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We suppose that the observed neutrino masses can be parametrized by a lepton number violating
dimension-five operator, and calculate the mixing of double insertions of this operator into lepton flavor
changing dimension-six operators of the standard model effective theory. This allows to predict the log-
enhanced, but m2

ν-suppressed lepton flavor violation that is generic to high-scale Majorana neutrino mass
models. We also consider the two Higgs doublet model, where the second Higgs allows the construction
of three additional dimension-five operators, and evaluate the corresponding anomalous dimensions.
The sensitivity of current searches for lepton flavor violation to these additional Wilson coefficients
is then examined.
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I. INTRODUCTION

Neutrinos are elusive and enigmatic particles: uncolored,
uncharged, and very light. Nonetheless, their observed
masses and mixing angles [1] imply that lepton flavor
violation (LFV) must occur, where we define LFV as
flavor-changing contact interactions of charged leptons
(for a review, see, e.g., [2]). Since these do not occur in
the standard model (SM), LFV is considered to be “new
physics”, and searched for in a wide variety of experiments
[1,3–12]. Neutrinos could also induce another kind of new
physics: if their small masses are “Majorana,” they are
lepton number violating (LNV), and could for instance
mediate neutrinoless double-β-decay [13]. Below the weak
scale, such masses appear as renormalizable terms in the
Lagrangian, but in the full SU(2) gauge invariant standard
model, they arise as a nonrenormalizable, dimension-five
operator.
In this paper, we assume that neutrino masses are

Majorana, and generated by New Physics in the lepton
sector at a scale Λ ≫ mW . We focus on the theory above

mW but below Λ, where it can be described in the
framework of the standard model effective field theory1

(SMEFT). The neutrino masses are parametrized by oper-
ators of dimension five, and LFV is parametrized by
operators of dimension-six. Our aim is to obtain the log-
enhanced loop contributions of two LNVoperators to LFV
processes, which arise in the renormalization group equa-
tions (RGEs). In particular, we calculate the anomalous
dimensions that mix two dimension-five operators into a
dimension-six operator. The renormalization group running
of the dimension-five operators has been extensively
studied in the literature [16–18], and the mixing of the
dimension-six operators among themselves have been
evaluated at one-loop [19] in the “Warsaw”-basis [20] of
SMEFT operators. The mixing of two dimension-five
operators into dimension-six operators was calculated in
[21], using the Buchmuller-Wyler [22] basis at dimension-
six. We perform this calculation using the “Warsaw”-basis,
and our results appear to disagree with [21].
The mixing of neutrino masses into LFV amplitudes is

Oðmν=mWÞ2 lnðΛ=mWÞ, so negligibly small, but completes
the anomalous dimensions required to perform a one-loop
renormalization-group analysis of the SMEFT at dimen-
sion-six. Indeed, this mixing does not involve any SM
couplings, so in a coupling expansion, would be the leading
contribution to the one-loop RGEs of the SMEFT; it is only
small because the dimension five coefficients are small. In
addition, we explore an extension of the SMEFT with two
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Higgs doublets [23], where the second Higgs doublet lives
at a scale m22 between mW and significantly below the
lepton number/flavor-changing scaleΛ, and we impose that
LFV at the weak scale is still described by the dimension-
six operators of the SMEFT. In this scenario, there are four
LNV dimension-five operators above m22, but only one
combination of coefficients contributes to neutrino masses.
We calculate the mixing of these LNV operators into the
LFV operators of the SMEFT, and estimate the sensitivity
of current LFV experiments to their coefficients.
The paper is organized as follows. In Sec. II we introduce

the notation of our standard model and two-Higgs doublet
model calculation. The main results are presented in
Sec. III, where we discuss the general structure of
our calculation and give the relevant counterterms, anoma-
lous dimensions and renormalization group equations.
Section IV discusses the phenomenological implications
of both results before we conclude. We provide the relevant
Feynman rules, further details of the calculation (including
a careful treatment of the flavor structures), and the
renormalization group in the Appendices A–C. The LFV
operators of the SMEFTare recalled in Appendices D and E
gives the current experimental constraints on some LFV
coefficients of the SMEFT at the weak scale. Appendix F
provides a comparison with the previous calculation of [21]
and Appendix G presents the lepton conserving contribu-
tions to the anomalous dimensions.

II. NOTATION AND REVIEW

The SM Lagrangian for leptons can be written as

Llep ¼ ilαγ
μDμlα þ ieαγμDμeα − ð½Ye�αβlαHeβ þ H:c:Þ

ð2:1Þ
where Greek letters represent lepton generation indices
in the charged-lepton mass eigenstate basis, ½Ye� is the
diagonal charged-lepton Yukawa matrix with eigenvalues
yα, l is a doublet of left-handed leptons, and e is a right-
handed charged-lepton singlet. The explicit form of the
lepton and Higgs doublets is

l ¼
�
νL

eL

�
; H ¼

�
Hþ

H0

�
; ð2:2Þ

which have hypercharge YðlÞ ¼ −1=2 and YðHÞ ¼ 1=2
respectively. The covariant derivative for a lepton doublet is

ðDμlÞiα ¼
�
δij∂μ þ i

g
2
τaijW

a
μ þ iδijg0YðlÞBμ

�
lj
α; ð2:3Þ

where τa are the Pauli matrices. This sign convention for
the covariant derivative agrees with [19].
Heavy new physics can be parametrized by adding

nonrenormalizable operators to the SM Lagrangian that
respect the SM gauge symmetries [22]. There is only a

single operator at dimension-five in the SM, which is the
lepton number violating “Weinberg” operator [24] which is
responsible for Majorana masses of left-handed neutrinos.
The resulting effective Lagrangian at dimension-five is

δL5 ¼
Cαβ
5

2Λ
ðlαεH�Þðlc

βεH
�Þ þ Cαβ�

5

2Λ
ðlc

βεHÞðlαεHÞ;
ð2:4Þ

where ε is the totally antisymmetric rank-2 Levi-Civita
symbol with ε12 ¼ þ1, all implicit SU(2) indices
inside brackets are contracted, and the charge conjugation
acts on the SU(2) component li of the lepton doublet
as ðliÞc ¼ CliT . The charge conjugation matrix C fulfils
the properties of the charge-conjugation matrix used in
[25].2 The coefficient Cαβ

5 is symmetric under the inter-
change of the generation indices α, β, the new physics scale
Λ is assumed ≫ mW , and the second term is the Hermitian
conjugate of the first.
In the broken theory, with H0 ¼ vþ ðh= ffiffiffi

2
p Þ, v ≃mt,

this gives a Majorana neutrino mass matrix

δL¼−
1

2
½mν�αβνανcβþH:c: ½mν�αβ ¼−

v2

Λ
Cαβ
5 ð2:5Þ

In the charged leptonmass eigenstate basis, this massmatrix
is diagonalized by the Pontecorvo-Maki-Nakagawa-Sakata
matrix ½mν�αβ ¼ UαimνiUβi.
At dimension-six, we will be interested in SM-gauge

invariant operators that violate lepton flavor; a complete list
is given in Appendix D. Following the conventions of
[19,20], they are added to the Lagrangian as:

δL6 ¼
X
X;ζ

Cζ
X

Λ2
Oζ

X þ H:c: ð2:6Þ

where X is an operator label and ζ represents all required
generation indices which are summed over all generations.
Of particular interest are the operators that can be generated
at one-loop with two insertions of dimension-five oper-
ators, as illustrated in Fig. 1. With SM particle content,
these operators involve two Higgs doublets and two lepton
doublets, four lepton doublets, or three Higgs doublets and
leptons of both chiralities. In the “Warsaw” basis [20], the
possibilities at dimension-six are

Oαβ
Hlð1Þ ¼

i
2
ðH†Dμ

↔
HÞðlαγ

μlβÞ

Oαβ
Hlð3Þ ¼

i
2
ðH†Da

μ

↔
HÞðlαγ

μτalβÞ

Oαβ
eH ¼ ðH†HÞlαHeβ Oαβγδ

ll ¼ 1

2
ðlαγμlβÞðlγγ

μlδÞ
ð2:7Þ

2Note that this definition of the dimension-five operator is the
hermitian conjugate of the one used in [20] where C ¼ iγ2γ0 in
the Dirac representation, since in this representation C−1 ¼ −C.

DAVIDSON, GORBAHN, and LEAK PHYS. REV. D 98, 095014 (2018)

095014-2



where we normalize the “Hermitian” operators with a factor
of 1=2 (see Appendix D for a discussion) in order to agree
with [19,20], and

iðH†Dμ

↔
HÞ≡ iðH†DμHÞ − iðDμHÞ†H

¼ H†ði∂μHÞ − ið∂μHÞ†H − gH†τaWa
μH

− 2YðHÞg0H†BμH;

iðH†Da
μ

↔
HÞ≡ iðH†τaDμHÞ − iðDμHÞ†τaH: ð2:8Þ

The choice of operator basis implies a choice of
operators that vanish by the equations of motion (EOMs).
For example i=Dlα − ½Ye�ασHeσ ¼ 0 implies that the follow-
ing operators

Oαβ
vð1Þ ¼ iðH†HÞðlα=D

↔
lβÞ

− ðH†HÞðlαHeσ½YT
e �σβ þ ½Y�

e�ασeσH†lβÞ;

Oαβ
vð3Þ ¼ iðH†τaHÞðlα=Da

↔
lβÞ

− ðH†HÞðlαHeσ½YT
e �σβ þ ½Y�

e�ασeσH†lβÞ; ð2:9Þ

are EOM-vanishing operators. The role of these operators
becomes clear by noting that in intermediate steps of our off-
shell calculations, additional structures appear that can
conveniently be matched onto combinations of EOM-
vanishing operators and operators of the Warsaw basis.
For example the structures involving two Higgs fields and a
covariant derivative of a lepton doublet are expressed in
terms of the above operators as:

Sαβ
HDlð1Þ ¼ iðH†HÞðlα=D

↔
lβÞ

¼ Oαβ
vð1Þ þOασ

eH½YT
e �σβ þ ½Y�

e�ασO†σβ
eH ;

Sαβ
HDlð3Þ ¼ iðH†τaHÞðlα=Da

↔
lβÞ

¼ Oαβ
vð3Þ þOασ

eH½YT
e �σβ þ ½Y�

e�ασO†σβ
eH : ð2:10Þ

In practice, if the coefficients Cβα
HDlð1Þ and Cβα

HDlð3Þ of

these structures are present, they are equivalent to
Cβσ
eH ¼ Cβα

HDlð1Þ½Ye�ασ þ Cβα
HDlð3Þ½Ye�ασ (and the Hermitian

conjugate relation).

A. In the case of the 2HDM

In this section, we consider the addition of a second
Higgs doublet H2 to the SM, of the same hypercharge as
the SM Higgs (which we relabel H1). The LFV induced by
double-insertions of dimension-five operators could be
more significant in this model, because there are several
dimension-five operators, so neutrino masses cannot con-
strain them all. However, a complete analysis of LFV in the
2HDM would require extending the operator basis at
dimension-six and calculating the additional terms in the
RGEs, which is beyond the scope of this work. So for
simplicity, we make three restrictions:
(1) First, we consider only the dimension-six LFV

operators of the SMEFT. This is the appropriate
set of dimension-six operators just above mW ,
provided that H2 has no vev, and that the mass
m22 of the additional Higgses is sufficiently
high: m2

W ≪ m2
22 ≪ Λ2. In our phenomenological

analysis we extend this range to the scenario
m2

W ≲m2
22 ≪ Λ2, by considering a Higgs potential

where the additional Higgses are not directly observ-
able at the LHC, and where the Yukawa couplings of
H2 are vanishing. Such a scenario would e.g., be
realized in the inert two Higgs doublet model [26–
29] and setting the scalem22 close to the electroweak
scale will not require the consideration of additional
renormalization group effects in the SMEFT.

(2) Second, we suppose that at the high scale Λ no
dimension-six LFV operators are generated. This is
unrealistic, but allowsus to focuson theLFVgenerated
by double-insertions of the dimension-five operators.

(3) Third, we suppose there is no LFV in the renorma-
lizable couplings of the 2HDM (in particular, in
the lepton Yukawas), so that when matching the
2HDMþ dimension-five operators onto the SMEFT
at the intermediate scale m22, no additional LFV
operators are generated.

Consider first the renormalizable Lagrangian. The
Yukawa couplings can be written [30]:

δL2HDM ¼ −ðν; eLÞ½Yð1Þ�
�
Hþ

1

H0
1

�
e − e½Yð1Þ�†H†

1l

− ðν; eLÞ½Yð2Þ�
�
Hþ

2

H0
2

�
e − e½Yð2Þ�†H†

2l; ð2:11Þ

FIG. 1. Diagrams involving two insertions of dimension-five operators, that can contribute to dimension-six lepton-flavor-violating
operators. SU(2) indices run from I;…; O and i;…; o, lepton flavor indices are α, β, ρ, σ.
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where the flavor indices are implicit, and the basis in
(H1, H2) space is taken to be the “Higgs basis” where
hH2i ¼ 0. We suppose that ½Yð1Þ� and ½Yð2Þ� are simulta-
neously diagonalizable on their lepton flavor indices.
The second Yukawa coupling changes the equations of

motion for the leptons, so the 2HDMversion of the equation-
of-motion vanishing operators [given in Eq. (2.9) for the
single Higgs model] should be modified. As a result, the
operatorsOHDlð1Þ andOHDlð3Þ should not be replaced only
by the SMEFToperatorOeH, as given in Eq. (2.10), but also
by an operator with an external H2 leg. However, since we
neglect dimension-six operators with external H2, we use
the relations (2.9) and (2.10) also in the 2HDM case.
In this “Higgs” basis, the most general Higgs potential is

V ¼ m2
11H

†
1H1 þm2

22H
†
2H2 − ½m2

12H
†
1H2 þ H:c:�

þ 1

2
λ1ðH†

1H1Þ2 þ
1

2
λ2ðH†

2H2Þ2 þ λ3ðH†
1H1ÞðH†

2H2Þ

þ λ4ðH†
1H2ÞðH†

2H1Þ þ
�
1

2
λ5ðH†

1H2Þ2

þ ½λ6ðH†
1H1Þ þ λ7ðH†

2H2Þ�H†
1H2 þ H:c:

�
: ð2:12Þ

In order to decouple the additional Higgses, we can, for
instance, set m2

12 ¼ 0 and assume m2
22 ≫ m2

W , or leave m
2
22

free, and impose m2
12 ¼ λ6 ¼ λ7 ¼ ½Yð2Þ� ¼ 0.

