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Abelian and non-Abelian topological phases exhibiting protected chiral edge modes are ubiquitous in the
realm of the fractional quantum Hall (FQH) effect. Here, we investigate a spin-1 Hamiltonian on the square
lattice which could, potentially, host the spin liquid analog of the (bosonic) non-Abelian Moore-Read FQH
state, as suggested by exact diagonalization of small clusters. Using families of fully SU(2)-spin symmetric
and translationally invariant chiral projected entangled pair states (PEPS), variational energy optimization is
performed using infinite-PEPS methods, providing good agreement with density matrix renormalization group
(DMRG) results. A careful analysis of the bulk spin-spin and dimer-dimer correlation functions in the optimized
spin liquid suggests that they exhibit long-range “gossamer tails”. From the investigation of the entanglement
spectrum, we observe sharply defined chiral edge modes following the prediction of the SU(2), Wess-Zumino-
Witten theory and exhibiting a conformal field theory (CFT) central charge ¢ = 3/2, as expected for a Moore-
Read chiral spin liquid. Using the PEPS bulk-edge correspondence, we argue the “weak” criticality of the bulk
is in fact a finite- D artifact of the chiral PEPS, which quickly becomes (practically) irrelevant as the PEPS bond
dimension D is increased. We conclude that the PEPS formalism offers an unbiased and efficient method to

investigate non-Abelian chiral spin liquids in quantum antiferromagnets.

DOI: 10.1103/PhysRevB.98.184409

I. INTRODUCTION AND MODEL

The two-dimensional (2D) electron gas experiencing long-
range Coulomb repulsion and subject to a strong magnetic
field—hence breaking time-reversal (TR) symmetry—can ex-
hibit plethora of topological fractional quantum Hall (FQH)
phases at simple rational filling fractions v [1]. FQH states
are characterized by topological order—the ground state (GS)
degeneracy depends on the system topology [2,3]—and by
chiral edge modes localized at the system boundaries (if any)
and propagating in one direction only [4,5]. Such edge modes
are gapless and described by known (1 + 1)-dimensional
conformal field theories (CFT). The bulk excitations of the
FQH states are fractionalized anyons [6] which could have
either Abelian statistics, as in the Laughlin state [7], or non-
Abelian statistics [8,9], as in the Moore-Read (MR) state [10].
Non-Abelian SU(2), anyons (for k > 1) are described by
well-known deformations of SU(2), in which only the first
k + 1 angular momenta j = 0, % 1,.... %5 of SU(2) occur.
The MR state harbors j = % Ising anyons (realized for k =
2), descendants of vortices in (two-dimensional) p + ip su-
perconductors [11,12], and exhibiting simple fusion rules,
% X % —- 04 1.

Fractional Chern insulators (FCI) [13,14] offer the most
direct implementation of the FQH physics on the lattice, still
requiring a (gauge) magnetic field to generate electronic bands
with nontrivial topological properties (i.e., nonzero Chern
numbers), and strong (local) interactions. In the case of Mott
insulators, such as those realizing quantum magnets, the ap-
propriate setting to realize FQH physics is less clear. It is well
known, nevertheless, since the pioneering work of Kalmeyer
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and Laughlin (KL) [15], that simple FQH wavefunctions
(such as the Abelian bosonic v = 1/2 Laughlin state) can be
“localized” on the sites of a 2D lattice in order to realize chiral
(singlet) spin liquids (CSL) [16], spin analogs of the parent
FQH states. However, it is largely unknown whether and
under which conditions simple local Hamiltonians describing
(frustrated) quantum antiferromagnets can host such spin
liquids, in particular the non-Abelian ones. Recent numerical
investigations of a spin-1/2 chiral Heisenberg antiferromag-
netic model (HAFM) on the kagomé lattice [17,18] suggest
that a scalar chiral interaction on all triangular units can
indeed stabilize a spin liquid of the v = 1/2 KL type. Similar
Abelian CSL were also uncovered in spin-1/2 chiral anti-
ferromagnets on the triangular lattice [19,20]. Interestingly,
the CSL can also emerge in spin-1/2 time-reversal invariant
frustrated magnets [18,21]. Kitaev’s anisotropic honeycomb
model in the presence of an external magnetic field [22]
is, so far, the only indisputable example of a local (lattice)
Hamiltonian hosting a non-Abelian CSL, but local spin-1
Hamiltonians on triangular and kagome lattices have also been
proposed [23,24], as well as coupled-wire constructions of
SUQ2); CSL [25]. A definite identification of local SU(2)-
invariant models realizing non-Abelian CSL is therefore
needed and the goal of this study.

Further progress in the field of chiral SL have been
launched by the constructions of parent quantum spin Hamil-
tonians [26—29] designed to host various spin analogs of the
FQH liquids. For example, by rewriting KL-like states as
correlators of CFT primary fields, a systematic construction of
parent Hamiltonians can be obtained. It turns out that, gener-
ically, the obtained parent Hamiltonians show long-range

©2018 American Physical Society
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(algebraic) interactions. For example, SU(2)-invariant spin-
1/2 and spin-1 Hamiltonians with long-range three site in-
teractions [like S; - (S; x Sy)] have been found to realize the
bosonic (Abelian) Laughlin and (non-Abelian) Moore-Read
FQH phases, respectively [28,30]. Using such a construction,
it was also shown that the spin-1/2 KL spin liquid exhibits the
expected chiral edge states [31]. Furthermore, it was argued
that local chiral antiferromagnetic Heisenberg models based
on some truncation and fine-tuning of the parent Hamilto-
nians also host the same topological Abelian [32,33] and
non-Abelian [30] phases. Similar to the non-Abelian Kitaev’s
phase on the hexagonal lattice [22,34], the spin-1 non-Abelian
CSL is expected to host Ising anyons in the bulk. However, the
proposed spin-1 local chiral HAFM is quite far from the initial
parent Hamiltonian and its detailed investigation is called for.

Besides KL and CFT constructions, topological chiral spin
liquids can also be designed using the framework of projected
entangled pair states (PEPS) [35-39], a class of 2D tensor
networks [40]. Generally, topological order can be easily
implemented in PEPS from local gauge symmetries [41]. The
simplest chiral PEPS is based on a chiral extension [42,43]
of the spin-1/2 resonating valence bond (RVB) state [44—46],
originally defined by Anderson as an equal-weight superposi-
tion of valence bond configurations [47]. Such a simple PEPS
turned out to be critical although, surprisingly, exhibiting
well-defined chiral edge modes consistent with the SU(2),
Wess-Zumino-Witten (WZW) CFT of central charge ¢ = 1. A
more general and systematic construction of PEPS chiral (and
nonchiral [48]) spin liquids has been made recently possible,
thanks to a general classification of SU(2) and translation-
ally invariant PEPS according to their symmetry properties
under point group operations [49]. Combining this classifi-
cation with a corner transfer matrix renormalization group
(CTMRG) algorithm [50], one of us investigated the physics
of the simple spin-1/2 chiral HAFM mentioned above [51].
Topological order was identified from sharply defined chiral
edge modes but, surprisingly, numerical results suggested
critical correlations in the bulk, as for the simpler chiral RVB
analog. Whether this feature is a generic property of chiral
PEPS [52] is not clear so far. Investigation of new chiral
HAFM using PEPS methods is therefore necessary.

