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A MULTI-SCALE STOCHASTIC MODEL FOR CONCRETE IN UNIAXIAL CYCLIC LOADING WITH COUPLED MECHANISMS AT MESO-SCALE
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Concrete response at macro-scale results from numerous mechanisms at different scales. These latter cannot be all explicitly accounted for in numerical concrete models. In this paper, a multiscale stochastic model for predicting concrete response in compressive uniaxial cyclic loading is presented. Heterogeneous meso-structures are randomly generated; coupled plasticity-damage model represent local constitutive response. At macro-scale, a representative element can be recovered.

Introduction

This paper briefly presents the basic ingredients of a multi-scale stochastic model developed to represent the compressive cyclic response of a concrete specimen. Such a response is characterized by the following features (see Figure 1): a backbone curve (dashed line) that is a nonlinear strain hardening phase ( ) followed by a strain softening phase where strength degradation is observed; unloading-reloading cycles show that stiffness decreases while loading increases, hysteresis loops are generated. This typical response is observed at macro-scale and results from numerous mechanisms of different physical and chemical nature at many different scales. In concrete, there is a continuum of scales at which heterogeneities can be observed: at macro-scale, aggregates of different characteristic sizes are surrounded by a cement paste; at lower scales, the cement paste is in particular composed of water, voids, of the products of the complete or partial hydration of the clinker particles.

FIG. 1 -Strain-stress concrete experimental response in pseudo-static cyclic uniaxial compressive loading (adapted from [1]).

Two scales are explicitly considered in the model herein presented. At macro-scale -where the response of concrete specimen is observed as in Figure 1 -material is assumed to be homogeneous. At meso-scale, heterogeneities and uncertainties are explicitly represented. Response at meso-scale is not the same depending on which material the response corresponds to: an aggregate, the cement paste, a mix of aggregates and cement paste. At this meso-scale, the approach followed in the present work does not consist in explicitly generating a multi-phase medium with random distribution of aggregates of random geometry in a cement paste with known mechanical behavior for each phase. The path followed here consists in generating a random medium at each point of which the mechanical response 0  E  0.0027 obeys a prescribed behavior that has unknown parameters.

This prescribed behavior at meso-scale is assumed to represent what could be the response of an aggregate, of the cement paste, of a void or of any combination of these later three components of concrete. This behavior is presented in the next section and the set of unknown parameters is introduced. This set of parameters is modeled as correlated random fields over an area of concrete according to the method that is presented in section 3. Response at macros-scale is recovered according to the equations in section 4. Numerical applications are presented in section 5.

Behavior at meso-scale

Coupled damage-plasticity behavior is assumed at meso-scale. The model is developed with a set of internal variables that are the history of the material. The basic ingredients are as follows:

(1)

(2) (3)
Potential and criterion function are expressed with the stress at meso-scale , the damage and plastic deformations and , the damage compliance and the yield stress . The internal variables are and .

Then, we introduce the following damage-plasticity coupling relations: with , and

and the following equations can be derived within the framework of thermodynamics with internal variables (see e.g. [START_REF] Ibrahimbegovic | Nonlinear solid mechanics: theoretical formulations and finite element solution methods[END_REF] for the numerical aspects regarding this framework):

; ; and

(5)

Initially, previous to any damage, we set where is the elastic tensor.

FIG. 2 -1D behavior at meso-scale at two distinct positions and over a concrete area.

Model of the parameters heterogeneity and uncertainty

In a 1D setting, the model presented above is developed using 3 parameters: elastic modulus , yield stress and damage-plasticity ratio . Thereafter, we focus on a square material area and the spatial heterogeneity of these parameters over , along with their uncertain nature, has to be represented. Some correlation between the parameters is also expected. Suppose indeed that the material point of interest at meso-scale corresponds to an aggregate, then the elastic modulus is larger than at any other point, the yield stress is much larger too and there is no plasticity. Consequently, the 3 parameters , and should be correlated accordingly.

2-dimensional 3-variate homogeneous nonGaussian random vector fields are generated to model
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these specific features at meso-scale. The method used is based on the so-called Spectral Representation Method with the following assumptions for material properties as introduced in [3]: (i) material properties possess quadrant symmetry, (ii) the cross-spectral density can be written as:

Where the correlation coefficients satisfy , and .