At dimension-five in the 2HDM, there are four opera-
tors [16]:

δL ¼ þCαβ
5

2Λ
ðlαεH�

1Þðlc
βεH

�
1Þ þ

Cαβ�
5

2Λ
ðlc

βεH1ÞðlαεH1Þ

þ Cαβ
21

2Λ
ððlαεH�

2Þðlc
βεH

�
1Þ þ ðlβεH�

1Þðlc
αεH�

2ÞÞ

þ Cαβ�
21

2Λ
ððlc

βεH2ÞðlαεH1Þ þ ðlc
αεH1ÞðlβεH2ÞÞ

þ Cαβ
22

2Λ
ðlαεH�

2Þðlc
βεH

�
2Þ þ

Cαβ�
22

2Λ
ðlc

βεH2ÞðlαεH2Þ

−
Cαβ
A

2Λ
ðlαεlc

βÞðH†
1εH

�
2Þ −

Cαβ�
A

2Λ
ðlc

βεlαÞðH2εH1Þ;
ð2:13Þ

where fC5; C22; C21g are symmetric on flavor indices (so
can contribute to neutrino masses). In the O21 operator,
ðlαεH�

2Þðlc
βεH

�
1Þ ¼ ðlβεH�

1Þðlc
αεH�

2Þ, but both terms are
retained here because they are convenient in our Feynman
rule conventions.3

Tree-level LFV is often avoided in the 2HDM by impos-
ing a Z2 symmetry on the renormalizable Lagrangian: if
under the Z2 transformation, H1 → H1 and H2 → −H2,
then ½Yð2Þ�, λ6 and λ7 are forbidden.Wewill later discuss this
case, but do not impose the Z2 symmetry from the begin-
ning, because it also forbids the C21 and CA coefficients at
dimension-five.

III. THE EFT CALCULATION

A. Diagrams and divergences

Diagrams with two insertions of the dimension-five
operators are illustrated in Figs. 1 and 2. We focus on the
lepton flavor violating diagrams of Fig. 1, and discuss the
four-Higgs operators generated by Fig. 2 in Appendix G,
because four-Higgs interactions are flavor conserving and
arise in the SM.
The Feynman rules arising from the (tree-level)

Lagrangian of equations (2.1), (2.4), (2.6) are given in
Appendix A. We use them to evaluate, using dimensional
regularization in 4 − 2ϵ dimensions in MS, the coefficient
of the 1=ϵ divergence of each diagram of Fig. 1. These
coefficients can be expressed as a sum of numerical factors
multiplying the Feynman rules for the dimension-six
operators of Eqs. (2.7) and (2.10) (these Feynman rules
are given in Appendix A), and then the EOMs are used to
transform the operators of Eq. (2.10) to OeH and O†

eH. The
required counterterm ΔCO for each of the dimension-six
operators given in Eq. (2.7) can be identified as ð−1Þ× the
numerical factor that multiplies its Feynman rule. This
counterterm is added in the Lagrangian to the operator
coefficient CO, resulting in a “bare” coefficient CO;bare ¼
μ2ϵðCO þ ΔCOÞ that should be independent of the MS
renormalization scale μ. Note that the factor μ2ϵ is chosen
such that bare Lagrangian remains d-dimensional.
A more complete and rigorous presentation will be

required in the next section, in order to derive the
RGEs, so let us replace counterterms by Z factors in order
to minimize notation and introduce the necessary factors of
μ2ϵ to obtain the correct dimensions. More details of the
formalism and calculations are given in Appendix C.
We allow for multiple operators at both dimension-six

and -five, and align the dimension-six coefficients in a row
vector C̃, and the dimension-five coefficients in a row
vector C⃗. Then the bare coefficients can be written

FIG. 2. Two insertions of dimension-five operators can also
contribute to dimension-six operators involving four Higgses via
this diagram.

3The operator O21 can also be written as 2ðlβϵH�
1Þðlc

αϵH�
2Þ þ

ðlβϵlc
αÞðH�

1ϵH
�
2Þ using the identity (A9), as done in the first

reference of [16].
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C⃗bare ¼ μ2ϵC⃗½Z�; C̃bare ¼ μ2ϵ½C̃ ẐþC⃗½Z̃�C⃗†� ð3:1Þ

where matrices wearing a hat act on the space of dimension-
six coefficients, and matrices in square brackets act in the
dimension-five space, so Ẑ represents the renormalization of
dimension-six coefficients amongst themselves, and ½Z�
represents the renormalization of dimension-five coeffi-
cients. The quantity ½Z̃� renormalizes insertions of two
dimension-five operators; ½Z̃�ijk is a vector in the dimen-
sion-six space with index k, and a matrix in the dimension-
five space with indices i, j. In the single Higgs model, i, j
correspond to the flavor indices of the Weinberg operator,
e.g., i ¼ αβ, j ¼ ρσ. The index k corresponds to the operator
labels and flavor indices of dimension-six operators. The
counterterms that renormalize the diagrams of Fig. 1 are then
components of the vector C⃗½Z̃�C⃗†. All terms in the above
expressions assume an implicit sum over flavor indices; the
explicit flavor dependence is presented in Appendix B.
The first diagram of Fig. 1 has two Higgs and two

doublet-lepton legs and so must be renormalized by the
operatorsOHlð3Þ andOHlð1Þ, and the structures SHDlð1Þ and
SHDlð3Þ. Since these all involve a derivative, the diagram is
calculated for finite external momenta. The counterterms
that we obtain from this diagram differ from those given in
[21]; as discussed in Appendix F, it appears that the authors
of [21] dropped one of the terms multiplying the 1=ϵ
divergence. We check our result by attaching an external Bμ

or Wa
μ boson, in all possible ways, to the first diagram of

Fig. 1, and verify that our counterterms also cancel the
divergences of the 2-Higgs-2-lepton-gauge boson vertices
generated by two insertions of the Weinberg operator (this
is outlined in Appendix B 3). This diagram can be
renormalized using the following counterterms:

ðC⃗½Z̃�C⃗†ÞβαHlð1Þ ¼ −
3

4

1

16π2ϵ
½C5C�

5�βα; ð3:2Þ

ðC⃗½Z̃�C⃗†ÞβαHlð3Þ ¼ þ 2

4

1

16π2ϵ
½C5C�

5�βα; ð3:3Þ

ðC⃗½Z̃�C⃗†ÞβαHDlð1Þ ¼ −
3

4

1

16π2ϵ
½C5C�

5�βα; ð3:4Þ

ðC⃗½Z̃�C⃗†ÞβαHDlð3Þ ¼ þ 2

4

1

16π2ϵ
½C5C�

5�βα; ð3:5Þ

where the last two counterterms represent divergences
proportional to the structures SHDlð1Þ and SHDlð3Þ, which
contribute to the renormalization of CeH through the linear
combination given in Eq. (2.10).
The middle diagram of Fig. 1 contributes to Oβα

eH, and
the divergence it induces can be removed by the counter-
term ð16π2ϵÞ−1½C5C�

5Y�βα (where the flavor index order
is doublet-singlet). Including also the counterterms for
Sβα
HDlð1Þ and Sβα

HDlð3Þ [Eqs. (3.4), (3.5)] gives

ðC⃗½Z̃�C⃗†ÞβαeH ¼ þ 3

4

1

16π2ϵ
½C5C�

5Y�βα: ð3:6Þ

Since the structures SHDlð3Þ and SHDlð1Þ are Hermitian,

they contribute to the renormalization of bothOeH andO†
eH

[see Eq. (2.10)]. Only the contribution toOeH is included in
(3.6), because the Hermitian conjugate in (2.6) generates a
counterterm proportional to O†

eH that absorbs the diver-
gence of the “conjugate” process of Fig. 1.
The third diagram of Fig. 1 contributes to the four-lepton

operator Oραβσ
ll , and the divergence it induces can be

removed by the counterterm

ðC⃗½Z̃�C⃗†Þραβσll ¼ −
1

4

1

16π2ϵ
Cρβ
5 C�σα

5 : ð3:7Þ

B. The 2HDM

In the 2HDM, we consider diagrams analogous to Fig. 1,
but with insertions of any of the dimension-five operators
given in Eq. (2.13). The external Higgs lines are required to
be H1, but the internal Higgs lines can be either doublet.
The counterterms required to cancel double-insertions of
the O5 operator, discussed in the previous section, also
arise in the 2HDM. In this section, we only list the
additional contributions to the counterterms.
We start again with the first diagram of Fig. 1, with O21

or OA at the vertices. Since by construction, the Feynman
rule forO21 is identical to the rule forO5, double-insertions
of O21 require the same counterterms as given in Eqs. (3.2)
to (3.5), but with C5, C�

5 replaced by C21, C�
21. Double

insertions of the antisymmetric operator OA require the
counterterms:

ΔðC⃗½Z̃�C⃗†ÞβαHlð1Þ ¼
1

4

1

16π2ϵ
½CAC�

A�βα; ð3:8Þ

ΔðC⃗½Z̃�C⃗†ÞβαHDlð1Þ ¼
1

4

1

16π2ϵ
½CAC�

A�βα: ð3:9Þ

Finally, OA at one vertex and O21 at the other require the
contributions to the counterterms:

ΔðC⃗½Z̃�C⃗†ÞβαHlð3Þ ¼
1

4

1

16π2ϵ
½CAC�

21 − C21C�
A�βα; ð3:10Þ

ΔðC⃗½Z̃�C⃗†ÞβαHDlð3Þ ¼
1

4

1

16π2ϵ
½CAC�

21 − C21C�
A�βα: ð3:11Þ

It is straightforward to check, using respectively the anti-
symmetry and symmetry of CA and C21 on flavor indices,
that the combination ½CAC�

21 − C21C�
A� is Hermitian, as

expected for the coefficients of OHlð3Þ and OHDlð3Þ.
Consider next the middle diagram of Fig. 1. Only the

internal Higgs lines can be H2, so the additional diver-
gences in the 2HDMwill arise fromOA orO21 at the vertex
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farthest from the Yukawa coupling, which can be
cancelled by the counterterms ð16π2ϵÞ−1½C21C�

5Y
ð2Þ�βα and

−½CAC�
5Y

ð2Þ�βα=ð16π2ϵÞ. Including also the additional
counterterms for Oβα

HDlð1Þ and Oβα
HDlð3Þ in the 2HDM gives

ΔðC⃗½Z̃�C⃗†ÞβαeH ¼ 1

4

1

16π2ϵ
ð4½ðC21−CAÞC�

5Y
ð2Þ�βα

þ½ðCAC�
AþCAC�

21−C21C�
A

−C21C�
21ÞYð1Þ�βαÞ: ð3:12Þ

Finally, for the four-lepton operator, there are additional
counterterms in the 2HDM to cancel the divergences
induced by double-insertions of O22, of O21, and of OA.
(The possible diagrams with an insertion of both O21 and
OA vanish due to antisymmetry.) We obtain:

ΔðC⃗½Z̃�C⃗†Þρσβαll ¼ −
1

4

1

16π2ϵ
Cρβ
22C

�ασ
22 −

1

2

1

16π2ϵ
Cρβ
21C

�ασ
21

þ 1

2

1

16π2ϵ
Cρβ
A C�ασ

A : ð3:13Þ

C. The renormalization group equations

The contribution of dimension-five operators to the
renormalization group equations of dimension-six opera-
tors, due to double insertions, can be obtained following the
discussion of Herrlich and Nierste [31]. The derivation is
presented in Appendix C. Here we schematically outline
the result.
The bare Lagrangian coefficients are defined at one loop

as in Eq. (3.1), where the counterterm for one operator can
depend on the coefficients of other operators. Recall that
the bare coefficients are independent of the dimensionful
parameter μ, and that the renormalized Cs are dimension-
less. Using C⃗ ¼ μ−2ϵC⃗bare½Z−1� allows one to obtain, in
4 − 2ϵ dimensions:

ð16π2Þμ d
dμ

C⃗ ¼ −C⃗
�
2ϵð16π2Þ þ ð16π2Þ

�
μ
d
dμ

Z

�
½Z−1�

�
≡ C⃗½γ� − 2ϵð16π2ÞC⃗ ð3:14Þ

where ½γ� denotes the 4-dimensional anomalous dimension
matrix, and we (unconventionally)4 factor the 16π2 out of
the anomalous dimension matrices. While the −2ϵ term
does not contribute in d ¼ 4 dimensions to the mixing
of the dimension-five operators, it plays an essential role in
the renormalization group equations of the dimension-six
operators.

