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Occam's razor suggests assigning more prior probability to a hypothesis corresponding to a simpler distribution of data than to a hypothesis with a more complex distribution of data, other things equal. An idealization of Occam's razor in terms of the entropy of the data distributions tends to favor the null hypothesis over the alternative hypothesis. As a result, lower p values are needed to attain the same level of evidence.

A recently debated argument for lowering the significance level to 0.005 as the p value threshold for a new discovery and to 0.05 for a suggestive result would then support further lowering them to 0.001 and 0.01, respectively.

Introduction

In their arguments to redefine statistical significance from 0.05 to 0.005, [START_REF] Benjamin | Redefine statistical significance[END_REF] added to the "large and ever-increasing literature on the use and misuse of significance tests," with much of it centering on the fact that the p value is not defined as a probability that the null hypothesis is true (Cox, 2006, pp. 41-42), and the resulting difficulty in interpretation [START_REF] Schervish | P values: What they are and what they are not[END_REF][START_REF] Royall | Statistical Evidence: A Likelihood Paradigm[END_REF][START_REF] Efron | Scales of evidence for model selection: Fisher versus Jeffreys[END_REF][START_REF] Goodman | Commentary: The p-value, devalued[END_REF]. The fact that p values can be automatically calculated makes them ubiquitous in scientific reports but also contributes to the perception that they are more objective than posterior probabilities.

Rather than choosing between significance testing and Bayesian methods, many researchers provided ways to calibrate a p value for interpretation as a Bayes factor, enabling interpretation as a posterior probability of null hypothesis truth when a prior probability can be specified. Such calibrations support not only the intuition of [START_REF] Fraser | Inference for bounded parameters[END_REF] and others that an extremely low p value indicates strong evidence against the null hypothesis but also support arguments against considering p values near 0.05 as indicative of strong evidence (e.g., [START_REF] Sellke | Calibration of p values for testing precise null hypotheses[END_REF]. See [START_REF] Held | On p-values and bayes factors[END_REF] for a recent review.

Under H 0 , the null hypothesis, a p value p (X) is a random variable with the uniform probability density function f 0 , where X is the random vector that models the observable sample. With x as the observed sample, p (x) then denotes the observed p value. Under the alternative hypothesis H 1 , the probability density function of p (X) is denoted by f 1 . Thus, p (X) ∼ f = π 0 f 0 +π 1 f 1 , where π 0 = P (H 0 ) and π 1 = P (H 1 ) are the prior probabilities of the null and alternative hypotheses, respectively (π 0 + π 1 = 1). B (p (x)) = f 0 (p (x)) /f 1 (p (x)) is called the Bayes factor in favor of the null hypothesis over the alternative hypothesis since 1 multiplying it by the prior odds yields the posterior odds, that is,

P (H 0 |p (x)) P (H 1 |p (x)) = B (p (x)) π 0 π 1 , (1) 
by Bayes's theorem,

P (H 0 |p (x)) = π 0 f 0 (p (x)) f (p (x)) . (2) 
Guided by Occam's razor, Section 2 proposes a method of adjusting the prior probability π 0 for the simplicity of H 0 relative to that of H 1 . That is accomplished indirectly by replacing an estimate of the Bayes factor such as

B ≈ 1.65 |z (x)| exp -z 2 (x)
2 with a simplicityadjusted estimate such as

|z (x)| B (p (x)) ≈ 1.65z 2 (x) e -z 2 (x) 2 , (3) 
where z (x) is a z-score corresponding to p (x). For example, z (x) could be the standard normal quantile of a one-sided p value testing whether a real-valued quantity is 0, or z 2 (x) could be the χ 2 1 -quantile of a p value testing whether a non-negative quantity is 0, χ 2 1 being the χ 2 distribution with 1 degree of freedom. Equation (3) may hold when |z (x)| > 1, indicating that simplicity considerations increase the Bayes factor and thus the evidence for the null hypothesis in proportion to |z (x)|, the extent that the p value is small. As a result, the p value has to be smaller when considering simplicity than otherwise to achieve a given level of evidence as quantified by a threshold of the Bayes factor. That is the basis of Section 3's case for redefining the p value threshold for statistical significance to 0.001 instead of the 0.005 level that [START_REF] Benjamin | Redefine statistical significance[END_REF] advocate.

