect any source of systematic uncertainty. Our
goal is to show that the sparsity provides a viable cosmolog-
ical observable.

We assume as fiducial model a flat ΛCDM scenario with
parameters set to the Planck best-fit values quoted in Sec-
tion 2.3. We generate a sample of N = 15 independent spar-
sity measurements in redshift bins of size ∆z = 0.1 over the
range 0 ≤ z ≤ 1.5 by solving Eq. (4) for a given mass func-
tion. We consider two separate configurations, one consisting
of sparsity measurements with 1% statistical errors and an-
other with 20% errors. This allows us to test whether degrad-
ing the statistical uncertainties has an impact in retrieving the
fiducial model. We focus the parameter inference on σ8 and
Ωm, while assuming hard priors on the remaining cosmolog-
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Figure 5. 1 and 2σ credibility contours in the Ωm − σ8 plane ob-
tained in the case of the ST-RayGal mass function (black thick lines)
and the ST-Despali mass function (red thin lines). The solid lines
correspond to constraints inferred assuming 1% average sparsity er-
rors, while the dashed contours correspond to the case with 20%
errors. The black crossed-circle indicates the fiducial model param-
eters, while the star markers indicate the best-fit values.

ical parameters. We realise two independent analyses for the
ST-RayGal and the ST-Despali mass functions respectively.

We perform a Markov Chain Monte Carlo sampling of the
likelihood function and evaluate the χ2:

χ2(σ8,Ωm) =
N∑

i=1

[
〈si

500,1000〉− 〈sth
500,1000(zi|σ8,Ωm)〉

σ〈s500,1000〉

]2

, (5)

where 〈si
500,1000〉 is the i-th datapoint in the synthetic catalog

at redshift zi, σ〈s500,1000〉 is the associated error and 〈sth
500,1000〉

is the theoretical model prediction given by Eq. (4) assuming
the same mass function parameterisation used to generate the
data.

The results are summarised in Fig. 5 where we plot the 1
and 2σ credibility contours in the plane Ωm −σ8 which have
been inferred assuming the ST-RayGal and ST-Despali mass
function respectively. In both cases we find the best-fit model
parameters to recover the Planck fiducial parameters at sub-
percent level, independently of the assumed uncertainties on
the synthetic dataset. On the other hand, we can see that
the parameter constraints become much weaker in the case
with 20% statistical errors. As expected from the analysis
presented in Section 2.3, the analysis of the synthetic data
performed using the ST-Despali mass function provides sys-
tematically tighter bounds on Ωm − σ8 than the ST-RayGal
case.

Overall, this suggests that the average sparsity can be used
as a cosmic probe. We will discuss extensively in the next

Section the extent to which systematic errors can contaminate
sparsity analyses.

3. SYSTEMATIC ERRORS

In this section we present a preliminary evaluation of sys-
tematic errors potentially affecting cluster sparsity analyses.

3.1. Mass Function Parametrisation

In Section 2.2 we have seen that key to predicting the halo
sparsity is the correct modelling of the halo mass function.
In particular, we have shown that Eq. (4) recovers the aver-
age sparsity of the numerical halo catalogs from the RayGal-
GroupSims simulation provided that the parameterisation of
the halo mass function for M500c and M1000c also reproduces
the numerical halo abundances.

In order to asses the impact of the modelling of the mass
function on the cosmological parameter inference from spar-
sity measurements we extend the synthetic data analysis pre-
sented in Section 2.4. In particular, using the synthetic
dataset generated by solving Eq. (4) with the ST-RayGal
mass function we perform a likelihood analysis assuming the
ST-Despali mass function.

In Fig. 6 we plot the 1 and 2σ credibility contours in
Ωm −σ8 plane assuming 1% and 20% statistical errors on the
synthetic sparsity data respectively. For comparison we also
plot the contours shown in Fig. 5 obtained by assuming the
ST-RaGal mass function. We can clearly see that assuming
the ST-Despali mass function when the synthetic data have
been generated with the ST-RayGal mass function results in
a systematic off-set of the best-fit parameters. This bias is
well above the statistical errors for sparsity measurements
with 1% statistical uncertainties. We can also notice that the
contours differ according to the assumed mass function. This
is not surprising given the fact that the mass function param-
eterisations have been calibrated to simulations of different
volume and mass resolution and encode differently the de-
pendence on the cosmological parameters.

As already mentioned the RayGalGroupSims simulation
with a (2.625 Gpc h−1)3 volume and a mass resolution of
mp = 1.88 · 1010 M� h−1 provides a better sampling of the
high mass-end of the halo mass function than the simu-
lation ensemble used for the calibration of the ST-Despali
mass function. As an example, the largest volume simula-
tion from the SBARBINE suite presented in (Despali et al.
2016) consists of a (2 Gpc h−1)3 box with mass resolution
mp = 6.35 · 1011 M� h−1. This impact the accuracy of the
mass function calibration, a point that can be also inferred
by comparing the amplitude of the logarithmic differences
of the calibrated formulae to the numerical estimations. As
shown in Fig. 14, the ST-RayGal parametrisation reproduces
the RayGalGroupSims mass function well within 5% across
the entire mass range probed by the simulation and in red-
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Figure 6. 1 and 2σ credibility contours in the Ωm −σ8 plane from the
likelihood analysis of average sparsity data with 1% (solid lines) and
20% (dashed lines) statistical errors generated by solving Eq. (4)
with the ST-RayGal mass function. The black lines correspond to
the constraints shown in Fig. 5 inferred assuming the ST-RayGal
mass function. The constraints obtained assuming ST-Despali mass
function are shown as red lines. The black circle indicates the fidu-
cial model parameters, while the cross symbols indicate the best-fit
parameter values for the different parameterisations.