For the dimension-six coefficients, it is straightforward
to obtain from Eq. (3.1):

μ
d
dμ

C̃ ¼ − C̃ ·

�
μ
d
dμ

Ẑ

�
Ẑ−1 þ 2ϵC⃗ · Z̃ · C⃗†Ẑ−1

− C⃗ ·

�
μ
d
dμ

Z̃

�
· C⃗†Ẑ−1

− C⃗ · ½Z�
�
μ
d
dμ

Z−1
�
· ½Z̃� · C⃗†Ẑ−1

− C⃗ · ½Z̃� ·
�
μ
d
dμ

Z−1
�†
½Z�†C⃗†Ẑ−1; ð3:15Þ

where terms of OðϵÞ that vanish in 4 dimensions are
neglected, and the summation over flavor and operator
indices is indicated with a dot. The second line can be
dropped, because the first term vanishes at one loop, and the
remaining terms are of two-loop order because both ½Z̃� and
d½Z−1�=dμ arise at one-loop. So the renormalization group
equations for the dimension-six coefficients can be written

ð16π2Þμ d
dμ

C̃ ¼ C̃ γ̂þC⃗½γ̃�C⃗†; ð3:16Þ

where γ̂ is the one-loop anomalous dimension matrix for
dimension-six operators [19] and ½γ̃� ¼ 2ð16π2Þϵ½Z̃� is the
anomalous dimension tensor.
We give below the anomalous dimensions describing the

one-loop mixing of double-insertions of dimension-five
operators into LFV dimension-six operators, in the 2HDM.
The single Higgs model can be easily retrieved by setting
C21 ¼ CA ¼ C22 ¼ 0 in the equations below. The anoma-
lous dimension tensor mixing a pair of dimension-five
operators into a dimension-six operator is necessarily a
three-index object; below we sum over the two dimension-
five indices, and give these summed components of the
tensor as elements of a vector in the dimension-six operator
space. These anomalous dimensions parametrize the mix-
ing of Fig. 1 in the 2HDM (recall that a factor 1=16π2 is
scaled out of our anomalous dimensions):

ðC⃗½γ̃�C⃗†ÞβαHlð1Þ ¼ −Cβρ
5

3δρσ
2

C�σα
5 − Cβρ

21

3δρσ
2

C�σα
21

þ Cβρ
A

δρσ
2

C�σα
A ð3:17Þ

ðC⃗½γ̃�C⃗†ÞβαHlð3Þ ¼ Cβρ
5 δρσC�σα

5 þ Cβρ
21δρσC

�σα
21 þ Cβρ

A

δρσ
2

C�σα
21

− Cβρ
21

δρσ
2

C�σα
A ð3:18Þ

ðC⃗½γ̃�C⃗†ÞβαeH¼Cβρ
5

3½Yð1Þ�ηαδρσ
2

C�ση
5 þ2½ðC21−CAÞC�

5Y
ð2Þ�βα

þ1

2
½ðCAC�

AþCAC�
21−C21C�

A−C21C�
21ÞYð1Þ�βα

ð3:19Þ

4The usual definition [15] is μ d
dμC ¼ Cγ, then γ is expanded in

loops: γ ¼ αs
4π γ0 þ…. However, here we only work at one loop,

have other subscripts on our γs and the one loop mixing of
dimension-five-squared into dimension-six is not induced by a
renormalizable coupling. So we factor out the 16π2.
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ðC⃗½γ̃�C⃗†Þρσβαll ¼ −Cβρ
5

1

2
C�σα
5 − Cβρ

22

1

2
C�σα
22

− Cβρ
21C

�σα
21 þ Cβρ

A C�σα
A ð3:20Þ

where the operator label and flavor indices on the left-hand
side refer to the dimension-six operator (the dimension-five
indices are summed).
In the next section, we will need the RGEs for

dimension-five operators. Recall that in the single Higgs
model, ½γ� is in principle a 9 × 9 matrix (or 6 × 6, if one
uses the symmetry of Cαβ

5 ), mixing the elements of C5

among themselves. However, in the basis where the
charged leptons are diagonal, ½γ� is diagonal, and
the anomalous dimension for the coefficient Cαβ

5 of the
Weinberg operator is [16]:

16π2γ¼−
3

2
ð½Ye�2ααþ½Ye�2ββÞþðλ−3g2þ2Trð3½Yu�†½Yu�

þ3½Yd�†½Yd�þ ½Ye�†½Ye�ÞÞ ð3:21Þ

where the Higgs self-interaction in the SM Lagrangian is
λ
4
ðH†HÞ2, and ½Yf� are the fermion Yukawa matrices.

IV. PHENOMENOLOGY

In order to solve the RGEs, it is convenient to
define t ¼ 1

16π2
ln μ

mW
, in which case the one-loop RGEs

for dimension-five and -six operator coefficients can be
written as

d
dt

C̃ ¼ C̃ · γ̂ þ C⃗ · ½γ̃� · C⃗†

d
dt

C⃗ ¼ C⃗ · ½γ�: ð4:1Þ

These are among the most familiar of differential equations,
whose solutions have the form

C⃗ðtfÞ¼ C⃗ð0Þexpfγtfg≃ C⃗ð0Þ
�
1þ γ

1

16π2
ln

�
Λ
mW

�
þ…

�
ð4:2Þ

C̃ðtfÞ ¼
�Z

tf

0

dτC⃗ð0Þeγτ½γ̃�½eγτ�TC⃗†ð0Þe−γ̂τ þ C̃ð0Þ
�
eγ̂tf

ð4:3Þ

where 16π2tf ¼ lnð Λ
mW

Þ. In these solutions, the anomalous
dimension matrices were approximated as constant; this is
not necessarily a good approximation, because the anoma-
lous dimensions depend on running coupling constants, in
particular the Yukawa couplings can evolve significantly
above mW . Although the impact of the running Yukawa
couplings is a higher order effect if the logarithms are not

resummed, their contribution could be amplified by a large
logarithm. Therefore, if one wished to perform a precision
prediction of lepton flavor violation in the case thatΛ ⋙ v,
it would be necessary to incorporate the effect from running
Yukawa couplings. However, this mass hierarchy highly
suppresses lepton flavor violation, and such a precision
prediction is beyond the scope of this work.
A simple solution to Eq. (4.3) can be obtained by

expanding the exponentials under the integral, as in
Eq. (4.2):

C̃ðmWÞ ¼ C̃ðΛÞ − C̃ðΛÞγ̂ 1

16π2
ln

Λ
mW

− C⃗ðΛÞ½γ̃�C⃗†ðΛÞ 1

16π2
ln

Λ
mW

þ � � � ð4:4Þ

A. The single Higgs model

In the SM case where there is only one Higgs doublet,
there is only the Weinberg operator at dimension-five: a
symmetric 3 × 3 matrix, whose entries are determined by
neutrino masses and mixing angles (in the mass basis of
charged leptons). We now want to estimate the contribution
of double-insertions of this dimension-five operator to
lepton-flavor violating processes.
We neglect the “Majorana phases,” suppose that the

lightest neutrino mass is negligible, and neglect the lepton
Yukawas in the RGEs. Then the RG running of Cαβ

5

between mW and Λ can be approximated as a rescaling,
with γ ≈ λ − 3g2 þ 6y2t ≈ 3.5:

Cαβ
5 ðΛÞ ¼ Cαβ

5 ðmWÞ
�
1þ 3.5

1

16π2
ln

Λ
mW

þ � � �
�

ð4:5Þ

For Λ ≤ 1016 GeV, the log is ≤ 32.
We can now estimate the contribution of the neutrino

mass operator to lepton flavor violating processes from
Eq. (4.4). We neglect C̃ðΛÞ and find that the contribution is
1

16π2
ln Λ

mW
× the coefficients of Eqs. (3.17)–(3.20), that is, of

order

C̃ðmWÞ ∼
C2
5

16π2
ln

Λ
mW

: ð4:6Þ

As expected, this is negligibly small, because C2
5=Λ2 ∼

m2
ν=v4. Notice, however, that the logarithm can be large,

and the anomalous dimension is Oð1Þ; the effect is tiny
because small neutrino masses imply that C5 is small or Λ
is large.

B. The two Higgs doublet model

Experimental neutrino data constrain the dimension-five
operator in the one Higgs doublet model, so the lepton
flavor violating effects estimated in Eq. (4.6) are

MAJORANA NEUTRINO MASSES IN THE … PHYS. REV. D 98, 095014 (2018)

095014-7



suppressed by the smallness of the neutrino masses. The
situation changes in an extended Higgs sector, where more
than one dimension-five operator is present. The operator
OA cannot contribute to neutrino masses as it is antisym-
metric in flavor space and is hence unconstrained. In
addition, the neutrino mass contribution of operators O21

and O22 is suppressed if the vacuum expectation value of
the second Higgs doublet is small. Renormalization group
effects [16–18] will in general mix all operators, which
could lift these suppression mechanisms at loop level.
However the mixing factorizes in the limit where λ6, λ7 and
Yð2Þ tend to zero: then the operators O21 and OA will not
mix into O5 and O22 and are hence not constrained by the
observed neutrino masses. Furthermore, the mixing of O22

into O5 vanishes in the limit where in addition λ5 tends to
zero (see [32] for a symmetry argument).
In the following we will study the sensitivity of lepton-

flavor violating decays to these additional operators. We
assume that the Wilson coefficients of the dimension-five
operators are generated at Λ ¼ 10 TeV, while all other
dimension-six Wilson coefficients are zero at this scale. To
avoid constraints from the observed neutrino masses we
consider the scenario where the second Higgs doublet has a
negligible vacuum expectation value and a mass at the
weak scale. TheHiggs sector could be assumed to be close to
that of an inert two-Higgs doublet model [26–29] and the
dangerous couplings λ6, λ7 and Yð2Þ are not generated
radiatively. Renormalization group running will then gen-
erate nonzero Wilson coefficients of several dimension-six
operators at μ ∼ v. Only those dimension-six operators that
involve standard model particles are of interest to us, since
the vanishing vacuum expectationvalue of the secondHiggs
doublet will suppress the contribution of the other operators
after spontaneous symmetry breaking. Applying the con-
straints presented in Appendix E of the Wilson coefficients
evaluated using Eq. (4.4) neglecting the small log
lnðm22=mWÞ, we find the following: the μ → 3e decays
provide the greatest sensitivity to the additional dimension-
five Wilson coefficients. In particular the left-handed con-
tribution implies			Cee

21C
eμ�
21 þ0.5Cee

22C
eμ�
22 þ0.1

X
σ

ðCeσ
A −Ceσ

21ÞðCσμ�
A þCσμ�

21 Þ
			

<
1

5.2 lnðΛ=m22Þ
�

Λ
10 TeV

�
2

; ð4:7Þ

where we neglected the mixing of the dimension-five
operators amongst themselves, as this would contribute at
two-loop order to the lepton flavor violating processes. For
the right-handed contribution we find				X

σ

ðCeσ
A −Ceσ

21ÞðCσμ�
A þCσμ�

21 Þ
				< 1.6

lnðΛ=m22Þ
�

Λ
10 TeV

�
2

;

ð4:8Þ

which exhibits a weaker sensitivity. The contribution of the
μ ↔ e flavor-changing Z vertex to μ → eγ is relatively
suppressed by a loop factor, so is beyond current exper-
imental sensitivity. However, this Z vertex contributes
at tree-level to μ → e conversion, in interference with
vector and scalar 2-quark-2-lepton operators. Indeed,
the current sensitivity of μ → e conversion in gold is
jCeμ

Hlð1Þ þ Ceμ
Hlð3Þj ≈ 1.4 × 10−7ðΛ=mtÞ2. The resulting con-

straints on the Wilson coefficients reads:				X
σ

ðCeσ
A −Ceσ

21ÞðCσμ�
A þCσμ�

21 Þ
				< 1

6.5lnðΛ=m22Þ
�

Λ
10TeV

�
2

;

ð4:9Þ

We also checked that the current experimental situation for τ
decays does not lead to significant constraints.

V. SUMMARY

Motivated by neutrino masses and the expected
progress in searches for lepton flavor violation, we
calculated the leading one-loop contribution of a pair
of lepton number violating dimension-five operators to
the coefficients of lepton flavor violating dimension-
six operators. The diagrams are given in Fig. 1. The
dimension-five operators that we considered are the
Weinberg operator, constructed out of SM fields and
given in Eq. (2.4), and three additional dimension-five
operators that can be constructed in the two Higgs
doublet model, given in Eq. (2.13). The dimension-
six, lepton flavor violating operators of the SMEFT are
listed in Appendix D, in the “Warsaw” basis, and the
subset of these operators relevant for our calculation is
given in Eq. (2.7). A selection of constraints on their
coefficients, evaluated at the weak scale, is given in
Appendix E.
In Sec. III, we obtain the anomalous dimensions

mixing two dimension-five operators into the lepton flavor
violating operators of Eq. (2.7). The required counterterms
are given in Eqs. (3.2)–(3.7) for the standard model with a
single Higgs, and in Eqs. (3.8)–(3.13) for the case of the
two Higgs doublet model. Then in Sec. III C, we outline
the derivation of the renormalization group equations
(Appendices B and C present our calculation and the flavor
dependence of our result in more detail), and the resulting
anomalous dimensions are listed in Eqs. (3.17)–(3.20). The
mixing of two dimension-five operators into the lepton
flavor conserving four-Higgs operator, via the diagram
of Fig. 2 is given in Appendix G; however, we do not
consider mixing into dimension six operators constructed
with the second Higgs of the 2 Higgs doublet model.
This completes the one loop renormalization group
equations of the standard model effective theory, up to
operators of dimension six. It is amusing that the
insignificant effect we calculate does not involve standard
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model couplings, so, in an expansion in terms of SM
couplings, our result is the “leading” contribution to the
one-loop RGEs of the dimension-six SMEFT.5

In the effective field theory constructed with standard
model fields, the coefficient of the Weinberg operator is
proportional to the neutrino mass matrix. So the lepton
flavor changing amplitudes induced by double insertions
of the Weinberg operator are ∝ ðmν=mWÞ2 lnΛ=mW ,
and far below current sensitivities. This is outlined in
Sec. IVA. However, the situation is different in the 2
Higgs doublet model, as discussed in Sec. IV B: there are
four operators at dimension five, and the neutrino mass
matrix only constrains one combination. We evaluated the
mixing of the four operators into lepton flavor violating
operators of the standard model effective theory,
and for a lepton number violating scale of 10 TeV we
found that the current experimental value of μ → 3e is
sensitive to the Wilson coefficients of these additional
operators.
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APPENDIX A: FEYNMAN RULES
AND IDENTITIES

1. Feynman rules

We use Feynman rules of Ref. [25], in order that the
fermion traces in loops multiply spinors in the correct order.
The Feynman rule for the Weinberg operator of Eq. (2.4)
can be obtained reliably by using Lehmann-Symanzik-
Zimmermann reduction or Wick’s theorem, which gives the
signs for fermion interchange. The fermion fields are
expanded as [33]

ψðxÞ¼
X
s

Z
d3k
ð2πÞ3

1ffiffiffiffiffiffi
2E

p ðaskusðkÞe−ik·xþbs†k vsðkÞeþik·xÞ

so the amplitude Mfi is

hlαjHIji
Cσρ
5

2Λ
ðlσnεnNHN�Þðlc

ρmεmMHM�Þjlc
βiH

�
Ji

¼ ð−iÞi C
αβ
5

2Λ
ðuαjPRuβi þ uβiPRuαjÞðεiIεjJ þ εiJεjIÞ

¼ ð−iÞi C
αβ
5 þ Cβα

5

2Λ
uαjPRuβiðεiIεjJ þ εiJεjIÞ

¼ ð−iÞi C
αβ
5

Λ
uαjPRuβiðεiIεjJ þ εiJεjIÞ; ðA1Þ

where the SU(2) lepton indices are lower case, Higgs
indices are upper case, lαj and lc

αj represent a final state
lepton and an initial state anti-lepton respectively. The
factor i is the usual factor for Feynman rules and the factor
ð−iÞ is due to the calculation of Mfi. This expression
agrees with Feynman rule of Ref. [21].
A Feynman-rule to attach a W-boson to the lc line also

will be needed. With the following identities [25]

lc ¼ClT; C¼ iγ0γ2; C−1¼C†; C†γμTC¼−γμ

ðA2Þ
lc ¼ ½CγT0l��†γ0 ¼ lTγ0C†γ0 ¼ lTC†Cγ0C†γ0

¼ −lTC†γ0γ0 ¼ −lTC−1 ðA3Þ
one obtains (where the (−1) is for interchanging fermions)

½liτijW=PLlj�T ¼ ð−1Þ½−lc
jCτ

a�
ji P

T
LW

a
μγ

T
μC−1lc� ðA4Þ

¼ lcτa�Wa
μCγTμC−1PRlc ðA5Þ

¼ −lcτa�Wa
μγμPRlc ðA6Þ

and recall that τ¼ τ†, so τ� ¼ τT . The Feynman rules for the
dimension-four, dimension-five and physical dimension-
six interactions are given in Figs. 3, 4, and 5 respectively.
The Feynman rules for the dimension-six equation of
motion vanishing interactions are given in Fig. 6.

