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Introduction

A Salem number is an algebraic integer τ > 1 of degree n = 2d ≥ 4 whose other conjugates, except for τ -1 have modulus 1. Now, the Mahler measure of an algebraic integer α with conjugates

α 1 = α, • • • , α n is M(α) = n j=1
max(1, |α j |) and its trace is tr(α)= n j=1 α j . Note that, if τ is a Salem number then M(τ ) = τ .

If α is an algebraic integer and M(α) = 1, then a classical theorem of Kronecker [K] tells us that α is a root of unity. It suggests the question: inf

α not a root of unity M(α) > 1 ? It is known as the Lehmer's problem and it is still open. Another formulation can be given as follows. Does there exist an absolute constant c > 0 such that: if M(α) > 1 then M(α) > 1 + c ? The smallest known value for M(α) is due to Lehmer himself [L] and is M(λ) = 1.176280 . . . where λ is the positive root > 1 of the polynomial L(z) = z 10 + z 9 -z 7 -z 6 -z 5 -z 4 -z 3 + z + 1. Here is the link between small Salem numbers (with Mahler measure less than 1.3) and Lehmer's problem: λ is a Salem number and moreover is up to now the smallest known Salem number. Currently, there are 47 known small Salem numbers (see the table [M2]). D.W. Boyd compiled 43 of such numbers [B1], [B2] in the years [START_REF] Boyd | Small Salem numbers[END_REF][START_REF] Boyd | Pisot and Salem numbers in intervals of the real line[END_REF]. Later, in 1990, M. J. Mossinghoff discovered the last four ones [M1], including one of degree 46. In 1999, the author, M. Grandcolas and G. Rhin proved that this table was complete up to degree 40 [F2]. M.J. Mossinghoff, G. Rhin and Q. Wu extended the result up to the degree 44 [MRW]. For more details on Salem numbers, see [S1].

In this paper, we focus our attention on the trace of small Salem numbers and prove that the trace can only take a small number of values. More precisely, we get:

Theorem 1. Let τ be a small Salem number of degree n = 2d ≥ 4. Then, we have:

-0.207188d ≤ tr(τ ) ≤ 0.193466d + 0.765083.

As the list of small Salem numbers is exhaustive up to the degree 44, this result is interesting from the degree 46. We have computed the bounds from this degree to the degree 30. We obtain:

Corollary 1. Let τ be a small Salem number of degree n = 2d ≥ 46. Then, we have:

d = 23 -4 ≤ tr(τ ) ≤ 5 d = 27 -5 ≤ tr(τ ) ≤ 5 d = 24 -5 ≤ tr(τ ) ≤ 5 d = 28 -5 ≤ tr(τ ) ≤ 6 d = 25 -5 ≤ tr(τ ) ≤ 5 d = 29 -6 ≤ tr(τ ) ≤ 6 d = 26 -5 ≤ tr(τ ) ≤ 5 d = 30 -6 ≤ tr(τ ) ≤ 6
Obviously, we have tested our bounds on the 47 known small Salem numbers and the results are recorded in Table 2 at the end of the paper. The method used to obtain the bounds in Theorem 1 also allows us to obtain the following result, which is less efficient than the one on the trace but which nevertheless provides some information on small Salem numbers:

Theorem 2. Let τ be a small Salem number of degree n = 2d ≥ 4 with minimal polynomial P . Then, we have:

|P (1)| ≤ exp(0.377596d -0.153515).
Corollary 2. Let τ be a small Salem number of degree n = 2d ≥ 46 with minimal polynomial P . Then, we have:

d = 23 |P (1)| ≤ 5070 d = 27 |P (1)| ≤ 22961 d = 24 |P (1)| ≤ 7396 d = 28 |P (1)| ≤ 33495 d = 25 |P (1)| ≤ 10790 d = 29 |P (1)| ≤ 48862 d = 26 |P (1)| ≤ 15740 d = 30 |P (1)| ≤ 71279
Again, we have tested our bounds on the 47 known small Salem numbers and the results are recorded in Table 3 at the end of the paper.