shift interval 0≤ z≤ 2. In contrast the ST-Despali parametri-
sation shows differences with respect to the N-body results
that at the high mass-end exceed the 5% level in the same
redshift interval (see e.g. Fig. 11 in Despali et al. 2016).
Conversely, the SBARBINE suite includes simulation runs
with cosmological parameter values sufficiently far from the
concordance ΛCDM model to better probe the cosmological
dependence of the mass function on Ωm and σ8 than the ST-
RayGal case. Therefore, this suggests that a simulation suite
consisting of runs with volume and mass resolution similar
to that of the RayGalGroupSims simulation for very different
cosmological parameter values should provide a mass func-
tion parametrisation sufficiently accurate to guarantee unbi-
ased sparsity analyses in the case of sparsity data with errors
at ∼ 1% statistical level.

3.2. Hydrostatic Mass Estimates

Numerical simulation studies (see e.g. Nagai, Vikhlinin &
Kravtsov 2007; Meneghetti et al. 2010; Rasia et al. 2012; Vel-
liscig et al. 2014; Biffi et al. 2016) as well as the analyses of
observed cluster samples (Sereno & Ettori 2015) have shown
that X-ray cluster masses obtained by solving the hydrostatic
equilibrium (HE) equation are systematically underestimated
compared to the true mass of the clusters.

The halo sparsity is unaltered by a constant systematic
mass bias, since it is a mass ratio. In contrast, a radial de-
pendent shift affecting HE masses can alter the sparsity4 and
introduce a systematic error in the cosmological parameter
inference. In addition to a bias effect, HE masses suffer from
an intrinsic scatter of order of 10 − 20% (Rasia et al. 2012;
Sereno & Ettori 2015). However, most of the sources of
scatter act similarly over different radial ranges, so that this
would induce negligible effects on sparsity.

The overall amplitude of the radial dependent mass bias
has been estimated in several numerical simulation studies.
Nevertheless, the results differ as consequence of the differ-
ent numerical schemes used in the realisation of the sim-
ulations as well as to the modelling and the implementa-
tion of the astrophysical process that shape the properties
of the gas in clusters. As an example Rasia et al. (2012)
have realised zoom simulations of 20 clusters at z = 0.2 with
M200c > 4 ·1014 M� h−1 and found a 33% median mass bias
at r500c and 27.5% at r1000c (see Table 2 in Rasia et al. 2012).
These induce a relative shift with respect to the true average
sparsity of ∼ 8%. A smaller amplitude of the mass bias has
been found by Nagai, Vikhlinin & Kravtsov (2007), never-
theless both these studies have neglected the impact of active
galactic nuclei (AGN) on the halo mass.

The OverWhelmingly Large Simulations (OWLS) project
(Schaye et al. 2010) has performed a comprehensive study
of the impact of baryonic feedback processes such as star
formation, metal-line cooling, stellar winds, supernovae and
AGN on the properties of galaxy clusters. Quite remarkably
these simulations reproduce the optical and X-ray observed
features of groups and clusters of galaxies (McCarthy et al.
2010; Le Brun et al. 2014). The effects induced on the halo
mass have been studied in detail in Velliscig et al. (2014). In
this study, the authors have evaluated the median fractional
mass bias y∆ at z = 0 for ∆ = 200c,500c and 2500c as func-
tion of the halo DM mass. Their results have shown that
baryonic effects can alter the total halo mass at ∼ 15 − 20%
level for halos with M200c ∼ 1013 M� h−1 down to few per-
cent for the most massive systems with M200c ∼ 1015 M�
h−1. We use their results for the feedback model AGN 8.0
(see Fig. 2 in Velliscig et al. 2014) reproducing the observed
X-ray profile of clusters (Le Brun et al. 2014). In Fig. 7 we
plot the percentage variation of the median halo sparsity for
s200,500 (bottom panel), s200,2500 (middle panel) and s500,2500

4 Let be Mt
∆ the true halo mass and Me

∆ the estimated one at overdensity
∆ respectively. We define the fraction mass bias as y∆ ≡ (Me

∆ − Mt
∆)/Mt

∆.
Then, the relative variation of the halo sparsity compared to its true value is
given by

r∆1 ,∆2 ≡
∆s∆1 ,∆2

s∆1,∆2

=
1 + y∆1

1 + y∆2

− 1; (6)

from where it is evident that if the mass bias is independent of the cluster
radius, y∆1 = y∆2 and ∆s∆1,∆2 = 0.
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Figure 7. Percentage variation of the median halo sparsity s200,500

(bottom panel), s200,2500 (middle panel) and s500,2500 (top panel) due
to the radial mass bias induced by baryonic feedback processes as
in the AGN 8.0 model investigated in (Velliscig et al. 2014).