Rather than adjusting π 0 for the simplicity of H 0 relative to that of H 1 , Section 4 adjusts a hyperprior distribution for the simplicity of the prior distribution, leading to similar results.

The rationale for simplicity adjustments is clarified in the discussion, Section 5. The methods adjusted for hypothesis simplicity are extended in Appendix A to confidence-based methods of propagating uncertainty and in Appendix B to the case of simultaneously testing multiple null hypotheses.

2 Bayes factors adjusted for the simplicity of each hypothesis 2.1 How to adjust a Bayes factor for hypothesis simplicity

Likelihood functions adjusted for hypothesis simplicity

This subsection presents the general method of adjusting a likelihood function of a parameter for the simplicity of the distributions corresponding to the parameter values. [START_REF] Bickel | Computable priors sharpened into Occam's razors, working paper[END_REF] proposed it as an aid to specifying prior distributions, quantifying simplicity in terms of Kolmogorov complexity.

If g θ (y) is the probability density of an observed sample y given a parameter value θ, then g θ (y) as a function of θ for a given y is called the unsharpened likelihood function. It is a likelihood function in the usual sense, and "unsharpened" indicates that it has not been sharpened, that is, adjusted to account for simplicity as per Occam's razor. Let g

(1) θ (y 1 ) denote the probability density of y 1 , a single value observed as a component of y. For each value of θ, the probability density function g θ is a hypothesis about the distribution of Y , a random sample.

g θ (y) (4) 
as a function of θ.

The sharpness κ controls the degree to which the unsharpened likelihood function is adjusted for hypothesis simplicity. At one extreme, L 0 is the unsharpened likelihood function, ignoring hypothesis simplicity, whereas at the other, L ∞ emphasizes simplicity to the extent of ignoring y. L 1 is the natural default, and L 2 is intermediate to L 1 and L ∞ inasmuch as 2 is the harmonic mean of 1 and ∞.

Bickel (2016) and [START_REF] Bickel | Confidence intervals, significance values, maximum likelihood estimates, etc. sharpened into Occam's razors[END_REF] originally considered κ = 1 and κ ≥ 0, respectively. The case of κ < 0 is allowed as a way to implement Alexandre Patriota's suggestion to give more rather than less weight to distributions of higher entropy (private communication, May 24, 2018). Except when otherwise specified, κ = 1.

Bayes factors adjusted for hypothesis simplicity

The Bayes factor

B (p (x)) = f 0 (p (x)) /f 1 (p (x)), not incorporating the simplicity of f 0 or f 1 ,
is called the unsharpened Bayes factor. It may be sharpened to degree κ by setting y = p (x)

and g a = g

(1) a = f a , where a, the indicator of the truth of the alternative hypothesis, satisfies a = 0 under H 0 and a = 1 under H 1 . In general, f a (p (x)) is an integrated likelihood function of a since f 0 and f 1 are the prior predictive distributions of p (X) under H 0 and H 1 , respectively.

Thus, equation (4

) gives L κ (a) = e -κ S f (1) a f a (p (x)) as the κ-sharpened (integrated)
likelihood function of a and

B κ (p (x)) = L κ (0) L κ (1) = e -κ S (f 0 ) f 0 (p (x)) e -κ S (f 1 ) f 1 (p (x)) = e -κ∆ B (p (x)) (5) 
as the κ-sharpened Bayes factor, where ∆ = S (f 0 ) -S (f 1 ). B κ (p (x)) recovers the unsharpened Bayes factor when κ = 0 or ∆ = 0.

Example:

The normal Bayes factor and its adjustment for hypothesis simplicity

For a running example of adjusting a Bayes factor for the simplicity of the null hypothesis and the alternative hypothesis, a Bayes factor based on the normal distribution will be used.

While that is presented in [START_REF] Held | How the maximal evidence of p-values against point null hypotheses depends on sample size[END_REF] as a lower bound on the Bayes factor, it is developed here instead as a maximum likelihood estimate of the Bayes factor in order to connect it with the fiducial methods of Appendix A and to clarify its relation to the empirical Bayes methods of multiple testing covered in Appendix B.