Relations between Salem numbers and totally positive algebraic integers

Let τ be a Salem number with minimal polynomial P (z) of degree n = 2d. Then P (z) is a reciprocal polynomial i.e., P (z) = z n P (1/z) The change of variable x = z + 1 z + 2 transforms the polynomial P (z) into a monic integer polynomial Q(x) of degree d with the following properties:

• To the roots τ and τ -1 of the polynomial P is associated a root α > 4 of the polynomial Q. Moreover, we are interesting only in small Salem numbers. It means τ < 1.3 and thus α < 4.069230.

• To the roots of modulus 1 of the polynomial P are associated d -1 roots in (0, 4) of the polynomial Q. Thus, all the conjugates of α are positive real numbers so α is called a totally positive algebraic integer.

• tr(α)=tr(τ ) + 2d.

In [F3], we proved that if α is a totally positive algebraic integer of degree d whose minimal polynomial is different from

x -1, x 2 -3x + 1, x 3 -5x 2 + 6x -1, x 4 -7x 3 + 13x 2 -7x + 1 and x 4 -7x 3 + 14x 2 -8x + 1 then tr(α) ≥ 1.792812d
. Hence, we immediately deduce the lower bound in Theorem 1: tr(τ ) ≥ 1.792812d -2d.

• P(1)=Q(4).

From now, we will restrict our attention to positive algebraic integers α of degree d with 4 < α < 4.069230 and all of whose other conjugates lie in (0, 4).

Proof of the Theorems

We detail the proof for Theorem 1 and we only indicate in the last below subsection what changes to get Theorem 2.

The principle of auxiliary function

It was introduced into number theory by C. J. Smyth in [S2]. The auxiliary function considered here is :

for x ∈ (0, 4.069230), f (x) = -x - 1≤j≤J c j log |Q j (x)| (1)
where the c j s are positive real numbers and the polynomials Q j s are nonzero polynomials in

Z Z[x].
Let m 1 be the minimum of the function f on (0, 4) and m 2 be the minimum of the function f on (4, 4.069230). If Q does not divide any Q j , then we have

d i=1 f (α i ) ≥ (d -1)m 1 + m 2 i.e., -tr(α) ≥ (d -1)m 1 + m 2 + 1≤j≤J c j log | d i=1 Q j (α i )|. Since Q does not divide any Q j then d i=1 Q j (α i ) is a nonzero integer because it is the resultant of Q and Q j .
Hence, if α is not a root of Q j , we have

-(d -1)m 1 -m 2 ≥ tr(α).

Link between the integer transfinite diameter and the auxiliary functions

Let K be a compact subset of C and ϕ be a positive function defined on K. The ϕ integer transfinite diameter of K is defined by

t Z,ϕ (K) = lim inf inf sup |H(z)| 1 n ϕ(z) . n ≥ 1 H ∈ Z[X] z ∈ K n → ∞ deg(H) = n
This weighted version of the integer transfinite diameter was introduced by F. Amoroso [A].

In the auxiliary function (1), we replace the coefficients c j by rational numbers a j /q where q is a positive integer such that q.c j is an integer for all 1 ≤ j ≤ J. Then we can write:

for x ∈ (0, 4.069230), f (x) = -x - t r log |H(x)| ≥ (d -1)m 1 + m 2 (2)
where 

H = J j=1 Q a j j ∈ Z Z[X] is of degree r = J j=1 a j deg Q j and t = J j=1 c j deg Q j (
|H(x)| t/r e x ≤ e -(d-1)m 1 -m 2 .
If we suppose that t is fixed, it is equivalent to find an effective upper bound for the weighted integer transfinite diameter over the interval (0, 4.069230) with the weight ϕ(x) = e x :

t Z Z,ϕ ((0, 4.069230)) = lim inf inf sup |H(x)| t r ϕ(x) r ≥ 1 H ∈ Z Z[X] x ∈ (0, 4.069230) r → ∞ deg(H) = r