2. Identities

The following identities are useful:

2εiIεjJ ¼ δijδIJ − τaijτa;IJ Fierz ðA7Þ
1

4
τaijτa;kl ¼

1

2
δilδkj −

1

4
δijδkl SUðNÞ ðA8Þ

εabεcd þ εbcεad þ εacεbd ¼ 0 ðA9Þ
εiJεkJ ¼ δik ðA10Þ
εijSajkεkl ¼ Sali ðA11Þ

0 ¼ δijSakl − δjlSaki þ δklSaji − δikSajl ðA12Þ

εijεkl ¼ δikδjl − δilδjk; ðA13Þ

where
5Mixing among dimension six operators occurs via the

exchange of a SM particle, so is ∝ ½SMcoupling�2).
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FIG. 3. Feynman rules for dimension-four interactions.

FIG. 4. Feynman rules for dimension-five interactions, in the single and two Higgs Doublet Models. H1 is the SM Higgs. H2 is the
second Higgs of the 2HDM, with the same hypercharge as the SM Higgs, opposite to the lepton doublet.
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ε¼
�
0 1

−1 0

�
; τ⃗¼

��
0 1

1 0

�
;

�
0 −i
i 0

�
;

�
1 0

0 −1

��

and the SU(2) generators are Sa ¼ τa=2.

APPENDIX B: THE LOOP CALCULATION

1. Flavor dependence

We allow for multiple operators at both dimension-five
and -six, and denote a particular Wilson coefficient by Cζ

X,
whereX and ζ are the operator and flavor labels, respectively.
Then the bare Wilson coefficients of the dimension-six
standardmodel effective theory Lagrangian can bewritten asX
ζ;X

Cζ
X;bareQ

ζ
X;bare

¼ μ2ϵ
X
θ;Y

�X
ζ;X

Cζ
XZ

ζθ
XY þ

X
ζ;η

Cζ
5½Cη

5�†Zζηθ

55;Y

�
Qθ

Y;bare;

ðB1Þ

where ζ, η and θ represent generation indices of an operator,
and the renormalization constants Zζθ

XY encode the mixing of
dimension-sixWilsoncoefficients amongst themselves,which
can be extracted from the anomalous dimensions of reference
[19]. In the standard model, the mixing of two dimension-five
Wilson coefficients into adimension-six coefficient is givenby
Zζηθ

55;Y
. They are induced by the double-insertions of dimen-

sion-five operators, as shown in Fig. 1. In the case of a 2HDM
effective field theory we extend the summation of the
dimension-five flavor indices to a sum over all dimension-
five operators and their respective flavor components.
The renormalization constants can be expanded in the

number of loops and powers of epsilon. At one-loop in the
MS scheme the counterterms of the physical and EOM-
vanishing operators are pure 1=ϵ poles, and the renormal-
ization of evanescent operators does not play a role. Hence
we can expand

Zζηθ

55;j
¼ 1

16π2
1

ϵ
δZζηθ

55;j
ðB2Þ

FIG. 5. Feynman rules for dimension-six operators of the SMEFT using the “Warsaw”-basis [20]. H1 is the SM Higgs.
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and write the generation summation in the case of an
operator involving four fermions explicitly as:

Cζ
5C

η†
5 δZζηθ

55;X
Qθ

X ¼ Cαβ
5 Cδγ�

5 δZαβγδ;ρστυ
55;X

Qρστυ
X : ðB3Þ

The sum over generation indices reduces trivially for
operators that involve less fermions. The corresponding
renormalization equation ensures that the pole of the one-
loop off-shell matrix element of an insertion of two
dimension-five operators is cancelled by its counterterm.
Factoring out the common overall factor Cαβ

5 Cδγ�
5 we write:

hfjQαβ
5 ðQγδ

5 Þ†jiijð1Þ1=ϵ þ ðδZαβγδ;ρστυ
55;X

hfjQρστυ
X jii þ H:c:Þ ¼ 0;

ðB4Þ

where jð1Þ1=ϵ denotes the 1=ϵ pole of a one-loop diagram and
hfj and jii are arbitrary off-shell final and initial states.

In calculations of the loop diagrams the following
generation structures arose:

Tαβγδ;ρσ
1 ¼ 1

2
ðδδσδαρδβγ þ δαδδβρδγσÞ;

Tαβγδ;ρσ
1A ¼ 1

2
ðδδσδαρδβγ − δαδδβρδγσÞ;

Tαβγδ;ρσ
2 ¼ 1

2
ðδαρδβγYδσ þ δαδδβρYγσÞ;

Tαβγδ;ρσ
2A ¼ 1

2
ðδαρδβγYð2Þ

δσ − δαδδβρY
ð2Þ
γσ Þ;

Tαβγδ;ρστυ
3 ¼ 1

4
ðδδσδγυ þ δδυδγσÞðδατδβρ þ δαρδβτÞ;

Tαβγδ;ρστυ
3A ¼ −

1

4
ðδδσδγυ − δδυδγσÞðδατδβρ − δαρδβτÞ: ðB5Þ

These structures, when contracted with Wilson coefficients
and multiplied by loop factors and the appropriate δZs, give
the results in Eqs. (3.2)–(3.13). Note that in intermediate
steps, more general structures than theT1ðAÞ,T2ðAÞ listed here

FIG. 6. Feynman rules for dimension-six operators that are vanishing by the equations of motion, in the single Higgs doublet model
(SMEFT). H1 is the SM Higgs. Note that we have chosen a convention for our Feynman rules to eliminate any dependence on the
momentum of the incoming lepton, pi, since all momenta are not independent.
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arise,which showagreater degree of symmetry. These can be
obtained by taking the T1ðAÞ and T2ðAÞ given here, and
symmetrizing/antisymmetrizing over the appropriate indi-
ces, such that the structures become symmetric (or antisym-
metric) under α ↔ β and symmetric (or antisymmetric)
under γ ↔ δ. The structures in Eq. (B5) were matched onto
the generation structures of the dimension-six operators (the
matching is more subtle for the four-lepton operator Oαβγδ

ll ,
where the matching is done via a Fierz-evanescent dimen-
sion-six operator Oαβγδ

e ), and the generation structure there-
fore extracted from the renormalization constants, which can
then be written as a generation structure multiplied by a
numerical factor.
At one-loop we find the following nonvanishing mixing

into the physical dimension-six operators

δZαβγδ;ρσ
55;Hlð1Þ ¼ −

3

4
Tαβγδ;ρσ
1 ; δZαβγδ;ρσ

2121;Hlð1Þ ¼ −
3

4
Tαβγδ;ρσ
1 ;

δZαβγδ;ρσ
AA;Hlð1Þ ¼ −

1

4
Tαβγδ;ρσ
1 ; δZαβγδ;ρσ

55;Hlð3Þ ¼
1

2
Tαβγδ;ρσ
1 ;

δZαβγδ;ρσ
2121;Hlð3Þ ¼

1

2
Tαβγδ;ρσ
1 ; δZαβγδ;ρσ

A21;Hlð3Þ ¼
1

4
Tαβγδ;ρσ
1A ;

δZαβγδ;ρσ
21A;Hlð3Þ ¼

1

4
Tαβγδ;ρσ
1A ; δZαβγδ;ρσ

55;eH
¼ 3

4
Tαβγδ;ρσ
2 ;

δZαβγδ;ρσ
215;eH

¼ Tαβγδ;ρσ
2 ; δZαβγδ;ρσ

A5;eH
¼ −Tαβγδ;ρσ

2A ;

δZαβγδ;ρσ
AA;eH

¼ −
1

4
Tαβγδ;ρσ
2 ; δZαβγδ;ρσ

A21;eH
¼ 1

4
Tαβγδ;ρσ
2A ;

δZαβγδ;ρσ
21A;eH

¼ 1

4
Tαβγδ;ρσ
2A ; δZαβγδ;ρσ

2121;eH
¼ −

1

4
Tαβγδ;ρσ
2 ;

δZαβγδ;ρστυ
55;ll

¼ −
1

4
Tαβγδ;ρστυ
3 ; δZαβγδ;ρστυ

2222;ll
¼ −

1

4
Tαβγδ;ρστυ
3 ;

δZαβγδ;ρστυ
2121;ll

¼ −
1

2
Tαβγδ;ρστυ
3 ; δZαβγδ;ρστυ

AA;ll
¼ 1

2
Tαβγδ;ρστυ
3A :

ðB6Þ

2. Four-lepton Green’s function

In the following we will explicitly present the
renormalization of a Green’s function involving
four lepton doublets. When we consider double-insertions
of dimension-five operators one additional operator
that vanishes in the limit d → 4, a so-called evanescent
operator, appears in our calculation. The exact defini-
tion of the evanescent operator in d dimensions is not
important, but will induce a scheme dependence beyond
one-loop. We use

Oαβγδ
eva ¼ 1

2
δijδklðliαlc

kγÞðlc
lδljβÞ −

1

2
Oαβγδ

ll ; ðB7Þ

where the first term has a left-right chirality structure and i,
j, k, l are SU(2) indices.
Denoting the flavor and SU(2) component of the final

state hfj ¼ hlk;ϕll;χ j and the initial state jii ¼ jli;ψlj;ωi by
ϕ, χ, ψ , ω, and i, j, k, l respectively, we find for the third
diagram of Fig. 1

hfjOαβ
5 ðOγδ

5 Þ†jiijð1Þ1=ϵ

¼ ðuψiPLvωjÞðvϕkPRuχlÞ
64π2

ðδψδδωγ þ δωδδψγÞ
× ðδχαδϕβ þ δϕαδχβÞðδilδjk þ δikδjlÞ; ðB8Þ

which exactly matches the scalar contribution of the
evanescent operator Oeva at tree level

hfjðδZαβγδ;ρστυ
55;eva

Oρστυ
eva;scalar þ H:c:ÞjiiLR ¼ δZαβγδ;ρστυ

55;eva
ðuψiPLvωjÞðvϕkPRuχlÞ

× ½δilδjkðδψσδωυδχρδϕτ þ δωσδψυδϕρδχτÞ þ δikδjlðδωσδψυδχρδϕτ þ δψσδωυδϕρδχτÞ�;
ðB9Þ

where we have used the hermiticity condition of the
renormalization constants.6 The one-loop contribution to
the L × R part is then renormalized by the renormalization
constant δZαβγδ;ρστυ

55;eva
¼−1

2
Tαβγδ;ρστυ
3 . As there is no ðV − AÞ ×

ðV − AÞ contribution to the Green’s function, the ðV − AÞ ×
ðV − AÞ parts have to cancel between the counterterms

of Oeva and Oll, i.e., δZαβγδ;ρστυ
55;ll

¼ ð1=2ÞδZαβγδ;ρστυ
55;eva

¼
− 1

4
Tαβγδ;ρστυ
3 .

3. W emission

The values of renormalization constants may be checked
by renormalizing other loop processes involving a double-
insertion of dimension-five operators, and matching them
to the same operator basis Oβα

Hlð1Þ, O
βα
Hlð3Þ, O

βα
vð1Þ and Oβα

vð3Þ.
The internal Higgs and lepton lines of the loop diagram

6The four-lepton renormalization constants fulfil the hermi-
ticity condition Zαβγδ;ρστυ

55̄;ll
¼ ðZδγβα;σρυτ

55̄;ll
Þ�.

