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Majorana neutrino masses in the renormalization group equations
for lepton flavor violation

Sacha Davidson”
LUPM, CNRS, Université Montpellier Place Eugene Bataillon, F-34095 Montpellier, Cedex 5, France

Martin Gorbahn' and Matthew Leak*

Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool,
Liverpool L69 3BX, United Kingdom

® (Received 21 August 2018; published 20 November 2018)

We suppose that the observed neutrino masses can be parametrized by a lepton number violating
dimension-five operator, and calculate the mixing of double insertions of this operator into lepton flavor
changing dimension-six operators of the standard model effective theory. This allows to predict the log-
enhanced, but m2-suppressed lepton flavor violation that is generic to high-scale Majorana neutrino mass
models. We also consider the two Higgs doublet model, where the second Higgs allows the construction
of three additional dimension-five operators, and evaluate the corresponding anomalous dimensions.
The sensitivity of current searches for lepton flavor violation to these additional Wilson coefficients

is then examined.

DOI: 10.1103/PhysRevD.98.095014

I. INTRODUCTION

Neutrinos are elusive and enigmatic particles: uncolored,
uncharged, and very light. Nonetheless, their observed
masses and mixing angles [1] imply that lepton flavor
violation (LFV) must occur, where we define LFV as
flavor-changing contact interactions of charged leptons
(for a review, see, e.g., [2]). Since these do not occur in
the standard model (SM), LFV is considered to be “new
physics”, and searched for in a wide variety of experiments
[1,3—12]. Neutrinos could also induce another kind of new
physics: if their small masses are “Majorana,” they are
lepton number violating (LNV), and could for instance
mediate neutrinoless double-f#-decay [13]. Below the weak
scale, such masses appear as renormalizable terms in the
Lagrangian, but in the full SU(2) gauge invariant standard
model, they arise as a nonrenormalizable, dimension-five
operator.

In this paper, we assume that neutrino masses are
Majorana, and generated by New Physics in the lepton
sector at a scale A > my,. We focus on the theory above
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my, but below A, where it can be described in the
framework of the standard model effective field theory1
(SMEFT). The neutrino masses are parametrized by oper-
ators of dimension five, and LFV is parametrized by
operators of dimension-six. Our aim is to obtain the log-
enhanced loop contributions of two LNV operators to LFV
processes, which arise in the renormalization group equa-
tions (RGEs). In particular, we calculate the anomalous
dimensions that mix two dimension-five operators into a
dimension-six operator. The renormalization group running
of the dimension-five operators has been extensively
studied in the literature [16—18], and the mixing of the
dimension-six operators among themselves have been
evaluated at one-loop [19] in the “Warsaw”-basis [20] of
SMEFT operators. The mixing of two dimension-five
operators into dimension-six operators was calculated in
[21], using the Buchmuller-Wyler [22] basis at dimension-
six. We perform this calculation using the “Warsaw”-basis,
and our results appear to disagree with [21].

The mixing of neutrino masses into LFV amplitudes is
O(m,/my)* In(A/my), so negligibly small, but completes
the anomalous dimensions required to perform a one-loop
renormalization-group analysis of the SMEFT at dimen-
sion-six. Indeed, this mixing does not involve any SM
couplings, so in a coupling expansion, would be the leading
contribution to the one-loop RGEs of the SMEFT; it is only
small because the dimension five coefficients are small. In
addition, we explore an extension of the SMEFT with two

'For an introduction to EFT, see e.g., [14,15].
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Higgs doublets [23], where the second Higgs doublet lives
at a scale m,, between my, and significantly below the
lepton number/flavor-changing scale A, and we impose that
LFV at the weak scale is still described by the dimension-
six operators of the SMEFT. In this scenario, there are four
LNV dimension-five operators above mi,,, but only one
combination of coefficients contributes to neutrino masses.
We calculate the mixing of these LNV operators into the
LFV operators of the SMEFT, and estimate the sensitivity
of current LFV experiments to their coefficients.

The paper is organized as follows. In Sec. II we introduce
the notation of our standard model and two-Higgs doublet
model calculation. The main results are presented in
Sec. III, where we discuss the general structure of
our calculation and give the relevant counterterms, anoma-
lous dimensions and renormalization group equations.
Section IV discusses the phenomenological implications
of both results before we conclude. We provide the relevant
Feynman rules, further details of the calculation (including
a careful treatment of the flavor structures), and the
renormalization group in the Appendices A—C. The LFV
operators of the SMEFT are recalled in Appendices D and E
gives the current experimental constraints on some LFV
coefficients of the SMEFT at the weak scale. Appendix F
provides a comparison with the previous calculation of [21]
and Appendix G presents the lepton conserving contribu-
tions to the anomalous dimensions.

II. NOTATION AND REVIEW

The SM Lagrangian for leptons can be written as

ﬁlep = i?ayﬂDyfa + ian”Dyea - ([Ye]aﬁ?aHe/)’ + HC)

(2.1)

where Greek letters represent lepton generation indices
in the charged-lepton mass eigenstate basis, [Y,] is the
diagonal charged-lepton Yukawa matrix with eigenvalues
Vg, € 1s a doublet of left-handed leptons, and e is a right-
handed charged-lepton singlet. The explicit form of the
lepton and Higgs doublets is

124 H +
Lﬂ - ) H - ’

er H 0
which have hypercharge Y(¢) = —1/2 and Y(H) =1/2
respectively. The covariant derivative for a lepton doublet is

(2.2)

(D,¢)i, = <5ijaﬂ+121 Wa +i65,dY(¢) ﬂ>f{;, (2.3)

where 7¢ are the Pauli matrices. This sign convention for
the covariant derivative agrees with [19].

Heavy new physics can be parametrized by adding
nonrenormalizable operators to the SM Lagrangian that
respect the SM gauge symmetries [22]. There is only a

single operator at dimension-five in the SM, which is the

lepton number violating “Weinberg” operator [24] which is

responsible for Majorana masses of left-handed neutrinos.

The resulting effective Lagrangian at dimension-five is
aﬂ apfx

* C * C (e
2A 2 (CaeH") (CGeH )—l——(f eH)(¢,eH),

5L
5T 2A

(2.4)

where € is the totally antisymmetric rank-2 Levi-Civita
symbol with ¢, =41, all implicit SU(2) indices
inside brackets are contracted, and the charge conjugation
acts on the SU(2) component #' of the lepton doublet
as (£/)° = C¢'". The charge conjugation matrix C fulfils
the properties of the charge-conjugation matrix used in
[25].2 The coefficient C‘;ﬁ is symmetric under the inter-
change of the generation indices a, 3, the new physics scale
A is assumed > myy, and the second term is the Hermitian
conjugate of the first.
In the broken theory, with Hy = v + (h/\/2), v ~m,,
this gives a Majorana neutrino mass matrix
U2 af
L=~ [mv]aﬂ = _XCS

m,] Vet +H.c. (2.5)

1

5[ u]
In the charged lepton mass eigenstate basis, this mass matrix
is diagonalized by the Pontecorvo-Maki-Nakagawa-Sakata
matrix [mu](xﬁ = Um-m,,,-Uﬁ,-.

At dimension-six, we will be interested in SM-gauge
invariant operators that violate lepton flavor; a complete list
is given in Appendix D. Following the conventions of
[19,20], they are added to the Lagrangian as:

5Le = Z A;‘ 0% +H.e. (2.6)

where X is an operator label and { represents all required
generation indices which are summed over all generations.
Of particular interest are the operators that can be generated
at one-loop with two insertions of dimension-five oper-
ators, as illustrated in Fig. 1. With SM particle content,
these operators involve two Higgs doublets and two lepton
doublets, four lepton doublets, or three Higgs doublets and
leptons of both chiralities. In the “Warsaw” basis [20], the
possibilities at dimension-six are

Oy E(HU) H)(Z7"¢p)
) i a a
O 5(HTD H)(Zar'°¢y)
s _ 1 -
Oy = (HH)EoHey  OF)° =5 (Carlp) (€0 ts)

(2.7)

Note that this definition of the dimension-five operator is the
hermitian conjugate of the one used in [20] where C = iy?*y? in
the Dirac representation, since in this representation C~! = —C.

095014-2
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Diagrams involving two insertions of dimension-five operators, that can contribute to dimension-six lepton-flavor-violating

operators. SU(2) indices run from /, ..., O and i, ..., 0, lepton flavor indices are a, f, p, o.

where we normalize the “Hermitian” operators with a factor
of 1/2 (see Appendix D for a discussion) in order to agree
with [19,20], and

i(H'D,H) = i(H'D,H) — i(D,H) H
— H'(id,H) — i(0,H) H — gH't"WH
—2Y(H)gH'B,H.

i(HDH) = i(H't"D,H) — i(D,H) “H. (2.8)

The choice of operator basis implies a choice of
operators that vanish by the equations of motion (EOMs).
For example ip?,, — [Y,]*°He, = 0 implies that the follow-
ing operators

O = i(H'H)(ZD¢))
- (HTH)(?(IHeO'[Y(];]H/} + [Y:]

aoc

e,H'¢y),
O(:é) = i(HTTaH) (?apabﬂ/})

— (HH)(Z,He (YT + (V]2 H Ep).  (29)
are EOM-vanishing operators. The role of these operators
becomes clear by noting that in intermediate steps of our oft-
shell calculations, additional structures appear that can
conveniently be matched onto combinations of EOM-
vanishing operators and operators of the Warsaw basis.
For example the structures involving two Higgs fields and a
covariant derivative of a lepton doublet are expressed in
terms of the above operators as:

SZﬁDf(l) = i(HTH)(?apfﬂ)
= O%) +OYe] 5+ Y2, 0L
S}flﬂnm) = i(HTTaH)(?aDafﬂ)

= 0% + O [YT], + Y, O (2.10)

In practice, if the coefficients CZ"D 0 and C/;I”D ) of

these structures are present, they are equivalent to

sz - C/gxw(l)[Ye]"” + CHan(S) [Y,.]* (and the Hermitian

conjugate relation).