(top panel) as given by Eq. (6). We can see that at large radii
the effect of baryonic feedback cause the sparsity to be under-
stimated by ∆〈s200,500〉/〈s200,500〉 . 4%. For inner radii the
effect is larger, but limited . 15% for s200,2500 and . 10%
for s500,2500. In any case, we notice that for massive systems
with M200c & 1014 M� h−1 the level of bias on the sparsity is
below ∼ 5%.

The study presented in Velliscig et al. (2014) has fo-
cused on how baryonic processes alter halo masses. On
the other hand, in our analysis we are particularly inter-
ested on the effects on the HE estimated masses. This has
been recently investigated by Biffi et al. (2016), who have
performed zoom simulations of 29 clusters at z = 0 with
masses M200c & 1014 M� h−1. These simulations account for
metallicity-dependent radiative cooling, time-dependent UV
background, star formation, metal enrichment, stellar winds
and AGN feedback. The authors have estimated the frac-
tional median hydrostatic mass bias for cool-core (CC), non-
CC, regular and disturbed systems for overdensity thresholds
∆ = 200c,500c and 2500c (see Table 1 in Biffi et al. 2016).
Using these results we linearly extrapolate the hydrostatic
mass bias at ∆ = 1000c and compute the fraction bias on
the sparsity s500,1000 which we report in Table 1 for different
cluster categories. We can see that they hydrostatic mass bias
induce a shift on the true cluster sparsity 0.1−0.3% (non-CC
and regular) and 2 − 4% (CC and disturbed), which is largely
in agreement with the estimates we have obtained using the
results from Velliscig et al. (2014).

Cluster State r500,1000 [%]

CC −3.7

NCC 0.1

Regular 0.3

Disturbed −2.0

Table 1. Relative variation of the sparsity s500,1000 due to hydrostatic
mass bias for CC, NCC, regular and disturbed clusters simulated in
(Biffi et al. 2016).

Further numerical analyses are nonetheless necessary since
no study has so far investigated in detail how the hydrostatic
mass bias evolves with time and therefore how the bias on
the sparsity evolves with redshift. Velliscig et al. (2014) have
shown that the baryonic effects that alter M200c at z = 0 tends
to be smaller (by ∼ 5%) at z = 1. If such a trend holds for
larger overdensity thresholds, that would imply that the bias
on the halo sparsity is a decreasing function of redshift.

Overall, all these elements confirm the strength of the clus-
ter sparsity against possible mass bias systematics. The ad-
vantage is twofold. In fact, being a mass ratio, any systematic
error affecting cluster mass estimates is suppressed. More-
over, one can focus on the sparsity at overdensity thresh-
olds corresponding to external regions of the cluster mass
profile where baryonic effects are subdominant. It is also
worth noticing that though hydrostatic masses depend on the
choice of a fiducial cosmology through the angular diameter
distance, the sparsity, being a mass ratio, is independent of
such an assumption.

3.3. Selection Effects

A final remark concerns selection effects. In principle we
do not expect a significant contribution since we have seen
that average sparsity as predicted by Eq. (4) is largely inde-
pendent of the lower limit of integration. To have a quanti-
tative estimate of potential systematics induced by the shape
of the selection function, we multiply the integrands on both
sides of Eq. (4) by a selection function of the form:

f (M∆) =
1
2

[
1 + erf

(
lnM∆ − lnMmin

∆√
2σ f

)]
, (7)

where σ f modulate the shape of the selection function.
In Fig. 8 we plot the relative difference of the redshift

evolution of the average sparsity with respect to the case
f (M∆) = 1 for the fiducial Planck cosmology and for dif-
ferent values of σ f = 0.01,0.4,0.7 and 1.5. We can see the
differences are at sub-percent level.

4. SPARSITY OF X-RAY CLUSTERS &
COSMOLOGICAL PARAMETER CONSTRAINTS
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Figure 8. Relative difference of the average sparsity with respect
to the case with no selection function for the Planck fiducial cos-
mology and different values of the selection function parameter
σ f = 0.01,0.4,0.7 and 1.5. The inset plot shows the form of the
selection function for the different values of σ f .

We estimate the halo sparsity of a set of X-ray galaxy clus-
ters with hydrostatic mass measurements. The dataset con-
sists of a low-redshift sample of 57 clusters (0.05 < z < 0.3)
from Ettori et al. (2010, 2017a,b) and Ghirardini et al. (2017)
and a high-redshift sample of 47 clusters (0.4 < z < 1.2)
presented in Amodeo et al. (2016). DM masses M500c and
M1000c have been estimated by solving the hydrostatic equi-
librium equation (see e.g. Sarazin 1986; Ettori 2013). We
compute the sparsity of each cluster in the catalogs, ŝ500,1000 =
M500c/M1000c, and estimate the uncertainty by propagating
the mass measurement errors. These are shown in Fig. 9.