Let p one (x) denote a given one-sided p value and p (x) = 2 min (p one (x) , 1 -p one (x))

the corresponding two-sided p value. Alternatively, if p (x) is the p value for a χ 2 test or for another test of a null hypothesis at the boundary of the parameter space, then let p one (x) = 1 -p (x) /2 . In either case, z (x) denotes the p one (x)-quantile for the standard

normal distribution function Φ, that is, z (x) = Φ -1 (p one (x)).
Under H 0 , z (X) ∼ N (0, 1) since p (X) ∼ U (0, 1). When assuming z (X) ∼ N (0, σ 2 ) for some σ > 1 under H 1 , the maximum likelihood estimate of B (p (x)) is the normal Bayes factor,

B (p (x)) = φ (z (x)) φ ( σ (x) z (x)) = φ (z (x)) φ ( σ (x) z (x)) = σ (x) e -( 1-σ -2 (x) ) z 2 (x) 2 for |z (x)| ≥ 1,
where φ is the standard normal density function, and σ (x) is defined as σ's maximum likelihood estimate,

σ (x) = arg sup σ>0 φ (σz (x)) = |z (x)| .
Thus, the normal Bayes factor is

B (p (x)) = |z (x)| e -z 2 (x)-1 2 = √ e |z (x)| e -z 2 (x) 2 ≈ 1.65 |z (x)| e -z 2 (x) 2 . ( 6 
)
Since B (p (x)) is not adjusted for hypothesis simplicity, it is unsharpened in the sense that it is an estimate of B (p (x)), a unsharpened Bayes factor in the terminology of Section 2.1. Equation ( 5) suggests the sharpened normal Bayes factor,

B κ (p (x)) = e -κ ∆ B (p (x)) ,
where ∆ = H (N (0, 1)) -H (N (0, σ 2 )). From Michalowicz et al. (2013, p. 127)

, ∆ = ln 1 -ln σ = -ln σ, leading to B κ (p (x)) = σ κ B (p (x)) = |z (x)| κ B (p (x)). The B 1 (p (x))
case appears in equation (3).

Comparisons to other Bayes factors

To compare the sharpened Bayes factor B 1 (p (x)) to its unsharpened counterpart B 0 (p (x)) ( §2.2) and to the following lower bounds of the Bayes factor, Figure 1 displays the quantities as functions of p (x). There, the universal lower bound on the Bayes factor is B (p (x)) = e -z 2 (x) [START_REF] Held | How the maximal evidence of p-values against point null hypotheses depends on sample size[END_REF].

What Figure 1 calls the conservative lower bound on the Bayes factor is Further, its proximity to B 0 (p (x)), as seen in Figure 1, also suggests that it is not too low as an estimate of the unsharpened Bayes factor.

B (p (x)) = -ep (x) ln p (x) , (7) 

Posterior probability adjusted for the simplicity of each hypothesis

The posterior probability of H 0 may be calculated from its prior probability π 0 and the Bayes factor B (p (x)): 

P (H 0 |p (x)) = 1 + P (H 0 |p (x)) P (H 1 |p (x)) -1 -1 = 1 + B (p (x)) π 0 1 -π 0 -1 -1 (8)
according to equations (1) and (2). Likewise, given π 0 and the κ-sharpened Bayes factor B κ (p (x)), the κ-sharpened posterior probability of H 0 is

P κ (H 0 |p (x)) = 1 + e -κ∆ B (p (x)) π 0 1 -π 0 -1 -1 = 1 + B (p (x)) e -κ S (f 0 ) π 0 e -κ S (f 1 ) (1 -π 0 ) -1 -1 (9)
since equation ( 5) has B κ (p (x)) = e -κ∆ B (p (x)) and since ∆ = S (f 0 ) -S (f 1 ). The factor in the right-hand-side that is multiplied by B (p (x)) clarifies the rationale for sharpening the Bayes factor as an elegant way to apply Occam's razor to the assessment of the prior distribution, as will be seen in Section 5.

Negligible

Weak Moderate Strong Very Strong Overwhelming W 1 ≥ 0 W 1 ≥ 1 W 1 ≥ 2 W 1 ≥ 3 W 1 ≥ 5 W 1 ≥ 7 p 0.1
p 0.01 p 0.005 p 0.001 p 0.0005 p 0.00005

Table 1: Scales of evidence for H 1 over H 0 , with the first row according to intervals of the 1-sharpened weight of evidence in bits. The scale is an adaptation [START_REF] Bickel | A predictive approach to measuring the strength of statistical evidence for single and multiple comparisons[END_REF] of the classic base-10 scales of [START_REF] Jeffreys | Theory of Probability[END_REF] to W (p (x)) ≥ 3 and W (p (x)) ≥ 5, the two base-2 scales of [START_REF] Royall | Statistical Evidence: A Likelihood Paradigm[END_REF]. Here, W 1 abbreviates W 1 (p (x)), and p abbreviates p (x). Two of the p value thresholds values are in boldface since they indicate when a result is suggestive (α = 0.01) or significant (α = 0.001) according to Section 3.