A. In the case of the 2HDM

In this section, we consider the addition of a second
Higgs doublet H, to the SM, of the same hypercharge as
the SM Higgs (which we relabel H,). The LFV induced by
double-insertions of dimension-five operators could be
more significant in this model, because there are several
dimension-five operators, so neutrino masses cannot con-
strain them all. However, a complete analysis of LFV in the
2HDM would require extending the operator basis at
dimension-six and calculating the additional terms in the
RGEs, which is beyond the scope of this work. So for
simplicity, we make three restrictions:

(1) First, we consider only the dimension-six LFV
operators of the SMEFT. This is the appropriate
set of dimension-six operators just above myy,
provided that H, has no vev, and that the mass
my, of the additional Higgses is sufficiently
high: m}, < m3, < A%. In our phenomenological
analysis we extend this range to the scenario
m}, < m3, < A%, by considering a Higgs potential
where the additional Higgses are not directly observ-
able at the LHC, and where the Yukawa couplings of
H, are vanishing. Such a scenario would e.g., be
realized in the inert two Higgs doublet model [26—
29] and setting the scale m,, close to the electroweak
scale will not require the consideration of additional
renormalization group effects in the SMEFT.

(2) Second, we suppose that at the high scale A no
dimension-six LFV operators are generated. This is
unrealistic, but allows us to focus on the LFV generated
by double-insertions of the dimension-five operators.

(3) Third, we suppose there is no LFV in the renorma-
lizable couplings of the 2HDM (in particular, in
the lepton Yukawas), so that when matching the
2HDM + dimension-five operators onto the SMEFT
at the intermediate scale m,,, no additional LFV
operators are generated.

Consider first the renormalizable Lagrangian. The

Yukawa couplings can be written [30]:

Hy
Hy
H;
H;)

0Loupm = —(y,eL)[Y(1>]< >e _E[Y(I)FHV

—(v,q)[Y@]( >e—z[Y<2>]THy, (2.11)
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where the flavor indices are implicit, and the basis in
(H,, H,) space is taken to be the “Higgs basis” where
(H,) = 0. We suppose that [Y(V)] and [Y?)] are simulta-
neously diagonalizable on their lepton flavor indices.

The second Yukawa coupling changes the equations of
motion for the leptons, so the 2HDM version of the equation-
of-motion vanishing operators [given in Eq. (2.9) for the
single Higgs model] should be modified. As a result, the
operators Oy ps(1) and Opps(3) should not be replaced only
by the SMEFT operator O, , as given in Eq. (2.10), but also
by an operator with an external H, leg. However, since we
neglect dimension-six operators with external H,, we use
the relations (2.9) and (2.10) also in the 2HDM case.

In this “Higgs” basis, the most general Higgs potential is

V = mj\H{H, +myH;H, — [myH Hy + Heel

1 1
+ E’ll(HJ{Hl)Z + Eﬂz(H;Hz)z + A3 (H H, ) (H}H,)

. . 1 .
) ) + { S )
+ [A(HH,) + A, (H}H,)|H H, + Hc} (2.12)

In order to decouple the additional Higgses, we can, for
instance, set m?3, = 0 and assume m3, > m?%,, or leave m3,
free, and impose m?, = dg = 1; = [Y?)] = 0.

At dimension-five in the 2HDM, there are four opera-
tors [16]:

af affx
oL =+ i (fa‘c"HT)(l’ﬂ/L}eHT) + 25—/\ (f;;’SHl)(faeHl)
Cgf v * c * R * c *
+ A ((l’ﬂugHz)(l’ﬂ[;’SHl) + (f/ing)(fagHz))
c _
+ K ((K/JEHZ)(fang) + (fang)(fﬁgHZ))
CE o ety +
+ A (¢qeH5)(5eH5) + N (£5eH,) (€ 4eH>)
S et el
—ox (Catly)(HieH3) —— = (£5el,) (HaeH) ),

(2.13)

where {Cs, Cy,, Cy; } are symmetric on flavor indices (so
can contribute to neutrino masses). In the O,; operator,
(ZaeH5)(£5eHT) = (€peH7)(¢5eH3), but both terms are
retained here because they are convenient in our Feynman
rule conventions.’

_3The operator Oy can also be written as 2(Z4eH? ) (¢5eH3) +
(£pef)(HieH?) using the identity (A9), as done in the first
reference of [16].

Ce

FIG. 2. Two insertions of dimension-five operators can also
contribute to dimension-six operators involving four Higgses via
this diagram.

Tree-level LFV is often avoided in the 2HDM by impos-
ing a Z, symmetry on the renormalizable Lagrangian: if
under the Z, transformation, H; - H; and H, - —H,,
then [Y(?)], A¢ and 4, are forbidden. We will later discuss this
case, but do not impose the Z, symmetry from the begin-
ning, because it also forbids the C,; and C, coefficients at
dimension-five.

III. THE EFT CALCULATION

A. Diagrams and divergences

Diagrams with two insertions of the dimension-five
operators are illustrated in Figs. 1 and 2. We focus on the
lepton flavor violating diagrams of Fig. 1, and discuss the
four-Higgs operators generated by Fig. 2 in Appendix G,
because four-Higgs interactions are flavor conserving and
arise in the SM.

The Feynman rules arising from the (tree-level)
Lagrangian of equations (2.1), (2.4), (2.6) are given in
Appendix A. We use them to evaluate, using dimensional
regularization in 4 — 2¢ dimensions in MS, the coefficient
of the 1/e divergence of each diagram of Fig. 1. These
coefficients can be expressed as a sum of numerical factors
multiplying the Feynman rules for the dimension-six
operators of Eqs. (2.7) and (2.10) (these Feynman rules
are given in Appendix A), and then the EOMs are used to
transform the operators of Eq. (2.10) to O,y and OZ ;- The
required counterterm AC, for each of the dimension-six
operators given in Eq. (2.7) can be identified as (—1)x the
numerical factor that multiplies its Feynman rule. This
counterterm is added in the Lagrangian to the operator
coefficient Cp, resulting in a “bare” coefficient Cp pye =
u*(Cp + ACyp) that should be independent of the MS
renormalization scale u. Note that the factor x> is chosen
such that bare Lagrangian remains d-dimensional.

A more complete and rigorous presentation will be
required in the next section, in order to derive the
RGEs, so let us replace counterterms by Z factors in order
to minimize notation and introduce the necessary factors of
1€ to obtain the correct dimensions. More details of the
formalism and calculations are given in Appendix C.

We allow for multiple operators at both dimension-six
and -five, and align the dimension-six coefficients in a row
vector C, and the dimension-five coefficients in a row

vector C. Then the bare coefficients can be written

095014-4
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6‘bare = /4266[2]7 Cbare = HZe [&Z +6[Z] 6” (31)
where matrices wearing a hat act on the space of dimension-
six coefficients, and matrices in square brackets act in the
dimension-five space, so Z represents the renormalization of
dimension-six coefficients amongst themselves, and [Z]
represents the renormalization of dimension-five coeffi-
cients. The quantity [Z] renormalizes insertions of two
dimension-five operators; [Z]/ is a vector in the dimen-
sion-six space with index k, and a matrix in the dimension-
five space with indices i, j. In the single Higgs model, i, j
correspond to the flavor indices of the Weinberg operator,
e.g.,i = aff, j = po. Theindex k corresponds to the operator
labels and flavor indices of dimension-six operators. The

counterterms that renormalize the diagrams of Fig. 1 are then

components of the vector C 7] C". All terms in the above
expressions assume an implicit sum over flavor indices; the
explicit flavor dependence is presented in Appendix B.
The first diagram of Fig. 1 has two Higgs and two
doublet-lepton legs and so must be renormalized by the
operators Oy (3) and Oy (1), and the structures Sype() and
Shpe(3)- Since these all involve a derivative, the diagram is
calculated for finite external momenta. The counterterms
that we obtain from this diagram differ from those given in
[21]; as discussed in Appendix F, it appears that the authors
of [21] dropped one of the terms multiplying the 1/e
divergence. We check our result by attaching an external B,
or Wy boson, in all possible ways, to the first diagram of
Fig. 1, and verify that our counterterms also cancel the
divergences of the 2-Higgs-2-lepton-gauge boson vertices
generated by two insertions of the Weinberg operator (this
is outlined in Appendix B 3). This diagram can be
renormalized using the following counterterms:

o o 3 1
T\ fa _ «fa
(CAY gy =~ 3762 1CC1. (32)
ey — 42 1 e 3.3
CIRC ey = + 3752 [CsCie. (33)
cietype 31 "
(C[Z]C )HDf(l) Z 1622 [CSC ] (3-4)
(CIZIEN g =+ [C5CLlP, (3.5)
HDZ(3) T T 4162 5%5 :

where the last two counterterms represent divergences
proportional to the structures Sppg(1) and Sype(3), Which
contribute to the renormalization of C,y through the linear
combination given in Eq. (2.10).

The middle diagram of Fig. 1 contributes to O’%. and
the divergence it induces can be removed by the counter-
term (167%€)7'[{C5C:Y]P* (where the flavor index order

is doublet-singlet). Including also the counterterms for

Shipeqt) and Siyiy) [Egs. (3.4), (3.5)] gives

3

1% pa
+rre OGP

(ClZIC ey = (3.6)

Since the structures Syps3) and Sppe()) are Hermitian,

they contribute to the renormalization of both O, ; and O,
[see Eq. (2.10)]. Only the contribution to O, is included in
(3.6), because the Hermitian conjugate in (2.6) generates a
counterterm proportional to OZH that absorbs the diver-
gence of the “conjugate” process of Fig. 1.

The third diagram of Fig. 1 contributes to the four-lepton
operator O’;}ﬂ ?, and the divergence it induces can be
removed by the counterterm

1 1

ﬂ *o
" 4167% ey

(3.7)

B. The 2HDM

In the 2HDM, we consider diagrams analogous to Fig. 1,
but with insertions of any of the dimension-five operators
given in Eq. (2.13). The external Higgs lines are required to
be H,, but the internal Higgs lines can be either doublet.
The counterterms required to cancel double-insertions of
the Os operator, discussed in the previous section, also
arise in the 2HDM. In this section, we only list the
additional contributions to the counterterms.