For simplicity we have neglected mass correlation effects:
these may be present due to the mass measurement method-
ology which assumes a functional form of the DM halo pro-
file5. Systematics affecting the HE mass estimate can be
more important. In the case of the high-redshift sample,
Amodeo et al. (2016) have tested the consistency of the HE
masses for a subset of 32 clusters for which gravitational
lensing measurements were available in the literature (LC2-
single catalogue from Sereno 2015). They have found a
good agreement within the large statistical uncertainties with

5 Given that the sparsity is a mass ratio, a positive correlation r between
the estimates of M500c and M1000c would imply that we are overestimating
the sparsity errors by a factor ∼ 1/

√
(1 − r). For instance, if r ∼ 0.5 as it

is reasonable to expect, this would correspond to a 30% overestimation and
thus result into more conservative constraints on the cosmological parame-
ters.

ln (MHE/Mlens) = 0.16± 0.65. For the low-redshift sample
there is no available comparison, however we noticed that the
dataset from Ettori et al. (2010) consists of massive clusters
for which mass measurement errors are larger than the ex-
pected bias from baryonic feedback discussed in Section 3.2.
In the case of the very low-redshift sample by Ettori et al.
(2017a,b); Ghirardini et al. (2017), HE mass uncertainties
are at a few percent level and we cannot a priori exclude
that some of the sparsity measurements are affected by ra-
dial mass bias. After all, we can see in Fig. 9 that the sparsity
of four of the clusters in the very low-redshift sample sig-
nificantly deviate from the values of the other objects in the
dataset. We have found that removing these objects from the
data analysis leaves the cosmological results unaltered. As
seen in Section 2.3, this is direct consequence of the fact that
the cosmological signal is largest at z∼ 0.5. Nevertheless, to
test the stability of the cosmological analysis against possible
contamination from HE mass bias, we perform an additional
analysis assuming a systematic redshift dependent shift of
the measured cluster sparsity. More specifically, we assume
a 5% shift of the cluster sparsity at z = 0 linearly reducing to
2% at z = 1. This is an extremely conservative bias model
especially if compared to the level of bias discussed in Sec-
tion 3.2. In fact, it implies that the HE mass determination
of each cluster systematically underestimates M500c by 28%
and M1000c by 35% at z = 0, and by 23% and 30% respectively
at z = 1 (consistently with the 5% reduction found for M200c

estimates in Velliscig et al. 2014).
Since we compare individual cluster sparsity estimates to

the predictions of the ensemble average sparsity we account
for the intrinsic dispersion of the halo sparsity discussed in
Section 2.2 by adding in quadrature a conservative and abso-
lute 0.2 intrinsic scatter (consistent with N-body simulation
results shown in the inset plot of Fig. 2) to the statistical error.

We perform a Markov Chain Monte Carlo data anal-
ysis to derive constraints on the ΛCDM model parame-
ters, (Ωm,σ8,h,ns,Ωbh2). To reduce the effect of param-
eter degeneracies, we assume a set of Gaussian priors on
ns ∼N (0.963,009) consistently with Planck results (Planck
Collaboration 2015), h ∼ N (0.688,0.033) from Efstathiou
(2014) and Ωbh2 ∼ N (0.022,0.002) consistent with Big-

Bang Nucleosynthesis bounds (Cyburt et al. 2016). We as-
sume flat priors for Ωm ∼U(0.05,0.95) and σ8 ∼U(0.2,1.8).
In order to evaluate the impact of the prior on h, we have also
performed a likelihood analysis of the full cluster sample
assuming a Gaussian HST prior h ∼ N (0.732,0.024) from
Riess et al. (2016).

We evaluate the following χ2:

χ2 =
∑

i

[ŝi
500,1000 − 〈sth

500,1000(zi)〉]2

σ2
int +σ2

si
500,1000

, (8)
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Figure 9. Sparsity of X-ray clusters. The low-redshift sample con-
sists of clusters with mass measurements from Ettori et al. (2017a,b)
and Ghirardini et al. (2017) also shown in the inset plot (black
empty circles), and Ettori et al. (2010) (blue empty circles). The
high-redshift sample consists of clusters with mass estimates from
Amodeo et al. (2016) (red solid triangles). The black solid line and
the black dotted line correspond to the best-fit ΛCDM models in-
ferred assuming the ST-RayGal and ST-Despali mass functions re-
spectively. We may notice four clusters at z < 0.1 whose sparsity
significantly depart from the best-fit. We have checked that exclud-
ing these outliers from the analysis does not alter the result of the
cosmological parameter inference.

where ŝi
500,1000 is the sparsity of the i-th cluster in the cat-

alog, 〈sth
500,1000(zi)〉 is the theoretical model prediction given

by Eq. (4) assuming a given mass function model, σint = 0.2
is the intrinsic scatter of the halo sparsity6 (conservatively set
to a value consistent with the N-body results) and σsi

500,1000
the

error on the cluster sparsity measurement.
We use the Metropolis-Hastings algorithm to generate 15

independent random chains of 2× 105 samples and evalu-
ate the rejection rate every 100 steps and adjust the width of
the parameters dynamically. We check the convergence of
the chains using the Gelman-Rubin test (Gelman & Rubin
1992).

