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Abstract

Occam’s razor suggests assigning more prior probability to a hypothesis correspond-

ing to a simpler distribution of data than to a hypothesis with a more complex distri-

bution of data, other things equal. An idealization of Occam’s razor in terms of the

entropy of the data distributions tends to favor the null hypothesis over the alternative

hypothesis. As a result, lower p values are needed to attain the same level of evidence.

A recently debated argument for lowering the significance level to 0.005 as the p value

threshold for a new discovery and to 0.05 for a suggestive result would then support

further lowering them to 0.001 and 0.01, respectively.

Keywords: Bayesian model averaging; Bayesian model selection; calibration of achieved

error rates; empirical Bayes methods; foundations of statistics; hierarchical model; hypothesis

testing; law of likelihood; likelihood paradigm; model checking; objective Bayes factor; p
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1 Introduction

In their arguments to redefine statistical significance from 0.05 to 0.005, Benjamin et al.

(2017) added to the “large and ever-increasing literature on the use and misuse of signif-

icance tests,” with much of it centering on the fact that the p value is not defined as a

probability that the null hypothesis is true (Cox, 2006, pp. 41-42), and the resulting dif-

ficulty in interpretation (Schervish, 1996; Royall, 1997; Efron and Gous, 2001; Goodman,

2003). The fact that p values can be automatically calculated makes them ubiquitous in

scientific reports but also contributes to the perception that they are more objective than

posterior probabilities.

Rather than choosing between significance testing and Bayesian methods, many re-

searchers provided ways to calibrate a p value for interpretation as a Bayes factor, enabling

interpretation as a posterior probability of null hypothesis truth when a prior probability

can be specified. Such calibrations support not only the intuition of Fraser et al. (2004) and

others that an extremely low p value indicates strong evidence against the null hypothesis

but also support arguments against considering p values near 0.05 as indicative of strong

evidence (e.g., Sellke et al., 2001). See Held and Ott (2018) for a recent review.

Under H0, the null hypothesis, a p value p (X) is a random variable with the uniform

probability density function f0, where X is the random vector that models the observable

sample. With x as the observed sample, p (x) then denotes the observed p value. Under the

alternative hypothesis H1, the probability density function of p (X) is denoted by f1. Thus,

p (X) ∼ f = π0f0+π1f1, where π0 = P (H0) and π1 = P (H1) are the prior probabilities of the

null and alternative hypotheses, respectively (π0 + π1 = 1). B (p (x)) = f0 (p (x)) /f1 (p (x))

is called the Bayes factor in favor of the null hypothesis over the alternative hypothesis since
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multiplying it by the prior odds yields the posterior odds, that is,

P (H0|p (x))

P (H1|p (x))
= B (p (x))

π0

π1

, (1)

by Bayes’s theorem,

P (H0|p (x)) =
π0f0 (p (x))

f (p (x))
. (2)

Guided by Occam’s razor, Section 2 proposes a method of adjusting the prior probability

π0 for the simplicity ofH0 relative to that ofH1. That is accomplished indirectly by replacing

an estimate of the Bayes factor such as B̂ ≈ 1.65 |z (x)| exp
(
− z2(x)

2

)
with a simplicity-

adjusted estimate such as

|z (x)| B̂ (p (x)) ≈ 1.65z2 (x) e−
z2(x)

2 , (3)

where z (x) is a z-score corresponding to p (x). For example, z (x) could be the standard

normal quantile of a one-sided p value testing whether a real-valued quantity is 0, or z2 (x)

could be the χ2
1-quantile of a p value testing whether a non-negative quantity is 0, χ2

1 being

the χ2 distribution with 1 degree of freedom.

Equation (3) may hold when |z (x)| > 1, indicating that simplicity considerations increase

the Bayes factor and thus the evidence for the null hypothesis in proportion to |z (x)|, the

extent that the p value is small. As a result, the p value has to be smaller when considering

simplicity than otherwise to achieve a given level of evidence as quantified by a threshold of

the Bayes factor. That is the basis of Section 3’s case for redefining the p value threshold

for statistical significance to 0.001 instead of the 0.005 level that Benjamin et al. (2017)

advocate.
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Rather than adjusting π0 for the simplicity of H0 relative to that of H1, Section 4 adjusts

a hyperprior distribution for the simplicity of the prior distribution, leading to similar results.