Here, we shall consider the spin-1 chiral HAFM defined on
the two-dimensional square lattice, as introduced in Ref. [30]:

H:JIZS,'-Sj-l—Jz ZSk-S,
{i,J) (k1))

+K1 ) (S-S + Ky ) (S-S

(i.J) (k1))
+Ke ) [8i-(S; x Si)+S; - (S x S)
O
+8i - (S % 8,) +8; - (Sk X Su)l, M

where the first and third sums are taken over nearest-neighbor
(NN) bonds and the second and fourth sums run over next-
nearest-neighbor (NNN) bonds. The chiral term of amplitude
K, is defined on every plaquette of four sites (i, j, k, m)
ordered in (let say) anticlockwise direction. The parameters
entering (1) have been obtained by a careful fine tuning, opti-
mizing the overlap of the exact GS on small finite-size clusters

with the lattice CFT correlator describing the non-Abelian
Moore-Read FQH state (on the lattice) [30]. We will here
adopt these fine-tuned parameters (retaining only 3 digits),
Ji=1, J,=0.623, K; = —0.176, K, =0.323, and K. =
0.464. Note that the related spin-1/2 chiral HAFM introduced
in Ref. [28] and studied in Ref. [51] contains only the J; and
J bilinear terms and the K, chiral term since the biquadratic
interactions K; and K, become irrelevant for spin-1/2.

In order to explore the physics of the above model, we
combine different numerical techniques such as Lanczos exact
diagonalizations (ED), density matrix renormalization group
(DMRG) [53] and tensor network methods [35-39], all re-
viewed in Sec. II. In particular, we shall focus on spin-1
SU(2)-symmetric PEPS to describe the chiral spin liquid
phase. More precisely, we construct (disconnected) families of
PEPS breaking time-reversal (T) and parity (P) symmetries—
without breaking PT—providing a faithful representation of
chiral spin liquids directly in the thermodynamic limit. In con-
trast to usual PEPS calculations, which approach the ground
state of the model via imaginary time evolution (and could
get trapped in local minima), we use a more elegant and
secure framework based on a variational optimization scheme
(combined with a CTMRG algorithm), taking advantage of
the reduced number of variational parameters in the fully
symmetric Ansatz.

Using such state-of-the-art numerical techniques, we shall
address a number of important issues. First, in Sec. III, we
shall investigate the property of the bulk system, i.e., whether
it exhibits short-range correlations like its “parent” FQH
Moore-Read state or whether it is critical such as the spin-1/2
chiral PEPS analog. Second, in Sec. IV, we shall consider
the edge spectrum, seeking to characterize topological chiral
order, and looking for evidence of its non-Abelian charac-
ter. Finally, we shall discuss the results in the last section,
and make some conjecture. Experimental setups will also be
briefly discussed.

II. SHORT SUMMARY OF NUMERICAL METHODS

A. Lanczos exact diagonalizations

In Refs. [30], the parameters of the spin-1 model have been
obtained using exact diagonalization of small lattices (up to
4 x 4) on the plane or on the cylinder, fine tuning the overlap
of the exact GS with the targeted non-Abelian chiral state.
Here we diagonalize, using Lanczos ED methods, 4 x 4 and
V20 x +/20 square tori—exhibiting the full translation and
(at least) C,4 point group symmetries of the square lattice—to
investigate the low-energy spectrum of the model. In contrast
to the planar geometry, in the case of a torus geometry, the
GS is expected to become degenerate (threefold degenerate
for the Moore-Read state) in a gapped topological phase and
in the limit of very large sizes. Hence fundamental differences
from the previous computations are expected, even on small
clusters.

B. Density matrix renormalization group

A standard approach for matrix product state (MPS)
simulations of 2D systems consists in studying cylinders
(with N = L x W sites, L > W) with periodic (respectively,
open) boundary conditions in the short (respectively, long)
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dimension. We have used the ITENSOR library for these cal-
culations,' in particular using total S, conservation. We have
observed that convergence is very hard to achieve for W > §
due to the large entanglement entropy of a half-system and
the maximum number of states kept in the simulation was
m = 2000. This may be related to criticality of the system (see
later) or large correlation length. Therefore we have used MPS
computations as a way to extract the ground-state energy per
site eg(L, W). First, for a given system size L x W, we can
extrapolate the total energy versus discarded weight. Then,
at fixed width W, we can estimate ey(W) by extrapolating
eo(L, W) versus 1/L. Another estimate of the same quantity
can be obtained from different cylinders of width W and
lengths L; and L,, simply by subtracting total energies E:

co(W) = Eo(Ly, W) — Eo(Ly, W)’ @)
L, — L,
which has the advantage to reduce finite-size effects due to
the open boundaries on the edges. At last, we can extrapolate
eo(W) versus 1/ W as shown in Sec. 111 B.

Quite interestingly, we can also obtain an exact upper
bound using cylinders with open boundary conditions (OBC)
in both directions, and using their ground-state wave functions
as a variational one for the infinite system [54]. These values
are also reported in Sec. III B.

C. iPEPS method
1. Singlet chiral PEPS Ansatz

Our infinite-PEPS (iPEPS) method—directly in the ther-
modynamic limit—relies first on the construction of generic
PEPS Ansditze fulfilling all the necessary symmetry properties
of the targeted chiral spin liquid. First, for convenience, we
apply a & rotation along the Y spin axis on all sites of
one of the two sublattices, which enables to express the
(approximate) GS wave function(s) in terms of a unique site
tensor A’ . (instead of two, one for each sublattice), where
the greek indices label the states of the D-dimensional virtual
space V) attached to each site in the z = 4 directions of the
lattice, and s = 0, £1 is the S, component of the physical
spin 1. A chiral spin liquid bears symmetry properties that
greatly constrain the PEPS Ansarz. To construct such an
Ansatz, we use a general classification of all (translationally
invariant) SU(2)-symmetric (i.e., invariant under any spin
rotation) PEPS proposed recently [49], in terms of the five
irreducible representations (IRREPs) A, A,, By, By, and E
of the square lattice Cy4, point group [55]. In this setting, the
virtual space V is defined as any direct sum of SU(2) IRREPs.
Since the chiral spin liquid only breaks P and T but does not
break the product PT, the simplest adequate PEPS complex
tensors have the following forms:

N, N,
A=Ai+idy =) MAT+i)Y A 3)
a=1 b=1

A{] 542
B=Bi+iBy=) B +iy ;B O
a=1 b=1

'ITENSOR C++ library, available at http:/itensor.org.