We start again with the first diagram of Fig. 1, with O,;
or O, at the vertices. Since by construction, the Feynman
rule for O, is identical to the rule for Os, double-insertions
of O, require the same counterterms as given in Eqgs. (3.2)
to (3.5), but with Cs, C5 replaced by C,;, C3,. Double
insertions of the antisymmetric operator O, require the
counterterms:

o101

A(C[Z]CT)W“) 16 [C Ci)Pe, (3.8)
A1 AT\ pa 1 1 « o
A(C[Z]C )Hsz’(l) = 11672 [CaCH] (3.9)

Finally, O, at one vertex and O,; at the other require the
contributions to the counterterms:

=1 2 B 1 1 y 1
ACIZIE 0, = 372 [CaCh = Cu il (3.10)

Pa 1 1 * | fa
ACIZIE iy = g1er[CaCh = CuCiPe. (3.11)

It is straightforward to check, using respectively the anti-
symmetry and symmetry of C4 and C,; on flavor indices,
that the combination [C,C%, — C,;Cj] is Hermitian, as
expected for the coefficients of Oyy(3) and Oppe(3)
Consider next the middle diagram of Fig. 1. Only the
internal Higgs lines can be H,, so the additional diver-
gences in the 2HDM will arise from O4 or O, at the vertex

095014-5
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farthest from the Yukawa coupling, which can be
cancelled by the counterterms (16z%¢)~![C,; C5Y?]/* and
—[CACiYP]Pa/(167%). Including also the additional

) and o« . in the 2HDM gives

a
counterterms for O HDE(3)

HDZ(1

~1A AT\ Pa 11
ACZIE = o
+[(CaCL+C4C5 = C5 C

= Cy C3,) YW,

(4[(Ca1 = Ca)C5Y )PP

(3.12)

Finally, for the four-lepton operator, there are additional
counterterms in the 2HDM to cancel the divergences
induced by double-insertions of O,,, of O,;, and of Q4.
(The possible diagrams with an insertion of both O,; and
O, vanish due to antisymmetry.) We obtain:

I 1 1

A7 T \poPa P xac P xac
A(C[Z}C )/z;(;a - _11671'26' 32 221 _516”26 /271 2{
1 1
+ e, (3.13)

21672 44

C. The renormalization group equations

The contribution of dimension-five operators to the
renormalization group equations of dimension-six opera-
tors, due to double insertions, can be obtained following the
discussion of Herrlich and Nierste [31]. The derivation is
presented in Appendix C. Here we schematically outline
the result.

The bare Lagrangian coefficients are defined at one loop
as in Eq. (3.1), where the counterterm for one operator can
depend on the coefficients of other operators. Recall that
the bare coefficients are independent of the dimensionful
parameter p, and that the renormalized Cs are dimension-

less. Using C = ,u‘z“E’bare[Z"] allows one to obtain, in
4 — 2¢ dimensions:

(16772);1%6‘ = —5{26(16712) + (1672) {ﬂ%z} [z—l]}

= C[y] - 2¢(162%)C (3.14)
where [y] denotes the 4-dimensional anomalous dimension
matrix, and we (unconventionally)4 factor the 1622 out of
the anomalous dimension matrices. While the —2¢ term
does not contribute in d =4 dimensions to the mixing
of the dimension-five operators, it plays an essential role in
the renormalization group equations of the dimension-six
operators.

“The usual definition [15] is u % C = (Cy, then y is expanded in
loops: y = £yo + .... However, here we only work at one loop,
have other subscripts on our ys and the one loop mixing of
dimension-five-squared into dimension-six is not induced by a
renormalizable coupling. So we factor out the 1622

For the dimension-six coefficients, it is straightforward
to obtain from Eq. (3.1):

d . - d ;) o aia
—C:—C-{ﬂ—Z}Z_l-i-zGC-Z-CTZ_l

'ud,u du
-~ d T5—-1
~C-|\u—2z|-C'2
[ du ]
~-C-[Z] ﬂi NV el
du
- d il N
~C-[7]- [,u—Z‘l] [Z]"c" 21, (3.15)
du

where terms of O(e) that vanish in 4 dimensions are
neglected, and the summation over flavor and operator
indices is indicated with a dot. The second line can be
dropped, because the first term vanishes at one loop, and the
remaining terms are of two-loop order because both [Z] and
d[Z7']/du arise at one-loop. So the renormalization group
equations for the dimension-six coefficients can be written
2, 4 e pe Ao at
(167°)p—C = Cy+C[p|C', (3.16)
du

where 7 is the one-loop anomalous dimension matrix for
dimension-six operators [19] and [§] = 2(167%)e[Z] is the

anomalous dimension tensor.

We give below the anomalous dimensions describing the
one-loop mixing of double-insertions of dimension-five
operators into LFV dimension-six operators, in the 2HDM.
The single Higgs model can be easily retrieved by setting
Cy; = C4 = Cy, = 0 in the equations below. The anoma-
lous dimension tensor mixing a pair of dimension-five
operators into a dimension-six operator is necessarily a
three-index object; below we sum over the two dimension-
five indices, and give these summed components of the
tensor as elements of a vector in the dimension-six operator
space. These anomalous dimensions parametrize the mix-
ing of Fig. 1 in the 2HDM (recall that a factor 1/162 is
scaled out of our anomalous dimensions):

Ar~1 AT\ fa 35 0 ko J35 0 xoa
(C[V]CT)Zm) = _C?prcs - Cgll 2,0 G

5 O koo
+ Cﬁp%cA (3.17)

ClCT P *oo *oa 4 6 iou
(C[y]CT)i’f@) - €p5P0C5 + Cg’fép,,cm + Cﬁﬂ%cm
5 0 oo
-G 7 Ci (3.18)
Si~1 T\ fa )3[Y(1)} (16 R
(ClHICH =2 #Cs "+2[(Cy —Cy)CrY PP

1
+§[(cAc;; +C,C3 = Cyy Ci = Cy G, ) YID]P2

(3.19)
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(CIC i =~ s Com — g O

— e+ clr e (3.20)
where the operator label and flavor indices on the left-hand
side refer to the dimension-six operator (the dimension-five
indices are summed).

In the next section, we will need the RGEs for
dimension-five operators. Recall that in the single Higgs
model, [y] is in principle a 9 x 9 matrix (or 6 x 6, if one
uses the symmetry of Cg’ﬁ ), mixing the elements of Cj
among themselves. However, in the basis where the
charged leptons are diagonal, [y] is diagonal, and
the anomalous dimension for the coefficient C;-'ﬂ of the
Weinberg operator is [16]:

1682 = =3 ([¥.J20+ [VJ5y) + (1=302 + 2THV,]1TY,]

3V Yol + [Y][Ye]) (3.21)

where the Higgs self-interaction in the SM Lagrangian is
4(H'H)?, and [Y/] are the fermion Yukawa matrices.

IV. PHENOMENOLOGY

In order to solve the RGEs, it is convenient to
define ¢ = 161”2 lnmLW, in which case the one-loop RGEs
for dimension-five and -six operator coefficients can be
written as

d~ ~ - _)T
2C=C-9+C-ff]-C

7 7+C-[7]

d—> -

“c=cC-Jyl. 4.1
7 4 (4.1)

These are among the most familiar of differential equations,
whose solutions have the form

E(1,) = E(0)expiyt,} = E(0) [1 7y 61ﬂ2 In (m%) + }

(4.2)

) = | [ artertpler e 00+ €|t
(4.3)

where 167°t; = In(;}-). In these solutions, the anomalous
dimension matrices were approximated as constant; this is
not necessarily a good approximation, because the anoma-
lous dimensions depend on running coupling constants, in
particular the Yukawa couplings can evolve significantly
above my. Although the impact of the running Yukawa

couplings is a higher order effect if the logarithms are not

resummed, their contribution could be amplified by a large
logarithm. Therefore, if one wished to perform a precision
prediction of lepton flavor violation in the case that A >> v,
it would be necessary to incorporate the effect from running
Yukawa couplings. However, this mass hierarchy highly
suppresses lepton flavor violation, and such a precision
prediction is beyond the scope of this work.

A simple solution to Eq. (4.3) can be obtained by
expanding the exponentials under the integral, as in
Eq. (4.2):

Clmy) = C(A) — C(A)ylgﬂzmni;
—aMmﬁMhéﬂ%%+“' (4.4)

A. The single Higgs model

In the SM case where there is only one Higgs doublet,
there is only the Weinberg operator at dimension-five: a
symmetric 3 x 3 matrix, whose entries are determined by
neutrino masses and mixing angles (in the mass basis of
charged leptons). We now want to estimate the contribution
of double-insertions of this dimension-five operator to
lepton-flavor violating processes.

We neglect the “Majorana phases,” suppose that the
lightest neutrino mass is negligible, and neglect the lepton
Yukawas in the RGEs. Then the RG running of C‘Slﬂ
between my and A can be approximated as a rescaling,
with y & A — 3¢, + 6y? ~ 3.5:

6 (4.5)

CP(A) = % (my) [1 4352 4 ...
my
For A < 10'® GeV, the log is < 32.
We can now estimate the contribution of the neutrino
mass operator to lepton flavor violating processes from
Eq. (4.4). We neglect C(A) and find that the contribution is

#lnnf—w x the coefficients of Eqgs. (3.17)—(3.20), that is, of

order
- C2 A
C ~—2_In—. 4.6
(my) ~ ezt (46)

As expected, this is negligibly small, because C2/A* ~
m2/v*. Notice, however, that the logarithm can be large,
and the anomalous dimension is O(1); the effect is tiny
because small neutrino masses imply that Cs is small or A
is large.

B. The two Higgs doublet model

Experimental neutrino data constrain the dimension-five
operator in the one Higgs doublet model, so the lepton
flavor violating effects estimated in Eq. (4.6) are
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suppressed by the smallness of the neutrino masses. The
situation changes in an extended Higgs sector, where more
than one dimension-five operator is present. The operator
O, cannot contribute to neutrino masses as it is antisym-
metric in flavor space and is hence unconstrained. In
addition, the neutrino mass contribution of operators O,;
and O,, is suppressed if the vacuum expectation value of
the second Higgs doublet is small. Renormalization group
effects [16-18] will in general mix all operators, which
could lift these suppression mechanisms at loop level.
However the mixing factorizes in the limit where A4, 4; and
Y tend to zero: then the operators 5, and O, will not
mix into Os and O,, and are hence not constrained by the
observed neutrino masses. Furthermore, the mixing of O,,
into Os vanishes in the limit where in addition 15 tends to
zero (see [32] for a symmetry argument).