Construction of an explicit auxiliary function

The main point is to find a set of "good "polynomials Q j , i.e., which gives the best possible value for m 1 and m 2 . Until 2003, the polynomials were found heuristically. In 2003, Q. Wu [Wu] developed an algorithm that allows a systematic search of "good "polynomials. In 2009 [F1], we made two improvements to this previous algorithm in the use of the LLL algorithm. The idea is to get good polynomials Q j by induction. Thus, we call this algorithm the recursive algorithm. For more details, see [F3]. Suppose that we have some polynomials Q 1 , Q 2 , . . . , Q J . Then we use the semi-infinite linear programming ( introduced into number theory by C. Smyth [S2]) to optimize f for this set of polynomials (i.e., to get the greatest possible m 1 and m 2 ). We obtain the numbers c 1 , c 2 , . . . , c J and f in the form (2) with t = x(r + k) t to be as small as possible. We apply the LLL algorithm to the linear forms

Q(x i )R(x i ) exp x i (r + k) t .
The x i are control points which are points uniformly distributed on the interval I = (0, 4.069230) to which we have added points where f has local minima. Thus we find a polynomial R whose irreducible factors R j are good candidates to enlarge the set {Q 1 , . . . , Q J }. We only keep the factors R j that have a nonzero coefficient in the newly optimized auxiliary function f .After optimization, some previous polynomials Q j may have a zero exponent and so are removed.

To obtain the upper bound in Theorem 1, k has varying from 3 to 7. The polynomials and their coefficient can be read off from Table 4.

Proof of Theorem 2

The only change is the type of the auxiliary function. In the proof of this theorem, the function involved is:

for x ∈ (0, 4.069230), f (x) = -log(x + 4) - 1≤j≤J c j log |Q j (x)|
where, as previously, the c j s are positive real numbers and the polynomials Q j s are nonzero polynomials in Z Z[x]. Then, the rest of the proof follows that of Theorem 1. The polynomials and their coefficients can be read off from Table 5.

Remarks on the computations

It is obvious that to be able to do the computations we had to set a value of d. As the table is complete up to degree 44, we started with d = 23. This gave us values for m 1 and m 2 and the corresponding upper bound for tr(τ ). With these values of m 1 and m 2 , we then calculated the different other bounds for d = 24 to d = 30 and this gave the results recorded in Corollary 1. Moreover, to be sure of having optimum results, we have redone each calculation entirely for each value of d, from 24 to 30. As the bounds obtained are not better than the previous ones, we preferred to present the results under the form of Theorem 1, rather than only in the form of Corollary 1.

Table 1: The 47 known small Salem numbers

N°Polynomial P 1 z 8 -z 5 -z 4 -z 3 + 1 2 z 10 -z 6 -z 5 -z 4 + 1 3 z 10 -z 7 -z 5 -z 3 + 1 4 z 10 -z 8 -z 5 -z 2 + 1 5 z 10 -z 8 -z 7 + z 5 -z 3 -z 2 + 1 6 z 10 + z 9 -z 7 -z 6 -z 5 -z 4 -z 3 + z + 1 7 z 12 -z 11 + z 10 -z 9 -z 6 -z 3 + z 2 -z + 1 8 z 14 -z 12 -z 7 -z 2 + 1 9 z 14 -z 13 -z 8 + z 7 -z 6 -z + 1 10 z 14 -z 11 -z 10 + z 7 -z 4 -z 3 + 1 11 z 14 -z 12 -z 11 + z 9 -z 7 + z 5 -z 3 -z 2 + 1 12 z 16 -z 15 -z 8 -z + 1 13 z 18 -z 17 -z 10 + z 9 -z 8 -z + 1 14 z 18 -z 17 -z 14 + z 13 -z 9 + z 5 -z 4 -z + 1 15 z 18 -z 12 -z 11 -z 10 -z 9 -z 8 -z 7 -z 6 + 1 16 z 18 -z 14 -z 12 -z 11 -z 9 -z 7 -z 6 -z 4 + 1 17 z 18 -z 17 -z 14 + z 13 -z 12 + z 10 -z 9 + z 8 -z 6 + z 5 -z 4 -z + 1 18 z 18 -z 17 + z 16 -z 15 -z 12 + z 11 -z 10 + z 9 -z 8 + z 7 -z 6 -z 3 + z 2 -z + 1 19
z 18 -2z 17 + 2z 16 -2z 15 + 2z 14 -2z 13 + 2z 12 -3z 11 + 3z 10 -3z 9 + 3z 8 -3z 7 + 2z 6 -2z 5 + 2z