Strength of statistical evidence sharpened for hypothesis simplicity

To measure the strength of statistical evidence that the alternative hypothesis is true, let

W (p (x)) = -log 2 B (p (x)), W κ (p (x)) = -log 2 B κ (p (x)), and W κ (p (x)) = -log 2 B κ (p (x)).
Adding "unsharpened" to the term from [START_REF] Good | Studies in the History of Probability and Statistics. XXXVII A. M. Turing's Statistical Work in World War II[END_REF], W (p (x)) is the unsharpened weight of evidence in the data favoring H 1 over H 0 ; analogously, W κ (p (x)) and W κ (p (x)) are the κ-sharpened weight of evidence and the κ-sharpened normal weight of evidence, respectively.

W κ (p (x)) reduces to the unsharpened weight of evidence if κ = 0 or if the hypotheses are equally simple in the distributional sense, that is, if

H (f 0 ) = H (f 1 ).
The weight of evidence is traditionally interpreted in terms of grades of evidence like those found in Table 1, with W (p (x)) in place of its W 1 . The p value thresholds shown there are based on W 1 (p (x)), the 1-sharpened normal weight of evidence.

3 Statistical significance adjusted for the simplicity of each hypothesis [START_REF] Benjamin | Redefine statistical significance[END_REF] argued that 0.005 should be the p value threshold for saying that a result is significant enough to claim a discovery and that the 0.05 threshold should instead indicate that a result is suggestive. The argument is based largely on the Bayes factors that would be attained at each of those thresholds. Those Bayes factors were not adjusted for the simplicity of each hypothesis.

Since the simplicity-adjusted Bayes factors are higher than those not adjusted, the p value thresholds needed to attain the same Bayes factor values are lower when simplicity is taken into account. Sharpening the normal Bayes factor for simplicity leads to these adjustments in the p value thresholds:

• The statistical significance threshold of 0.005 [START_REF] Benjamin | Redefine statistical significance[END_REF] corresponds to a threshold of the unsharpened Bayes factor equal to 3.5. The sharpened Bayes factor is about 3.5 when the p value is 0.001, yielding 0.001 as the simplicity-adjusted threshold for a significant result. As that is Table 1's threshold for strong evidence, that means statistical significance would only be declared when there is strong evidence against the null hypothesis.

• For a suggestive result, the p value threshold of 0.05 [START_REF] Benjamin | Redefine statistical significance[END_REF] corresponds to a threshold of the unsharpened Bayes factor equal to 1.1. The sharpened Bayes factor is about 1.1 when the p value is 0.01, yielding 0.01 as the simplicity-adjusted threshold for a suggestive result. That being Table 1's threshold for weak evidence, a result would only be called suggestive when the evidence against the null hypothesis p (x) ≤ 0.001

p (x) ≤ 0.005 p (x) ≤ 0.01 p (x) ≤ 0.05 Report Significant if κ = 1 Significant if κ = 0 Suggestive if κ = 1 Suggestive if κ = 0 κ = 0 W 0 (x) ≥ 5.4 W 0 (x) ≥ 3.5 * W 0 (x) ≥ 2.7 W 0 (x) ≥ 1.1 † κ = 1 W 1 (x) ≥ 3.7 * W 1 (x) ≥ 2.0 W 1 (x) ≥ 1.3 † W 1 (x) ≥ 0.1 κ = 2 W 2 (x) ≥ 1.9 W 2 (x) ≥ 0.5 W 2 (x) ≥ 0.0 W 2 (x) ≥ -0.9
Table 2: Weights of evidence corresponding to the 0.001 and 0.005 p value thresholds for a significant result and the 0.01 and 0.05 p value thresholds for a suggestive result. The higher of each threshold (0.005 or 0.05) is that proposed by [START_REF] Benjamin | Redefine statistical significance[END_REF], and the lower (0.001 or 0.01) is what it would take for a Bayes factor sharpened at level κ = 1 to attain approximately the same weight of evidence (3.5 ≈ 3.7 or 1.1 ≈ 1.3), as matched by * for significant results and † for suggestive results. Here, W κ (x) is the base-2 logarithm of the Bayes factor in favor of the alternative hypothesis over the null hypothesis when the degree of sharpness is κ.

is weak but not negligible.