A*
(a)

(c)

sosfhosscscnsndeny

Cenlocsssssncolres
N P—

D? s
(e) () (8)

FIG. 1. CTMRG for the chiral PEPS with one-site unit cell.
(a) A; + i A, PEPS tensor A. (b) Double tensor E obtained by trac-
ing out physical indices E = Y A°A* (or E = Y, B*B*), where A°*
(B*) is the complex conjugate of A* (B°). (c) CTMRG environment
for 2 x 2 cluster, constructed from the (real) corner matrix C and
the (hermitian) boundary tensor 7', depicted separately in (d) and (e),
respectively. The environment bond dimension is chosen to be x =
kD?*(k € N). The energy density is calculated by inserting either
the identity operator or the local hamiltonian operator in the red
shaded 2 x 2 cluster. (f) and (g) are the transfer matrices constructed
from the T tensor only, and from the 7 and E tensors, respectively.
The maximal correlation length can be obtained from the largest two
eigenvalues of both transfer matrices (see text).

graphically shown in Fig. 1(a), where the real elementary
tensors A9 (B¢) and A5 (BB5) have the same set of virtual
spins and transform according to the A; (B;) and A, (B»)
IRREP of the point group Cy, of the square lattice. N; and
Ny (M and M;) are the numbers of such elementary tensors
in each class, respectively. A} and A2 (11} and 113) are arbitrary
real coefficients of these tensors. Note that, in the atomic
orbital language, A and B would correspond to s + ig and
dy>_y» + id,, orbitals, respectively. The PEPS wave function
is obtained by the contraction of all site tensors (i.e., by
summing all virtual indices on the links).

The symmetric tensors up to D < 6 have been tabulated
in Ref. [49], and their numbers D4y = N; + N, and Dp =
M, + M, for the most relevant virtual spaces V), are listed
in Table I. For each choice of the virtual space, Eqs. (3)
and (4) then provide two families of PEPS. From the table
of characters of the C4, IRREPs, it is clear that 4 — A
and B — +8B under any of the point group reflections, R,
and R, along the crystallographic axes, and R,;, and R,_,
along the £45° directions. Hence the corresponding PEPS
wave function transforms into its complex conjugate, which
is equivalent (for a singlet state) to the effect of applying time
reversal symmetry.

184409-3
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TABLE I. Numbers of independent SU(2)-symmetric spin-1 ten-
sors for the different virtual spaces we consider, D < 6. The third
(fourth) column gives the number of A, /B, (A,/1,) tensors and the
last column contains the total numbers D, / Dy of tensors entering
Eq. (3)/Eq. (4). * means the states of the PEPS family are all real
(i.e., nonchiral).

V D Ni/M, N>/ M, Da/Dp
%@(l) 3 2/2 0/1 2% /3%
1ol 4 6/9 4/3 10/12
190 4 3/5 3/1 6/6
iel®o 5 12/13 5/6 17/19
1! 5 5/5 3/4 8/9
lei®0 6 13/13 8/9 21/22

Our chiral PEPS also exhibit a very important gauge sym-
metry encoded at the level of the local A and B tensors.
More precisely, the number of spins 1/2 (or half-integer
spins, in general) present in the set of virtual degrees of
freedom attached to each site is always even. The Z, gauge
symmetry linked to this parity conservation is at the origin of
the topological order sustained by the PEPS [41].

2. CTMRG algorithm

Once PEPS families have been constructed, the second
step is to optimize the Hamiltonian energy with respect to
the tensor parameters, for each class separately. The reduced
number of parameters (obtained thanks to the implementation
of the full state symmetries) allows to perform a “brute force”
optimization (in contrast to different variational optimization
schemes [56,57]). For each set of PEPS parameters, one then
needs to compute the corresponding variational energy, in or-
der to “feed” an efficient minimization routine, i.e., one based
on a conjugate gradient (CG) method. The variational energy
computation is done directly in the thermodynamic limit using
the CTMRG algorithm [50]. After constructing the double-
layer tensor E of Fig. 1(b), one obtains, using a real-space RG
method, the environment of Fig. 1(c) surrounding the active
2 x 2 region and involving the CTM C and T tensors shown
in Figs. 1(d) and 1(e). The identity matrix or the Hamiltonian
is then inserted in the active region (between the two layers)
to compute the energy per site. The gradient of energy density
is then computed by a finite difference method, which is
applicable thanks to the small number of parameters. With the
energy and its gradient, the CG method can now be used to
find the best parameters. Note that, for our chiral PEPS, all C
and T tensors in Fig. 1(c) are identical by symmetry (and the
C matrix remains Hermitian after each CTMRG step), which
simplifies significantly the CTMRG procedure.

3. Uniform MPS method

An alternative method for computing effective environ-
ments for PEPS in the thermodynamic limit relies on uniform
matrix product states (MPS). A transfer matrix is constructed
by repeating the double-layer tensor E [Fig. 1(b)] on an infi-
nite linear chain, and we find the transfer-matrix fixed point
as a uniform MPS using variational optimization [58]. After
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FIG. 2. Lanczos ED of the spin-1 chiral HAFM on a 4 x 4
(16-site) (a) and +/20 x /20 (20-site) (b) tori. The various columns
correspond to different IRREPs of the space group and different
symbols are used to distinguish eigenstates with different (total)
spin quantum numbers. Momenta corresponding to the respective
Brillouin zones are shown on the right. The GS energy has been
subtracted for clarity.

repeating this procedure in different lattice directions, we find
effective environments and we can compute observables from
the PEPS. Additionally, the use of channel environments [59]
allows to compute correlation functions directly in momentum
space.

II1. RESULTS ON BULK PROPERTIES

A. Low-energy spectra on small tori

Let us first investigate the spin-1 chiral HAFM on small
16-site and 20-site clusters with periodic boundary conditions
and full (or partial) point group symmetry, enabling to a
priori block-diagonalize the Hamiltonian matrix according to
the irreducible representations (IRREPs) of the cluster space
group. We also use the total S; quantum number, enabling to
reconstruct the exact SU(2) multiplet structure of the energy
spectrum.