The rationale for simplicity adjustments is clarified in the discussion, Section 5. The methods

adjusted for hypothesis simplicity are extended in Appendix A to confidence-based methods

of propagating uncertainty and in Appendix B to the case of simultaneously testing multiple

null hypotheses.

2 Bayes factors adjusted for the simplicity of each hy-

pothesis

2.1 How to adjust a Bayes factor for hypothesis simplicity

2.1.1 Likelihood functions adjusted for hypothesis simplicity

This subsection presents the general method of adjusting a likelihood function of a parameter

for the simplicity of the distributions corresponding to the parameter values. Bickel (2016)

proposed it as an aid to specifying prior distributions, quantifying simplicity in terms of

Kolmogorov complexity.

If gθ (y) is the probability density of an observed sample y given a parameter value θ,

then gθ (y) as a function of θ for a given y is called the unsharpened likelihood function. It

is a likelihood function in the usual sense, and “unsharpened” indicates that it has not been

sharpened, that is, adjusted to account for simplicity as per Occam’s razor. Let g(1)
θ (y1)

denote the probability density of y1, a single value observed as a component of y. For each

value of θ, the probability density function gθ is a hypothesis about the distribution of Y , a

random sample.
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The simplicity of the hypothesis that Y ∼ gθ is the lack of complexity of g(1)
θ in the sense

of S
(
g

(1)
θ

)
, the entropy of g(1)

θ . If, as is usual for a continuous y1, g
(1)
θ is defined with respect

to the Lebesgue measure, then the relevant complexity is the differential entropy,

S
(
g

(1)
θ

)
= −

∫
g

(1)
θ (y1) ln g

(1)
θ (y1) dy1.

For an extended real number κ ∈ [−∞,∞], the κ-sharpened likelihood function is

Lκ (θ) = e
−κS

(
g
(1)
θ

)
gθ (y) (4)

as a function of θ.

The sharpness κ controls the degree to which the unsharpened likelihood function is

adjusted for hypothesis simplicity. At one extreme, L0 is the unsharpened likelihood function,

ignoring hypothesis simplicity, whereas at the other, L∞ emphasizes simplicity to the extent

of ignoring y. L1 is the natural default, and L2 is intermediate to L1 and L∞ inasmuch as 2

is the harmonic mean of 1 and ∞.

Bickel (2016) and Bickel (2018) originally considered κ = 1 and κ ≥ 0, respectively. The

case of κ < 0 is allowed as a way to implement Alexandre Patriota’s suggestion to give more

rather than less weight to distributions of higher entropy (private communication, May 24,

2018). Except when otherwise specified, κ = 1.

2.1.2 Bayes factors adjusted for hypothesis simplicity

The Bayes factor B (p (x)) = f0 (p (x)) /f1 (p (x)), not incorporating the simplicity of f0 or f1,

is called the unsharpened Bayes factor. It may be sharpened to degree κ by setting y = p (x)

and ga = g
(1)
a = fa, where a, the indicator of the truth of the alternative hypothesis, satisfies
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a = 0 under H0 and a = 1 under H1. In general, fa (p (x)) is an integrated likelihood

function of a since f0 and f1 are the prior predictive distributions of p (X) under H0 and H1,

respectively.

Thus, equation (4) gives Lκ (a) = e
−κS

(
f
(1)
a

)
fa (p (x)) as the κ-sharpened (integrated)

likelihood function of a and

Bκ (p (x)) =
Lκ (0)

Lκ (1)
=
e−κS(f0)f0 (p (x))

e−κS(f1)f1 (p (x))
= e−κ∆B (p (x)) (5)

as the κ-sharpened Bayes factor, where ∆ = S (f0)−S (f1). Bκ (p (x)) recovers the unsharp-

ened Bayes factor when κ = 0 or ∆ = 0.

2.2 Example: The normal Bayes factor and its adjustment for hy-

pothesis simplicity

For a running example of adjusting a Bayes factor for the simplicity of the null hypothesis

and the alternative hypothesis, a Bayes factor based on the normal distribution will be used.

While that is presented in Held and Ott (2016) as a lower bound on the Bayes factor, it

is developed here instead as a maximum likelihood estimate of the Bayes factor in order to

connect it with the fiducial methods of Appendix A and to clarify its relation to the empirical

Bayes methods of multiple testing covered in Appendix B.

