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Abstract — Concrete response at macro-scale results from numerous mechanisms at different scales. 
These latter cannot be all explicitly accounted for in numerical concrete models. In this paper, a multi-
scale stochastic model for predicting concrete response in compressive uniaxial cyclic loading is 
presented. Heterogeneous meso-structures are randomly generated; coupled plasticity-damage model 
represent local constitutive response. At macro-scale, a representative element can be recovered. 
Key-words  — Concrete, multi-scale, stochastic vector random field, correlation, plasticity, damage. 

1 Introduction 
This paper briefly presents the basic ingredients of a multi-scale stochastic model developed to 

represent the compressive cyclic response of a concrete specimen. Such a response is characterized by 
the following features (see Figure 1): a backbone curve (dashed line) that is a nonlinear strain 
hardening phase ( ) followed by a strain softening phase where strength degradation is 
observed; unloading-reloading cycles show that stiffness decreases while loading increases, hysteresis 
loops are generated. This typical response is observed at macro-scale and results from numerous 
mechanisms of different physical and chemical nature at many different scales. In concrete, there is a 
continuum of scales at which heterogeneities can be observed: at macro-scale, aggregates of different 
characteristic sizes are surrounded by a cement paste; at lower scales, the cement paste is in particular 
composed of water, voids, of the products of the complete or partial hydration of the clinker particles. 

 

FIG. 1 – Strain-stress concrete experimental response in pseudo-static cyclic uniaxial compressive 
loading (adapted from [1]). 

Two scales are explicitly considered in the model herein presented. At macro-scale – where the 
response of concrete specimen is observed as in Figure 1 – material is assumed to be homogeneous. At 
meso-scale, heterogeneities and uncertainties are explicitly represented. Response at meso-scale is not 
the same depending on which material the response corresponds to: an aggregate, the cement paste, a 
mix of aggregates and cement paste. At this meso-scale, the approach followed in the present work 
does not consist in explicitly generating a multi-phase medium with random distribution of aggregates 
of random geometry in a cement paste with known mechanical behavior for each phase. The path 
followed here consists in generating a random medium at each point of which the mechanical response 
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obeys a prescribed behavior that has unknown parameters. 

This prescribed behavior at meso-scale is assumed to represent what could be the response of an 
aggregate, of the cement paste, of a void or of any combination of these later three components of 
concrete. This behavior is presented in the next section and the set of unknown parameters is 
introduced. This set of parameters is modeled as correlated random fields over an area of concrete 
according to the method that is presented in section 3. Response at macros-scale is recovered 
according to the equations in section 4. Numerical applications are presented in section 5. 

2 Behavior at meso-scale 
Coupled damage-plasticity behavior is assumed at meso-scale. The model is developed with a set 

of internal variables that are the history of the material. The basic ingredients are as follows: 

 (1) 

 
(2) 

 (3) 

Potential  and criterion function  are expressed with the stress at meso-scale , the damage and 
plastic deformations  and , the damage compliance  and the yield stress . The internal 
variables are  and . 

Then, we introduce the following damage-plasticity coupling relations: 

    with     ,      and     (4) 

and the following equations can be derived within the framework of thermodynamics with internal 
variables (see e.g. [2] for the numerical aspects regarding this framework): 

    ;        ;        and     (5) 

Initially, previous to any damage, we set  where  is the elastic tensor. 

 

 

FIG. 2 – 1D behavior at meso-scale at two distinct positions  and  over a concrete area. 

3 Model of the parameters heterogeneity and uncertainty 
In a 1D setting, the model presented above is developed using 3 parameters: elastic modulus , 

yield stress  and damage-plasticity ratio . Thereafter, we focus on a square material area 
 and the spatial heterogeneity of these parameters over , along with their uncertain 

nature, has to be represented. Some correlation between the parameters is also expected. Suppose 
indeed that the material point of interest at meso-scale corresponds to an aggregate, then the elastic 
modulus is larger than at any other point, the yield stress is much larger too and there is no plasticity. 
Consequently, the 3 parameters ,  and  should be correlated accordingly. 

2-dimensional 3-variate homogeneous nonGaussian random vector fields are generated to model 
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these specific features at meso-scale. The method used is based on the so-called Spectral 
Representation Method with the following assumptions for material properties as introduced in [3]: (i) 
material properties possess quadrant symmetry, (ii) the cross-spectral density can be written as: 

 

(6) 

Where the correlation coefficients satisfy ,  and . 

Then, considering three independent 2D homogeneous Gaussian random fields , , 
the homogeneous Gaussian vector field is calculated as: 

 

(7) 

where matrix  is computed from the Cholesky decomposition . The Gaussian fields can then 
be translated to nonGaussian fields. 