The results of the likelihood data analysis assuming the
ST-RayGal mass function are summarised in Fig. 10 where
we plot the marginalised 1 and 2σ credibility contours in the
Ωm −σ8 plane for the different cases. For comparison we also
plot the marginalised credibility contours from the Planck
cosmological data analysis (Planck Collaboration 2015) and

6 In principle one can attempt to infer the intrinsic scatter from the data
regression with the other cosmological parameters.
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Figure 10. Marginalised 1 and 2σ contours in the Ωm − σ8 plane
assuming the ST-RayGal mass function using the full X-ray clus-
ter dataset (black solid lines), the low-z redshift sample only (blue
dotted lines) and in the case of the HST prior on h (blue dashed
lines). For comparison we also plot the contours from the Planck
cosmological data analysis (Planck Collaboration 2015) and KIDS-
450 (Hildebrandt et al. 2017).
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Figure 11. Marginalised 1 and 2σ contours in the Ωm −σ8 plane as
in Fig. 10. Here, the blue long-short dashed lines are the contours
inferred assuming the ST-Despali mass function.

the weak gravitational lensing from KIDS-450 (Hildebrandt
et al. 2017). We can see that the constraints on Ωm and σ8

are rather weak. Given the large uncertainties of the sparsity
sample at z & 0.4, this is not surprising since the variation of
the sparsity with respect to σ8 is the largest at z∼ 0.4, while
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that with respect to Ωm remains quite flat for z & 0.5 (see top
panel in Fig 4). The best-fit model corresponds to Ωm ' 0.4
and σ8' 0.6. We plot the associated average sparsity as func-
tion of redshift as black solid line in Fig. 9. Notice the strong
degeneracy between Ωm and σ8. As discussed in Section 2.3
this is expected given the sensitivity of the halo sparsity to
S8 ≡ σ8

√
Ωm for which we find S8 = 0.40±0.11 at 1σ.

As we can see in Fig. 10, the credibility contours do not
significantly differ from those inferred under the HST prior.
This is also consistent with the analysis presented in Sec-
tion 2.3, which indicates that the halo sparsity is less sensi-
tive to h than σ8, Ωm and ns. Indeed, changing the priors on
ns can have a more significant impact on the inferred con-
straints. However, ns is tightly constrained by the Planck
data, while there are larger uncertainties on the value of h,
that is why we have tested the sensitivity of the constraints to
the h prior.

In Fig. 10 we also plot the credibility contours inferred us-
ing the low-z sample (z . 0.4) only. These do not differ from
those obtained using the full sample, which is not surprising
given the larger uncertainties of the high-z sample. Overall,
the inferred credibility contours overlap with those inferred
from Planck within 1σ as well as those from the KIDS-450
dataset.

In Fig. 11 we plot the constraints in the Ωm − σ8 plane
inferred assuming the ST-Despali mass function. Differ-
ently from the ST-RayGal case we find bounded contours at
1σ, though still spread over a larger portion of the parame-
ter space. The one-dimensional marginalised constraints are
Ωm = 0.42±0.17 and σ8 = 0.80±0.31 at 1σ, with the best-fit
values being Ωm = 0.36 and σ8 = 0.74. We plot the associated
average sparsity as function of redshift as black dotted line
in Fig. 9. From the analysis of the Monte Carlo chains we
obtain S8 = 0.48±11 at 1σ, which is consistent with the con-
straints found using the ST-RayGal mass function. As we can
see in Fig. 11, the contours are statistically consistent with
those inferred from the ST-RayGal analysis, though devia-
tions are noticeable in the tail of the distribution for low val-
ues of Ωm and large values of σ8. This is not unexpected since
in this range of the parameter space the mass function cali-
bration may deviate from that of the vanilla ΛCDM model of
the RayGalGroupSims simulation. The bounds are compati-
ble with the Planck results and consistent with those from the
KIDS-450 analysis7.

7 Several large-scale structure data analyses have constrained combina-
tions of Ωm and σ8. As an example, SZ cluster abundance data from the
South Pole Telescope (SPT) survey gives σ8(Ωm/0.27)0.3 = 0.797± 0.031
(Haan et al 2016). The analysis of the cluster sparsity presented here gives
consistent bounds, σ8(Ωm/0.27)0.3 = 0.87± 0.26. Similarly, measurements
of the galaxy clustering from the Dark Energy Survey (DES) constrain
σ8(Ωm/0.3)0.16 = 0.74± 0.12 (Kwan et al. 2017), and we find again a re-
sult consistent within 1σ, σ8(Ωm/0.3)0.16 = 0.83±0.29.

We have limited the analysis including the systematic HE
mass bias model discussed at the beginning of this section
to the case of the ST-Despali mass function. The results of
the likelihood data analysis give S8 = 0.51± 0.11, which is
consistent with the results obtained assuming no systematic
bias model.

5. X-RAY CLUSTER SPARSITY FORECASTS

Future observational programs will provide increasingly
large samples of clusters. Surveys such as eROSITA (Merloni
et al. 2012) are expected to detect several hundred thousands
of clusters across a large redshift range. Cosmological pa-
rameter constraints will be inferred from accurate measure-
ments of cluster number counts and spatial clustering (see
e.g. Pillepich, Porciani & Reiprich 2012).

Sparsity measurements capable of providing constraints
that are competitive with respect to those inferred from other
cosmological probes strongly depends on the availability of
accurate mass estimations. In the case of large datasets, such
as those from eROSITA, cluster masses will be measured
through the use of observationally calibrated scaling relations
(see e.g. Maughan et al. 2012; Ettori 2013, 2015). More pre-
cise estimates for instance using HE masses require observa-
tions that are able to resolve the cluster mass profile. How-
ever, these may be available only for smaller cluster samples
through follow-up observations.

Here, we perform a Fisher matrix forecast of the cosmo-
logical parameter errors from sparsity measurements to de-
termine the type of galaxy cluster observations needed to de-
rive competitive constraints with respect to those that can be
obtained with other standard probes such as the CMB.