Let pone (x) denote a given one-sided p value and p (x) = 2 min (pone (x) , 1− pone (x))

the corresponding two-sided p value. Alternatively, if p (x) is the p value for a χ2 test

or for another test of a null hypothesis at the boundary of the parameter space, then let

pone (x) = 1 − p (x) /2 . In either case, z (x) denotes the pone (x)-quantile for the standard

normal distribution function Φ, that is, z (x) = Φ−1 (pone (x)).
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Under H0, z (X) ∼ N (0, 1) since p (X) ∼ U (0, 1). When assuming z (X) ∼ N (0, σ2) for

some σ > 1 under H1, the maximum likelihood estimate of B (p (x)) is the normal Bayes

factor,

B̂ (p (x)) =
φ (z (x))

φ (σ̂ (x) z (x))
=

φ (z (x))

φ (σ̂ (x) z (x))
= σ̂ (x) e−

(1−σ̂−2(x))z2(x)
2

for |z (x)| ≥ 1, where φ is the standard normal density function, and σ̂ (x) is defined as σ’s

maximum likelihood estimate,

σ̂ (x) = arg sup
σ>0

φ (σz (x)) = |z (x)| .

Thus, the normal Bayes factor is

B̂ (p (x)) = |z (x)| e−
z2(x)−1

2 =
√
e |z (x)| e−

z2(x)
2 ≈ 1.65 |z (x)| e−

z2(x)
2 . (6)

Since B̂ (p (x)) is not adjusted for hypothesis simplicity, it is unsharpened in the sense

that it is an estimate of B (p (x)), a unsharpened Bayes factor in the terminology of Section

2.1. Equation (5) suggests the sharpened normal Bayes factor,

B̂κ (p (x)) = e−κ∆̂B̂ (p (x)) ,

where ∆̂ = H (N (0, 1)) − H (N (0, σ̂2)). From Michalowicz et al. (2013, p. 127), ∆̂ =

ln 1 − ln σ̂ = − ln σ̂, leading to B̂κ (p (x)) = σ̂κB̂ (p (x)) = |z (x)|κ B̂ (p (x)). The B̂1 (p (x))

case appears in equation (3).
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2.3 Comparisons to other Bayes factors

To compare the sharpened Bayes factor B̂1 (p (x)) to its unsharpened counterpart B̂0 (p (x))

(§2.2) and to the following lower bounds of the Bayes factor, Figure 1 displays the quantities

as functions of p (x). There, the universal lower bound on the Bayes factor is B (p (x)) =

e−z
2(x) (Held and Ott, 2016).

What Figure 1 calls the conservative lower bound on the Bayes factor is

B (p (x)) = −ep (x) ln p (x) , (7)

which Sellke et al. (2001) considered as a lower bound on B (p (x)) under p (x) ≤ 1/e and a

broad condition on the hazard rate that is useful for testing simple, two-sided null hypothe-

ses. As Sellke et al. (2001) lamented, an upper bound B (p (x)) would be more desirable

than a lower bound since a sufficiently low value of the upper bound would guarantee any

specified amount of evidence against H0, the same not being true of a lower bound. For

example, B (p (x)) < 1% implies that B (p (x)) < 1%, but B (p (x)) < 1% is compatible

with B (p (x)) > 1%. However, B (p (x)) is nonetheless higher than (more conservative than)

B (p (x)) and the other lower bounds of Bayes factors plotted in Benjamin et al. (2017).

Further, its proximity to B̂0 (p (x)), as seen in Figure 1, also suggests that it is not too low

as an estimate of the unsharpened Bayes factor.

2.4 Posterior probability adjusted for the simplicity of each hypoth-

esis

The posterior probability of H0 may be calculated from its prior probability π0 and the Bayes

factor B (p (x)):
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Figure 1: The estimated likelihood ratio or lower bound on the Bayes factor as a function of
the two-sided p value. From highest to lowest and from darkest to lightest, the curves are
the sharpened normal Bayes factor, the unsharpened normal Bayes factor, the conservative
lower bound on the Bayes factor, and the universal lower bound on the Bayes factor. In
symbols, they are B̂1 (p (x)), B̂0 (p (x)), B (p (x)), and B (p (x)), respectively.