In the following we will study the sensitivity of lepton-
flavor violating decays to these additional operators. We
assume that the Wilson coefficients of the dimension-five
operators are generated at A = 10 TeV, while all other
dimension-six Wilson coefficients are zero at this scale. To
avoid constraints from the observed neutrino masses we
consider the scenario where the second Higgs doublet has a
negligible vacuum expectation value and a mass at the
weak scale. The Higgs sector could be assumed to be close to
that of an inert two-Higgs doublet model [26-29] and the
dangerous couplings A, 4; and Y are not generated
radiatively. Renormalization group running will then gen-
erate nonzero Wilson coefficients of several dimension-six
operators at u ~ v. Only those dimension-six operators that
involve standard model particles are of interest to us, since
the vanishing vacuum expectation value of the second Higgs
doublet will suppress the contribution of the other operators
after spontaneous symmetry breaking. Applying the con-
straints presented in Appendix E of the Wilson coefficients
evaluated using Eq. (4.4) neglecting the small log
In(my,/my ), we find the following: the y — 3e decays
provide the greatest sensitivity to the additional dimension-
five Wilson coefficients. In particular the left-handed con-
tribution implies

CE O™ +0.5C5C5" +0.1) (Cy = C85)(CH™ +C3H)

1 A2
“5200(A/ma) <10TeV> ’ (4.7)

where we neglected the mixing of the dimension-five
operators amongst themselves, as this would contribute at
two-loop order to the lepton flavor violating processes. For
the right-handed contribution we find

> (Cr-osnei + )

o

1.6 A )2
“Tn(A/mp) <10TeV> ’
(4.8)

which exhibits a weaker sensitivity. The contribution of the
u <> e flavor-changing Z vertex to u — ey is relatively
suppressed by a loop factor, so is beyond current exper-
imental sensitivity. However, this Z vertex contributes
at tree-level to u — e conversion, in interference with
vector and scalar 2-quark-2-lepton operators. Indeed,
the current sensitivity of y — e conversion in gold is
Chivy + Chivqa| & 1.4 x 1077 (A/m,)*. The resulting con-
straints on the Wilson coefficients reads:

> (Cr-c)(Cr +Co)

o

1 A2
~6.5In(A/my) <10TeV> ’
(4.9)

We also checked that the current experimental situation for z
decays does not lead to significant constraints.

V. SUMMARY

Motivated by neutrino masses and the expected
progress in searches for lepton flavor violation, we
calculated the leading one-loop contribution of a pair
of lepton number violating dimension-five operators to
the coefficients of lepton flavor violating dimension-
six operators. The diagrams are given in Fig. 1. The
dimension-five operators that we considered are the
Weinberg operator, constructed out of SM fields and
given in Eq. (2.4), and three additional dimension-five
operators that can be constructed in the two Higgs
doublet model, given in Eq. (2.13). The dimension-
six, lepton flavor violating operators of the SMEFT are
listed in Appendix D, in the “Warsaw” basis, and the
subset of these operators relevant for our calculation is
given in Eq. (2.7). A selection of constraints on their
coefficients, evaluated at the weak scale, is given in
Appendix E.

In Sec. III, we obtain the anomalous dimensions
mixing two dimension-five operators into the lepton flavor
violating operators of Eq. (2.7). The required counterterms
are given in Egs. (3.2)—(3.7) for the standard model with a
single Higgs, and in Egs. (3.8)—(3.13) for the case of the
two Higgs doublet model. Then in Sec. III C, we outline
the derivation of the renormalization group equations
(Appendices B and C present our calculation and the flavor
dependence of our result in more detail), and the resulting
anomalous dimensions are listed in Egs. (3.17)—(3.20). The
mixing of two dimension-five operators into the lepton
flavor conserving four-Higgs operator, via the diagram
of Fig. 2 is given in Appendix G; however, we do not
consider mixing into dimension six operators constructed
with the second Higgs of the 2 Higgs doublet model.
This completes the one loop renormalization group
equations of the standard model effective theory, up to
operators of dimension six. It is amusing that the
insignificant effect we calculate does not involve standard
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model couplings, so, in an expansion in terms of SM
couplings, our result is the “leading” contribution to the
one-loop RGEs of the dimension-six SMEFT.

In the effective field theory constructed with standard
model fields, the coefficient of the Weinberg operator is
proportional to the neutrino mass matrix. So the lepton
flavor changing amplitudes induced by double insertions
of the Weinberg operator are o (m,/my)?InA/my,
and far below current sensitivities. This is outlined in
Sec. IVA. However, the situation is different in the 2
Higgs doublet model, as discussed in Sec. IV B: there are
four operators at dimension five, and the neutrino mass
matrix only constrains one combination. We evaluated the
mixing of the four operators into lepton flavor violating
operators of the standard model effective theory,
and for a lepton number violating scale of 10 TeV we
found that the current experimental value of y — 3e is
sensitive to the Wilson coefficients of these additional
operators.
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APPENDIX A: FEYNMAN RULES
AND IDENTITIES

1. Feynman rules

We use Feynman rules of Ref. [25], in order that the
fermion traces in loops multiply spinors in the correct order.
The Feynman rule for the Weinberg operator of Eq. (2.4)
can be obtained reliably by using Lehmann-Symanzik-
Zimmermann reduction or Wick’s theorem, which gives the
signs for fermion interchange. The fermion fields are
expanded as [33]

3
w0 =3 [ plati e+ (e )

so the amplitude M ; is

5Mixing among dimension six operators occurs via the
exchange of a SM particle, so is o [SM coupling]?).

op

G5 —— \( pc NP
<fajHI|li(fo-n8nNHN ) EomemaH")|E5:H )

Ll _
= (—l)lﬁ (o Prup; + Ty Prutg;) (€115 + €751
af fed
Reae
2A
af
= (_i)iTSﬁajPRu/}i(eilej] + &iser),

= (-1

Ty Prug(eiej; + €i€))

(A1)

where the SU(2) lepton indices are lower case, Higgs
indices are upper case, £,; and £7,; represent a final state
lepton and an initial state anti-lepton respectively. The
factor i is the usual factor for Feynman rules and the factor
(—i) is due to the calculation of M. This expression
agrees with Feynman rule of Ref. [21].

A Feynman-rule to attach a W-boson to the ¢ line also
will be needed. With the following identities [25]
£c=Ce7,

C_l :CT’ CTyﬂTC:—y/‘

(A2)

C=iyor2,

¢ = [Crie*"vo = ¢TyoClyo = £7CTCroClyg
— —ch'{'},O},O — —/Tc! (A3)

one obtains (where the (—1) is for interchanging fermions)

[Ciz;W/PLE T = (=D)[=E5Ce LWy C71ee] - (A4)
= T WaCy C' Prt© (A5)
= —£ T Wiy, PRt* (A6)

and recall that =177, s0 * = 77. The Feynman rules for the
dimension-four, dimension-five and physical dimension-
six interactions are given in Figs. 3, 4, and 5 respectively.
The Feynman rules for the dimension-six equation of
motion vanishing interactions are given in Fig. 6.

2. Identities

The following identities are useful:

— a 1
2€i18j./ = 51'}'51_/ - TijTa,IJ Fierz

1 B 1 1
ZTijTa,kl = §5i15kj - Zéijékl SU(N> (AS)
Eab€cd T Epc€ad t Eac€ba = 0 (A9)
7€) = Oik (A10)
8,’(,’S;-lk8kl = S;zl (Al 1)
0= 6,-]-521 - 5ﬂSzi + 5le;§ - 6ikS;?, (A12)
€ij€x = 0ikbj1 — 616k, (A13)

where
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Wi wi Wi
=gl Pr +i§[rij v Pr < AR (el + o)
. . /4'1 4 7
Zi Zg‘ (6()1, (ZC)(]X HI o \\ H
HJ HJ
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/\\iya(SiJ /\\ 7iy06Ji
. I e €o
FIG. 3. Feynman rules for dimension-four interactions.
HI HY HY Hy
e aB
//O\\ 62163J+51161J)PL /A\ A (&IEjJ"i‘EjI&'iJ)PR
t,
i} o 1} o
*5” B
//@\\ EqIEJJJrEjIEzJ)P /@\\ 1_12\2—( i[EjJ+Ej161;J)PR
e, (€,
o o
C"/j
//@\\ Z A (51187J+€71611)PL //@\\ A (8i[€j]+€j[€iJ)PR
A (€,
il o il o
//O\\ i< A 5325JIPL /@\\ i< A €zj€IJPR

()%

FIG. 4. Feynman rules for dimension-five interactions, in the single and two Higgs Doublet Models. H, is the SM Higgs. H, is the
second Higgs of the 2HDM, with the same hypercharge as the SM Higgs, opposite to the lepton doublet.
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. Lo 1
HE p . HY 0 l,
FIG. 5. Feynman rules for dimension-six operators of the SMEFT using the “Warsaw”-basis [20]. H; is the SM Higgs.

Lol = (ol ok A
Tlero) TT\ltol i o) o
and the SU(2) generators are S = t7/2.

APPENDIX B: THE LOOP CALCULATION

1. Flavor dependence

We allow for multiple operators at both dimension-five
and -six, and denote a particular Wilson coefficient by Cg},
where X and { are the operator and flavor labels, respectively.
Then the bare Wilson coefficients of the dimension-six
standard model effective theory Lagrangian can be written as

¢ ¢
ZCX Jbare QX Jbare
¢.X

=y (ZCC Ziy + Zc@“
0y

17 T 7n0
Zss Y) Y bare’
X

(B1)

where ¢, n and 6 represent generation indices of an operator,

and the renormalization constants Zigy encode the mixing of
dimension-six Wilson coefficients amongst themselves, which
can be extracted from the anomalous dimensions of reference
[19]. In the standard model, the mixing of two dimension-five
Wilson coefficients into a dimension-six coefficient is given by

Zgg‘gy. They are induced by the double-insertions of dimen-

sion-five operators, as shown in Fig. 1. In the case of a2HDM
effective field theory we extend the summation of the
dimension-five flavor indices to a sum over all dimension-
five operators and their respective flavor components.

The renormalization constants can be expanded in the
number of loops and powers of epsilon. At one-loop in the
MS scheme the counterterms of the physical and EOM-
vanishing operators are pure 1/¢ poles, and the renormal-
ization of evanescent operators does not play a role. Hence
we can expand

{no
55 J

oo _ 11
B 16n’e

(B2)
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FIG. 6. Feynman rules for dimension-six operators that are vanishing by the equations of motion, in the single Higgs doublet model
(SMEFT). H, is the SM Higgs. Note that we have chosen a convention for our Feynman rules to eliminate any dependence on the
momentum of the incoming lepton, p;, since all momenta are not independent.

and write the generation summation in the case of an
operator involving four fermions explicitly as:

Cg CzTézCEH Q?{ _ ngﬂcgy*ézagy&p(m) QG)((F‘L’D‘

55X 55X (BS)

The sum over generation indices reduces trivially for
operators that involve less fermions. The corresponding
renormalization equation ensures that the pole of the one-
loop off-shell matrix element of an insertion of two
dimension-five operators is cancelled by its counterterm.