To this purpose we evaluate the Fisher matrix:

Fµν =
∑

i

1
σ2

zi

∂〈s500,1000(zi)〉
∂θµ

∂〈s500,1000(zi)〉
∂θν

∣∣∣∣
θ̂µ

, (9)

where θµ = (Ωm,σ8,h,ns,Ωb) are the cosmological parame-
ters, θ̂µ the fiducial parameter values and σzi is the statistical
error on the mean sparsity. We compute the partial deriva-
tives in Eq. (9) using a five-point stencil approximation. We
model the error on the average sparsity as

σzi = 〈sfid
500,1000(zi)〉eM

√
2

N(zi)
, (10)

where 〈sfid
500,1000(zi)〉 is the fiducial sparsity value, eM is the

fraction error on mass measurements, N(zi) is the number of
clusters at redshift zi given by

N(zi)≡ Asurvey ∆z f
dN

dzdA
(zi), (11)

where Asurvey is the survey area, ∆z is the size of the redshift
bins, f is the fraction of clusters with mass measurement er-
ror eM and dN

dzdA (z) is cluster number count distribution. Again
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for simplicity we neglect correlations in the estimation of the
masses M500c and M1000c. Notice that as in the case of the
synthetic likelihood test presented in Section 4, we do not add
in quadrature the intrinsic scatter of the halo sparsity to the
statistical error as in the data analysis described in Section 4.
This is because in the spirit of the Fisher matrix calculation
we do not compare predictions of the ensemble average spar-
sity to the sparsity of an individual cluster at a given redshift,
rather to the estimated average sparsity from an ensemble of
N(zi) clusters.

We assume a Planck fiducial ΛCDM cosmology and con-
sider a full sky survey with cluster number count distribu-
tion consistent with a eROSITA-like survey. This is expected
to detect ∼ 105 clusters with mass & 1013 h−1 M�. To this
purpose we estimate the cluster number counts as function
of redshift for our fiducial cosmology by integrating the ST-
RayGal mass function with M500c and imposing a flux cut
FX,cut = 4.3× 10−14 erg s−1 cm−2, where we have used the
luminosity-mass relation from Mantz et al. (2010) with no
intrinsic scatter. The predicted number count distribution is
shown in Fig. 12. We may notice that this is consistent with
the redshift distribution estimated by Pillepich, Porciani &
Reiprich (2012) (see their Fig. 3 for the photon count rate
threshold corresponding to Mcut

500c & 5×1013 h−1 M�) with a
total count of∼ 3×104 clusters. For simplicity, here we only
consider redshift bins of size ∆z = 0.1 in the redshift range
0 . z . 1.4.

We limit our analysis to two different observational sce-
narios: small sample-high precision sparsity measurements
with mass errors of eM = 0.01 for ∼ 300 clusters ( f = 0.01)
and eM = 0.05 for ∼ 3000 clusters ( f = 0.10) respectively;
large sample-low precision sparsity measurements with mass
errors of eM = 0.1 for ∼ 6000 clusters ( f = 0.2) and eM = 0.2
for all clusters ( f = 1). The latter scenario considers the
possibility of measuring masses over a large sample of clus-
ters through well calibrated scaling relations whose validity
should be limited to ∼ 10 − 30% level.

We combine the Fisher matrix from Eq. (9) to the Planck-
Fisher matrix which has been computed using the code Cos-
moFish (Raveri et al. 2016a,b).

The results are summarised in Tables 2 and 3. In all cases
we can see that including the information from the halo spar-
sity improves the CMB constraints from Planck. Indeed, the
level of improvement depends on the observational configu-
ration considered. Quite remarkably, we find that a 1% mass
error estimation for a sample of ∼ 300 clusters has the great-
est impact in reducing the Planck errors on several parame-
ters. For instance, we find an improvement of a factor ∼ 2.3
on the estimation of σσ8 in the ST-RayGal case, while assum-
ing the ST-Despali mass function we find an improvement of
a factor ∼ 1.9 on σΩm and ∼ 1.8 on σσ8 . Even for the re-
alistic scenario with 20% mass errors, we find up to ∼ 30%

Figure 12. Expected redshift distribution of clusters of a eROSITA-
like survey with X-ray flux cut FX,cut = 4.3× 10−14 erg s−1 cm−2 for
our fiducial cosmological model.

improvement of the Planck constraints. Again, assuming the
ST-Despali mass function systematically predicts smaller pa-
rameter errors than those obtained the ST-RayGal mass func-
tion.

Compared to other cosmic probes such as the combina-
tion of CMB constraints with those from cluster number
counts and angular clustering studied in Pillepich, Porciani
& Reiprich (2012) we find that the sparsity can provide cos-
mological parameter constraints of the same order (see e.g.
Table B2 in Pillepich, Porciani & Reiprich 2012).

6. CONCLUSIONS

In this work we have presented a first cosmological analy-
sis of the dark matter halo sparsity. This characterises halos
in terms of the ratio of halo masses at two different over-
densities and carry cosmological information encoded in the
mass profile of halos which can be retrieved from mass mea-
surements of galaxy clusters.