The low-energy spectra, split in the various IRREPs, are
shown in Figs. 2(a) and 2(b). For the Moore-Read state,
we expect to observe three quasidegenerate eigenstates on
a torus. In particular, their momentum quantum numbers
can be obtained from a simple counting rules [60-62] using
partitions (2,0, 2,0, ...),(0,2,0,2,...),and (1,1, 1, 1,...),
from which we predict that these three states should be at
the I point [K = (0, 0)] for 16- and 20-site square clusters.
However, no clear energy gap separating a group of quaside-
generate singlets from the rest of the spectrum—the signature
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FIG. 3. iPEPS variational energies per site vs D?/x. Results
for D =5 and D = 6 have been extrapolated to the x — oo limit.
A comparison to DMRG data obtained on cylinders of width W
(see text) and plotted vs 1/ W (x4) is shown. The DMRG data are
extrapolated using linear and exponential fits, providing approximate
bounds for the thermodynamic energy.

of the onset of topological GS degeneracy—is seen. Still,
the three lowest singlets are indeed found at the I'" point.
We believe the cluster sizes are too small compared to some
relevant bulk correlation length.

B. Energy extrapolations

Let us first consider the results for the iPEPS energy
density plotted in Fig. 3 as a function of D?/x, for D = 3, 4,5
and various classes corresponding to different virtual spaces.
We only restrict here to the classes providing the best energies
for a given choice of D. Note that the variational energy is
optimized up to a maximal value of x = xop Which depends
on D (typically, xopt = 4D? =100 for D =5 and Xopt =
3D? = 108 for D = 6) and then a “frozen Ansatz” is used for
X > Xopt- We observe that the energy density systematically
decreases for increasing x so that all data points can be
considered as exact variational upper bounds. In fact, the
data show a well-behaved scaling, almost perfectly linear in
1/x, so that accurate y — oo extrapolations of the energy
density can be obtained for each class. The best energies have
been obtained for virtual spaces 1 & % (D=5)and 1 ® % @0
(D = 6). Note also that 1 @ 0 (D = 4) gives a better energy
than %69 % ®0 (D =5) so we believe the presence of a
spin-1 in the virtual space is essential to get good variational
Ansdtze. Note also that the energy difference between the
A and B PEPS decreases rapidly with increasing D, and
become negligible for D = 6. We believe the two Ansdtze
would describe exactly the same state in the D — oo limit.

We then compare the PEPS energies to the DMRG re-
sults in Fig. 3. The DMRG energy densities computed on
cylinders of various widths W (see details above) have been
(tentatively) extrapolated in the W — oo limit showing good
agreement with the D =6 iPEPS x — oo extrapolation.
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FIG. 4. Inverse of iPEPS (maximal) correlation length 1/51{/11115
(see text) vs D?/x. The data for the four best optimized PEPS of
bond dimension D =5 and 6 are shown with different symbols
according to legend. Dashed lines are simple power-law fits, 1/§ ~
(D*/x)%, o < 1.

This indicates that our symmetric chiral PEPS provide good
approximations for the true ground state in the thermody-
namic limit, albeit with relatively small bond dimension D.

C. Correlation lengths
1. From the TM spectrum

Correlation lengths can be obtained from the lead-
ing eigenvalues of the x2? x x? transfer matrix Typs de-
picted in Fig. 1(f). Ordering the (real) eigenvalues as
tg > |t1] > |t2] > ---, one obtains decreasing correlation
lengths &\, n € N*, defined as

s = 1/1n (to/ It ). )

Note that the leading eigenvalue is nondegenerate (and can
be normalized to 1), while the subleading eigenvalues may
be degenerate. This degeneracy provides information on the
type of local operators the correlation length is associated to
(see later). Alternatively, correlation lengths Eé") can obtained
in the same way from the x2D? x D?x? transfer matrix 7,
where an E tensor is inserted between the two T tensors [see
Fig. 1(g)]. Since T describes the exact environment fixed point
in the limit x — oo, we expect Sé") — 51\(/111135 in that limit.
Down to x = D?, the two sets of (leading) correlation lengths
remain quite similar so, in the following, we shall focus on
E&‘I),S for clarity.

The maximal correlation length 515,}135 has been computed
in the best D = 5 and 6 PEPS (optimized up to x = 3D? and
x = 4D?) for increasing CTMRG dimension x = kD?, k €
N, up to x =30D? and x = 17D?, respectively. Results
for 1 /g]f,}lis versus D?/x are shown in Fig. 4. Power-laws fit
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FIG. 5. Maximal and next four subleading correlation lengths
W n=1,....5 inthe D =6 B; +iB, PEPS (optimized up to
x = 108) vs x in log-log scale, and sorted according to the degener-
acy g of the corresponding TM eigenvalue |7, |. The dashed (straight)
line corresponds to a simple power-law divergence, £ = Ax* and
o = 0.46. For comparison, spin and dimer correlation lengths are
also shown.

the data well, suggesting that the maximal correlation length
diverges as 515/}135 o x* when x — oo, with an exponent
o < 1 (slow divergence). Hence, surprisingly, the bulk seems
critical, unlike the FQHS analog. This is reminiscent of the
spin-1/2 PEPS chiral spin liquid, which also seems to be
critical (see comparison in Appendix A).

To get more insights on the nature of the correlations
in the PEPS chiral SL, we have investigated the subleading
correlation lengths ggggs, n > 1. Since the A; +iA; and By +
i B, D = 6 chiral PEPS have very similar properties, we shall
focus, from now on, on the B; +iB, D = 6 PEPS. Results
for the largest five correlation lengths are plotted in Fig. 5 on
a log-log scale, showing a rather linear behavior over almost a
decade. This confirms the (slow) power law increase & o x¢,
a >~ 0.46, also for the subleading correlation lengths.

2. From the real-space correlation functions

In order to identify the type of physical operators, these
correlation lengths may be associated to, we have computed
the spin-spin, (longitudinal) dimer-dimer, and chiral-chiral
correlations versus distance (see Appendix B for details) and
extracted the corresponding correlation lengths &;, &4, and &y,
from the long-distance behavior as illustrated in Fig. 6. We
find that & and &; are very close to the largest &yps with
degeneracy g =3 and g = 1, respectively, consistent with
triplet spin and singlet dimer operators. In contrast to & and
&4, the chiral correlation length grows very slowly suggesting
that the chiral correlation remains short-range. Interestingly,

T \ \ E
D=6 o spin (x=432) 7]
B1+iB2 * dimer (y=432)
+ chiral (x=216) 7]
©
= E 3
S 0.0001 .
%) L d
g E~Ey~44
» le-06[ / —
c
© g o E
O 1e08 - ' .
2 le 08 G+
[e] \ + i+
O 4
P S SR
e-10 VA +v\%
Y o
L,
E Cohon~0-6 i
le-12 B short +\\\+
! i
0 20 40 60 80 100

distance

FIG. 6. Spin-spin, dimer-dimer, and chiral-chiral correlations (in
absolute value) vs distance in the D = 6, B; + i B,, chiral PEPS.
Dashed lines are simple exponential fits of the short-range decay of
the spin-spin and dimer-dimer correlations. The correlation lengths
are extracted from the exponential decay at large distances.