Table 2 summarizes that method of adjusting the p value thresholds for the simplicity of the null hypothesis and alternative hypothesis using κ = 1 as the amount of the adjustment, with κ = 0 corresponding to no simplicity adjustment. (The weights of evidence for κ = 2 are also shown in the table since that is an intermediate value in the sense that 2 is the harmonic mean of 1 and ∞.)

4 Posterior probability adjusted for the simplicity of each π 0 value

In Section 2, the prior probability that the null hypothesis is true was assessed as guided by the simplicity of H 0 's prior predictive distribution compared to the simplicity of H 1 's prior predictive distribution. Using π 0 as the prior probability without simplicity considerations, the simplicity adjustment to the prior was passed to the Bayes factor for the reasons to be discussed in Section 5. In contrast with thereby treating π 0 as an epistemological probability in need of assessment with help from Occam's razor, this section treats π 0 as an unknown probability that is a property of the system studied. That means the simplicity of π 0 can guide the assessment of the its higher-level prior distribution, a hyperprior distribution.

The alternative hypothesis indicator A is defined as a random variable of Bernoulli distribution Bern (1 -π 0 ), that is, P (A = 0) = π 0 and P (A = 1) = 1 -π 0 . That A is equal to 1 if H 1 is true and that is equal to 0 if H 0 is true.

Just as Section 2.1.1 quantified the simplicity of each hypothesis in terms of its entropy of p (X), this section quantifies the simplicity of each value of π 0 in terms of its entropy of A. The general method of Section 2.1.1 applies to that entropy and hierarchical model with Y = A, θ = π 0 , and g θ = g π 0 = Bern (1 -π 0 ), as follows. Let Π denote the unsharpened hyperprior distribution of π 0 . If Π is a probability density function with respect to the Lebesgue measure or a probability mass function, then the κ-sharpened hyperprior probability density or the κ-sharpened hyperprior probability mass of π 0 is Π κ (π 0 ) ∝ e -κ S (gπ 0 ) Π (π 0 ), that is,

Π κ (π 0 ) = e -κ S (gπ 0 ) Π (π 0 ) e -κ S g π 0 Π (π 0 ) dπ 0 or Π κ (π 0 ) = e -κ S (gπ 0 ) Π (π 0 ) π 0 e -κ S g π 0 Π (π 0 ) (10) 
respectively. The entropy of Bern (1 -π 0 ) is

S (g π 0 ) = (-π 0 ln π 0 -(1 -π 0 ) ln (1 -π 0 )) = -ln π π 0 0 (1 -π 0 ) (1-π 0 ) ; ∴ Π κ (π 0 ) ∝ e -κ S (gπ 0 ) Π (π 0 ) ∝ π π 0 0 (1 -π 0 ) (1-π 0 ) .
The corresponding κ-sharpened hyperposterior probability density or the κ-sharpened hy-perposterior probability mass is then given by

Π κ (π 0 |p (x)) ∝ Π κ (π 0 ) (π 0 f 0 (p (x)) + (1 -π 0 ) f 1 (p (x))) .
The κ-sharpened hyperposterior probability probability that H 0 is true is, as per equation ( 8),

P Πκ (H 0 |p (x)) = π 0 Π κ (π 0 |p (x)) π 0 f 0 (p (x)) π 0 f 0 (p (x)) + (1 -π 0 ) f 1 (p (x)) (11) = π 0 Π κ (π 0 |p (x)) 1 + B (p (x)) π 0 1 -π 0 -1 -1
in the probability mass case and the analogous quantity in the probability density case.

Example. Suppose, as in Section 2.2, that f 0 = N (0, 1) and f 1 = N (0, σ 2 ), and let Π be the probability mass function on the domain {1/2, 1} of two possible values of π 0 such that Π κ (1/2) = Π κ (1) = 1/2. To compare the resulting adjustment for π 0 simplicity to the corresponding adjustment for hypothesis simplicity ( §2), Figure 2 displays two proposed sharpened posterior probability estimates and their unsharpened counterparts as functions of p (x), the two-sided p value.