4 -2z 3 + 2z 2 -2z + 1 20 z 20 -z 18 -z 15 -z 5 -z 2 + 1 21 z 20 -z 18 -z 15 -z 12 + z 10 -z 8 -z 5 -z 2 + 1 22 z 20 -z 19 -z 15 + z 14 -z 11 + z 10 -z 9 + z 6 -z 5 -z + 1 23 z 20 -2z 19 + 2z 18 -2z 17 + 2z 16 -2z 15 + z 14 -z 12 + z 11 -z 10 + z 9 -z 8 + z 6 -2z 5 + 2z 4 -2z 3 + 2z 2 -2z +1 24 z 22 -z 21 -z 17 + z 11 -z 5 -z + 1 25 z 22 -z 21 -z 20 + z 19 -z 13 + z 11 -z 9 + z 3 -z 2 -z + 1 26 z 22 -z 20 -z 19 + z 15 + z 14 -z 12 -z 11 -z 10 + z 8 + z 7 -z 3 -z 2 + 1 27 z 22 -z 21 -z 19 + z 18 -z 14 + z 13 -z 12 + z 11 -z 10 + z 9 -z 8 + z 4 -z 3 -z + 1 28 z 24 -z 23 -z 18 -z 6 -z + 1 29 z 24 -z 23 -z 20 + z 19 -z 17 + z 16 -z 15 + z 13 -z 12 + z 11 -z 9 + z 8 -z 7 + z 5 -z 4 -z + 1 30 z 26 -z 25 -z 20 + z 13 -z 6 -z + 1 31
z 26 -z 24 -z 21 -z 18 + z 16 + z 13 + z 10 -z 8 -z 5 -z 2 + 1 32 z 26 -z 24 -z 23 + z 19 -z 17 -z 16 + z 14 + z 13 + z 12 -z 10 -z 9 + z 7 -z 3 -z 2 + 1 33 z 26 -z 20 -z 19 -z 18 -z 17 -z 16 -z 15 -z 14 -z 13 -z 12 -z 11 -z 10 -z 9 -z 8 -z 7 -z 6 + 1 34 z 26 -z 25 -z 22 + z 21 -z 20 + z 18 -z 17 + z 16 -z 14 + z 13 -z 12 + z 10 -z 9 + z 8 -z 6 + z 5 -z 4 -z + 1 35 z 26 -2z 25 + z 24 + z 23 -2z 22 + z 21 -z 18 + z 17 -z 15 + z 14 -z 13 + z 12 -z 11 + z 9 -z 8 + z 5 -2z 4 + z 3 + z 2 -2z + 1 36 z 26 -z 25 -z 24 + 2z 22 -2z 20 -z 19 + 2z 18 + 2z 17 -2z 16 -2z 15 + 3z 13 -2z 11 -2z 10 + 2z 9 + 2z 8 -z 7 -2z 6 +2z 4 -z 2 -z + 1 37 z 28 -z 24 -z 23 -z 22 -z 21 -z 20 + z 16 + z 15 + z 14 + z 13 + z 12 -z 8 -z 7 -z 6 -z 5 -z 4 + 1 38 z 30 -z 29 -z 22 -z 18 -z 15 -z 12 -z 8 -z + 1 39 z 30 -z 28 -z 25 -z 24 + z 20 + z 17 -z 15 + z 13 + z 10 -z 6 -z 5 -z 2 + 1 40 z 30 -z 25 -z 24 -z 23 -z 22 -z 21 -z 20 + z 15 -z 10 -z 9 -z 8 -z 7 -z 6 -z 5 + 1 41 z 30 -2z 29 + 2z 28 -2z 27 + z 26 -z 24 + 2z 23 -2z 22 + z 21 -z 19 + z 18 -z 17 + z 16 -z 15 + z 14 -z 13 + z 12 -z 11 +z 9 -2z 8 + 2z 7 -z 6 + z 4 -2z 3 + 2z 2 -2z + 1 42 z 34 -z 33 -z 30 + z 29 -z 28 + z 26 -z 25 + z 24 -z 22 + z 21 -z 20 + z 18 -z 17 + z 16 -z 14 + z 13 -z 12 + z 10 -z 9 +z 8 - 0.0334017400 x 2 -5x + 5 0.1931207414 x 3 -6x 2 + 9x -1 0.0288203880 x 3 -6x 2 + 9x -3 0.0185605107 x 3 -7x 2 + 14x -7 0.1095768403 x 4 -9x 3 + 26x 2 -24x + 1 0.0514099247 x 5 -11x 4 + 43x 3 -69x 2 + 36x + 1 0.0551475719 x 5 -11x 4 + 44x 3 -77x 2 + 55x -11 0.0324052775 x 6 -14x 5 + 76x 4 -199x 3 + 252x 2 -132x + 17 0.0030224114 2x 7 -34x 6 + 236x 5 -856x 4 + 1719x 3 -1854x 2 + 945x -163 0.0058282451 0.0413670035 x 3 -5x 2 + 6x -1 0.1989461843 x 3 -6x 2 + 9x -1 0.1138658462 x 5 -9x 4 + 28x 3 -35x 2 + 15x -1 0.1023209293 x 6 -11x 5 + 45x 4 -84x 3 + 70x 2 -21x + 1 0.0544779065