P (H0|p (x)) =

(
1 +

(
P (H0|p (x))

P (H1|p (x))

)−1
)−1

=

(
1 +

(
B (p (x))

π0

1− π0

)−1
)−1

(8)

according to equations (1) and (2). Likewise, given π0 and the κ-sharpened Bayes factor

Bκ (p (x)), the κ-sharpened posterior probability of H0 is

Pκ (H0|p (x)) =

(
1 +

(
e−κ∆B (p (x))

π0

1− π0

)−1
)−1

=

(
1 +

(
B (p (x))

e−κS(f0)π0

e−κS(f1) (1− π0)

)−1
)−1

(9)

since equation (5) has Bκ (p (x)) = e−κ∆B (p (x)) and since ∆ = S (f0)− S (f1). The factor

in the right-hand-side that is multiplied by B (p (x)) clarifies the rationale for sharpening

the Bayes factor as an elegant way to apply Occam’s razor to the assessment of the prior

distribution, as will be seen in Section 5.
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Negligible Weak Moderate Strong Very Strong Overwhelming
Ŵ1 ≥ 0 Ŵ1 ≥ 1 Ŵ1 ≥ 2 Ŵ1 ≥ 3 Ŵ1 ≥ 5 Ŵ1 ≥ 7
p / 0.1 p / 0.01 p / 0.005 p / 0.001 p / 0.0005 p / 0.00005

Table 1: Scales of evidence for H1 over H0, with the first row according to intervals of the
1-sharpened weight of evidence in bits. The scale is an adaptation (Bickel, 2011) of the
classic base-10 scales of Jeffreys (1948) to W (p (x)) ≥ 3 and W (p (x)) ≥ 5, the two base-2
scales of Royall (1997). Here, Ŵ1 abbreviates Ŵ1 (p (x)), and p abbreviates p (x). Two of
the p value thresholds values are in boldface since they indicate when a result is suggestive
(α = 0.01) or significant (α = 0.001) according to Section 3.

2.5 Strength of statistical evidence sharpened for hypothesis sim-

plicity

To measure the strength of statistical evidence that the alternative hypothesis is true, let

W (p (x)) = − log2B (p (x)),Wκ (p (x)) = − log2Bκ (p (x)), and Ŵκ (p (x)) = − log2 B̂κ (p (x)).

Adding “unsharpened” to the term from Good (1979), W (p (x)) is the unsharpened weight

of evidence in the data favoring H1 over H0; analogously, Wκ (p (x)) and Ŵκ (p (x)) are the

κ-sharpened weight of evidence and the κ-sharpened normal weight of evidence, respectively.

Wκ (p (x)) reduces to the unsharpened weight of evidence if κ = 0 or if the hypotheses are

equally simple in the distributional sense, that is, if H (f0) = H (f1).

The weight of evidence is traditionally interpreted in terms of grades of evidence like

those found in Table 1, with W (p (x)) in place of its Ŵ1. The p value thresholds shown

there are based on Ŵ1 (p (x)), the 1-sharpened normal weight of evidence.
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3 Statistical significance adjusted for the simplicity of

each hypothesis

Benjamin et al. (2017) argued that 0.005 should be the p value threshold for saying that a

result is significant enough to claim a discovery and that the 0.05 threshold should instead

indicate that a result is suggestive. The argument is based largely on the Bayes factors that

would be attained at each of those thresholds. Those Bayes factors were not adjusted for

the simplicity of each hypothesis.

Since the simplicity-adjusted Bayes factors are higher than those not adjusted, the p value

thresholds needed to attain the same Bayes factor values are lower when simplicity is taken

into account. Sharpening the normal Bayes factor for simplicity leads to these adjustments

in the p value thresholds:

• The statistical significance threshold of 0.005 (Benjamin et al., 2017) corresponds to a

threshold of the unsharpened Bayes factor equal to 3.5. The sharpened Bayes factor is

about 3.5 when the p value is 0.001, yielding 0.001 as the simplicity-adjusted threshold

for a significant result. As that is Table 1’s threshold for strong evidence, that means

statistical significance would only be declared when there is strong evidence against

the null hypothesis.