MAJORANA NEUTRINO MASSES IN THE … PHYS. REV. D 98, 095014 (2018)

095014-13



may couple to Bμ or Wa
μ bosons of the Uð1ÞY and SUð2ÞL

groups respectively. Since the group structure of Uð1ÞY is
trivial, we concentrate here on the calculation resulting
from emission of a Wa

μ boson. The results for emission of
Bμ emission may be retrieved from these results by
replacing the SUð2ÞL generators everywhere by Uð1ÞY
generators, 1

2
τaij → YðH;lÞδij at the beginning of the

calculation.
The renormalization equation for the process HMln

α →
HJli

βW
a
μ in MS is

0 ¼ hli
βH

JWa
μjOγδ

5 ðOηκ
5 Þ†jln

αHMijð1Þ1
ϵ

þ Zγδηκ;βα
55;Hlð1Þð−g2Þ½uβiγμPLuαn�τaJMδin

þ Zγδηκ;βα
55;Hlð3Þð−g2Þ½uβiγμPLuαn�ðδJMτainÞ

þ Zγδηκ;βα
55;vð1Þ ð−g2Þ½uβiγμPLuαn�δJMτain

þ Zγδηκ;βα
55;vð3Þ ð−g2Þ½uβiγμPLuαn�ðδinτaJMÞ:

where the tree-level matrix elements are replaced by their
respective amplitudes and the SU(2) algebra has been
simplified.
Two diagrams must be evaluated for the double insertion

of dimension-five operators with associated emission of a
Wa

μ boson, which can couple to either the internal Higgs or
internal lepton. These diagrams are denoted by D1 and D2,
and are shown in Fig. 7.
Calculating the diagrams and isolating the 1=ϵ poles

gives

D1j1
ϵ
¼ 1

ϵ

g2
64π2

½uβiγμPLuαn�ðδακδβγδδηÞ
× ð2δJMτain − δJnτ

a
iM − δiMτ

a
Jn − δinτ

a
JMÞ; ðB10Þ

D2j1
ϵ
¼ 1

ϵ

g2
64π2

½uβiγμPLuαn�ðδακδβγδδηÞ
× ðδiMτaJn þ δJnτ

a
iM − 3δJMτ

a
inÞ; ðB11Þ

where we use the symmetries γ ↔ δ and η ↔ κ of the
flavor indices of the Weinberg operator to simplify our

expressions here and in the following. The total amplitude
of the double-insertion of dimension-five operators is
therefore:

hli
βH

JWa
μjOγδ

5 ðOηκ
5 Þ†jln

αHMijð1Þ1
ϵ

¼−
1

ϵ

g2
64π2

½uβiγμPLuαn�ðδακδβγδδηÞðδJMτainþδinτ
a
JMÞ:
ðB12Þ

In this form it is simple to set up simultaneous equations for
the renormalization condition by comparing the loop and
tree amplitudes,

Zγδηκ;βα
55;Hlð1Þð−g2Þ þ Zγδηκ;βα

55;vð3Þ ð−g2Þ −
1

ϵ

g2
64π2

ðδακδβγδδηÞ ¼ 0;

ðB13Þ

Zγδηκ;βα
55;vð1Þ ð−g2Þ þ Zγδηκ;βα

55;Hlð3Þð−g2Þ −
1

ϵ

g2
64π2

ðδακδβγδδηÞ ¼ 0:

ðB14Þ

This underconstrained set of equations may be constrained
by substituting in solutions for Zγδηκ;βα

55;vð1Þ and Z
γδηκ;βα
55;vð3Þ from the

momentum-dependent calculation, to verify the solutions

δZγδηκ;βα
55;Hlð1Þ ¼−

3

4
Tκβγδ;αη
1 ; δZγδηκ;βα

55;Hlð3Þ ¼
1

2
Tκβγδ;αη
1 : ðB15Þ

APPENDIX C: RENORMALIZATION
GROUP EQUATIONS

The bare Wilson coefficients of dimension-five operators
can be written as

C⃗η
X;bare ¼ μ2ϵC⃗θ

YðμÞZθη
YXðμÞ; ðC1Þ

where C⃗θ
YðμÞ is the renormalized Wilson coefficient,

Zθη
YXðμÞ is the renormalization matrix, and μ is the renorm-

alization scale. The μ2ϵ introduces an additional term
proportional to ϵ into the d-dimensional renormalization
group equation

μ
d
dμ

C⃗η
X ¼ −C⃗θ

Y

�
μ
d
dμ

Zθζ
YZ

�
½Z−1�ζηZX − 2ϵC⃗η

X: ðC2Þ

This reduces to the renormalization group equation in d ¼
4 dimensions

ð16π2Þμ d
dμ

C⃗η
X ¼d¼4C⃗θ

Yγ
θη
YX; ðC3Þ

where the 4-dimensional anomalous dimension matrix
FIG. 7. Double insertions of dimension-five operators with
associated emission ofWa

μ that mix into dimension-six operators.
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γθηYX ¼ −ð16π2Þ
�
μ
d
dμ

Zθζ
YZ

�
½Z−1�ζηZX ðC4Þ

is independent of the choice of the overall factor μ2ϵ.
Therefore the μ2ϵ term can be neglected when only consid-
ering mixing amongst operators of equal dimensions. In the
case of mixing between operators of different dimensions a
more careful treatment is required.
At loop level, operators of different dimensions can mix

via multiple operator insertions [31]. Consider the specific
case of loop diagrams involving two dimension-five oper-
ators mixing into diagrams with a single dimension-six
operator insertion. We denote dimension-six quantities with
a tilde, quantities that mix dimension-five and -six with a
hat, and dimension-five quantities without a tilde or hat.
The bare dimension-six Wilson coefficient is

C̃η
X;bare ¼ μ2ϵC̃θ

YðμÞẐθη
YXðμÞ þ μ2ϵCζ

AðμÞZ̃ζθ;η
AB;XðμÞ½Cθ

B�†ðμÞ;
ðC5Þ

where C̃bare is μ-independent. Therefore the renormaliza-
tion group equation is

ð16π2Þμ d
dμ

C̃η
X ¼ C̃θ

Y γ̂
θη
YX þ Cζ

Aγ̃
ζθ;η
AB;X½Cθ

B�†; ðC6Þ

where γ̂θηYX is defined analogously to Eq. (C2), and

γ̃ζθ;ηAB;X ¼ð16π2Þ
�
2ϵZ̃ζθ;υ

AB;Y −μ
d
dμ

Z̃ζθ;υ
AB;Y

�
½Ẑ−1�υηYX

− ð16π2Þð½γθωBD�†δζχACþ γζχACδ
θω
BDÞZ̃χω;υ

CD;Y ½Ẑ−1�υηYX ðC7Þ

where the explicit form in terms of generation indices is
½γαβγδAB �† ¼ ½γβαδγAB �� and δαβγδAB ¼ δABδαγδβδ. The terms in the
second line of the above equation only contribute beyond
one-loop. Furthermore, the contribution to the renormali-
zation tensor Zζθ;υ

AB;Y is μ independent at one-loop and only
the term proportional to 2ϵ contributes in our calculation.
A comment regarding the sign of the 2ϵ contribution is in
order. The factor in μ2ϵ in (C5) generates a term propor-
tional to −2ϵ, while the derivative of the dimension-five
Wilson coefficients generates a contribution proportional to
2 × 2ϵ from (C2). Hence the one-loop anomalous dimen-
sion matrix reads

γ̃ζη;θAB;C ¼ 2δZ̃ζη;θ
AB;C ðC8Þ

in terms of the one-loop renormalization constants defined
in Eq. (B2). Correspondingly we find ½γ̃� ¼ 2ð16π2Þϵ½Z̃�.

APPENDIX D: OPERATORS

This Appendix lists dimension-six, SM-gauge invariant
operators that change lepton flavor.The operators are in the

Buchmuller-Wyler basis, as pruned in Grzadkowski et al.
[20], commonly referred to as the “Warsaw” basis. All
operators are added to the Lagrangianþ H:c:, as given in
Eq. (2.6):

δL6 ¼
X
X;ζ

Cζ
X

Λ2
Oζ

X þ H:c:

where the flavor indices are represented by ζ, and are all
summed over all generations. In the conventions of [20]
and [19], the hermitian conjugate is not added for “self-
conjugate” operators, for which

P
ζC

ζ
XO

ζ
X ¼ ½PζC

ζ
XO

ζ
X�†.

(For instance, Oαβρσ
ll of Eq. (D11) is Hermitian, because

½ðeγμμÞðτγμτÞ�† ¼ ðμγμeÞðτγμτÞ). So we define such oper-
ators with a factor 1=2 to avoid this double-counting.
The four-fermion operators involving β ↔ α flavor

change and two quarks are

Oð1Þαβnm
lq ¼ 1

2
ðlαγ

μlβÞðqnγμqmÞ ðD1Þ

Oð3Þαβnm
lq ¼ 1

2
ðlαγ

μτalβÞðqnγμτaqmÞ ðD2Þ

Oαβnm
eq ¼ 1

2
ðeαγμeβÞðqnγμqmÞ ðD3Þ

Oαβnm
lu ¼ 1

2
ðlαγ

μlβÞðunγμumÞ ðD4Þ

Oαβnm
ld ¼ 1

2
ðlαγ

μlβÞðdnγμdmÞ ðD5Þ

Oαβnm
eu ¼ 1

2
ðeαγμeβÞðunγμumÞ ðD6Þ

Oαβnm
ed ¼ 1

2
ðeαγμeβÞðdnγμdmÞ ðD7Þ

Oαβnm
lequ ¼ ðlA

αeβÞεABðqBnumÞ ðD8Þ

Oαβnm
ledq ¼ ðlαeβÞðdnqmÞ ðD9Þ

Oαβnm
T;lequ ¼ ðlA

ασ
βνeβÞεABðqBnσβνumÞ ðD10Þ

where l, q are doublets and e, u are singlets, n, m are
possibly equal quark family indices, and A, B are SU(2)
indices. The operator names are as in [20] with φ → H; the
flavor indices are in superscript.
In the case of four-lepton operators, the flavor change

can be by one or two units. Notice that in the case of Oee
andOll, which are symmetric under interchange of the two
bilinears ðeγμμÞðτγμτÞ ¼ ðτγμτÞðeγμμÞ, there will be two
equal coefficients that contribute to the Feynman rule:
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Oαβρσ
ll ¼ 1

2
ðlαγ

μlβÞðlργμlσÞ ðD11Þ

Oαβρσ
le ¼ 1

2
ðlαγ

μlβÞðeργμeσÞ ðD12Þ

Oαβρσ
ee ¼ 1

2
ðeαγμeβÞðeργμeσÞ: ðD13Þ

Then there are the operators allowing interactions with
gauge bosons and Higgses. This includes the dipoles,
which are normalized with the muon Yukawa coupling
so as to match onto the normalization of Kuno-Okada [2]:

Oαβ
eH ¼ ðH†HÞðlαHeβÞ ðD14Þ

Oαβ
eW ¼ yβðlατ

aHσμνeβÞWa
μν ðD15Þ

Oαβ
eB ¼ yβðlαHσμνeβÞBμν ðD16Þ

Oαβ
Hlð1Þ ¼

i
2
ðH†Dμ

↔
HÞðlαγ

μlβÞ ðD17Þ

Oαβ
Hlð3Þ ¼

i
2
ðH†Da

μ

↔
HÞðlαγ

μτalβÞ ðD18Þ

Oαβ
He ¼

i
2
ðH†Dμ

↔
HÞðeαγμeβÞ; ðD19Þ

where yβ denotes the Yukawa coupling of a charged lepton
eβ in the mass basis, the double derivatives are defined in
Eq. (2.8), and we include factors of 1=2 for Hermitian
operators as discussed above Eq. (D1).

APPENDIX E: EXPERIMENTAL BOUNDS
ON COEFFICIENTS

The aim of this Appendix is to obtain experimental
constraints on the coefficients of the LFV operators of
Eq. (2.7), evaluated at the weak scalemW . We are interested
in this subset of operators because they are generated at one
loop by double-insertions of dimension-five, lepton number
changing (LNV) operators. Such constraints will allow an
estimation of the sensitivity of LFV processes to the
coefficients of LNV operators. We neglect the constraints
on 2-lepton-2-quark operators, which are beyond the scope
of this work, and focus on τ ↔ e and τ ↔ μ flavor change,
because μ ↔ e is discussed in [34,35]. Nonetheless, some
μ ↔ e bounds are listed for completeness.
Recall that constraints and sensitivities are different. A

constraint is an exclusion, which tells the range of values a
coefficient cannot have. For instance, the dipole coefficient
(evaluated at the muon mass scale) Ceμ

D;RðmμÞ, cannot be
larger than 1.05 × 10−8 because the branching ratio
searched for by the MEG experiment [3] is

BRðμ → eγÞ ¼ 384π2
v4

Λ4
ðjCeμ

D;Lj2 þ jCeμ
D;Rj2Þ;

and the current experimental search imposes this constraint.
Sensitivity is often discussed when an observable depends
on many coefficients, and gives the range of values where a
coefficient could have been seen. For instance, among the
many loop processes that contribute to μ → eγ, there are
two-loop diagrams involving flavor-changing Higgs cou-
pling Ceμ

eHðmWÞ. Calculating these diagrams and imposing
that they saturate the current experimental bound gives				 eαeyt8π3yμ

Ceμ
eHðmWÞ

				 ¼ 1.05 × 10−8;

where the Yukawa eigenvalue of fermion f is denoted yf.
Smaller values of Ceμ

eH are allowed (the experiment could
not have seen them), but larger values are not excluded by
MEG, because many other operator coefficients could
contribute to the rate, with possibly cancellations.
The difference between an exclusion and a sensitivity is

illustrated in Fig. 8, where the allowed region is the diagonal
ellipse. The horizontal variable x is excluded outside the
projection of the ellipse onto the x-axis (where the axis is
thickened). But the experiment is only insensitive to x inside
the intersection of the axis with the ellipse (dashed red line).
Values of x between these two regions are allowed, provided
that y has the appropriately correlated value.
Three ways to relate low-energy experimental bounds to

the coefficients of operators at a higher scale are:
(1) to calculate the sensitivity of an experimental proc-

ess to a particular operator coefficient. This is
usually simple.

(2) To express an experimental rate as a function of
high-scale coefficients. This is slightly more diffi-
cult, because more coefficients are involved: each
coefficient that contributes at the experimental scale
will become a linear combination of high scale
coefficients due the renormalization group mixing.

 x
-1.5 -1 -0.5 0 0.5 1 1.5

y

-1

-0.5

0

0.5

1

FIG. 8. An illustration of constraints vs sensitivities: the red
ellipse represents an experimentally allowed region of parameter
space. Parameter x is excluded outside the projection of the
ellipse onto the axis (thick black line). The experiment is
insensitive to x inside the ellipse.
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(3) To obtain constraints on coefficients at the high
scale. This is more involved, because a sufficient
number of experimental constraints must be com-
bined, in order to obtain a finite allowed region in
coefficient space (no “flat directions”). Then the
allowed region must be projected onto the various
axes, in order to obtain constraints.

The third option is the most useful, but beyond the scope
of this work. Instead here, we partially follow the second
option, as a contribution to the third: we consider
experimental bounds on the dimension-six operators
which are generated in RGE evolution by double-inser-
tions of dimension-five operators that change lepton

number. We aim to quote these bounds at mW . The
processes in question are LFV Higgs and Z decays
(which occur at the weak scale), and flavor-changing
lepton decays at low energy (these bounds must be
translated to the weak scale via the RGEs of QED and
QCD). So we will not succeed in our aim of setting
constraints on coefficients at mW , because the low-energy
experimental bounds depend on many coefficients at the
weak scale, and we do not include enough experimental
bounds.
In the following sections, we outline the calculations of

the various rates, and summarize the experimental con-
straints on coefficients at mW in Table I.

TABLE I. Bound on operator coefficients of the SMEFT, evaluated at mW , from the bounds listed in column 2 on the processes of
column 1. The bounds on coefficients of Hermitian operators (OHlð1Þ,OHlð3Þ,Oll,Ole) also apply to the conjugate coefficient. All the
bounds apply to running coefficients evaluated at mW , and are for Λ ¼ v ≃mt. The combination of coefficients Cpenguin is defined in
Eq. (E12) and before Eq. (E23), δ is defined after Eq. (E23), and geR ¼ 2s2W , g

e
L ¼ −1þ 2s2W .