Factoring out the common overall factor Cgﬂ C?'* we write:

(F10L(QL) 1)), + (SZLor™™ (£105™li) + Hee.) = 0,
(B4)

where |<]1/)€ denotes the 1/¢ pole of a one-loop diagram and
(f] and |i) are arbitrary off-shell final and initial states.

In calculations of the loop diagrams the following
generation structures arose:

Trore — %(555%% + 82588,

T9roe0 — %(5505{,,,% — 84593,00)s

Tgﬁyé'pa = %(5@5&/ Y55+ 60505, Y 15

T = %<5ap5ﬁy sti) — 04505, Y ),
T;lﬁyﬁ’pm = %(5505;/0 + 8500y5) (8020 + apOp)

Q T 1
T3£}/5,P == Z (550'5)/1) - 561)5}/0) (5a76ﬂp - 5(1/)5/}7)' (BS )

These structures, when contracted with Wilson coefficients
and multiplied by loop factors and the appropriate 6Zs, give
the results in Egs. (3.2)—(3.13). Note that in intermediate
steps, more general structures than the 7'y (4, T5(4) listed here
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arise, which show a greater degree of symmetry. These can be
obtained by taking the T4y and T4 given here, and
symmetrizing/antisymmetrizing over the appropriate indi-
ces, such that the structures become symmetric (or antisym-
metric) under a <> f# and symmetric (or antisymmetric)
under y <> 0. The structures in Eq. (B5) were matched onto
the generation structures of the dimension-six operators (the
matching is more subtle for the four-lepton operator O%7°,
where the matching is done via a Fierz-evanescent dimen-
sion-six operator (’)Z’ﬂ 75), and the generation structure there-
fore extracted from the renormalization constants, which can
then be written as a generation structure multiplied by a
numerical factor.

At one-loop we find the following nonvanishing mixing
into the physical dimension-six operators

3

85,p0 3 apyd.po aflyd.po afyd.po
Z”EV vz =__T p 7770, —__T s
0 55.H/(1) 41 ’ o 2121,HZ(1) 41 ’
S (1/3_}/5,/)0' _ lTa/}yﬁ,/m' Z{lé’yﬁ./)o’ _ 1 T{lﬂy(s,/m
AAHE(1) 471 ’ s5HZ(3) 0 1 ’
aﬂy_&.po _ lTaﬁy6$p0 5Zapl§,pa _ l Taﬂy&.po‘

2121,H¢(3) 2 1 ’ A2LHE(3) 4014

aﬂlé,pa _ lTaﬂyé.pa 5Za£7y5.p0 _ é Taﬂ}/é,pa

21A,H/(3) 47 1A ’ 55,eH 4 ’
ByS.po apfyd.po afyd.po afyd.po
700000 — 700007 —

0 215,eH 2 ’ o A5.eH 24 >
apfyb.po __ lTa/}yﬁ,/m' afyd.po lT(l/}y(i,/m'
AdeH — 42 ’ A2leH 4724

5Zaﬂ1§.po‘ _ lTaﬁy6$p0 aﬂy_&.po‘ _ _lTa/}yé,pa
214eH 4724 2121,eH 42 ’

azaﬁyé,paw _ l Taﬂy&,paw afyd.poto __ l Taﬂ;/é,paw
55.0¢ 43 ’ 202206 43 ’
5.p0TV 1 apys.porv afyd.poto 1 apfyd.poto

FoPrd.poro __ ~ pafiys, prs, — _%Prépon.

o 2121,6¢ 273 ’ o AALE 0734

(B6)
!

<f| (5Zaﬂy5,paw oTD

55,eva eva,scalar 55.eva

2. Four-lepton Green’s function

In the following we will explicitly present the
renormalization of a Green’s function involving
four lepton doublets. When we consider double-insertions
of dimension-five operators one additional operator
that vanishes in the limit d — 4, a so-called evanescent
operator, appears in our calculation. The exact defini-
tion of the evanescent operator in d dimensions is not
important, but will induce a scheme dependence beyond
one-loop. We use

Oaﬁyﬁ _

1 o 1,
eva — 55ij5kl(l’ﬂial’ﬂiy>(fclél’ﬂjﬂ) - Eof/;ﬂsa (B7)

where the first term has a left-right chirality structure and i,
j, k, [ are SU(2) indices.

Denoting the flavor and SU(2) component of the final
state (f| = (¢4 4¢1,| and the initial state |i) = |£;,,¢; ,) by
¢, y. v, o, and i, j, k, [ respectively, we find for the third
diagram of Fig. 1

(F1OL(OF) i)\

(i PLVw;) (Vi Prity1)
= ! “6J 477,'24 “ (51//55(1);/ + 60)561//]/)

X (84a0pp + Opalyp) (8:8jk + 6idj1),

(B8)

which exactly matches the scalar contribution of the
evanescent operator O.,, at tree level

+ HC)|1>LR = azaﬁﬂsypgw(ﬁy/iPLij)(ﬁtﬁl{PR”;(l)

X [51'15//( (51/10'5(u1)5)(p5¢1 + 5000'51//1)5(1)/)5)(1) + 5ik5jl(5w05y/05)(p5¢1 + 51//05(00545;75)(1)}’

where we have used the hermiticity condition of the
renormalization constants.® The one-loop contribution to
the L x R part is then renormalized by the renormalization

constant 52??@2 7 = —%Tg’ﬁ 79077 Asthereisno (V — A) x

(V — A) contribution to the Green’s function, the (V — A) x
(V —A) parts have to cancel between the counterterms

®The four-lepton renormalization constants fulfil the hermi-

s s afyd.potv Sy fa,cpot «
ticity condition Z3' ;" = (Zssﬁ )*.

(B9)

. apyd.poto afyd,poto
of O, and Oy, ie., 5255” = (1/2)5255’eva =

1 rapyéd.poro
—Lggpropem.

3. W emission

The values of renormalization constants may be checked
by renormalizing other loop processes involving a double-
insertion of dimension-five operators, and matching them

to the same operator basis OZ‘;(U, Ozaf@)’ O/Z ?1) and Of ?3>.
The internal Higgs and lepton lines of the loop diagram
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may couple to B, or Wy, bosons of the U(1)y and SU(2),
groups respectively. Since the group structure of U(1)y is
trivial, we concentrate here on the calculation resulting
from emission of a Wj boson. The results for emission of
B, emission may be retrieved from these results by
replacing the SU(2), generators everywhere by U(1)y
generators, 17¢, L = Y(H,£)d; at the beginning of the
calculation.

The renormalization equation for the process HY ¢ —

HJﬁWﬁ in MS is

0= <le‘/Wa|Oy6(OI7K) |LﬂnHM>|( )

1=

Sk, _
* Zg;/;l) (=92) [Hpi7" Pt |01 O

OnK, _
T Z%ﬂ:hﬂ”(é) (=92) (57" Prttan ] (81755,)

onK.fa —
+ Zgg’f’;(/f‘) (=92) i7" Prutn) 0 a5,

5 : —
Z?E’?:(i?(—gz) (i7" PLttan) (810 Tip1 )

where the tree-level matrix elements are replaced by their
respective amplitudes and the SU(2) algebra has been
simplified.

Two diagrams must be evaluated for the double insertion
of dimension-five operators with associated emission of a
W/, boson, which can couple to either the internal Higgs or
internal lepton. These diagrams are denoted by D; and D,,
and are shown in Fig. 7.

Calculating the diagrams and isolating the 1/¢ poles
gives

1 9
7-)1|} 64 Py [uﬂt}/ PLuan](éaK‘Sﬂy(sén)
(25JMTm OynTing — Oim 5, — 5inT7M)v (B10)
1 g
ID2|} ¢ 641 ) [u/)’zy PLu(ll’l]<6(lK5ﬂy651’[)
X (675, + 60Ty — 30m75,), (B11)

where we use the symmetries y <> 6 and 5 <> k of the
flavor indices of the Weinberg operator to simplify our

D, Dy wi

HM gL - gk H

FIG. 7. Double insertions of dimension-five operators with
associated emission of W that mix into dimension-six operators.

expressions here and in the following. The total amplitude
of the double-insertion of dimension-five operators is
therefore:

(1)

1
€

<fz HJwa|075(O'7K)}‘|anM>

1 o . .
= - [u/)’iyﬂPL u(m} (5(1K5ﬂy§5}7)(5JMTin + 5inTJM)'

€ 641>
(B12)
In this form it is simple to set up simultaneous equations for

the renormalization condition by comparing the loop and
tree amplitudes,

1
ok fa onk.fa
ZgSWHf ( 92 ) Zg§7y(3) (_ ) 64 A2 (5m<5ﬁy5617) 01
(B13)
1
onk.pa Sk, pa
ng(l) (=92) + Zg;Hf( )( 9) = 64 13 (Bax0py05y) = 0.

(B14)

This underconstrained set of equations may be constrained

e . ySnK.pa yonk.pa
by substituting in solutions for Z SSa(1) and Z 3003) from the

momentum-dependent calculation, to verify the solutions

_ § Tk/fyﬁ,an
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APPENDIX C: RENORMALIZATION
GROUP EQUATIONS

The bare Wilson coefficients of dimension-five operators
can be written as

C”X,bare_ Zecy( ) YX(/") (Cl)
where C9(u) is the renormalized Wilson coefficient,

Z%% (1) is the renormalization matrix, and y is the renorm-
alization scale. The y*¢ introduces an additional term
proportional to € into the d-dimensional renormalization
group equation

d - d =
e A (i Ll X e

This reduces to the renormalization group equation in d =
4 dimensions

d
(167° )ﬂd_cnd 4C9 Trx (C3)

where the 4-dimensional anomalous dimension matrix
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= -t16m) (w2 ) 2% (o
is independent of the choice of the overall factor u%.
Therefore the ¢ term can be neglected when only consid-
ering mixing amongst operators of equal dimensions. In the
case of mixing between operators of different dimensions a
more careful treatment is required.