Discussion

This paper draws out implications of sharpening Bayes factors and the p value thresholds and posterior probabilities that depend on such Bayes factors, where "sharpening" means adjusting them for the simplicity of distributions as motivated by Occam's razor. But why should they be adjusted for simplicity? Even if Occam's razor is applicable to distributional simplicity, why sharpen Bayes factors as opposed to prior probabilities? Figure 2: Estimated posterior probability that the null hypothesis is true as a function of the two-sided p value. The solid curves are based on π 0 = 1/2 (50% unsharpened prior probability that the null hypothesis is true); the dashed curves are based on a 50% unsharpened hyperprior probability that π 0 = 1/2 and 50% that π 0 = 1; the thicker curves represent the sharpened versions of the thinner curves. Thus, in the notation of equations ( 9) and ( 11), they are P 1 (H 0 |p (x)) (solid, thicker), P 0 (H 0 |p (x)) (solid, thinner), P Π 1 (H 0 |p (x)) (dashed, thicker), and P Π 0 (H 0 |p (x)) (dashed, thinner).

The second factor in the last term of equation ( 9) sheds light on the rationale for sharpening (adjusting for simplicity), for that factor may be interpreted as the sharpened prior odds corresponding to the κ-sharpened prior probability π 0,κ = e -κ S (f 0 ) π 0 e -κ S (f 0 ) π 0 + e -κ S (f 1 ) (1 -π 0 )

,

where κ > 0 is the degree of sharpening according to Occam's razor; -S (f 0 ) and -S (f 1 )

are the degrees of simplicity of the distribution of the p value under the null hypothesis and the alternative hypothesis, respectively. The motive for sharpening is that the simplicity of f 0 compared to that of f 1 may guide the specification of the prior probability. According to this rationale, π 0 is the unsharpened prior probability of H 0 , that is, the prior probability that would be assigned without consideration of its distributional simplicity relative to that of H 1 . Then π 0,κ is a better considered prior probability in the sense that it accounts for that relative simplicity [START_REF] Bickel | Computable priors sharpened into Occam's razors, working paper[END_REF][START_REF] Bickel | Confidence intervals, significance values, maximum likelihood estimates, etc. sharpened into Occam's razors[END_REF].

Using the sharpened prior with the unsharpened Bayes factor yields the same posterior probability as using the unsharpened prior with the sharpened Bayes factor, as may be seen in equation ( 9). Whereas the rationale says an unsharpened prior should be sharpened, arranging the mathematics for instead sharpening the Bayes factor enables much clearer comparisons with previous Bayes factors without having to consider the unsharpened prior, as in Sections 2 and 3.

That rationale applies only at a higher level to Section 4, in which π 0 is an unknown parameter of the biological system or other system studied rather than an epistemological probability. There, the epistemological probability is modeled as a hyperprior.

hypothesis to be so vague that µ = 0, making H 1 an example of a local alternative hypothesis [START_REF] Held | On p-values and bayes factors[END_REF], and σ > 1. Equation ( 6) then generalizes to

B (p (x i ) ; m) = σe -( 1-σ -2 1 ) z 2 (x) 2 ,
where σ is the maximum likelihood estimate of the standard deviation of z (x 1 ), z (x 2 ), . . . , z (x m ), with each z (x i ) related to p (x i ) in the same way as Section 2.2 related z (x) to p (x). (The case B (p (x 1 ) ; 1) then recovers B (p (x 1 )).) An empirical Bayes estimate of the local false discovery rate of the ith null hypothesis is obtained by plugging B (p (x i ) ; m) into B (p (x)) in equation ( 9).

  which[START_REF] Sellke | Calibration of p values for testing precise null hypotheses[END_REF] considered as a lower bound on B (p (x)) under p (x) ≤ 1/e and a broad condition on the hazard rate that is useful for testing simple, two-sided null hypotheses. As[START_REF] Sellke | Calibration of p values for testing precise null hypotheses[END_REF] lamented, an upper bound B (p (x)) would be more desirable than a lower bound since a sufficiently low value of the upper bound would guarantee any specified amount of evidence against H 0 , the same not being true of a lower bound. For example, B (p (x)) < 1% implies that B (p (x)) < 1%, but B (p (x)) < 1% is compatible with B (p (x)) > 1%. However, B (p (x)) is nonetheless higher than (more conservative than) B (p (x)) and the other lower bounds of Bayes factors plotted in[START_REF] Benjamin | Redefine statistical significance[END_REF].