Process BR < v2

Λ2 j
P

Cj <
Z → e�μ∓ 7.5 × 10−7 [4] jCeμ

Hlð1Þ þ Ceμ
Hlð3Þj < 1.2 × 10−3

Z → τ�μ∓ 1.2 × 10−5 [5] jCμτ
Hlð1Þ þ Cμτ

Hlð3Þj < 4.6 × 10−3

Z → e�τ∓ 9.8 × 10−6 [6] jCeτ
Hlð1Þ þ Ceτ

Hlð3Þj < 4.1 × 10−3

h → e�μ∓ 3.5 × 10−4 [7] jCμe
eHj; jCeμ

eHj < 2.5 × 10−4

h → τ�μ∓ 1.5 × 10−2 [8] jCμτ
eHj; jCτμ

eHj < 1.6 × 10−3

h → e�τ∓ 6.9 × 10−3 [7] jCeτ
eHj; jCτe

eHj < 1.1 × 10−3

τ → eeē 2.7 × 10−8 [9] jCeτee
ll þ Ceeeτ

ll þ geL½Ceτ
Hlð1Þ þ Ceτ

Hlð3Þ� − δCeτ
penguinj < 2.8 × 10−4

jCeτee
le þ geR½Ceτ

Hlð1Þ þ Ceτ
Hlð3Þ� − δCeτ

penguinj < 4.0 × 10−4

τ → eμμ̄ 2.7 × 10−8 [9] jCeτμμ
ll þ Cμμeτ

ll þ Ceμμτ
ll þ Cμτeμ

ll þ geL½Ceτ
Hlð1Þ þ Ceτ

Hlð3Þ� − δCeτ
penguinj < 4.0 × 10−4

jCeτμμ
le þ geR½Cμτ

Hlð1Þ þ Ceτ
Hlð3Þ� − δCeτ

penguinj < 4.0 × 10−4

τ → μeē 1.8 × 10−8 [9] jCμτee
ll þ Ceeμτ

ll Cμeeτ
ll þ Ceτμe

ll þ geL½Cμτ
Hlð1Þ þ Cμτ

Hlð3Þ� − δCμτ
penguinj < 3.2 × 10−4

jCμτee
le þ geR½Cμτ

Hlð1Þ þ Cμτ
Hlð3Þ� − δCμτ

penguinj < 3.2 × 10−4

τ → μμμ̄ 2.1 × 10−8 [9] jCμτμμ
ll þ Cμμμτ

ll þ geL½Cμτ
Hlð1Þ þ Cμτ

Hlð3Þ� − δCμτ
penguinj < 2.5 × 10−4

jCμτμμ
le þ geR½Cμτ

Hlð1Þ þ Cμτ
Hlð3Þ� − δCμτ

penguinj < 3.5 × 10−4

τ → eeμ̄ 1.5 × 10−8 [9] jCeτeμ
ll þ Ceμeτ

ll j < 3.2 × 10−4

τ → μμē 1.7 × 10−8 [9] jCμτμe
ll þ Cμeμτ

ll j < 3.2 × 10−4

μ → 3e 1 × 10−12 [10] jCeμee
ll þ Ceeeμ

ll þ geL½Ceμ
Hlð1Þ þ Ceμ

Hlð3Þ� − δCeμ
penguinj < 7.1 × 10−7

jCeμee
le þ geR½Ceμ

Hlð1Þ þ Ceμ
Hlð3Þ� − δCeμ

penguinj < 1.0 × 10−6

τ → eγ 3.3 × 10−8 [11] jCτe�
eγ þ eαeyt

8π3yμ
Cτe�
eH þ egeL

16π2
Ceτ
Hej < 7.3 × 10−6

jCeτ
eγ þ eαeyt

8π3yμ
Ceτ
eH þ egeR

16π2
½Ceτ

Hlð1Þ þ Ceτ
Hlð3Þ�j < 7.3 × 10−6

τ → μγ 4.4 × 10−8 [11,12] jCτμ�
eγ þ eαeyt

8π3yμ
Cτμ�
eH þ egeL

16π2
Cμτ
Hej < 8.1 × 10−6

jCμτ
eγ þ eαeyt

8π3yμ
Cμτ
eH þ egeR

16π2
½Cμτ

Hlð1Þ þ Cμτ
Hlð3Þ�j < 8.1 × 10−6

μ → eγ 4.2 × 10−13 [3] jCμe�
eγ þ eαeyt

8π3yμ
Cμe�
eH þ egeL

16π2
Ceμ
Hej < 1.05 × 10−8

jCeμ
eγ þ eαeyt

8π3yμ
Ceμ
eH þ egeR

16π2
½Ceμ

Hlð1Þ þ Ceμ
Hlð3Þ�j < 1.05 × 10−8
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1. Rates and calculations

a. Z → lαlβ decay

When the Higgs gets a vev, the “penguin” operators
OHlð1Þ andOHlð3Þ generate a vertex involving theZ and two
charged leptons. If the flavor-changing Z-fermion vertex is
written in a SM-like form : −lαZμ g

2cW
γμðgV − gAγ5Þlβ, then

gV ¼ gA ¼ −ðCHlð1Þ þ CHlð3ÞÞ
v2

Λ2
ðE1Þ

(for v ∼mt).
The branching ratio can be written

BRðZ → lαlβÞ ¼
MZ

2.5 GeV
g2

48πc2W
ðjgV j2 þ jgAj2Þ ðE2Þ

where 2.5 GeV is the Z width in the SM. Since OHlð1Þ
and OHlð3Þ are Hermitian, the conjugate process
Z → lβlα necessarily occurs at the same rate, so the BR
to the experimental final state is

BRðZ → l�α l
∓
β Þ ¼ BRðZ → lαlβÞ þ BRðZ → lβlαÞ

¼ MZ

2.5 GeV
g2

12πc2W

			ðCαβ
Hlð1Þ þ Cαβ

Hlð3Þ
			2 v4
Λ4

ðE3Þ
and the bounds we obtain on the operator coefficients,
evaluated at ∼mW , are given in Table I.

b. h → l+
α e−β , e +α l−

β decays

The flavor-changing Higgs decays occur via the non-
Hermitian operator OeH. When the Higgs has a vev, it
induces the Feynman rules for a flavor-changing Higgs
vertex with two fermions:

Cαβ
eHO

αβ
eH→ i

3Cαβ
eHv

2ffiffiffi
2

p
Λ2

PR; Cβα�
eH Oβα�

eH → i
3Cβα�

eH v2ffiffiffi
2

p
Λ2

PL: ðE4Þ

We calculate the flavor-changing branching ratio by compar-
ing to BRðh → bbÞ ¼ 0.575� 0.32 (from the Appendix of
theHiggsWorkingGroupReport [36], formh¼ 125.1GeV),
assuming the Feynman rule for hbb is − iffiffi

2
p ybðmhÞPL;R. We

use a one-loop approximation [15] for the running b mass

ybðmhÞv ¼ mbðmbÞ
�
αðmhÞ
αðmbÞ

�
γð0Þm =2βð0Þ

≃ 3.0 GeV ðE5Þ

where αðmhÞ ≃ 0.12, αðmbÞ ≃ 0.23, γð0Þm ¼ 8, βð0Þ ¼ 23=3
and mbðmbÞ ¼ 4.2 GeV.
The operator OeH is not hermitian, but is always

included in the Lagrangianþ H:c:. So Ceμ
eHO

eμ
eH þ H:c: will

induce both h → eLμR and h → μReL at the same rate:

BRðh → eLμRÞ
BRðh → bbÞ ¼ 9jCeμ

eHj2v4
6y2bΛ4

; ðE6Þ

where downstairs there is a 3 for quark color sums, and a 2
from the chiral projectors in the lepton decay. The exper-
imental search sums the eLμR and μReL final states, so we
obtain

3v4
jCαβ

eHj2
Λ4

; 3v4
jCβα

eHj2
Λ4

≤ y2bðmhÞ
BRðh→ l�α l

∓
β Þ

BRðh→ bbÞ ðE7Þ

and the resulting constraints are given in Table I.

c. Including the low energy decays

The flavor-changing τ and μ decays listed in Table I
occur at energies ∼mμ, mτ, so the decay rates are usually
written in terms of the coefficients of dimension-six
operators from the QCD × QED invariant basis appropriate
at low energies. These “low energy” coefficients, which we
denote with a tilde C̃, can be expressed in terms of SMEFT
coefficients at mW by running them up to mW , then
matching the QCD × QED-invariant operator basis onto
the SMEFT. This was performed in [34] for μ → eγ, so we
use the results of [34] for the radiative decays of Sec. E 1 e.
Reference [35] studied the renormalization group evolu-
tion, below the weak scale, of the coefficients who mediate
μ → eee (as well those for as μ → eγ and μ → e con-
version); we use these results, combined with the weak-
scale matching conditions of [34], for the discussion
in Sec. E 1 d of three body leptonic decays of τs and μs.
The minor differences between μ and τ decays are
discussed in Sec. E 1 d.
In the EFT below mW, we use the basis of lepton-flavor-

changing four-fermion operators introduced in [2,34] for
μ ↔ e flavor change.7 The operators and coefficients have
as subscript their Lorentz structure (V, S, T) and the chiral
projection operators of the two fermion bilinears, and the
flavor indices of the four fermions as superscript. They
wear tildes to distinguish them from the coefficients of
SMEFT operators. We restrict to the dipole and vector
operators, and neglect the scalars and tensors, which will
turn out to be irrelevant for our study of LFV operators
generated by double-insertions of LNV operators. So the
four-fermion operator basis below mW is

δL4f ¼
X
αβ

X
f

½C̃αβff
V;LLðeαγωPLeβÞðfγωPLfÞ

þ C̃αβff
V;LRðeαγωPLeβÞðfγωPRfÞ� þ H:c:

þ
X
αβσρ

½C̃αβσρ
V;LLðeαγωPLeβÞðeσγωPLeρÞ� þ H:c:

ðE8Þ

7In this basis, the flavor indices are written explicitly, so the 2
discussed above Eq. (D11) is absent, and Fierz transformations
are used to put the flavor change in one bilinear in the case of
ΔL ¼ 1 four-fermion operators.
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where αβ ∈ feμ; μτ; eτg, f ∈ fe; μ; τ; u; d; s; c; bg, and
αβσρ ∈ feτeμ; μτμeg. In addition, below mW we consider
the photon dipole operators

δLdipole¼
mβ

Λ2
ðCαβ

D;Le
α
Rσ

ρσeβLFρσþCαβ
D;Re

α
Lσ

ρσeβRFρσÞþH:c:

ðE9Þ

because the SMEFT operators OHlð1Þ, OHlð3Þ and OeH

match onto the dipole at mW . The current bounds on
μ → eγ, τ → eγ and τ → μγ will give better sensitivity to
the coefficients CHlð1Þ, CHlð3Þ and CeH than Higgs and Z
decays.

d. τ → 3l and μ → 3e

The first step is to translate the experimental bounds into
constraints on operator coefficients at the experimental
scale. For the three-body leptonic decays of the τ, it is
convenient to define

fBRðτ → 3lÞ≡ BRðτ → 3lÞ
BRðτ → μqννÞ ðE10Þ

(where BRðτ → μννÞ ¼ 0.174 [1]). Then fBRðτ → 3lÞ can
be directly compared to the branching ratio for μ → 3e [2]:

BRðμ→eeeÞΛ
4

v4
¼jC̃eμee

S;LLj2þjC̃eμee
S;RRj2

8
þ2jC̃eμee

V;RRþ4eC̃eμ
D;Lj2

þ2jC̃eμee
V;LLþ4eC̃eμ

D;Rj2þ
�
64ln

mμ

me
−136

�
×ðjeC̃eμ

D;Rj2þjeC̃eμ
D;Lj2Þ

þjC̃eμee
V;RLþ4eC̃eμ

D;Lj2þjC̃eμee
V;LRþ4eC̃eμ

D;Rj2;
ðE11Þ

where 2
ffiffiffi
2

p
GF ¼ 1=v2 and the generalization to τ decays is

straightforward, after accounting for 2s as we now discuss.
We calculate the decay rates in the approximation that all

final state fermions are massless. Factors of 2 can arise
when there are two identically-flavored fermions in the
final state: there will be 2 diagrams, and a factor of 1=2 in
the final-state phase space. Then there are two cases:
(a) if the identical fermions have the same chirality, there

is constructive interference between the two diagrams
(despite the fact that they have relative minus signs due
to Fermi statistics), which doubles the rate. (This is
consistent with μ → 3e rate of Kuno and Okada [2]
given above.)

(b) if the fermions have different chirality, the interference
is suppressed by final state masses (which are ne-
glected), so the two for two diagrams cancels the 1=2
from phase space.

We set the dipole coefficients to zero, because they are
better constrained by the radiative decays discussed in the

next subsection (see Table I). Then it is clear that each
upper bounds on a three-body leptonic decay of the τ or μ,
implies six independent constraints on operator coefficients
(evaluated at the experimental scale), those of interest to us
are given in Table II.
The operator coefficients C̃XðmτÞ given in Table II can

be expressed in terms of coefficients at mW using the
one-loop RGEs [34,35]:

μ
d
dμ

C̃I ¼
αe
4π

C̃J½γe�JI

⇒ C̃IðmτÞ ¼ C̃JðmWÞ
�
δJI −

αe
4π

ln
mW

mτ
½γe�JI þ � � �

�

where ½γe� is the one-loop anomalous dimension matrix of
QED, ln mW

mτ
¼ 3.85, ln mW

mμ
¼ 6.64 and the approximate

solution neglects the running of αe. The one-loop QED
corrections involve photon exchange between two legs of the
operator, which does not change the flavor or chiral indices,
and also “penguin” diagrams, where two legs of the operator
are closed in a loop, and a photon is attached,which turns into
two external leg fermions. The “penguins” can change the
chirality and flavor, and allow 2-lepton-2-quark operators to
mix with the four-lepton operators. We therefore need a
recipe for dealing with the quark-sector thresholds mb, mc
andΛQCD. We make the simplest approximation, which is to
have a single low-energy threshold at mτ, and run from
mW → mτ with five flavors of quark, and we use this low-
energy scale also for the decays of the μ. In this approxi-
mation, it is convenient to define the combination of operator
coefficients

C̃αβ
penguin ¼ −

4Nc

3

X
q

QqðC̃αβqq
V;LL þ C̃αβqq

V;LRÞ

þ 4

3

X
l

ð½1þ δαl þ δβl�C̃αβll
V;LL þ C̃αβll

V;LRÞ ðE12Þ

where l ∈ fe; μ; τg, q ∈ fu; d; s; c; bg, andQq is the electric
charge of the quark. Then the coefficients constrained in
Table II can be written

TABLE II. Bounds on some operator coefficients from three-
body lepton decays, evaluated at the experimental scale.