z 6 + z 5 -z 4 -z + 1 43 z 34 -z 33 -z 31 + z 29 + z 27 -2z 26 + z 23 + z 22 -z 21 -z 20 -z 19 + z 18 + z 17 + z 16 -z 15 -z 14 -z 13 + z 12 +z 11 -2z 8 + z 7 + z 5 -z 3 -z + 1 44 z 36 + z 35 -z 33 -2z 32 -2z 31 -z 30 + z 28 + z 27 -z 25 -z 24 + z 22 + z 21 -z 19 -z 18 -z 17 + z 15 + z 14 -z 12 -z 11 + z 9 + z 8 -z 6 -2z 5 -2z 4 -z 3 + z + 1 45 z 40 -z 37 -z 35 -z 33 -z 31 -z 29 + z 26 + z 24 + z 22 + z 20 + z 18 + z 16 + z 14 -z 11 -z 9 -z 7 -z 5 -z 3 + 1 46 z 44 -z 43 -z 37 -z 33 + z 25 + z 22 + z 19 -z 11 -z 7 -z + 1 47 z 46 -z 42 -z 41 -z 40 -z 39 + z 25 + z 24 + z 23 + z 22 + z 21 -z 7 -z 6 -z 5 -z 4 + 1

c

  j deg(Q j ). We seek a polynomial R ∈ Z Z[x] of degree k (k = 3 for instance) such that sup x∈I |H(x)R(x)| t r+k e x ≤ e -(d-1)m 1 -m 2 where H = J j=1 Q j and I is an interval composed with points uniformly distributed on (0, 4.069230). We want the quantity sup x∈I |H(x)R(x)| exp

  this formulation was introduced by J. P. Serre). Thus we seek a polynomial H ∈ Z Z[X] such that

	sup
	x∈(0,4.069230)