At loop level, operators of different dimensions can mix
via multiple operator insertions [31]. Consider the specific
case of loop diagrams involving two dimension-five oper-
ators mixing into diagrams with a single dimension-six
operator insertion. We denote dimension-six quantities with
a tilde, quantities that mix dimension-five and -six with a
hat, and dimension-five quantities without a tilde or hat.
The bare dimension-six Wilson coefficient is

Tl e = HECY)Z 5 (1) + 12 CS () 255 (1) [CB]T ().
(C5)

where Cp,. is p-independent. Therefore the renormaliza-
tion group equation is

d - >0 50 26, i
(165 4 € = v + Carap[CHl'. (CO)
where 77%( is defined analogously to Eq. (C2), and
- d - N
~(0, 0,0 0,0 —170
}’513’,7)( = (16x) (252543,1’ _ﬂazgg,y) [Z7'%%
= (162%) ([l o + vicop) 28y 127 (CT)

where the explicit form in terms of generation indices is
) = (/A7) and 655)° = 8xpay0ss- The terms in the
second line of the above equation only contribute beyond
one-loop. Furthermore, the contribution to the renormali-
zation tensor Z/Cxeél,]y is pu independent at one-loop and only
the term proportional to 2¢ contributes in our calculation.
A comment regarding the sign of the 2¢ contribution is in
order. The factor in y%e in (C5) generates a term propor-
tional to —2¢, while the derivative of the dimension-five
Wilson coefficients generates a contribution proportional to
2 x 2¢ from (C2). Hence the one-loop anomalous dimen-
sion matrix reads

Vabe = 26235 ¢ (C8)
in terms of the one-loop renormalization constants defined
in Eq. (B2). Correspondingly we find [§] = 2(16x?)e[Z].

APPENDIX D: OPERATORS

This Appendix lists dimension-six, SM-gauge invariant
operators that change lepton flavor.The operators are in the

Buchmuller-Wyler basis, as pruned in Grzadkowski et al.
[20], commonly referred to as the “Warsaw” basis. All
operators are added to the Lagrangian + H.c., as given in
Eq. (2.6):

¢
3Ls = Z%Og +He.
X<
where the flavor indices are represented by ¢, and are all
summed over all generations. In the conventions of [20]
and [19], the hermitian conjugate is not added for “self-
conjugate” operators, for which Z§C§(O§( = [ZgCiOir.
(For instance, 0%’ of Eq. (D11) is Hermitian, because
[(er*u)(zy,7)])" = (y*e)(zy,7)). So we define such oper-
ators with a factor 1/2 to avoid this double-counting.
The four-fermion operators involving S <> a flavor
change and two quarks are

afnm e _
O(flz; / = 5 (l’ﬂayﬂl’ﬂﬂ) (anme) (Dl)
afnm | a _ a
(92) = 5 (Car" e Cp) (@7, qm) (D2)
apnm 1 — i —
Oeq = z (€a}’ eﬂ)(‘]n]ﬁt‘]m) (D3)
apnm 1 - i _
Ofu = 5 (l’ﬂay fﬁ)(un},ﬂum) (D4)
apnm 1 > 1
Ot’g = E (f(zyﬂfﬂ) (dn},ﬂdm) (DS)
apnm 1 S i —
Ocy " = E (eay eﬂ)(un}/ﬂum) (D6)
apnm 1 — i 3
Oed = 5 (Ea}’ eﬂ)(dnyydm) (D7)
O = (Clep)ean(@hun) (D8)
Oty = (Zuep)(dyg) (D9)
O?"‘,B;en;u = <?26ﬂveﬂ)8AB (agaﬂvum) (DlO)

where ¢, g are doublets and e, u are singlets, n, m are
possibly equal quark family indices, and A, B are SU(2)
indices. The operator names are as in [20] with ¢ — H; the
flavor indices are in superscript.

In the case of four-lepton operators, the flavor change
can be by one or two units. Notice that in the case of O,
and Oy, which are symmetric under interchange of the two
bilinears (ey*u)(z7y,7) = (7y*7)(ey,u), there will be two
equal coefficients that contribute to the Feynman rule:
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appo ] ) —

W =5 Ca )@ ort') (D11)
appo 1 7] —

Ofgp :E(f(lyﬂfﬂ)(epyﬂeo—) (D12)
appo 1 — —
o Zi(ea}'”eﬁ)(epy,,ea). (D13)

Then there are the operators allowing interactions with
gauge bosons and Higgses. This includes the dipoles,
which are normalized with the muon Yukawa coupling
so as to match onto the normalization of Kuno-Okada [2]:

0% = (H'H)(Z,Hey) (D14)
0%, = vt Ho' e ) WS, (D15)
0% = yy(€,Ho'e;)B,, (D16)
Oy = % (H'D,H)(Z.7"¢;) (D17)
O = % (H'DUH)(Z,p'e'ey)  (DIS)
O = L(HD, ) (@utey). (D19)

2

where y; denotes the Yukawa coupling of a charged lepton
e in the mass basis, the double derivatives are defined in
Eq. (2.8), and we include factors of 1/2 for Hermitian
operators as discussed above Eq. (D1).

APPENDIX E: EXPERIMENTAL BOUNDS
ON COEFFICIENTS

The aim of this Appendix is to obtain experimental
constraints on the coefficients of the LFV operators of
Eq. (2.7), evaluated at the weak scale my,. We are interested
in this subset of operators because they are generated at one
loop by double-insertions of dimension-five, lepton number
changing (LNV) operators. Such constraints will allow an
estimation of the sensitivity of LFV processes to the
coefficients of LNV operators. We neglect the constraints
on 2-lepton-2-quark operators, which are beyond the scope
of this work, and focus on 7 <> e and 7 <> u flavor change,
because u <> e is discussed in [34,35]. Nonetheless, some
1 <> e bounds are listed for completeness.

Recall that constraints and sensitivities are different. A
constraint is an exclusion, which tells the range of values a
coefficient cannot have. For instance, the dipole coefficient
(evaluated at the muon mass scale) Cj z(m,), cannot be
larger than 1.05 x 107® because the branching ratio
searched for by the MEG experiment [3] is

4
v e e
BRUu = e7) = 384" 3 (o 1CEAF).

and the current experimental search imposes this constraint.
Sensitivity is often discussed when an observable depends
on many coefficients, and gives the range of values where a
coefficient could have been seen. For instance, among the
many loop processes that contribute to 4 — ey, there are
two-loop diagrams involving flavor-changing Higgs cou-
pling C¢%;(my ). Calculating these diagrams and imposing
that they saturate the current experimental bound gives

ea,y,
873y

CH (my)| = 1.05 x 1078,

u

where the Yukawa eigenvalue of fermion f is denoted y;.
Smaller values of Cy; are allowed (the experiment could
not have seen them), but larger values are not excluded by
MEG, because many other operator coefficients could
contribute to the rate, with possibly cancellations.

The difference between an exclusion and a sensitivity is
illustrated in Fig. 8, where the allowed region is the diagonal
ellipse. The horizontal variable x is excluded outside the
projection of the ellipse onto the x-axis (where the axis is
thickened). But the experiment is only insensitive to x inside
the intersection of the axis with the ellipse (dashed red line).
Values of x between these two regions are allowed, provided
that y has the appropriately correlated value.

Three ways to relate low-energy experimental bounds to
the coefficients of operators at a higher scale are:

(1) to calculate the sensitivity of an experimental proc-
ess to a particular operator coefficient. This is
usually simple.

(2) To express an experimental rate as a function of
high-scale coefficients. This is slightly more diffi-
cult, because more coefficients are involved: each
coefficient that contributes at the experimental scale
will become a linear combination of high scale
coefficients due the renormalization group mixing.

N

N

BN

-

05

-1.5 -1 -0.5 0 0.5 1 1.5
X

FIG. 8. An illustration of constraints vs sensitivities: the red
ellipse represents an experimentally allowed region of parameter
space. Parameter x is excluded outside the projection of the
ellipse onto the axis (thick black line). The experiment is
insensitive to x inside the ellipse.
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(3) To obtain constraints on coefficients at the high
scale. This is more involved, because a sufficient
number of experimental constraints must be com-
bined, in order to obtain a finite allowed region in
coefficient space (no “flat directions”). Then the
allowed region must be projected onto the various
axes, in order to obtain constraints.

The third option is the most useful, but beyond the scope
of this work. Instead here, we partially follow the second
option, as a contribution to the third: we consider
experimental bounds on the dimension-six operators
which are generated in RGE evolution by double-inser-
tions of dimension-five operators that change lepton

TABLE L.

column 1. The bounds on coefficients of Hermitian operators (O

number. We aim to quote these bounds at my. The
processes in question are LFV Higgs and Z decays
(which occur at the weak scale), and flavor-changing
lepton decays at low energy (these bounds must be
translated to the weak scale via the RGEs of QED and
QCD). So we will not succeed in our aim of setting
constraints on coefficients at my,, because the low-energy
experimental bounds depend on many coefficients at the
weak scale, and we do not include enough experimental
bounds.

In the following sections, we outline the calculations of
the various rates, and summarize the experimental con-
straints on coefficients at my, in Table I.

Bound on operator coefficients of the SMEFT, evaluated at my,, from the bounds listed in column 2 on the processes of

1) One)

, Ogpy Op,) also apply to the conjugate coefficient. All the

bounds apply to running coefficients evaluated at my, and are for A = v ~ m,. The combination of coefficients Cpepgyin is defined in
Eq. (E12) and before Eq. (E23), ¢ is defined after Eq. (E23), and g = ZS%V, g7 = =1+ ZS%V.