• For a suggestive result, the p value threshold of 0.05 (Benjamin et al., 2017) corresponds

to a threshold of the unsharpened Bayes factor equal to 1.1. The sharpened Bayes

factor is about 1.1 when the p value is 0.01, yielding 0.01 as the simplicity-adjusted

threshold for a suggestive result. That being Table 1’s threshold for weak evidence, a

result would only be called suggestive when the evidence against the null hypothesis
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p (x) ≤ 0.001 p (x) ≤ 0.005 p (x) ≤ 0.01 p (x) ≤ 0.05

Report Significant if κ = 1 Significant if κ = 0 Suggestive if κ = 1 Suggestive if κ = 0
κ = 0 W0 (x) ≥ 5.4 W0 (x) ≥ 3.5∗ W0 (x) ≥ 2.7 W0 (x) ≥ 1.1†

κ = 1 W1 (x) ≥ 3.7∗ W1 (x) ≥ 2.0 W1 (x) ≥ 1.3† W1 (x) ≥ 0.1
κ = 2 W2 (x) ≥ 1.9 W2 (x) ≥ 0.5 W2 (x) ≥ 0.0 W2 (x) ≥ −0.9

Table 2: Weights of evidence corresponding to the 0.001 and 0.005 p value thresholds for a
significant result and the 0.01 and 0.05 p value thresholds for a suggestive result. The higher
of each threshold (0.005 or 0.05) is that proposed by Benjamin et al. (2017), and the lower
(0.001 or 0.01) is what it would take for a Bayes factor sharpened at level κ = 1 to attain
approximately the same weight of evidence (3.5 ≈ 3.7 or 1.1 ≈ 1.3), as matched by ∗ for
significant results and † for suggestive results. Here, Wκ (x) is the base-2 logarithm of the
Bayes factor in favor of the alternative hypothesis over the null hypothesis when the degree
of sharpness is κ.

is weak but not negligible.

Table 2 summarizes that method of adjusting the p value thresholds for the simplicity of

the null hypothesis and alternative hypothesis using κ = 1 as the amount of the adjustment,

with κ = 0 corresponding to no simplicity adjustment. (The weights of evidence for κ = 2

are also shown in the table since that is an intermediate value in the sense that 2 is the

harmonic mean of 1 and ∞.)

4 Posterior probability adjusted for the simplicity of each

π0 value

In Section 2, the prior probability that the null hypothesis is true was assessed as guided by

the simplicity of H0’s prior predictive distribution compared to the simplicity of H1’s prior

predictive distribution. Using π0 as the prior probability without simplicity considerations,

the simplicity adjustment to the prior was passed to the Bayes factor for the reasons to be
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discussed in Section 5. In contrast with thereby treating π0 as an epistemological probability

in need of assessment with help from Occam’s razor, this section treats π0 as an unknown

probability that is a property of the system studied. That means the simplicity of π0 can

guide the assessment of the its higher-level prior distribution, a hyperprior distribution.

The alternative hypothesis indicator A is defined as a random variable of Bernoulli dis-

tribution Bern (1− π0), that is, P (A = 0) = π0 and P (A = 1) = 1− π0. That A is equal to

1 if H1 is true and that is equal to 0 if H0 is true.

Just as Section 2.1.1 quantified the simplicity of each hypothesis in terms of its entropy

of p (X), this section quantifies the simplicity of each value of π0 in terms of its entropy of

A. The general method of Section 2.1.1 applies to that entropy and hierarchical model with

Y = A, θ = π0, and gθ = gπ0 = Bern (1− π0), as follows. Let Π denote the unsharpened

hyperprior distribution of π0. If Π is a probability density function with respect to the

Lebesgue measure or a probability mass function, then the κ-sharpened hyperprior probability

density or the κ-sharpened hyperprior probability mass of π0 is Πκ (π0) ∝ e−κS(gπ0)Π (π0),

that is,

Πκ (π0) =
e−κS(gπ0)Π (π0)∫
e
−κS

(
gπ′0

)
Π (π′0) dπ′0

or Πκ (π0) =
e−κS(gπ0)Π (π0)∑
π′0
e
−κS

(
gπ′0

)
Π (π′0)

(10)

respectively. The entropy of Bern (1− π0) is

S (gπ0) = (−π0 ln π0 − (1− π0) ln (1− π0))

= − ln
(
ππ00 (1− π0)(1−π0)

)
;

∴ Πκ (π0) ∝ e−κS(gπ0)Π (π0) ∝ ππ00 (1− π0)(1−π0) .