Figure 1 :

 1 Figure 1: The estimated likelihood ratio or lower bound on the Bayes factor as a function of the two-sided p value. From highest to lowest and from darkest to lightest, the curves are the sharpened normal Bayes factor, the unsharpened normal Bayes factor, the conservative lower bound on the Bayes factor, and the universal lower bound on the Bayes factor. In symbols, they are B 1 (p (x)), B 0 (p (x)), B (p (x)), and B (p (x)), respectively.
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A Replacing maximum likelihood with confidence-based methods

A.1 A fiducial modification of the normal Bayes factor

Let σ q = |z (x)| / F -1 (q), where F -1 (q) is the qth quantile of a χ 2 1 variate. Without knowledge of the Bayes factor B (p (x)), this counterpart may be calculated for |z (x)| ≥ 1 and a q ∈ [0, 1] :

in terms of the notation of Section 2.2.

To interpret B (p (x) ; q), consider the random variable Q ∼ U (0, 1). For each q ∈ [0, 1],

the value B (p (x) ; q) is the qth quantile of B (p (x) ; Q), a random variable with a fiducial distribution that depends on p (x), the fixed p value [START_REF] Bickel | Confidence distributions applied to propagating uncertainty to inference based on estimating the local false discovery rate: A fiducial continuum from confidence sets to empirical Bayes set estimates as the number of comparisons increases[END_REF].

Thus, B (p (x)) may be estimated by B (p (x) ; Q)'s median [START_REF] Bickel | Confidence distributions applied to propagating uncertainty to inference based on estimating the local false discovery rate: A fiducial continuum from confidence sets to empirical Bayes set estimates as the number of comparisons increases[END_REF],

which equation ( 6) shows to be essentially the same as the maximum likelihood estimate.

A.2 Fiducial estimates of the posterior probability of H 0 A fiducial estimate of the posterior probability of the null hypothesis may be found by substituting B (p (x) ; 1/2) for B (p (x)) in equation ( 9). Bickel (2017) considered the unsharpened (κ = 0) versions of that and other ways to use confidence distributions and other coherent fiducial distributions to propagate the uncertainty in posterior probabilities.

Those methods are equally applicable to sharpened posterior probabilities. For example, a κ-sharpened fiducial posterior probability of H 0 is the expectation value

Appendix B bridges the gap between the empirical Bayes terminology of [START_REF] Bickel | Confidence distributions applied to propagating uncertainty to inference based on estimating the local false discovery rate: A fiducial continuum from confidence sets to empirical Bayes set estimates as the number of comparisons increases[END_REF] and the evidential terminology of this paper.

B Multiple testing and posterior probabilities as local false discovery rates

From an empirical Bayes point of view, equation ( 2)'s P (H 0 |p (x)) is an unknown local false discovery rate [START_REF] Bickel | Small-scale inference: Empirical Bayes and confidence methods for as few as a single comparison[END_REF][START_REF] Bickel | Confidence distributions applied to propagating uncertainty to inference based on estimating the local false discovery rate: A fiducial continuum from confidence sets to empirical Bayes set estimates as the number of comparisons increases[END_REF], so named because of its relation to the false discovery rate in the context of testing multiple hypotheses, replacing the p (x) with a vector of p values, one for each hypothesis tested [START_REF] Efron | Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction[END_REF]. In empirical Bayes terminology, the P κ (H 0 |p (x)) of equation ( 9) would then be the κ-sharpened local false discovery rate.

In the setting of m simultaneous hypothesis tests, the p values are denoted by z (x 1 ), z (x 2 ), . . . , z (x m ), where each x i represents a different sample. As part of an empirical Bayes approach to hierarchical models, [START_REF] Efron | Size, power and false discovery rates[END_REF]Efron ( , 2010, pp. 72-74) , pp. 72-74) considered normal distributions of z (X) conditional on the alternative hypothesis H 1 , the proposition that the null hypothesis H 0 : z (X) ∼ N (0, 1) is false. In short, the alternative hypothesis is that H 1 : z (X) ∼ N (µ 1 , σ) with (µ 1 , σ) = (0, 1), that is, with µ 1 = 0 and/or σ = 1. In his terminology, H 0 is the "theoretical null hypothesis" since its distribution of z (X) does not depend on x, the observation.

In the example of Section 2.2, the lack of background information requires the alternative