the maximal correlation length glfjgs is of degeneracy g = 4
(which would naively correspond to a spin-3/2 operator)
and hence cannot trivially be associated to a simple local
operator acting on a group of physical sites but, perhaps, to
chiral modes (see Sec. IV C) counterpropagating along the
two chains of T tensors of the long (Typs )V ladder, Nj, > 1.
Let us now examine in more details the form and the mag-
nitude of the spin-spin and dimer-dimer correlation functions
at all length scales. First, at short distance, we observe a rapid
exponential fall-off characteristic of the lattice Moore-Read
spin liquid (as for the spin-1/2 chiral PEPS, an Ansatz for
the lattice KL state). The length scale associated to this short-
range behavior turned out to be very short, around &gpore ~ 0.6,
as seen in Fig. 6. More generally, one expects a sum of
exponential contributions with a distribution of length scales.
In other words, the spin-spin (or dimer-dimer) correlation
function versus distance can be written as a discrete sum,

Cd)y= > w&exp(-d/E). (6)

Eshort <& <&s

where the short-distance decay is characterized by
W(&hort) > 1 while, at long distance, the slower decay
exp(—d /&) takes over. Typically, we find that & > &gon
and w() < 1. In the limit y — oo, one expects that the
spectrum of the transfer matrix becomes dense, so that one can
use a continuous integral over all eigenvalues for computing
C(d),namely C(d) = fg dénE)w(é )exp(—g), where n(§) is
the density of state. Figure 5 suggests that the density of eigen-
values is constant in logarithmic scale so that n(§)d§ ~ dE—E. In
order to extract the possible functional form of the correlation
function, it is now necessary to get the behavior of the weight
function w(§). To do so, we have plotted w(&;) versus & and
w(&y) versus &y in Figs. 7(a) and 7(b), using semi-log and
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FIG. 7. Weight associated to the exponential decay with the max-
imal correlation length, as a function of the (maximal) correlation
length, in the B, 4 i B, chiral PEPS of bond dimension D = 5 and
6. (a) Semilogarithmic plot. The straight lines are exponential fits
w(€) ~ exp(—&/A). (b) Log-log plot. The straight lines are power-
law fits w(&) ~ 1/&*.

log-log scales. In fact, because of the limited range of
available maximal correlation lengths (obtained by varying
the environment dimension ), both exponential and
power-law fits give reasonable results, hence providing
different answers for the long-range correlations. Let us
examine each case separately.

Exponential decay of w(€). Let us assume w(§) =~
Wpexp(—&/Ap) in Eq. (6) as a legitimate Ansatz, where
Ap is a new emerging length scale and Wp is some am-
plitude, which both depend on the PEPS bond dimension
D. Typically, our fits in Fig. 7(a) give ¢ ~2 (k¢ ~ 1.5)
for the spin-spin (dimer-dimer) correlations of the D =6
chiral PEPS. If this functional form is correct then C(d) ~
Wp |, ! dg—éexp(—g — %) will show a typical stretched expo-
nential form at long distance,

C(d) ~ Wpexp[ — 2(d/%p)?], (7)

up to a possible power-law prefactor in d/Ap. Hence, in this
case, the spin-spin and dimer-dimer correlations would decay
faster than any power law. Interestingly, the same functional
form was also proposed for the spin-1/2 chiral PEPS [51].

Power-law decay of w(§). Let us now assume w(§) =~
Wp/E® and substitute it in Eq. (6). In that case, a simple
estimate of C(d) ~ Wp fé ”’E—Eexp(—g)g% gives a power-law
decay at long-distance of the form

Cd)~ Wp(1/d)". ®)

From the fits in Fig. 7(b) one gets estimates of the exponents
of the spin-spin and dimer-dimer correlation functions, oy ~ 2
and oy ~ 3, respectively, for D = 6.

Note that, in deriving (7) and (8), we have omitted potential
oscillatory (—1)¢ behavior of some of the exponential terms
of (6), which may reduce the range of the correlations. In any
case, it is clear that the long-range tail of the spin-spin and
dimer-dimer correlation functions, for a fixed bond dimension
D, is of quite small magnitude proportional to Wp. Moreover,

M X S r M S

FIG. 8. Structure factor of the D =6 B; 4+ iB, chiral PEPS
along the path in the Brillouin zone shown in the inset, for different
values of the channel environment bond dimension x = 87 (blue),
131 (red), 158 (yellow), and 185 (purple). Due to finite-x effects we
find slightly negative values (of the order of the truncation error) at
the I" point; in order to better compare the different x we have shifted
the curves by this small offset.

from Figs. 7(a) and 7(b), it is also clear that the magnitude
Wp of w(§) decreases strongly by increasing D. For example,
Wp associated to the spin correlation length gets smaller by
two orders of magnitude, just by increasing D from 5 to 6.
Hence we conjecture that this “gossamer” long-range tail is
a finite- D artifact of the chiral PEPS which should gradually
disappear when increasing the bond dimension D.

D. Spin structure factor

The previous calculations of correlation lengths suggest
the D = 6 chiral PEPS exhibits a form of long-range tail,
i.e., with a slower decay than a pure exponential function. In
the case of a power-law decay of the spin-spin correlations
like Cs(r) = Wi(1/|r|)*exp(iQar - r) [the antiferromagnetic
wave vector Qar = (71, ) is consistent with the data],
the static spin structure factor S(q) = ), exp(iq - r;)C,(r;)
would diverge when q — Qapr, only if ¢ < 2. In contrast, in
the case of a stretched exponential form, as suggested by the
data, no divergence is expected at any momentum.

In order to get more insight, we have computed the spin
structure factor in the D = 6 chiral PEPS, and results are
shown in Fig. 8. The results do not show any sign of a
divergence at any momentum, suggesting that the decay of the
spin-spin correlations at long distance is relatively rapid and
corresponds to a “gossamer” tail, consistent either with (7) or
with (8), provided o > 2.

IV. EDGE MODES

A. Expected SU(2), counting

As suggested by Li and Haldane [63], the entanglement
spectrum (ES) offers a very powerful tool to identify topolog-
ical order in Abelian and non-Abelian liquid states since the
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TABLE II. Towers of states of the SU(2), WZW model, in each
of the three sectors characterized by the prlmary fields j =0, 1 31
(listed in each column) and conformal weights 1J(j + 1). Each line
corresponds to a Virasoro level indexed by n. For each sector and
each level, the (quasi-)degenerate states can be grouped in terms
of exact SU(2) multiplets like n¢(0) + n;(1) + --- (meaning ng
singlets, n; triplets, etc.).

n\j 0 : 1

0 0) ) (D

1 (D) 3H+3) 0)+(1)

2 0)+(1)+(2) 2(H+2(3) 0)+2(1)+(2)
3 0)+3(1)+(2) 4AHH3+HE)  200+3()+2(2)
4 3(0)+4(1)+3(2) 6(1)+6(3)+2(2) -

5 30)+8(D)+4(2)+(3)  10(3)+10(2)+4(2) -

latter is in one-to-one correspondence with the edge states.
Since our PEPS is expected to provide a reliable lattice
representation of the Moore-Read FQH state (apart from—we
believe—a spurious long-range “gossamer” tail in some bulk
correlations), the edge modes should be described by a SU(2),
WZW theory for which the ES will provide indisputable
finger prints. The SU(2), WZW theory harbors three sectors
whose towers of states—obtained by combining a bosonic
(harmonic oscillator) mode with an independent Majorana-
fermion mode—are listed in Table II.