  

FIG. 3 –	  Yield stress field [MPa] generated over a unit area  with two different correlation 
length:  [left] and  [right]. 

4 Response at macro-scale 
Macro-scale response is calculated assuming: 

,          and          
(8) 

Then, introducing the tangent moduli at both scales:  and , it comes: 

 
(9) 

Both the stress and the tangent modulus at macro-scale are possibly random quantities because they 
are computed from a random meso-scale generated over material area . 

5 Numerical application: Concrete uniaxial compressive cyclic response 
The model developed in the 3 preceding sections is implemented in a computer program that can 

solve nonlinear problems. Material area  is meshed by  identical squares of size 
; behavior law as presented in section 2 is assigned to the centroid of each of 

these squares. The random vector fields are generated with identical properties in both directions over 
; all correlation coefficients are taken as equal to ; spectral density function  is assumed 

to have Gaussian shape; log-normal distribution with mean  30 GPa and standard deviation 
 15 GPa is assumed for elastic modulus ; uniform distribution is assumed for both the yield 

stress  and the damage-plasticity ratio  with  MPa and . The response of the 
material area  in compressive loading obtained with this model is illustrated in Figure 4 for different 
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Figure 2. Meso-structures generated over an area (x̄1, x̄2) ∈ [0, 1]2

with different correlation lengths; [Left] Elastic modulus E [MPa];
[Right] Yield stress σy [MPa]; [Top] b̄ = 0.04; [Bottom] b̄ = 0.17.

Uniaxial compressive concrete responses are shown in figure 4. Top-left figure
shows that the proposed model is capable of representing most of the salient fea-
tures of concrete in uniaxial cyclic loading: nonlinear strain hardening, loss of
stiffness as well as hysteresis observed in unloading-reloading cycles; the model is
not capable of representing strength degradation (strain softening).

At the end of the loading (E = 0.003), we can calculate the mean µ, standard
deviation ν and coefficient of variation COV = ν/|µ|:

• Case 1: µ = −37.5 MPa, ν = 0.61 MPa, COV = 1.6%
• Case 2: µ = −37.5 MPa, ν = 1.84 MPa, COV = 4.9%
• Case 3: µ = −37.6 MPa, ν = 3.31 MPa, COV = 8.8%

It can be observed that the mean response is not sensitive to the correlation length.
In case 1, there is very little sensitivity of the system response to the correlation
length. In this case, the full information available in the random field generated
over a period is accounted for in the computation of the concrete response. Case
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values of the correlation length .  

 

FIG. 4 – [Top left] , 1 realization of the meso-structure, uniaxial cyclic compressive loading. 
Mean response along with mean +/- standard deviation (dashed lines) for 200 realizations of the 

random meso-structure with  [top right],  [bottom left] and  [bottom right]. 

6 Conclusions and ongoing work  
It is shown in Figure 4 that, for , a representative material area  can be recovered in the 

sense that the response at macro-scale is almost independent of the realization of the meso-structure. 
Besides, for  again, Figure 4 shows that the model is capable of representing salient features 
of concrete response in compressive uniaxial cyclic loading. Compared to the work presented in [4], 
the model presented here can represent loss of stiffness. This comes from the fact that coupled damage 
and plasticity mechanisms have been introduced at meso-scale. Other methods to couple plasticity and 
damage at meso-scale, parametric analysis that further explores the potential of the model, 
investigation of the effects of the nonlinear translation of the pseudo spectral density function are 
among the points to be further investigated. Also, there is a need for experimental data from material 
scientists for identification purposes; the model presented here can show which data would be useful.  
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Figure 3. [Top left] Case 1, one realization of the meso-structure,
uniaxial cyclic compressive loading; [Top right] Case 1; [Bottom left]
Case 2; [Bottom right] Case 3. Statistical properties of the system
response for all cases 1, 2 and 3 are computed with 200 realizations
of the random meso-structure.

2 shows larger sensitivity (COV = 4.9% > 1.6%) and case 3 even more (COV =
8.8%). Nevertheless, this level of variability of the system response is much lesser
than the level of variability in the parameters (COVE = 50%).

5. Conclusions

Acknowledgement

This work is supported by a Marie Curie International Outgoing Fellowship
within the 7th European Community Framework Programme (proposal No. 275928).

References

[1] S Ramtani. Contribution to the modeling of the multi-axial behavior of damaged concrete with
description of the unilateral characteristics. PhD Thesis (in French), Paris 6 University, 1990.

b = 0.04

b = 0.04 b = 0.09 b = 0.17

b = 0.04 R

b = 0.04