The corresponding κ-sharpened hyperposterior probability density or the κ-sharpened hy-
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perposterior probability mass is then given by

Πκ (π0|p (x)) ∝ Πκ (π0) (π0f0 (p (x)) + (1− π0) f1 (p (x))) .

The κ-sharpened hyperposterior probability probability that H0 is true is, as per equation (8),

PΠκ (H0|p (x)) =
∑
π0

Πκ (π0|p (x))
π0f0 (p (x))

π0f0 (p (x)) + (1− π0) f1 (p (x))
(11)

=
∑
π0

Πκ (π0|p (x))

(
1 +

(
B (p (x))

π0

1− π0

)−1
)−1

in the probability mass case and the analogous quantity in the probability density case.

Example. Suppose, as in Section 2.2, that f0 = N (0, 1) and f1 = N (0, σ2), and let Π

be the probability mass function on the domain {1/2, 1} of two possible values of π0 such

that Πκ (1/2) = Πκ (1) = 1/2. To compare the resulting adjustment for π0 simplicity to

the corresponding adjustment for hypothesis simplicity (§2), Figure 2 displays two proposed

sharpened posterior probability estimates and their unsharpened counterparts as functions

of p (x), the two-sided p value.

5 Discussion

This paper draws out implications of sharpening Bayes factors and the p value thresholds

and posterior probabilities that depend on such Bayes factors, where “sharpening” means

adjusting them for the simplicity of distributions as motivated by Occam’s razor. But why

should they be adjusted for simplicity? Even if Occam’s razor is applicable to distributional

simplicity, why sharpen Bayes factors as opposed to prior probabilities?
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Figure 2: Estimated posterior probability that the null hypothesis is true as a function of
the two-sided p value. The solid curves are based on π0 = 1/2 (50% unsharpened prior prob-
ability that the null hypothesis is true); the dashed curves are based on a 50% unsharpened
hyperprior probability that π0 = 1/2 and 50% that π0 = 1; the thicker curves represent the
sharpened versions of the thinner curves. Thus, in the notation of equations (9) and (11),
they are P1 (H0|p (x)) (solid, thicker), P0 (H0|p (x)) (solid, thinner), PΠ1 (H0|p (x)) (dashed,
thicker), and PΠ0 (H0|p (x)) (dashed, thinner).

The second factor in the last term of equation (9) sheds light on the rationale for sharp-

ening (adjusting for simplicity), for that factor may be interpreted as the sharpened prior

odds corresponding to the κ-sharpened prior probability

π0,κ =
e−κS(f0)π0

e−κS(f0)π0 + e−κS(f1) (1− π0)
,

where κ > 0 is the degree of sharpening according to Occam’s razor; − S (f0) and − S (f1)

are the degrees of simplicity of the distribution of the p value under the null hypothesis and

the alternative hypothesis, respectively. The motive for sharpening is that the simplicity of

f0 compared to that of f1 may guide the specification of the prior probability. According to

this rationale, π0 is the unsharpened prior probability of H0, that is, the prior probability

that would be assigned without consideration of its distributional simplicity relative to that

of H1. Then π0,κ is a better considered prior probability in the sense that it accounts for

14



that relative simplicity (Bickel, 2016, 2018).

Using the sharpened prior with the unsharpened Bayes factor yields the same posterior

probability as using the unsharpened prior with the sharpened Bayes factor, as may be seen

in equation (9). Whereas the rationale says an unsharpened prior should be sharpened,

arranging the mathematics for instead sharpening the Bayes factor enables much clearer

comparisons with previous Bayes factors without having to consider the unsharpened prior,

as in Sections 2 and 3.