B. Bulk-edge correspondence

Let us now consider the chiral PEPS |Wpgps) on an in-
finitely long (horizontal) cylinder of finite circumference N,,
and a bipartition along a vertical cut into two right (R) and left
(L) semi-infinite cylinders. One can then define the reduced
density matrix (RDM) p of, let say, the L part by taking
the trace of |Wpgps)(Wprps| over the (physical) degrees of
freedom of the R part. Rewriting the positive operator p as
exp(—H,), where H, = —In p can be viewed as a “bound-
ary” Hamiltonian, Li and Haldane conjectured [63] that the
spectrum of H,—dubbed entanglement spectrum—is in one-
to-one correspondence with the actual edge spectrum of the
partitioned system. Therefore the ES should exhibit crucial
information on the nature of the chiral edge modes which, in
turn, can provide a precise characterization of our chiral SL.

To compute the ES on a cylinder, one can use the PEPS
bulk-edge correspondence theorem [64] that provides an exact
relation between the RDM—whose support is the 2D half-
cylinder physical Hilbert space—and a 1D (positive) operator
crbz only acting on the D™ virtual degrees of freedom of the
“cut.” The above fundamental relation involves an isometry
that preserves the spectrum and [64]

o7 = \Jolorol. ©)

where o7 (og) is obtained from the cylinder TM [shown
in Fig. 9(a)] left (right) leading eigenvector of dimension
(D?)Mv, reshaped as a D' x DV matrix. Here, o] = o,
so that 0, = o. In previous work, on spin-1/2 chiral spin
liquids [42], obz was obtained for a simple chiral D =3
PEPS by exact tensor contractions, multiplying recursively the

& A8
e AT

(a) (b)

FIG. 9. (a) Cylinder transfer matrix. (b) Boundary (right) vector
obtained by contracting N, (=6 here) environment 7' tensors on a
ring is reshaped into the RDM pg.

cylinder TM to get the leading eigenvector. For our D = 6
chiral PEPS, such a procedure is no longer possible and one
has to rely on approximate contraction schemes. Below, we
describe two methods to compute o}, either using our previous
knowledge of the iPEPS environment [65] or using a uniform
MPS implementation.

C. Finite N, calculation using CTMRG

First, we construct the half-cylinder leading eigenvector
using the previously obtained T tensor, (i) by contracting
N, such tensors on a ring of N, sites, and (ii) by reshaping
this vector into a o, matrix, as shown in Fig. 9(b). In this
procedure, the CTMRG parameter x becomes the only control
parameter of the approximate calculation of the ES for finite
N,. Note, however, that, strictly speaking, the calculation does
not become exact in the y — oo limit since T is computed
for an infinite system. However, this procedure may be more
advantageous in the sense that it may reduce some of the
finite-size effects in the ES, in comparison to the exact con-
traction method.

In order to compute the ES, we first block-diagonalize the
edge operator o, using the exact symmetries of the PEPS,
namely (i) its Z, gauge symmetry—Ileading to even and odd
sectors (ii) its full SU(2)-spin rotational invariance—leading
to sectors labeled by the total spin projection S, and (iii) its
translational invariance—leading to sub-sectors labeled by the
edge momentum K = n2Z, n e Z. First, as for the spin-1/2
chiral PEPS [42,43], the even (odd) topological gauge sector
only contains the integer (half-integer) S, sectors. Secondly,
because of the chosen m-spin rotation on the sites of the
B-sublattice (in order to deal with the same unique tensor on
the A and B sites), the S, operator acquires a minus sign under
an odd number of lattice translations, so that only (i) |S;| and
K or (ii) S, and K [modx] can be considered simultaneously.

The entanglement spectrum of the D = 6 B; + i B, PEPS
has been computed on a N, = 6 site ring from the T en-
vironment tensor with x = D? = 36, x = 4D? = 144, and
x = 6D? = 216. Data for x = 216 are shown in Fig. 10 in
the range [—m, ) (the complete spectrum for y = 144 is also
shown in Fig. 15 in the Appendix C). Two low (quasi-)energy
chiral branches emerge, linearly dispersing in one direction
only, separated by momentum AK = m. By grouping to-
gether the degenerate energy levels at K and K + 7, one
obtains exact SU(2) multiplets that can be labeled by their

184409-8



NON-ABELIAN CHIRAL SPIN LIQUID IN A QUANTUM ...

PHYSICAL REVIEW B 98, 184409 (2018)

3 (@ D=6 1 () ¥
10@ j= Osector %xﬁm’ j=1/2 sector | & |10
% % N =6 |
B ®  n®
IE3 @ 3] K ’% % ¥
P 90 Eﬁ ¥rr®F 5
* * -
= Oisislg ¥ 3 ¥ A 3
é B @ @ @sz; . % '¥ 1 qé-
o % . * w IS )=l % * 7 €
RN I S RRF AR
o I S % 1 O
> [# Pl A [ A A 2
5 | /, ’ A7 | £
; T IS =712 * *
o S s s o P
¥ ¥ Y ¥
T . s a 1
0 —LT[ —2‘7[/3 —J"E/3 é T[‘/3 ZIL/S b ; : ; 711‘/3 21"[/3 “0

-T 2m/3-m/3 0
K

FIG. 10. Entanglement spectrum of the B +iB, D = 6 chiral
PEPS for N, = 6 (see text) vs edge momentum K, computed for
x = 216. Different symbols correspond to different values of |S,]|,
showing that the spectrum is composed of exact SU(2) multiplets
with integer (a) and half-integer spins (b). Dashed lines correspond
to the low-energy chiral CFT modes.

total spin S quantum number.> The same spectrum can then
be plotted for K € [0, [, mod m, labeling now the levels ac-
cording to their spin S, as shown in Fig. 11. In this way, in each
topological sector, the two branches merge into a unique chiral
branch composed of groups of quasidegenerate exact SU(2)
multiplets, labeled as Gas"mn s(S), ng € N. Examining care-
fully each group of multlplets for increasing momentum K =
n ?\f we find that their content agrees exactly—at least up to
the fourth level—the prediction of the SU(2), WZW confor-
mal field theory of central charge ¢ = 3/2, characterized by
a bosonic mode combined with an Ising anyon (or “Majo-
rana fermions”). A comparison with the ES of the spin-1/2
CSL is shown in Appendix C, showing a very distinct SU(2),
CFT counting.