Table 2 :

 2 The bounds of Theorem 1 for the 47 known small Salem numbers

	N°deg(P ) Lower bound tr(P ) Upper bound
	1	8	-0.82875200	0	1.5389470
	2	10	-1.0359400	0	1.7324130
	3	10	-1.0359400	0	1.7324130
	4	10	-1.0359400	0	1.7324130
	5	10	-1.0359400	0	1.7324130
	6	10	-1.0359400	-1	1.7324130
	7	12	-1.2431280	1	1.9258790
	8	14	-1.4503160	0	2.1193450
	9	14	-1.4503160	1	2.1193450
	10	14	-1.4503160	0	2.1193450
	11	14	-1.4503160	0	2.1193450
	12	16	-1.6575040	1	2.3128110
	13	18	-1.8646920	1	2.5062770
	14	18	-1.8646920	1	2.5062770
	15	18	-1.8646920	0	2.5062770
	16	18	-1.8646920	0	2.5062770
	17	18	-1.8646920	1	2.5062770
	18	18	-1.8646920	1	2.5062770
	19	18	-1.8646920	2	2.5062770
	20	20	-2.0718800	0	2.6997430
	21	20	-2.0718800	0	2.6997430
	22	20	-2.0718800	1	2.6997430
	23	20	-2.0718800	2	2.6997430
	24	22	-2.2790680	1	2.8932090
	25	22	-2.2790680	1	2.8932090
	26	22	-2.2790680	0	2.8932090
	27	22	-2.2790680	1	2.8932090
	28	24	-2.4862560	1	3.0866750
	29	24	-2.4862560	1	3.0866750
	30	26	-2.6934440	1	3.2801410
	31	26	-2.6934440	0	3.2801410
	32	26	-2.6934440	0	3.2801410
	33	26	-2.6934440	0	3.2801410
	34	26	-2.6934440	1	3.2801410
	35	26	-2.6934440	2	3.2801410
	36	26	-2.6934440	1	3.2801410
	37	28	-2.9006320	0	3.4736070
	38	30	-3.1078200	1	3.6670730
	39	30	-3.1078200	0	3.6670730
	40	30	-3.1078200	0	3.6670730
	41	30	-3.1078200	2	3.6670730
	42	34	-3.5221960	1	4.0540050
	43	34	-3.5221960	1	4.0540050
	44	36	-3.7293840	-1	4.2474710
	45	40	-4.1437600	0	4.6344030
	46	44	-4.5581360	1	5.0213350
	47	46	-4.7653240	0	5.2148010

Table 3 :

 3 The bound of Theorem 2 for the 47 known small Salem numbers

	N°deg(P )	|P (1)| Upper bound
	1	8	1	3.8840134
	2	10	1	5.6658957
	3	10	1	5.6658957
	4	10	1	5.6658957
	5	10	1	5.6658957
	6	10	1	5.6658957
	7	12	1	8.2652584
	8	14	1	12.057140
	9	14	1	12.057140
	10	14	1	12.057140
	11	14	1	12.057140
	12	16	1	17.588636
	13	18	1	25.657835

Table 4 :

 4 Polynomials and their coefficients used for the upper bound of Theorem 1

	Polynomials	Coefficients
	x	0.0019679665
	x -2	0.1898490761
	x -3	0.5308931151
	x -4	0.5815137153
	x 2 -4x + 1	0.0725582571
	x 2 -4x + 2	

Table 5 :

 5 Polynomials and their coefficients used for the upper bound of Theorem 2

	Polynomials	Coefficients
	x	0.3620883142
	x -1	0.5053687655
	x -2	0.3014609143
	x -3	0.1287326889
	x 2 -3x + 1	0.2940495893
	x 2 -4x + 1	0.0027131692
	x 2 -4x + 2	0.1046760710
	x 2 -5x + 5