Building upon the work of Balmes et al. (2014) we have
tested the sparsity properties using halo catalogs from a large
volume high-resolution N-body simulation. In particular, we
have shown that the average sparsity of an ensemble of ha-
los can be accurately predicted from prior knowledge of the
halo mass function. To this purpose we have introduced the
ST-RayGal parameterisation which reproduces to great accu-
racy the numerical halo mass function for halo masses M200c,
M500c and M1000c, and allows us to recover the measured av-
erage sparsity values at different redshift snapshots to sub-
percent level.
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Planck only +〈s500,1000(z)〉 (eM = 0.01, f = 0.01) +〈s500,1000(z)〉 (eM = 0.05, f = 0.1)

σΩm 0.01082 0.01022 / 0.00571 0.01035 / 0.00684

σσ8 0.01396 0.00597 / 0.00780 0.00720 / 0.00926

σns 0.00428 0.00414 / 0.00300 0.00418 / 0.00328

σh 0.00763 0.00723 / 0.00411 0.00732 / 0.00490

σΩb 0.00095 0.00090 / 0.00053 0.00091 / 0.00062

Table 2. Marginalised errors on cosmological parameters from the Fisher matrix analysis of small sample-high precision sparsity measurements
in combination with Planck constraints. The numbers quoted on the left (right) correspond to the Fisher forecast based on the ST-RayGal (ST-
Despali) mass function.

Planck only +〈s500,1000(z)〉 (eM = 0.10, f = 0.2) +〈s500,1000(z)〉 (eM = 0.20, f = 1)

σΩm 0.01082 0.01044 / 0.00751 0.01041 / 0.00731

σσ8 0.01396 0.00850 / 0.01010 0.00805 / 0.00984

σns 0.00428 0.00420 / 0.00345 0.00419 / 0.00340

σh 0.00763 0.00738 / 0.00536 0.00736 / 0.00522

σΩb 0.00095 0.00092 / 0.00068 0.00092 / 0.00066

Table 3. As in Table 2 for large sample-low precision sparsity measurements.

We have tested the accuracy of the theoretical predictions
assuming other mass function parameterisations proposed in
the literature. Depending on the mass function model, we
found deviations with respect to the average sparsity from
the N-body halo catalogs up to 10% level.

The possibility to predict the average sparsity for a given
set of cosmological parameters enables us to perform a cos-
mological model parameter inference using cluster sparsity
measurements. To test this we have generated a synthetic set
of data and performed a likelihood analysis from which we
have retrieved the input fiducial cosmology.

Systematic errors affecting halo sparsity data analyses may
arise primarily from uncertainties in the theoretical mod-
elling of the halo mass function and the radial dependent
cluster mass bias from baryonic feedback processes. Here,
we have performed an analysis of these systematics. Quite
importantly, using results from state-of-art numerical simula-
tions we show that for massive systems baryonic effects alter
the halo sparsity at a few percent level. This is a subdominant
compared to the uncertainties from mass estimation errors of
currently available cluster datasets. We find that cluster se-
lection effects have a negligible impact on sparsity which is
an obvious advantage compared to other cluster cosmologi-
cal proxies such as the number counts or the spatial cluster-
ing.

We have estimated the sparsity of a sample of X-ray clus-
ters with hydrostatic mass measurements and performed a
Markov Chain Monte Carlo likelihood data analysis to infer
constraints Ωm and σ8. We find weak marginalised bounds
on Ωm and σ8. Assuming the mass function from Despali

et al. (2016) gives the strongest bound, in particular we find
Ωm = 0.42±0.17 and σ8 = 0.80±0.31 at 1σ, corresponding
to S8 = 0.48± 0.11. In all cases the inferred constraints are
compatible with those inferred from the Planck cosmologi-
cal data analysis within 1σ. We find these results to be stable
against a conservative systematic bias model accounting for
baryonic effects on cluster mass estimates.

Future cluster surveys can provide larger sparsity datasets.
Using a Fisher matrix approach we have investigated their
complementarity with respect CMB observations from
Planck. In particular we have performed a parameter error
forecast for different observational scenarios and we found
that sparsity measurements from a small cluster sample of
∼ 300 clusters with mass uncertainties of 1% can improve
Planck constraints on Ωm and σ8 by approximately a factor
of 2. However, this requires a control of systematic errors
due to hydrostatic mass bias.

Cluster mass measurements from SZ and lensing observa-
tions may also provide viable datasets to estimate the halo
sparsity and we leave such studies to future works.
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z A200c a200c p200c A500c a500c p500c A1000c a1000c p1000c

0.00 0.35884 1.2300 -0.79142 0.28401 1.4568 -0.67260 0.20596 1.7978 -0.72148

0.50 0.42038 0.9752 -0.54330 0.28378 1.1859 -0.58425 0.21628 1.4134 -0.53098

0.66 0.35697 1.0039 -0.74000 0.27724 1.1347 -0.56833 0.21555 1.3339 -0.47343

1.00 0.27751 0.9944 -0.93238 0.25082 1.0470 -0.61536 0.19365 1.2537 -0.51639

1.14 0.29991 0.9505 -0.83109 0.24834 1.0429 -0.58941 0.19134 1.2156 -0.48951

1.50 0.22855 0.9457 -0.97637 0.22936 1.0014 -0.58554 0.18885 1.1400 -0.39898

2.00 0.15502 0.9375 -1.13120 0.23210 0.9459 -0.46949 0.18072 1.0830 -0.34148

Table 4. Best-fit coefficients of the ST mass function for halos with masses M200c, M500c and M1000c respectively.