Process BR < /b\i, 1Sl <

Z - e*u* 7.5 %1077 [4] |Chizqy + Chie)| < 1.2x 1073

Z - v 1.2 %107 [5] |Chizary + Chip)| < 4.6 x107°

Z - e*1¥ 9.8 x 1076 [6] 1Csiv1) + Corp| < 4.1x 1073

h— e*u¥ 3.5 x 107 [7] |Chs |, |Cy| < 2 5% 107

h— ot 1.5 x 1072 [8] |ChL], ICHy| < 1.6 x 1073

h— e*r¥ 6.9 x 1073 [7] |Ce |, |C7] < 1.1 x 1073

T — eee 2.7 %1078 [9] |G + Cee™ + g1 [ty + Cio)) = 8Chenguinl < 2.8 x 107
1€ + 9R[Ciizy + Chip) = OChimguinl < 4.0 x 1074

T > euji 2.7 x 1078 [9] |Cop* + C™ + C‘”’” " + 91 (o) + Ciip) = 8Chinguin| < 4.0 x 1074
CE% + 97 [Chivir) + Citgay)] = 0Cnguinl < 4.0 x 107

T > pee 1.8 x 1078 [9] |Che* + Co™Cuy™ + Cut + g1 [Chizry + Chipga)] = 6Chenguinl < 3:2x 107
G5 + 9&[Chzy + Chizay)) = 9Chenguinl < 3.2 1074

T — upji 2.1 x 1078 [9] |C”T””+C”””T+gL[C”T +CHf ] C’;anum| <25x%x10*
|CE2 + gk[Chipy) + C’;,;m] 8Chenguin| < 3.5 x 107

T — eefi 1.5 x 1078 [9] |Cos" + CT| <32 %x 107

T — uue 1.7 x 1078 [9] |2 + Ch*| <3.2x 107

u—3e 1 x 10712 [10] ICZ7 + Co” + 91 [Chipy + Chtpa) = 9Chenguin] < 7.1 x 1077
|CE + gj[Chray) + Clivs)) = 0Comguin| < 1.0 107

T ey 3.3 x 1078 [11] |Ceg" + G Ci + 2 C,| < 7.3 % 107
|C& + gt Coiy 1t [C )+ Cot) ) < 73 %1076

T = uy 4.4 %1078 [11,12] |CE + g Clly + L o | < 8.1 % 1076
|Cey + 5 C’j;, = [Chiviy T Chiz)l| < 8.1 x 107

u—ey 42 % 1071 [3] |Cher 4 Lo oker 4 <9 o | < 1,05 x 1078

87[\

CEM ex Y,
| EV 873 Vu

C# + 2 [Cls ey T Crry

16~

<0 )]l < 1.05x 1078
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1. Rates and calculations
a. Z — l,l; decay

When the Higgs gets a vev, the “penguin” operators
Ope(1y and Op(3) generate a vertex involving the Z and two
charged leptons. If the flavor-changing Z-fermion vertex is
written in a SM-like form : —1,Z* 3= 7u(9v = 9ars)lp. then

1)2

9y = 9a = —(Crer) + Cre) 2 (E1)
(for v ~ m,).
The branching ratio can be written
M, 92
BR(Z = I,ly) = (lgvl* + l9al?)  (E2)

2.5 GeV 48rc?,

where 2.5 GeV is the Z width in the SM. Since Oy
and Opy@3) are Hermitian, the conjugate process

Z - lﬂE necessarily occurs at the same rate, so the BR
to the experimental final state is

BR(Z — If[]) = BR(Z — l,l5) + BR(Z — Il,,)

— MZ 92 ap af 2 114
" 2.5GeV 127¢3, (Cy He() T CHzf’(3) G
(E3)

and the bounds we obtain on the operator coefficients,
evaluated at ~my,, are given in Table L.

b. h - f;eﬂ‘, ey ¢5 decays
The flavor-changing Higgs decays occur via the non-
Hermitian operator O,y. When the Higgs has a vey, it
induces the Feynman rules for a flavor-changing Higgs
vertex with two fermions:

3ceH v 3c§jz,* e
f 2 \/_ 2
We calculate the flavor-changing branching ratio by compar-
ing to BR(h — bb) = 0.575 + 0.32 (from the Appendix of
the Higgs Working Group Report [36], for m;, = 125.1 GeV),
assuming the Feynman rule for hbb is — —yb(mh)PL r We

O PR Cﬂa* a*

P.. (E4)

use a one-loop approximation [15] for the running b mass

/2
yb(mh)vzmb(mb)[zgzg] " ~3.0GeV (ES)

where a(m),) ~0.12, a(m,) ~0.23, 7\ =8, p©
and m;(m;) = 4.2 GeV.

The operator O,y is not hermitian, but is always
included in the Lagrangian + H.c.. So C5, 0%, + H.c. will

induce both i — e iz and h — upe; at the same rate:

=23/3

BR(h — erpg)
BR(h — bb)

9|C |2 4
T (E6)

where downstairs there is a 3 for quark color sums, and a 2
from the chiral projectors in the lepton decay. The exper-
imental search sums the e; iz and uge; final states, so we
obtain

BR(h — I£[T)

3 4|C |2 3 4| H|2< P
BR(h — bb)

A4 ’ A4 —yb (E7)

and the resulting constraints are given in Table 1.

¢. Including the low energy decays

The flavor-changing = and p decays listed in Table I
occur at energies ~m,,, m,, so the decay rates are usually
written in terms of the coefficients of dimension-six
operators from the QCD x QED invariant basis appropriate
at low energies. These “low energy” coefficients, which we
denote with a tilde C, can be expressed in terms of SMEFT
coefficients at my by running them up to my, then
matching the QCD x QED-invariant operator basis onto
the SMEFT. This was performed in [34] for u — ey, so we
use the results of [34] for the radiative decays of Sec. E 1 e.
Reference [35] studied the renormalization group evolu-
tion, below the weak scale, of the coefficients who mediate
u — eee (as well those for as y — ey and u — e con-
version); we use these results, combined with the weak-
scale matching conditions of [34], for the discussion
in Sec. E 1d of three body leptonic decays of zs and us.
The minor differences between p and 7 decays are
discussed in Sec. E 1d.

In the EFT below myy, we use the basis of lepton-flavor-
changing four-fermion operators introduced in [2,34] for
p <> e flavor change.” The operators and coefficients have
as subscript their Lorentz structure (V, S, T) and the chiral
projection operators of the two fermion bilinears, and the
flavor indices of the four fermions as superscript. They
wear tildes to distinguish them from the coefficients of
SMEFT operators. We restrict to the dipole and vector
operators, and neglect the scalars and tensors, which will
turn out to be irrelevant for our study of LFV operators
generated by double-insertions of LNV operators. So the
four-fermion operator basis below my is

SLap = Z [CYIL(

ap

awaLeﬁ)(‘?YwPLf)

?/ﬂ{R(ea}’wPLeﬂXfJ/wPRf)] + H.c.

+ Z v’fi’i (ear”Pres)(esvnPre,)] + He.
afiop

(E8)

"In this basis, the flavor indices are written explicitly, so the 2
discussed above Eq. (D11) is absent, and Fierz transformations
are used to put the flavor change in one bilinear in the case of
AL =1 four-fermion operators.
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where af € {eu,ur,et}, f€{e u,v,u,d s, c,b}, and
apop € {ereu, yrue}. In addition, below my, we consider
the photon dipole operators

m R _
8L gipole = A_f (C eR0" e} F oy + Clf weTo? ey F,,) +Hec.
(E9)

because the SMEFT operators Opp(1), Ope3) and O,y

match onto the dipole at my. The current bounds on
u— ey, 7 — ey and v — py will give better sensitivity to
the coefficients Cp(1), Che(3) and C,py than Higgs and Z
decays.

d.7— 3l and u - 3e

The first step is to translate the experimental bounds into
constraints on operator coefficients at the experimental
scale. For the three-body leptonic decays of the z, it is
convenient to define

BR(z — 3I)
BR(7 — uqov)

BR(z — 3I) (E10)

(where BR(t — uov) = 0.174 [1]). Then BR(z — 3[) can
be directly compared to the branching ratio for y — 3e [2]:
A |G+ IO

BR(#—>€E€)F g S.RR +2|C‘f,’f;;+4eégfL|2

+2|CHS +4eCh e+ (641nﬂ— 136)

e
X (leCHRl*+1eCHLI1%)
+|CYar +4eCh P+ Y % +4eChl k[,
(E11)

where 21/2G = 1/v? and the generalization to 7 decays is
straightforward, after accounting for 2s as we now discuss.

We calculate the decay rates in the approximation that all
final state fermions are massless. Factors of 2 can arise
when there are two identically-flavored fermions in the
final state: there will be 2 diagrams, and a factor of 1/2 in
the final-state phase space. Then there are two cases:

(a) if the identical fermions have the same chirality, there
is constructive interference between the two diagrams
(despite the fact that they have relative minus signs due
to Fermi statistics), which doubles the rate. (This is
consistent with ¢ — 3e rate of Kuno and Okada [2]
given above.)

(b) if the fermions have different chirality, the interference
is suppressed by final state masses (which are ne-
glected), so the two for two diagrams cancels the 1/2
from phase space.

We set the dipole coefficients to zero, because they are
better constrained by the radiative decays discussed in the

TABLE II. Bounds on some operator coefficients from three-
body lepton decays, evaluated at the experimental scale.
Process BR < /L\—zz IC| <

Toeed  1.6x107  Cyes <2.8x107%, CYFiG <4x107
e 1.6x1077 C‘ff’i’}‘,, éff’i’z <4x10™*

T pez 10X 107 Qe Ohe <30 107

Toupi 12x 1077 Gy <2.5x1074, Y <3.5x 107
T—eefi  8.6x107  CyY <32x1074,

T ppe  1.0x 1077 C""f’ﬁ <32x10™*

p—eee 1.0x10712  C <7.01x1077, Cili%<107°

next subsection (see Table I). Then it is clear that each
upper bounds on a three-body leptonic decay of the 7 or y,
implies six independent constraints on operator coefficients
(evaluated at the experimental scale), those of interest to us
are given in Table II.

The operator coefficients Cy(m,) given in Table II can
be expressed in terms of coefficients at my, using the
one-loop RGEs [34,35]:

d - a, »
u—Cy :ECJ[MJI

dy
~ - a, m
= Ci(m;) = C;(my) |6, — EIH?W Velyr + -+

T

where [y,] is the one-loop anomalous dimension matrix of
QED, 1n':’1—W = 3.85, ln% = 6.64 and the approximate
T n

solution neglects the running of a,. The one-loop QED
corrections involve photon exchange between two legs of the
operator, which does not change the flavor or chiral indices,
and also “penguin” diagrams, where two legs of the operator
are closed in a loop, and a photon is attached, which turns into
two external leg fermions. The “penguins” can change the
chirality and flavor, and allow 2-lepton-2-quark operators to
mix with the four-lepton operators. We therefore need a
recipe for dealing with the quark-sector thresholds m;,, m,.
and Agcp. We make the simplest approximation, which is to
have a single low-energy threshold at m,, and run from
my, — m, with five flavors of quark, and we use this low-
energy scale also for the decays of the p. In this approxi-
mation, it is convenient to define the combination of operator
coefficients

“af 4N c

C . = -
penguin 3

>0, (EVH + i)
q

4 ~apll | Fapll
+ 3 Z([l + 6 + 5/}Z]CVﬁ,LL + CVﬁ,LR) (E12)
]
wherel € {e,u.7},q € {u.d,s,c,b},and Q,, is the electric
charge of the quark. Then the coefficients constrained in
Table II can be written
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itll e zll
C}VLR( ) = [ n m :|C[‘¢/LR(mW>

3
a@ T
4” m, Cgengum( W) (E17)
C;rrll — 1_12&1 My C;nll
V,LL(mT) [ in n m, v (mw)
- El T ngngum(mW) (Elg)
CH™ (m ¢ Clme E19
VLL( ;) = [ 4”nm} VLL( my) ( )
i m) = |1= 2w &5 (my). (E20)