Then, considering three independent 2D homogeneous Gaussian random fields , , the homogeneous Gaussian vector field is calculated as:

(7)
where matrix is computed from the Cholesky decomposition . The Gaussian fields can then be translated to nonGaussian fields.

FIG. 3 -Yield stress field [MPa] generated over a unit area with two different correlation length:

[left] and [right].

Response at macro-scale

Macro-scale response is calculated assuming:

, and

Then, introducing the tangent moduli at both scales: and , it comes:

(9)

Both the stress and the tangent modulus at macro-scale are possibly random quantities because they are computed from a random meso-scale generated over material area .

Numerical application: Concrete uniaxial compressive cyclic response

The model developed in the 3 preceding sections is implemented in a computer program that can solve nonlinear problems. Material area is meshed by identical squares of size ; behavior law as presented in section 2 is assigned to the centroid of each of these squares. The random vector fields are generated with identical properties in both directions over ; all correlation coefficients are taken as equal to ; spectral density function is assumed to have Gaussian shape; log-normal distribution with mean 30 GPa and standard deviation 15 GPa is assumed for elastic modulus ; uniform distribution is assumed for both the yield stress and the damage-plasticity ratio with MPa and . The response of the material area in compressive loading obtained with this model is illustrated in Figure 4 for different Uniaxial compressive concrete responses are shown in figure 4. Top-left figure shows that the proposed model is capable of representing most of the salient features of concrete in uniaxial cyclic loading: nonlinear strain hardening, loss of stiffness as well as hysteresis observed in unloading-reloading cycles; the model is not capable of representing strength degradation (strain softening).
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At the end of the loading (E = 0.003), we can calculate the mean µ, standard deviation ν and coefficient of variation COV = ν/|µ|:

• Case 1: µ = -37.5 MPa, ν = 0.61 MPa, COV = 1.6%

• Case 2: µ = -37.5 MPa, ν = 1.84 MPa, COV = 4.9%

• Case 3: µ = -37.6 MPa, ν = 3.31 MPa, COV = 8.8% It can be observed that the mean response is not sensitive to the correlation length. In case 1, there is very little sensitivity of the system response to the correlation length. In this case, the full information available in the random field generated over a period is accounted for in the computation of the concrete response. Case 
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Conclusions and ongoing work

It is shown in Figure 4 that, for , a representative material area can be recovered in the sense that the response at macro-scale is almost independent of the realization of the meso-structure. Besides, for again, Figure 4 shows that the model is capable of representing salient features of concrete response in compressive uniaxial cyclic loading. Compared to the work presented in [START_REF] Jehel | On damping created by heterogeneous yielding in the numerical analysis of nonlinear reinforced concrete frame elements[END_REF], the model presented here can represent loss of stiffness. This comes from the fact that coupled damage and plasticity mechanisms have been introduced at meso-scale. Other methods to couple plasticity and damage at meso-scale, parametric analysis that further explores the potential of the model, investigation of the effects of the nonlinear translation of the pseudo spectral density function are among the points to be further investigated. Also, there is a need for experimental data from material scientists for identification purposes; the model presented here can show which data would be useful. 2 shows larger sensitivity (COV = 4.9% > 1.6%) and case 3 even more (COV = 8.8%). Nevertheless, this level of variability of the system response is much lesser than the level of variability in the parameters (COV E = 50%).

Conclusions

Figure 2 .

 2 Figure 2. Meso-structures generated over an area (x 1 , x2 ) ∈ [0, 1] 2 with different correlation lengths; [Left] Elastic modulus E [MPa]; [Right] Yield stress σ y [MPa]; [Top] b = 0.04; [Bottom] b = 0.17.
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 2 FIG. 4 -[Top left], 1 realization of the meso-structure, uniaxial cyclic compressive loading. Mean response along with mean +/-standard deviation (dashed lines) for 200 realizations of the random meso-structure with [top right], [bottom left] and [bottom right].
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 3 Figure 3. [Top left] Case 1, one realization of the meso-structure, uniaxial cyclic compressive loading; [Top right] Case 1; [Bottom left] Case 2; [Bottom right] Case 3. Statistical properties of the system response for all cases 1, 2 and 3 are computed with 200 realizations of the random meso-structure.
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