APPENDIX

A. HALO MASS FUNCTION PARAMETRISATION

We use the numerical mass functions estimated from the RayGalGroupSims simulation SOD halo catalogs with mass M200c,
M500c and M1000c respectively to calibrate at each redshift snapshot the coefficients of the Sheth-Tormen mass function formula
(Sheth & Tormen 1999):

dn
dM

=
ρm

M

(
−

1
σ

dσ
dM

)
A
δc

σ

√
2a
π

[
1 +

(
a
δ2

c

σ2

)−p]
e−

aδ2
c

2σ2 , (A1)

ρm is the present mean matter density, δc is the linearly extrapolated spherical collapse threshold which we compute using the
formula from Kitayama & Suto (1996) and

σ2(M,z) =
1

2π2

∫
dk k2P(k,z)W̃ 2[k R(M)], (A2)

is the variance of linear density field smoothed on a spherical volume of radius R enclosing the mass M = 4/3πρmR3, with P(k,z)
being the linear matter power spectrum at redshift z and

W̃ 2[k R(M)] =
3

(kR)3 [sin(kR) − (kR)cos(kR)]. (A3)

We determine the best-fit ST coefficients using a Levenberg-Marquardt minimisation scheme. These are quoted in Table 4 for
halo masses M200c, M500c and M1000c respectively. We find the best-fit functions to have logarithmic deviations with respect to
the numerical estimates to better than 5%.

In order to extrapolate the mass functions at any given redshift, we follow the approach of Despali et al. (2016) and parametrise
the redshift dependence of the ST coefficients in terms of the variable x = log10(∆/∆vir(z)), where ∆vir(z) is the virial overdensity
as given by the formula derived in Bryan & Norman (1998). We find that the redshift variation of the best-fit ST coefficients can
be described to very good approximation by a quadratic fit as function of x given by:

A200c(x) = −10.2185312x2 + 4.78051093x − 0.1206716

a200c(x) = 4.07275047x2 − 0.49618532x + 0.96372361

p200c(x) = −23.48761585x2 + 10.5651697x − 1.752599071

(A4)


A500c(x) = −2.08511667x2 + 2.71726345x − 0.59113241

a500c(x) = −1.0788725x2 + 3.25302957x − 0.32810261

p500c(x) = 1.04288295x2 − 1.76269479x + 0.06162189

(A5)

and 
A1000c(x) = −1.65696205x2 + 3.07836133x − 1.20944538

a1000c(x) = −1.18612053x2 + 4.91186256x − 1.98337952

p1000c(x) = 1.33135179x2 − 3.7042898x + 1.67853762

(A6)
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which we plot in Fig. 13 against the best-fit values quoted in Table 4.

Figure 13. Comparison of the ST best-fit parameters dependence on x = log10(∆c/∆vir(z)) and the best-fit quadratic functions for A∆c (top left
panel), a∆c (top right panel) and p∆c (bottom panel) for ∆c = 200, ∆c = 500 and 1000, respectively.

In Fig. 14 we plot the ST mass functions for M200c, M500c and M1000c with coefficients given by Eq. (A4), Eq. (A5) and
Eq. (A6) against the N-body mass function estimates, to which we have referred as the ST-RayGal mass functions. As we can
see logarithmic deviations with respect to the numerical results are still within 5% level.

We find that the ST-RayGal mass function formulae can also reproduce the SOD mass functions for M500c and M1000c from N-
body simulations with different cosmological parameter values. In particular, we have used halo catalogs at z = 0 from simulations
of 162 h−1 Mpc box-length and 5123 particles of two flat ΛCDM models: ΛCDM-W1 with Ωm = 0.29, σ8 = 0.90, Ωb = 0.047 and
ns = 0.990; ΛCDM-W5 with Ωm = 0.26, σ8 = 0.79, Ωb = 0.044 and ns = 0.963. As shown in Fig 15, the logarithmic differences
between the ST-RayGal mass function and the numerical estimates from the ΛCDM-W5 and ΛCDM-W1 catalogs respectively
are within the 5% level. Using the same halo catalogs we estimate the average sparsity at z = 0. In the case of the ΛCDM-W5
simulation we find 〈s500,1000〉 = 1.41, while in the ΛCDM-W1 case we find 〈s500,1000〉 = 1.36. These values are consistent to within
a few percent with the average sparsity prediction inferred by solving Eq. (4) with the ST-RayGal mass functions. In particular,
we obtain 〈sth

500,1000〉 = 1.43 for the ΛCDM-W5 model and 〈sth
500,1000〉 = 1.39 for the ΛCDM-W1 cosmology.
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Figure 14. Halo mass function from the RayGalGroupSims simulation for SOD halos with mass M200c (top left panel) M500c (top right panel)
and M1000c (bottom panel) at z = 0,0.5,1,1.5 and 2 (top to bottom) respectively. The solid lines are the ST-RayGal mass functions with
coefficients given by Eq. (A4), Eq. (A5) and Eq. (A6) respectively. The logarithmic residual is shown in the bottom panel: as we can see
deviations are within 5% level across the entire mass range.
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Figure 15. SOD halo mass functions from the ΛCDM-W5 (black squares) and ΛCDM-W1 (red triangles) with mass M500c (left panel) and
M1000c (right panel) respectively against the ST-RayGal predictions.