Finally, the combinations of coefficients that are con-
strained by data can be matched at my, onto coefficients of
SMEFT operators [34]8:

+ Cpp " (my) + Co“(my) + g5 [Cl;;f(l)(mw) + C’gf(_;)(mw)]
”WT my) + g7 [Cm )(mw) + C’gf@)(mw)}

C’;Tfeﬂ(mW) +9 [C}"Jm) (my) + C;—;f@)(mW)]

3)(mW)}

Citsalm) = 1+ 12900 ™ | e ()
_El _1Cpengu1n(mW) (E13)
“epee [ a, mW_ “euee
CV”,LL<mT) =|1- 125111 m, | Cv’fu(’”w)
4 1 Cpengum(mW) (E14)
a, m or
C?%R( ) = [1 + IZEln mv:] Crilr(my)
_El —1C}e)zngum( W) (EIS)
a, m o
Cytum) = 1= 1250 &g, (m)
T T
__ﬂ_l ?ngngum(mW) (E16)
|
f/fiﬂL<mW) = Cmﬂ(mw) e””(mw)
I\J/T;IieL(mW) = We(mw) ”W(mw)
CU ) = )+ 52" )+
CI\J/TIZﬂL<mw) = Cﬂw(’"w) (myw)
Cl(/TgR(mW) = C;:ll(mw) + 9% [C’g,g»(l)(mw) + C (3)(mW)}
ev”l’i(mw) = Cy" (my) + CL (my) + CZ77 (my) +
C (mw) = Coe(mw) + C&* (my) + 91 [Coryy (mw) + Cifyz) (m)]
f/TlLlR<mW) = C5'(mw) + g% (e HZ(1 )(mw) + C;]T,f(3) (mw)]
C55 () = CE (i) + CE52 ) + 5 [CCly 1 () + Ll
Cee () = CL () + G [Cloy () + ol ()]

where [ € {e, u} in the above equations, and g% = 2sin’Oyy, g¢

(E21)

= —1 + 2sin?8yy. In order to match the “penguin” coefficient

of Eq. (E12) onto coefficients of the SMEFT, matching conditions for operators with a quark bilinear are also required:

CV 1L (my) = CLy (my) = CLyts (m
CV1 (my) = “ﬁ“d 1 (mw) + €465 (m
Y (my) = “”“”<mw> 9H[Crrs
%ﬁe(mw) Co (my) + ghlCy

(mw) + sz (mW ]

) =+ QL[ (mW) =+ CHﬂf@)(mW)]
) + gL[ (mW + CZﬁf@)(mW)]
(mW) a/}

)
5 ()]
) (E22)

¥These equations differ from [34] due to different conventions for operator normalization and signs, and also due to some errors in
[34]. The SMEFT basis used here is normalized according to [20], where there are “redundant” flavor-changing four-fermion operators,
which are absent from the ba51s used below my, in [34], compare e.g., the left and right hand sides of Eq. (E21). Then, the sign
convention used here for the gL & and the Z-vertex Feynman rule agrees with the PDG but is opposite to that of [34]. Finally, in [34],
there is an incorrect factor of 2 rnultlplymg the penguin coefficients which generate s and ¢ channel diagrams; this 2 should not appear,
because the four-fermion operator generates the same s and ¢ channel diagrams.
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where  ap € {ur,et,ep}, gf =1-3%sin’by, gk =
—3sin’0y, gf = —1 + 3sin?dy and, g4 = 3sin’dy. Com-
bining the definition (E12) with the matching conditions of
Eq. (E22) allows the definition of a combination of SMEFT
af

penguin

on, for instance Cy%/; (m.,), gives

coefficients C (my ). Then the experimental constraint

|[1 = 126][CEH¥ + O 4 C94™ 4 Cht

+ 05 [Co 1)+ Cotpa) || = 0CH guin] <4x 107

penguin

(E23)

where all the coefficients are evaluated at my, and
§=7<In"" ~1/400. This and other constraints from

3-body 7 decays are given in Table I, where for compact-
ness, [1 + 12§] is approximated as 1.

e lg -1y

The radiative decays l; — [,y provide some of the most
restrictive bounds on lepton flavor violation. The branching
ratio at my can be written

BRIy = lar) = BR(ly — [,0v)

4
v Q| Q)
= 384”2F (|CDﬂ,L|2 + |CDﬂ,R|2)

4.2 x 1071

H— ey
<920x107 T-oey (E24)
25x1077 -y

where the low energy dipole operators are added to the
Lagrangian as in Eq. (E9).

The dipole coefficients evaluated at the experimental
scale can be expressed in terms of SMEFT coefficients at
the weak scale as [34]

CHlyome) = CL7 (my) o+ 57 CL5 )
+ 166“(’22 C (my) + .. (E25)
CHl(ome) = Cf )+ 2. Cl o)
I )+ il () . (B26)

where the contributions of scalar and tensor four-fermion
operators were neglected, gz and gy are defined after
Eq. (E21), and

CZJ/’} = chgg - SWC:/;/‘ (E27)

APPENDIX F: COMPARISON WITH
THE LITERATURE

The standard model calculation has been performed in
Ref. [21] in a different operator basis. We disagree with
their final results even after transforming our results to their
basis. To do this we specify our basis

- . ) .
O = (One(1): Oneays Oetts Opns Oy 0,1 Ou3)» 00(3))T’
(F1)

and the one used in Ref. [21]

7~ - + i i i N\
0= (Q;ﬁ;: Q,(ﬁf)7 Qe(/)» quy Ov(l)v O}D‘(U’ Ov(3)7 Ol(g)) >

(F2)
where the additional operators are defined as
- i - _
0,/ =5 [(H'D,H)(¢y¢)  (H'DH)(Zx'p'e)]  (F3)
i . - _
0y = S \(H'D,H)@r¢) + (H' DyH)(Zep'e)]  (F4)
Qep = Ocp. (F5)

Here we drop the generation indices and note that the
operators Q;}) and Q[(I;Z) are not Hermitian. For this reason
we treat the operator O,y and the EOM-vanishing oper-
ators independent from their Hermitian conjugate in our

basis transformation. Writing the resulting linear trans-
formation as

O=R0.

only the first two rows of R have entries that are not
proportional to an identity transformation. These two rows
are determined by the following linear transformation”:

<0Hf(1))_<2 2 Yy =Y 1 -1 0 o>()
Ones) 2 2v -y 0o 0 1 -1/
(F6)

The Wilson coefficients and renormalization constants will
consequently fulfill our hermiticity conditions in our basis,
but not necessarily in the basis of Ref. [21]. The counter-
terms of the Wilson coefficients transform in the same way
as the respective Wilson coefficients under our change of
basis, i.e., as

5¢ =R"sC,

°To perform the change of basis we have to move
covariant derivatives from one term to another. This can be done
by noting that the total derivatives D,[(H'H)(Zy*¢)] and
D,[(H't*H)(£7"y*¢)] are vanishing.
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where 6C = (167[2)6626T represent the counterterms
multiplied with (1672)e, while 8¢ correspond to the
analogous expression in the Q) basis.

Using the counterterms presented in Eqgs. (3.2), (3.3) and
(3.6), and the results of (F6) we obtain

1
2

1

y 5 .
o = (-3 lescil - !

2 [CS C;] ?

T
[csc;YHY"'c;cs]) ,
(F7)

which fulfil the hermiticity condition of the overall
Lagrangian, even though this is not immediately apparent
due to the choice of basis. These results are in disagreement
with the final results quoted in Ref. [21]. Yet using the results
quoted in the individual diagrams in Appendix B of Ref. [21]
we find agreement with the expression of Eq. (F7) apart from
a global minus sign, which suggests that a different
projection was performed. We explicitly checked that the
diagrams given in Appendices B1, B3 and B4 of their
calculation have the opposite sign compared with our
calculation, while we agree with their lepton conserving
contribution presented in Appendix B2. Following the
explanations of the calculation it appears that part (the 66
part) of the diagram evaluated in Appendix B.1 of Ref. [21]

is projected onto an operator basis where the operators Qf;)

are replaced by Q((;)' = Q((;) + (Q((;;))T, while another part
(the ee part) is projected onto the basis presented in Eq. (F2).

Transforming now to the primed basis, where the
Hermitian conjugate is added to the first two operators
of Eq. (F2) we find that the nontrivial transformation matrix
involves only the first two elements of our and the primed
basis. Writing explicitly

/

(o) = (4 D)
OHK’(S) -1 1 OS})/ '

~ __ 5 % 1 * 3 * 3 SWacs T
oc’ = —Z[CSCS],—Z[C5C5},Z[C5C5Y],Z[Y CiCs] | .

we find

(F9)

Again, this result does not agree with Ref. [21]. Finally,
note that projecting the results quoted for the individual
diagrams in Appendix B of Ref. [21], except the ee part,
would give

) IR DU B
OChotee = <+Z [CsCs], t7 [CsCs], ~2 [C5C5Y],

3 . T
- [Y'C§CS]> .

: (F10)

while projecting only the ee part on the non-Hermitian
basis yields 6¢,, = (+2[C5C%],0,0,0)”. Summing these
two terms would reproduce the results of Ref. [21].

APPENDIX G: FLAVOR CONSERVING
CONTRIBUTION

Even though the diagram in Fig. 2 cannot induce
lepton flavor violation it contributes to the renormaliza-
tion of O,y and the corresponding operators that involve
quarks. We also explicitly checked that the diagrams
that involve six external Higgses vanish after summing
over them. Denoting the trace over the product of the
two dimension-five Wilson coefficients by Tr[CsCs]
we find

1 sk
167[2€Tr[c5 CS] [Ye]ﬂw

1 *
- mTY[Cs C3l[Y ul pars

5 o 1 ,
(CIZIE Y = =3 2 TCSC YVl (G)

where Y, and Y, are defined as I', and I'; of Ref. [20].
In addition we also generate the following mixing into
operators that only comprise Higgs and gauge fields and
write

1
—ZE‘TI'[C5C§]/1,

167
o 1 .
(ClZ)C ) up = =275 TrlC5C5).
P 1
i *
(ClZ)C )y = —mTr[Cscs], (G2)
where the additional operators are defined as:
OZZ = (H'H)q,Hdy
Ol = (H'H)g, et u,
1
Oy = B (H'H)?
1 .
Oup = 3 (H'D"H)*(H'D,H)
1
OHDZE(I_FH)D(H'H) (G3)
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