That rationale applies only at a higher level to Section 4, in which π0 is an unknown

parameter of the biological system or other system studied rather than an epistemological

probability. There, the epistemological probability is modeled as a hyperprior.
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A Replacing maximum likelihood with confidence-based

methods

A.1 A fiducial modification of the normal Bayes factor

Let σq = |z (x)| /
√
F−1 (q), where F−1 (q) is the qth quantile of a χ2

1 variate. Without

knowledge of the Bayes factor B (p (x)), this counterpart may be calculated for |z (x)| ≥ 1
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and a q ∈ [0, 1] :

B (p (x) ; q) =
φ (z (x))

φ (σqz (x))
=

φ (z (x))

φ (σqz (x))
= σqe

−
(1−σ−2

q )z2(x)
2 =

|z (x)|√
F−1 (q)

e−
z2(x)−F−1(q)

2 (12)

in terms of the notation of Section 2.2.

To interpret B (p (x) ; q), consider the random variable Q ∼ U (0, 1). For each q ∈ [0, 1],

the value B (p (x) ; q) is the qth quantile of B (p (x) ;Q), a random variable with a fiducial

distribution that depends on p (x), the fixed p value (Bickel, 2017).

Thus, B (p (x)) may be estimated by B (p (x) ;Q)’s median (Bickel, 2017),

B (p (x) ; 1/2) =
φ (z (x))

φ
(
σ1/2z (x)

) = σ1/2e
−

(1−σ−2
1/2)z

2(x)

2 .

Since F−1 (1l2) is the median of a χ2
1 variate, it follows that σ1/2 ≈ 1.48 |z (x)| and

B (p (x) ; 1/2) ≈ 1.86 |z (x)| e−
z2(x)

2 ,

which equation (6) shows to be essentially the same as the maximum likelihood estimate.

A.2 Fiducial estimates of the posterior probability of H0

A fiducial estimate of the posterior probability of the null hypothesis may be found by substi-

tuting B (p (x) ; 1/2) for B (p (x)) in equation (9). Bickel (2017) considered the unsharpened

(κ = 0) versions of that and other ways to use confidence distributions and other coherent

fiducial distributions to propagate the uncertainty in posterior probabilities.

Those methods are equally applicable to sharpened posterior probabilities. For example,
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a κ-sharpened fiducial posterior probability of H0 is the expectation value

EQ∼U(0,1)

(
1 +

(
B (p (x) ;Q)

e−κS(f0)π0

e−κS(f1) (1− π0)

)−1
)−1

.

Appendix B bridges the gap between the empirical Bayes terminology of Bickel (2017) and

the evidential terminology of this paper.

B Multiple testing and posterior probabilities as local

false discovery rates

From an empirical Bayes point of view, equation (2)’s P (H0|p (x)) is an unknown local false

discovery rate (Bickel, 2014, 2017), so named because of its relation to the false discovery

rate in the context of testing multiple hypotheses, replacing the p (x) with a vector of p

values, one for each hypothesis tested (Efron, 2010). In empirical Bayes terminology, the

Pκ (H0|p (x)) of equation (9) would then be the κ-sharpened local false discovery rate.

In the setting of m simultaneous hypothesis tests, the p values are denoted by z (x1),

z (x2), . . . , z (xm), where each xi represents a different sample. As part of an empirical

Bayes approach to hierarchical models, Efron (2007, 2010, pp. 72-74) considered normal

distributions of z (X) conditional on the alternative hypothesis H1, the proposition that the

null hypothesis H0 : z (X) ∼ N (0, 1) is false. In short, the alternative hypothesis is that

H1 : z (X) ∼ N (µ1, σ) with (µ1, σ) 6= (0, 1), that is, with µ1 6= 0 and/or σ 6= 1. In his

terminology, H0 is the “theoretical null hypothesis” since its distribution of z (X) does not

depend on x, the observation.

In the example of Section 2.2, the lack of background information requires the alternative
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hypothesis to be so vague that µ = 0, making H1 an example of a local alternative hypothesis

(Held and Ott, 2018), and σ > 1. Equation (6) then generalizes to

B̂ (p (xi) ; m) = σ̂e−
(1−σ̂−2

1 )z2(x)
2 ,

where σ̂ is the maximum likelihood estimate of the standard deviation of z (x1), z (x2), . . . ,

z (xm), with each z (xi) related to p (xi) in the same way as Section 2.2 related z (x) to

p (x). (The case B̂ (p (x1) ; 1) then recovers B̂ (p (x1)).) An empirical Bayes estimate of the

local false discovery rate of the ith null hypothesis is obtained by plugging B̂ (p (xi) ; m) into

B (p (x)) in equation (9).
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