Process fBR < v2

Λ2 jCj <
τ → eeē 1.6 × 10−7 C̃eτee

V;LL<2.8×10−4, C̃eτee
V;LR<4×10−4

τ → eμμ̄ 1.6 × 10−7 C̃eτμμ
V;LR; C̃

eτμμ
V;LL < 4 × 10−4

τ → μeē 1.0 × 10−7 C̃μτee
V;LR; C̃

μτee
V;LL < 3.2 × 10−4

τ → μμμ̄ 1.2 × 10−7 C̃eτμμ
V;LL<2.5×10−4, C̃eτμμ

V;LR<3.5×10−4

τ → eeμ̄ 8.6 × 10−8 C̃eτeμ
V;LL < 3.2 × 10−4,

τ → μμē 1.0 × 10−7 C̃μτμe
V;LL < 3.2 × 10−4

μ → eeē 1.0 × 10−12 C̃eμee
V;LL<7.1×10−7, C̃eμee

V;LR<10−6
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C̃eμee
V;LRðmτÞ ¼

�
1þ 12

αe
4π

ln
mW

mτ

�
C̃eμee
V;LRðmWÞ

−
αe
4π

ln
mW

mτ
C̃eμ
penguinðmWÞ ðE13Þ

C̃eμee
V;LLðmτÞ ¼

�
1 − 12

αe
4π

ln
mW

mτ

�
C̃eμee
V;LLðmWÞ

−
αe
4π

ln
mW

mτ
C̃eμ
penguinðmWÞ ðE14Þ

C̃eτll
V;LRðmτÞ ¼

�
1þ 12

αe
4π

ln
mW

mτ

�
C̃eτll
V;LRðmWÞ

−
αe
4π

ln
mW

mτ
C̃eτ
penguinðmWÞ ðE15Þ

C̃eτll
V;LLðmτÞ ¼

�
1 − 12

αe
4π

ln
mW

mτ

�
C̃eτll
V;LLðmWÞ

−
αe
4π

ln
mW

mτ
C̃eτ
penguinðmWÞ ðE16Þ

C̃μτll
V;LRðmτÞ ¼

�
1þ 12

αe
4π

ln
mW

mτ

�
C̃μτll
V;LRðmWÞ

−
αe
4π

ln
mW

mτ
C̃μτ
penguinðmWÞ ðE17Þ

C̃μτll
V;LLðmτÞ ¼

�
1 − 12

αe
4π

ln
mW

mτ

�
C̃μτll
V;LLðmWÞ

−
αe
4π

ln
mW

mτ
C̃μτ
penguinðmWÞ ðE18Þ

C̃μτμe
V;LLðmτÞ ¼

�
1 − 12

αe
4π

ln
mW

mτ

�
C̃μτμe
V;LLðmWÞ ðE19Þ

C̃eτeμ
V;LLðmτÞ ¼

�
1 − 12

αe
4π

ln
mW

mτ

�
C̃eτeμ
V;LLðmWÞ: ðE20Þ

Finally, the combinations of coefficients that are con-
strained by data can be matched at mW onto coefficients of
SMEFT operators [34]8:

C̃eτeμ
V;LLðmWÞ ¼ Ceτeμ

ll ðmWÞ þ Ceμeτ
ll ðmWÞ

C̃μτμe
V;LLðmWÞ ¼ Cμτμe

ll ðmWÞ þ Cμeμτ
ll ðmWÞ

C̃μτee
V;LLðmWÞ ¼ Cμτee

ll ðmWÞ þ Ceeμτ
ll ðmWÞ þ Cμeeτ

ll ðmWÞ þ Ceτμe
ll ðmWÞ þ geL½Cμτ

Hlð1ÞðmWÞ þ Cμτ
Hlð3ÞðmWÞ�

C̃μτμμ
V;LLðmWÞ ¼ Cμτμμ

ll ðmWÞ þ Cμμμτ
ll ðmWÞ þ geL½Cμτ

Hlð1ÞðmWÞ þ Cμτ
Hlð3ÞðmWÞ�

C̃μτll
V;LRðmWÞ ¼ Cμτll

le ðmWÞ þ geR½Cμτ
Hlð1ÞðmWÞ þ Cμτ

Hlð3ÞðmWÞ�
C̃eτμμ
V;LLðmWÞ ¼ Ceτμμ

ll ðmWÞ þ Cμμeτ
ll ðmWÞ þ Ceμμτ

ll ðmWÞ þ Cμτeμ
ll ðmWÞ þ geL½Ceτ

Hlð1ÞðmWÞ þ Ceτ
Hlð3ÞðmWÞ�

C̃eτee
V;LLðmWÞ ¼ Ceτee

ll ðmWÞ þ Ceeeτ
ll ðmWÞ þ geL½Ceτ

Hlð1ÞðmWÞ þ Ceτ
Hlð3ÞðmWÞ�

C̃eτll
V;LRðmWÞ ¼ Ceτll

le ðmWÞ þ geR½Ceτ
Hlð1ÞðmWÞ þ Ceτ

Hlð3ÞðmWÞ�
C̃eμee
V;LLðmWÞ ¼ Ceμee

ll ðmWÞ þ Ceeeμ
ll ðmWÞ þ geL½Ceμ

Hlð1ÞðmWÞ þ Ceμ
Hlð3ÞðmWÞ�

C̃eμee
V;LRðmWÞ ¼ Ceμee

le ðmWÞ þ geR½Ceμ
Hlð1ÞðmWÞ þ Ceμ

Hlð3ÞðmWÞ� ðE21Þ

where l ∈ fe; μg in the above equations, and geR ¼ 2sin2θW , geL ¼ −1þ 2sin2θW . In order to match the “penguin” coefficient
of Eq. (E12) onto coefficients of the SMEFT, matching conditions for operators with a quark bilinear are also required:

C̃αβuu
V;LLðmWÞ ¼ Cαβuu

lqð1ÞðmWÞ − Cαβuu
lqð3ÞðmWÞ þ guL½Cαβ

Hlð1ÞðmWÞ þ Cαβ
Hlð3ÞðmWÞ�

C̃αβdd
V;LLðmWÞ ¼ Cαβdd

lqð1ÞðmWÞ þ Cαβdd
lqð3ÞðmWÞ þ gdL½Cαβ

Hlð1ÞðmWÞ þ Cαβ
Hlð3ÞðmWÞ�

C̃αβuu
V;LRðmWÞ ¼ Cαβuu

lu ðmWÞ þ guR½Cαβ
Hlð1ÞðmWÞ þ Cαβ

Hlð3ÞðmWÞ�
C̃αβdd
V;LRðmWÞ ¼ Cαβdd

ld ðmWÞ þ gdR½Cαβ
Hlð1ÞðmWÞ þ Cαβ

Hlð3ÞðmWÞ� ðE22Þ

8These equations differ from [34] due to different conventions for operator normalization and signs, and also due to some errors in
[34]. The SMEFT basis used here is normalized according to [20], where there are “redundant” flavor-changing four-fermion operators,
which are absent from the basis used below mW in [34], compare e.g., the left and right hand sides of Eq. (E21). Then, the sign
convention used here for the gfL;R and the Z-vertex Feynman rule agrees with the PDG but is opposite to that of [34]. Finally, in [34],
there is an incorrect factor of 2 multiplying the penguin coefficients which generate s and t channel diagrams; this 2 should not appear,
because the four-fermion operator generates the same s and t channel diagrams.
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where αβ ∈ fμτ; eτ; eμg, guL ¼ 1 − 4
3
sin2θW , guR ¼

− 4
3
sin2θW , gdL ¼ −1þ 2

3
sin2θW and, gdR ¼ 2

3
sin2θW . Com-

bining the definition (E12) with the matching conditions of
Eq. (E22) allows the definition of a combination of SMEFT
coefficients Cαβ

penguinðmWÞ. Then the experimental constraint

on, for instance C̃eτμμ
V;LLðmτÞ, gives

j½1−12δ�½Ceτμμ
ll þCμμeτ

ll þCeμμτ
ll þCμτeμ

ll

þgeL½Ceτ
Hlð1Þ þCeτ

Hlð3Þ��−δCαβ
penguinj< 4×10−4 ðE23Þ

where all the coefficients are evaluated at mW , and
δ ¼ αe

4π ln
mW
mτ

∼ 1=400. This and other constraints from
3-body τ decays are given in Table I, where for compact-
ness, ½1� 12δ� is approximated as 1.

e. lβ → lαγ

The radiative decays lβ → lαγ provide some of the most
restrictive bounds on lepton flavor violation. The branching
ratio at mβ can be written

fBRðlβ → lαγÞ≡ BRðlβ → lαγÞ
BRðlβ → lαννÞ

¼ 384π2
v4

Λ4
ðjCαβ

D;Lj2 þ jCαβ
D;Rj2Þ

≤

8><
>:

4.2 × 10−13 μ → eγ

2.0 × 10−7 τ → eγ

2.5 × 10−7 τ → μγ

ðE24Þ

where the low energy dipole operators are added to the
Lagrangian as in Eq. (E9).
The dipole coefficients evaluated at the experimental

scale can be expressed in terms of SMEFT coefficients at
the weak scale as [34]

Cαβ
D;LðmτÞ ¼ Cβα�

eγ ðmWÞ þ
eαeyt
8π3yμ

Cβα�
eH ðmWÞ

þ egeL
16π2

Cαβ
HeðmWÞ þ… ðE25Þ

Cαβ
D;RðmτÞ¼Cαβ

eγ ðmWÞþ
eαeyt
8π3yμ

Cαβ
eHðmWÞ

þ egeR
16π2

½Cαβ
Hlð1ÞðmWÞþCαβ

Hlð3ÞðmWÞþ… ðE26Þ

where the contributions of scalar and tensor four-fermion
operators were neglected, geR and geL are defined after
Eq. (E21), and

Cαβ
eγ ¼ cWC

αβ
eB − sWC

αβ
eW: ðE27Þ

APPENDIX F: COMPARISON WITH
THE LITERATURE

The standard model calculation has been performed in
Ref. [21] in a different operator basis. We disagree with
their final results even after transforming our results to their
basis. To do this we specify our basis

Õ¼ðOHlð1Þ;OHlð3Þ;OeH;O
†
eH;Ovð1Þ;O

†
vð1Þ;Ovð3Þ;O

†
vð3ÞÞT;
ðF1Þ

and the one used in Ref. [21]

Q̃ ¼ ðQð−Þ
ϕl ; Q

ðþÞ
ϕl ; Qeϕ; Q

†
eϕ;Ovð1Þ;O

†
vð1Þ;Ovð3Þ;O

†
vð3ÞÞ

T;

ðF2Þ
where the additional operators are defined as

Qð−Þ
ϕl ¼ i

2
½ðH†DμHÞðlγμlÞ − ðH†Da

μHÞðlτaγμlÞ� ðF3Þ

QðþÞ
ϕl ¼ i

2
½ðH†DμHÞðlγμlÞ þ ðH†Da

μHÞðlτaγμlÞ� ðF4Þ

Qeϕ ¼ OeH: ðF5Þ
Here we drop the generation indices and note that the

operators Qð−Þ
ϕl and QðþÞ

ϕl are not Hermitian. For this reason
we treat the operator OeH and the EOM-vanishing oper-
ators independent from their Hermitian conjugate in our
basis transformation. Writing the resulting linear trans-
formation as

Õ ¼ R̂ Q̃;

only the first two rows of R̂ have entries that are not
proportional to an identity transformation. These two rows
are determined by the following linear transformation9:�OHlð1Þ
OHlð3Þ

�
¼

�
2 2 Y −Y† 1 −1 0 0

−2 2 Y −Y† 0 0 1 −1

�
Õ:

ðF6Þ
The Wilson coefficients and renormalization constants will
consequently fulfill our hermiticity conditions in our basis,
but not necessarily in the basis of Ref. [21]. The counter-
terms of the Wilson coefficients transform in the same way
as the respective Wilson coefficients under our change of
basis, i.e., as

δc̃ ¼ R̂TδC̃;

9To perform the change of basis we have to move
covariant derivatives from one term to another. This can be done
by noting that the total derivatives Dμ½ðH†HÞðl̄γμlÞ� and
Dμ½ðH†τaHÞðl̄τaγμlÞ� are vanishing.
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where δC̃ ¼ ð16π2ÞϵC⃗ Z̃ C⃗† represent the counterterms
multiplied with ð16π2Þϵ, while δc̃ correspond to the
analogous expression in the Q̃ basis.
Using the counterterms presented in Eqs. (3.2), (3.3) and

(3.6), and the results of (F6) we obtain

δc̃ ¼
�
−
5

2
½C5C�

5�;−
1

2
½C5C�

5�;
1

2
½C5C�

5Y�; ½Y†C�
5C5�

�
T
;

ðF7Þ
which fulfil the hermiticity condition of the overall
Lagrangian, even though this is not immediately apparent
due to the choice of basis. These results are in disagreement
with the final results quoted inRef. [21]. Yet using the results
quoted in the individual diagrams inAppendixBofRef. [21]
we find agreementwith the expression of Eq. (F7) apart from
a global minus sign, which suggests that a different
projection was performed. We explicitly checked that the
diagrams given in Appendices B1, B3 and B4 of their
calculation have the opposite sign compared with our
calculation, while we agree with their lepton conserving
contribution presented in Appendix B2. Following the
explanations of the calculation it appears that part (the δδ
part) of the diagram evaluated in Appendix B.1 of Ref. [21]

is projected onto an operator basis where the operatorsQð�Þ
ϕl

are replaced byQð�Þ0
ϕl ¼ Qð�Þ

ϕl þ ðQð�Þ
ϕl Þ†, while another part

(the ϵϵ part) is projected onto the basis presented in Eq. (F2).
Transforming now to the primed basis, where the

Hermitian conjugate is added to the first two operators
of Eq. (F2) we find that the nontrivial transformation matrix
involves only the first two elements of our and the primed
basis. Writing explicitly

�OHlð1Þ
OHlð3Þ

�
¼

�
1 1

−1 1

��
Oð−Þ0

Hl

OðþÞ0
Hl

�
; ðF8Þ

we find

δc̃0 ¼
�
−
5

4
½C5C�

5�;−
1

4
½C5C�

5�;
3

4
½C5C�

5Y�;
3

4
½Y†C�

5C5�
�

T
:

ðF9Þ
Again, this result does not agree with Ref. [21]. Finally,
note that projecting the results quoted for the individual
diagrams in Appendix B of Ref. [21], except the εε part,
would give

δc̃0notεε ¼
�
þ 1

4
½C5C�

5�;þ
1

4
½C5C�

5�;−
3

4
½C5C�

5Y�;

−
3

4
½Y†C�

5C5�
�

T
; ðF10Þ

while projecting only the εε part on the non-Hermitian
basis yields δc̃εε ¼ ðþ2½C5C�

5�; 0; 0; 0ÞT . Summing these
two terms would reproduce the results of Ref. [21].