Note that the third j = 1 topological tower cannot be
derived straightforwardly since, it probably requires the inser-
tion of a string of Z, “vison” operators in the cylinder direc-
tion (see Ref. [42] for the case of the simple spin-1/2 CSL).
The representation of the vison operator in the dimension-x
fixed-point basis is not known.

D. Uniform MPS calculation

We can also characterize the entanglement spectrum using
uniform MPS techniques. Similarly as before (see Fig. 9), we
take the fixed point (leading eigenvector) of the PEPS transfer
matrix and interpret it as a matrix-product operator p (with
bond dimension x) representing the boundary Hamiltonian
as p = exp(— Hp). Here we work in the thermodynamic limit

ZNote that the ES eigenvalues in the odd sector of the half-integer
spin multiplets are all exactly twofold degenerate as for the spin-1/2
chiral spin liquid [42,43] due to an interplay between SU(2) and
space-group symmetries [70].

8 T — ; —f—— 8

[ & B o) T
D=6 |pn £ éié//js—o r % i % O
x=144 P T vl é i{r * S=3/2
NV=6 ; 2 |mse E+ NA AT § S=5/2

oF “L |Os=3|f 3+§§/ iz 6
I [ & [ 1 ”?_' A p g
S Lo ~ = Q 1. £
£S5 Q N Q q = -5 ©
9 b 0, ¢ =ms 12
e 4 : é ] RON g A4 S
g - : LT 1 &
é 3 OHDH2) o S T3 %’
§ | § ; ?ﬂw 2“'2)”(39@ £
& 2 1 r 12 @
M 1 %
b 1 r G X
o) () b (D) ]
O sector ) = 1
oby, . [ J By | [Fl/2sector g
0 J'c/3 2Jt/3 4 0 w/3  2m/3 4
K [mod =] K [mod =]

T 3 e P
D=6 +| $ é +js—o I § +s=1i2
x=216 é P~ § j{ M 3;1 F & é‘ * 8=3/2
N,=6 * T @% ms-2|f o V552

F = 1S |Os=3|[ =

r L = +
£ oF Q% A a 1° S
= &7 ; RN
IR z I8
5 A4 8
e f P i
2 3f Oy B P E
§ ; 2(1,2)+2(3/2,¢ £
S 2F 1 F J2 ©

i W % ] f jf"l(1/2)+(3/2) ]

1 1 F 7 11

o) () 1 (d) 1

Fo O sector ] Wl) 1

oE+" . | J 1 pY7. | [F1/2sector 4,
0 3'5/3 23':/3 T 0 J'c/3 23'5/3 4
K [mod =] K [mod =]

FIG. 11. Close-up of the low (quasi-)energy entanglement spec-
trum of the D = 6 chiral PEPS for N, = 6 vs K [modr] (see text).
Comparison of the spectra for y = 144 [(a) and (b)] and x = 216
[(c) and (d)] is shown showing an almost convergence with y. The
expected j =0 and j = 1/2 chiral modes of the WZW SU(2),
theory appear at the bottom of the Z,-even [(a) and (c)] and Z,-odd
[(b) and (d)] sectors of the ES, respectively. The SU(2)-multiplet
content of each group of levels is indicated, in agreement with the
CFT prediction (except for the blue boxes where a few levels are
missing).

directly, such that the leading eigenvector of this MPO (cor-
responding to the ground state of the boundary Hamiltonian
Hp) can, again, be approximated as a uniform matrix product
state. In particular, we can plot the scaling of the bipartite
entanglement entropy of this uniform MPS as a function of
its correlation length, which is known [66] to be related to
the central charge as § oc ¢ In(§). As shown in Fig. 12(a), this
provides clear evidence that the boundary theory is described
by a CFT with central charge ¢ = 3/2. In addition, we can
compute the spectrum of H, by applying the quasiparticle
excitation Ansatz [67,68]. In Fig. 12(b), we have plotted the
entanglement spectrum, showing the signature of a chiral
spectrum. The presence of a very steep “left-moving” branch
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FIG. 12. (a) The bipartite entanglement entropy as a function of
the correlation length for MPS approximations (with increasing bond
dimension x’ = 50 — 100) of the fixed point of p &~ exp(— H,); the
three data sets are for different values of the bond dimension x of
the MPO approximation for p: x = 87 (blue), 131 (red), and 158
(yellow). The lines are fits to the data points with § oc ¢ In(&), where
we find ¢, g7 = 1.187, c,—131 = 1.429, and ¢, —is3 = 1.462. (b) The
spectrum of H, as computed with the quasiparticle Ansatz on the
MPO approximation p = exp(—H,,) with bond dimension y = 158
in the thermodynamic limit.

and a small modulation on top of the linear dispersion are the
consequence of the finite-x approximation of p.

V. SUMMARY, DISCUSSION, AND OUTLOOK

Our iPEPS study provides the first investigation of a (fine-
tuned) spin-1 frustrated Heisenberg model on the square lat-
tice, which includes a time-reversal breaking plaquette term.
The ES and the scaling of the entanglement entropy provide
smoking gun evidence of SU(2), chiral edge modes with
central charge ¢ = 3/2, consistent with a bulk non-Abelian
CSL realizing, on the lattice, the Moore-Read FQH state.

However, our results also point towards long-range behav-
ior of some bulk correlations (such as spin-spin or dimer-
dimer correlation functions) which may be algebraic or more
rapidly decaying (as, e.g., for a stretched exponential). We
argue that, although this behavior might be generic in a chiral
PEPS (see the exact proof for Gaussian PEPS in Ref. [52]), it
is a spurious artifact which does not constitute a real obstruc-
tion for accurate investigation of truly gapped CSL ground
states of simple (frustrated) quantum spin Hamiltonians. First,
we note that chiral edge modes can be truly gapless only if
the effective one-dimensional PEPS boundary Hamiltonian
H, (acting on the virtual space) is long range, which in
turn implies, from the PEPS bulk-edge correspondence [64],
that the (maximal) bulk correlation length indeed diverges.
However, our results also show that this “necessary” bulk
criticality only manifests itself in the form of gossamer tails
in some physical correlation functions, whose magnitude is
already quite small for D = 6 and even seems to decrease
rapidly with the tensor bond dimension. This suggests that
“gossamer” tails will gradually disappear when D — oo, with

no practical effect to faithfully approximate a gapped CSL
(as far as energy, short and intermediate range correlations,
edge mode physics, etc., are concerned) with a finite-D chiral
PEPS. Therefore the PEPS formalism seems to be an unbiased
efficient method to investigate other non-Abelian CSL in
higher spin SU(2)-invariant HAFM (with or without explicit
time-reversal breaking) and in SU(N) models.