APPENDIX G: FLAVOR CONSERVING
CONTRIBUTION

Even though the diagram in Fig. 2 cannot induce
lepton flavor violation it contributes to the renormaliza-
tion of OeH and the corresponding operators that involve
quarks. We also explicitly checked that the diagrams
that involve six external Higgses vanish after summing
over them. Denoting the trace over the product of the
two dimension-five Wilson coefficients by Tr½C5C�

5�
we find

ðC⃗½Z̃�C⃗†ÞβαeH ¼ −
1

16π2ϵ
Tr½C5C�

5�½Ye�βα;

ðC⃗½Z̃�C⃗†ÞβαuH ¼ −
1

16π2ϵ
Tr½C5C�

5�½Yu�βα;

ðC⃗½Z̃�C⃗†ÞβαdH ¼ −
1

16π2ϵ
Tr½C5C�

5�½Yd�βα; ðG1Þ

where Yu and Yd are defined as Γu and Γd of Ref. [20].
In addition we also generate the following mixing into
operators that only comprise Higgs and gauge fields and
write

ðC⃗½Z̃�C⃗†ÞH ¼ −2
1

16π2ϵ
Tr½C5C�

5�λ;

ðC⃗½Z̃�C⃗†ÞHD ¼ −2
1

16π2ϵ
Tr½C5C�

5�;

ðC⃗½Z̃�C⃗†ÞH□
¼ −

1

16π2ϵ
Tr½C5C�

5�; ðG2Þ

where the additional operators are defined as:

Oαβ
dH ¼ ðH†HÞqαHdβ

Oαβ
uH ¼ ðH†HÞqαϵH�uβ

OH ¼ 1

2
ðH†HÞ3

OHD ¼ 1

2
ðH†DμHÞ�ðH†DμHÞ

OH□ ¼ 1

2
ðH†HÞ□ðH†HÞ: ðG3Þ

DAVIDSON, GORBAHN, and LEAK PHYS. REV. D 98, 095014 (2018)

095014-22



[1] C. Patrignani et al. (Particle Data Group), 2017 review of
particle physics, Chin. Phys. C 40, 100001 (2016) and 2017
update.

[2] Y. Kuno and Y. Okada, Muon decay and physics beyond the
standard model, Rev. Mod. Phys. 73, 151 (2001).

[3] A. M. Baldini et al. (MEG Collaboration), Search for the
lepton flavour violating decay μþ → eþγwith the full dataset
of the MEG experiment, Eur. Phys. J. C 76, 434 (2016).

[4] G. Aad et al. (ATLAS Collaboration), Search for the lepton
flavor violating decay Z → eμ in pp collisions at

ffiffiffi
s

p
TeV

with the ATLAS detector, Phys. Rev. D 90, 072010 (2014).
[5] P. Abreu et al. (DELPHI Collaboration), Search for lepton

flavor number violatingZ0 decays, Z. Phys. C 73, 243 (1997).
[6] R. Akers et al. (OPAL Collaboration), A search for lepton

flavor violating Z0 decays, Z. Phys. C 67, 555 (1995).
[7] V. Khachatryan et al. (CMS Collaboration), Search for

lepton flavour violating decays of the Higgs boson to eτ and
eμ in proton–proton collisions at

ffiffiffi
s

p ¼ 8 TeV, Phys. Lett. B
763, 472 (2016).

[8] V. Khachatryan et al. (CMS Collaboration), Search
for lepton-flavour-violating decays of the Higgs boson,
Phys. Lett. B 749, 337 (2015).

[9] K. Hayasaka et al., Search for lepton flavor violating
τ decays into three leptons with 719 million produced
τþ þ τ− pairs, Phys. Lett. B 687, 139 (2010).

[10] U. Bellgardt et al. (SINDRUM Collaboration), Search for
the decay μþ → eþeþe−, Nucl. Phys. B299, 1 (1988).

[11] B. Aubert et al. (BABAR Collaboration), Searches for
Lepton Flavor Violation in the Decays τ� → e�γ and
τ� → μ�γ, Phys. Rev. Lett. 104, 021802 (2010).

[12] K. Hayasaka et al. (Belle Collaboration), New search for τ →
μγ and τ → eγ decays at Belle, Phys. Lett. B 666, 16 (2008).

[13] J. D. Vergados, H. Ejiri, and F. Simkovic, Theory of
neutrinoless double beta decay, Rep. Prog. Phys. 75,
106301 (2012); S. M. Bilenky and C. Giunti, Neutrinoless
double-beta decay: A probe of physics beyond the standard
model, Int. J. Mod. Phys. A 30, 1530001 (2015).

[14] H. Georgi, Effective field theory, Annu. Rev. Nucl. Part. Sci.
43, 209 (1993); On-shell effective field theory, Nucl. Phys.
B361, 339 (1991).

[15] A. J. Buras, Weak Hamiltonian, CP violation and rare
decays, arXiv:hep-ph/9806471; G. Buchalla, A. J. Buras,
and M. E. Lautenbacher, Weak decays beyond leading
logarithms, Rev. Mod. Phys. 68, 1125 (1996).

[16] K. S. Babu, C. N. Leung, and J. T. Pantaleone, Renormal-
ization of the neutrino mass operator, Phys. Lett. B 319, 191
(1993); P. H. Chankowski and Z. Pluciennik, Renormaliza-
tion group equations for seesaw neutrino masses, Phys. Lett.
B 316, 312 (1993); S. Antusch, M. Drees, J. Kersten, M.
Lindner, and M. Ratz, Neutrino mass operator renormaliza-
tion revisited, Phys. Lett. B 519, 238 (2001).

[17] S. Antusch, M. Drees, J. Kersten, M. Lindner, and M. Ratz,
Neutrino mass operator renormalization in two Higgs
doublet models and the MSSM, Phys. Lett. B 525, 130
(2002).

[18] W. Grimus and L. Lavoura, Renormalization of the neutrino
mass operators in the multi-Higgs-doublet standard model,
Eur. Phys. J. C 39, 219 (2005).

[19] R. Alonso, E. E. Jenkins, A. V. Manohar, and M. Trott,
Renormalization group evolution of the standard model

dimension six operators III: Gauge coupling dependence
and phenomenology, J. High Energy Phys. 04 (2014) 159;
E. E. Jenkins, A. V. Manohar, and M. Trott, Renormaliza-
tion group evolution of the standard model dimension six
operators II: Yukawa dependence, J. High Energy Phys. 01
(2014) 035; Renormalization group evolution of the stan-
dard model dimension six operators I: Formalism and
lambda dependence, J. High Energy Phys. 10 (2013) 087.

[20] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek,
Dimension-six terms in the standard model Lagrangian,
J. High Energy Phys. 10 (2010) 085.

[21] A. Broncano, M. B. Gavela, and E. E. Jenkins, Renormal-
ization of lepton mixing for Majorana neutrinos, Nucl. Phys.
B705, 269 (2005).

[22] W. Buchmuller and D. Wyler, Effective Lagrangian analysis
of new interactions and flavor conservation, Nucl. Phys.
B268, 621 (1986).

[23] A. Djouadi, The Anatomy of electro-weak symmetry break-
ing. II. The Higgs bosons in the minimal supersymmetric
model, Phys. Rep. 459, 1 (2008); G. C. Branco, P. M.
Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P. Silva,
Theory and phenomenology of two-Higgs-doublet models,
Phys. Rep. 516, 1 (2012).

[24] S. Weinberg, Baryon- and Lepton-Nonconserving Proc-
esses, Phys. Rev. Lett. 43, 1566 (1979).

[25] A. Denner, H. Eck, O. Hahn, and J. Kublbeck, Feynman
rules for fermion number violating interactions, Nucl. Phys.
B387, 467 (1992).

[26] N. G. Deshpande and E. Ma, Pattern of symmetry breaking
with two Higgs doublets, Phys. Rev. D 18, 2574 (1978).

[27] E. Ma, Verifiable radiative seesaw mechanism of neutrino
mass and dark matter, Phys. Rev. D 73, 077301 (2006).

[28] R. Barbieri, L. J. Hall, and V. S. Rychkov, Improved
naturalness with a heavy Higgs: An alternative road to
LHC physics, Phys. Rev. D 74, 015007 (2006).

[29] A. Belyaev, G. Cacciapaglia, I. P. Ivanov, F. Rojas-Abatte,
and M. Thomas, Anatomy of the inert two-Higgs-doublet
model in the light of the LHC and non-LHC dark matter
searches, Phys. Rev. D 97, 035011 (2018).

[30] S. Davidson and H. E. Haber, Basis-independent
methods for the two-Higgs-doublet model, Phys. Rev. D
72, 035004 (2005); Erratum, Phys. Rev. D72, 099902(E)
(2005).

[31] S. Herrlich and U. Nierste, Evanescent operators, scheme
dependences and double insertions, Nucl. Phys. B455, 39
(1995).

[32] M. Gorbahn, S. Jager, U. Nierste, and S. Trine, The
supersymmetric Higgs sector and B − B mixing for large
tan β, Phys. Rev. D 84, 034030 (2011).

[33] M. E. Peskin and D. V. Schroeder, An Introduction to
Quantum Field Theory, 1st ed. (CRC Press, 1995).

[34] S. Davidson, μ → eγ and matching at mwmWmW,
Eur. Phys. J. C 76, 370 (2016).

[35] A. Crivellin, S. Davidson, G. M. Pruna, and A. Signer,
Renormalisation-group improved analysis of μ → e
processes in a systematic effective-field-theory approach,
J. High Energy Phys. 05 (2017) 117.

[36] S. Heinemeyer et al. (LHC Higgs Cross Section Working
Group), Handbook of LHC Higgs Cross Sections: 3. Higgs
Properties, arXiv:1307.1347.

MAJORANA NEUTRINO MASSES IN THE … PHYS. REV. D 98, 095014 (2018)

095014-23

https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1103/RevModPhys.73.151
https://doi.org/10.1140/epjc/s10052-016-4271-x
https://doi.org/10.1103/PhysRevD.90.072010
https://doi.org/10.1007/s002880050313
https://doi.org/10.1007/BF01553981
https://doi.org/10.1016/j.physletb.2016.09.062
https://doi.org/10.1016/j.physletb.2016.09.062
https://doi.org/10.1016/j.physletb.2015.07.053
https://doi.org/10.1016/j.physletb.2010.03.037
https://doi.org/10.1016/0550-3213(88)90462-2
https://doi.org/10.1103/PhysRevLett.104.021802
https://doi.org/10.1016/j.physletb.2008.06.056
https://doi.org/10.1088/0034-4885/75/10/106301
https://doi.org/10.1088/0034-4885/75/10/106301
https://doi.org/10.1142/S0217751X1530001X
https://doi.org/10.1146/annurev.ns.43.120193.001233
https://doi.org/10.1146/annurev.ns.43.120193.001233
https://doi.org/10.1016/0550-3213(91)90244-R
https://doi.org/10.1016/0550-3213(91)90244-R
http://arXiv.org/abs/hep-ph/9806471
https://doi.org/10.1103/RevModPhys.68.1125
https://doi.org/10.1016/0370-2693(93)90801-N
https://doi.org/10.1016/0370-2693(93)90801-N
https://doi.org/10.1016/0370-2693(93)90330-K
https://doi.org/10.1016/0370-2693(93)90330-K
https://doi.org/10.1016/S0370-2693(01)01127-3
https://doi.org/10.1016/S0370-2693(01)01414-9
https://doi.org/10.1016/S0370-2693(01)01414-9
https://doi.org/10.1140/epjc/s2004-02075-0
https://doi.org/10.1007/JHEP04(2014)159
https://doi.org/10.1007/JHEP01(2014)035
https://doi.org/10.1007/JHEP01(2014)035
https://doi.org/10.1007/JHEP10(2013)087
https://doi.org/10.1007/JHEP10(2010)085
https://doi.org/10.1016/j.nuclphysb.2004.11.001
https://doi.org/10.1016/j.nuclphysb.2004.11.001
https://doi.org/10.1016/0550-3213(86)90262-2
https://doi.org/10.1016/0550-3213(86)90262-2
https://doi.org/10.1016/j.physrep.2007.10.005
https://doi.org/10.1016/j.physrep.2012.02.002
https://doi.org/10.1103/PhysRevLett.43.1566
https://doi.org/10.1016/0550-3213(92)90169-C
https://doi.org/10.1016/0550-3213(92)90169-C
https://doi.org/10.1103/PhysRevD.18.2574
https://doi.org/10.1103/PhysRevD.73.077301
https://doi.org/10.1103/PhysRevD.74.015007
https://doi.org/10.1103/PhysRevD.97.035011
https://doi.org/10.1103/PhysRevD.72.035004
https://doi.org/10.1103/PhysRevD.72.035004
https://doi.org/10.1103/PhysRevD.72.099902
https://doi.org/10.1103/PhysRevD.72.099902
https://doi.org/10.1016/0550-3213(95)00474-7
https://doi.org/10.1016/0550-3213(95)00474-7
https://doi.org/10.1103/PhysRevD.84.034030
https://doi.org/10.1140/epjc/s10052-016-4207-5
https://doi.org/10.1007/JHEP05(2017)117
http://arXiv.org/abs/1307.1347