Lastly, we comment on possible experimental realizations
of Hamiltonian (1). Let us start from a two-orbital Hubbard
model with on-site Hubbard and (ferromagnetic) Hund cou-
plings, and hoppings on both NN and NNN sites, respectively.
In some limit of very large Hubbard and Hund couplings,
only localized spin-1 degrees of freedom can be retained on
the sites and two-site spin interactions appear in second order
in the hoppings. Moreover, if an orbital flux is included in
the plaquettes of the square lattice (breaking time-reversal
symmetry), then chiral terms appear in third order of the
hoppings. As suggested in Refs. [32,33] (although for the
spin-1/2 case), such Hamiltonians can be realized using, e.g.,
ultracold atoms loaded on optical lattices in the presence of a
synthetic gauge field [69].
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APPENDIX A: COMPARISON OF THE CORRELATION
LENGTHS IN THE SPIN-1 AND THE SPIN-1/2
CHIRAL HAFM

The maximal correlation length Sél) of the spin-1 chiral
PEPS has been obtained from the two largest eigenvalues of
the Tg transfer matrix depicted in Fig. 1(g). Its divergence with
x was shown to track the one of the dimer-dimer correlation
length. In Fig. 13, we compare Sél) in the spin-1 D =5 and
D = 6 chiral PEPS to the dimer-dimer correlation length in
the related spin-1/2 chiral HAFM, for two choices of the
model parameter considered in Ref. [51]. The behaviors of
the spin-1/2 and spin-1 chiral PEPS are very similar, both
being consistent with a power-law divergence (as shown by
the dashed line fits).

APPENDIX B: COMPUTING CORRELATION
FUNCTIONS WITH IPEPS

Correlation between any two (local) operators can be ob-
tained by using infinitely long strips (running, let say, along
the x direction) bounded on each side by lines of fixed-
point T environment tensors, as shown in Figs. 14(a)—14(e).
Depending on the type of operator to be considered, a single
line or two lines of E tensors have to be inserted between
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FIG. 13. Comparison between the inverse iPEPS (maximal) cor-
relation length Eél) (see text) of the spin-1 chiral HAFM (a) and
the inverse iPEPS (dimer) correlation length &gy, Of the spin-1/2
chiral HAFM (b). The data for the four best optimized spin-1 PEPS
of bond dimension D = 5 and 6 are shown in (a). In (b), open and
closed symbols correspond to two different sets of the Hamiltonian
parameters given by J; = K. = 1, J, = 0 (open symbols) and J, =
0.89, J, = 0.42, and K, = 0.375 (closed symbols). Dashed lines are
simple power-law fits, 1/& ~ (D?/x)%, a < 1.

the two (infinitely long) boundaries. The new fixed point
environment on the left side (right side) of the left-most (right-
most) operator is then constructed, as shown in Figs. 14(a) and
14(b). Two single-site, two-site, or four-site operators like

Oispin =S,

O™ = 8; - Sise,,

O™ =§; - (Site, X Si—e,) +Si  (Siser—e, X Sie, ).
+Si -+ (Site, X Sive—e,)
+Site, - (Siver—e, X Size,), B

where e, (e,) is the unit vector along (perpendicular to) the
strip are then inserted at a distance d, as shown in Figs. 14(c)
and 14(e). The corresponding correlation functions can then
be computed by applying d — 1 or d —2 times the TM
between the two operators. Note that, when the local opera-
tor has a finite expectation value, the connected correlation
function is computed, i.e., making the replacements OiClimer —
Olglimer _ (Oidimer) and Oichiral N Oichiral _ <0ichiral>.

APPENDIX C: ADDITIONAL DATA ON THE
ENTANGLEMENT SPECTRUM FOR N, = 6

For completeness, we provide in Fig. 15 the full entangle-
ment spectra in the j =0 and j = 1/2 topological sectors,
computed from a ring of N, T environment tensors at y =
144. Note that in the gauge chosen to write down the PEPS
(convenient for CTMRG), the generator of the spin-SU(2)
group is invariant under even translation and S; — —S; under
odd translations. As a consequence, S, is defined up to a sign.
This also implies that the 25 + 1 states of the SU(2) spin-S

(c) (d)

FIG. 14. The fixed point environments for strips with a single
line (a) or with two lines (ladder) (b) of E tensors are obtained
as leading eigenvectors of the transfer matrices marked by dotted
boxes. Strips to compute spin-spin (c), (longitudinal) dimer-dimer
(d), and chiral-chiral (e) correlations, inserting two spin, dimer or
chiral operators within the E tensor(s) at distance d.

multiplets (labelled by |S;| instead of S,) are split between
momentum k£ and momentum k + 7, as can be checked di-
rectly in Fig. 15. Note that the two dashed lines at low energy
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FIG. 15. Complete entanglement spectrum of the By +iB, D =
6 chiral PEPS for N, = 6 vs edge momentum K. Different symbols
correspond to different values of |S,|, showing that the spectrum is
composed of exact SU(2) multiplets with integer (a) and half-integer
spins (b). Dashed lines correspond to the low-energy chiral CFT
modes.
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FIG. 16. Comparison between entanglement spectra of the B; +
obtained either with y = D? = 36 ((a) and (c)) or with x = 4D? =

correspond, in fact, to a unique chiral mode as it becomes clear
by plotting the spectrum in the reduced Brillouin zone [0, 7 [
(see main text). Note that the spectrum can be “unfolded” and
plotted in the full Brillouin zone while still keeping the full
SU(2) multiplet structure by using a different gauge for the
PEPS that does not preserve the full rotation symmetry of the
local tensor [70].

Since the ES of the D = 6 chiral PEPS is computed using
the CTMRG fixed-point tensor 7', a systemic finite-x error
seems inerrant to the calculation. Nevertheless, one can argue
that the results should saturate once, typically, the correlation
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i B, D = 6 chiral PEPS (for N, = 6) computed using the iPEPS T tensor
144 ((b) and (d)).

length éﬁgs( x) becomes bigger than the system size N,. The

ES obtained for x = 36 and 144, for which &{)s ~ 2.8 and

ﬁgs ~ 5.8, respectively, are compared in Figs. 16(a)-16(d).
Clearly, the spectra for x = 36 are not fully converged, e.g.,
the fourth j = 0 Virasoro level (shown by the green box)
containing spurious S = 0 and S = 1 multiplets. The correct
SU(2), counting is obtained for more levels for x = 144.
Since SIE,}I),S( x = 144) ~ N,,, we expect that this spectrum is
already quite close from the exact ES of the D = 6 chiral

PEPS on an infinitely-long cylinder of perimeter N, = 6.
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