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The open XXZ spin chain in the SoV framework:
scalar product of separate states

N. Kitanine1, J. M. Maillet2, G. Niccoli3,
V. Terras4

Abstract

In our previous paper [1] we have obtained, for the XXX spin-1/2 Heisenberg
open chain, new determinant representations for the scalar products of separate
states in the quantum separation of variables (SoV) framework. In this article we
perform a similar study in a more complicated case: the XXZ open spin-1/2 chain
with the most general integrable boundary terms. To solve this model by means
of SoV we use an algebraic Vertex-IRF gauge transformation reducing one of the
boundary K-matrices to a diagonal form. As usual within the SoV approach, the
scalar products of separate states are computed in terms of dressed Vandermonde
determinants having an intricate dependency on the inhomogeneity parameters.
We show that these determinants can be transformed into different ones in which
the homogeneous limit can be taken straightforwardly. These representations
generalize in a non-trivial manner to the trigonometric case the expressions found
previously in the rational case. We also show that generically all scalar products
can be expressed in a form which is similar to — although more cumbersome than
— the well-known Slavnov determinant representation for the scalar products
of the Bethe states of the periodic chain. Considering a special choice of the
boundary parameters relevant in the thermodynamic limit to describe the half
infinite chain with a general boundary, we particularize these representations
to the case of one of the two states being an eigenstate. We obtain simplified
formulas that should be of direct use to compute the form factors and correlation
functions of this model.
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1 Introduction

The resolution of quantum lattice models with the most general boundary conditions
preserving integrability properties has become along the years a subject of intense
studies [2–70]. This interest is due, in particular, to their potential relevance for the
investigation of the non-equilibrium and transport properties of quantum integrable
systems [71–78]. Among several different approaches to this problem, the separation
of variables (SoV) method [9, 79–81] has proven to produce cutting edge answers
to give the possibility to construct the full set of eigenvalues and eigenstates of the
Hamiltonians, while providing the first steps towards the computation of the form
factors and correlation functions [1, 82–104].

We would like to mention that numerous other methods were used in this con-
text, including algebraic Bethe ansatz and its modifications, analytic Bethe ansatz,
Baxter T -Q equation and q-Onsager algebras. In our recent articles [1, 102, 103] we
extensively discussed their connection to our approach and their possible relevance
for the computation of form factors and correlation functions.

Looking for the exact description of the dynamics of quantum integrable lattice
models, the determinant representations for the scalar products of states, including
eigenstates of the Hamiltonian, plays a prominent role, as it was clearly demonstrated
in the Algebraic Bethe ansatz framework, see e.g., [105–107] using the determinant
formula [105, 108]. It was shown there that they are expected to provide, together
with the necessary resolution of the quantum inverse scattering problem [105,109], the
key ingredients to compute form factors of local operators [105]. These results in their
turn lead to efficient expressions for the correlation functions [107,110,111] that can
be computed either numerically from their exact formulas [112–116], leading to direct
predictions for experimental measurements, or from refined analysis, in particular of
the form factor series [110,111], to their asymptotic behavior [117–124] leading to an
exact derivation of the CFT predictions [125].

In the SoV framework it was shown already in [94] that determinant represen-
tations for scalar products of separate states, which include all eigenstates, can be
obtained rather straightforwardly. They are given in terms of Vandermonde deter-
minants dressed by the separate wave functions of the considered states. Hence for
eigenstates these scalar products directly involve the Q-functions solving the Baxter
T -Q relation. It should be noted however that to apply the SoV method one needs to
construct a separate basis. In Sklyanin’s approach it is identified with the eigenstate
basis of a distinguished operator of the Yang-Baxter or reflection algebra that is di-
agonalizable with simple spectrum. This is made possible by considering integrable
lattice models with generic representations in each lattice site, meaning the presence
of inhomogeneity parameters in generic positions.

However, to be fully successful, the program of computing scalar products, form
factors and then correlation functions [110,111,117–124], needs determinant formulas
for which the homogeneous and then the large volume limit can be tackled explicitly
as in [122]. Unfortunately, it became clear from the results of [94], that although the
obtained dressed Vandermonde determinants were easy to derive and appear quite
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universally from the SoV method, their homogeneous limit was very involved. This is
due to the fact that the inhomogeneity parameters are somehow spread non-locally in
the whole determinant thus preventing a clear extraction of the homogeneous limit.
This motivated us to dedicate our main efforts to a resolution of this problem that
appeared to be a crucial point for the applicability of the SoV method itself. Indeed,
while SoV has proven to be efficient quite widely for determining the full spectrum of
integrable quantum systems [1, 9, 79–83, 85–94, 96–104, 126, 127], even in cases where
other methods fail, its use for computing the dynamics, in particular in the infinite
volume limit, was strongly dependent of the resolution of this homogeneous limit
question.

It turns out that we have been able recently to find an answer to this question for
the Heisenberg XXX spin-1/2 chain both in the closed [102] and open [1] cases. It is
based on a rather beautiful correspondence between Vandermonde, Izergin [128,129]
and generalized Slavnov type [108,130] determinants. This approach is similar to the
one used for the study of the semi-classical limit of scalar products [131–133]. Using
such a rewriting the homogeneous limit can be taken quite easily. What is more, these
alternative determinants, written in terms of completely different matrices, sometimes
of different dimensions, can be obtained using purely algebraic identities. Hence, it
gave hopes that similar rewritings can be derived for other models of interest, the XXZ
spin-1/2 Heisenberg models with general boundaries being one of the first on such a
wish list. The aim of the present article is to present the corresponding results for this
model. As such, it can be considered as the continuation of [1]. It should be stressed
however that going from rational to trigonometric case is not as trivial as one could
think at first sight. The reduction of the global symmetry together with the change
of the basis of functions involved have direct consequences on the transformations
one can use to solve the problem. Hence part of the methods developed in [1] have to
be adapted and generalized. Nevertheless the results we obtain in the present article
are quite similar to the rational case, although slightly more complex. In particular
the determinant formulas relevant for describing an half-infinite chain with a general
boundary can be tackled very nicely.

This article is organized as follows. In Section 2 we recall the definition of the
Heisenberg XXZ spin-1/2 open chain with the most general boundary conditions
preserving integrability together with the associated reflection algebra and associated
boundary K-matrices. In Section 3 we use the vertex-IRF gauge transformation [51,
134,136] in its algebraic form [137] to put into correspondence this model having the
most general K-matrices with a model of SOS type for which one of the K-matrices
has a diagonal form. This connection to the generators of the SOS monodromy matrix
allows us to compute for the first time explicitly the normalization of the elements of
the left and right SoV basis, as described in Appendix C. In Section 4 and in the first
part of Section 5, we recall and present in a uniformized manner results previously
derived in [47, 49, 50]. More precisely, in Section 4 we recall the implementation
of the separation of variables method for this model and characterize the complete
spectrum, i.e., eigenvalues and eigenstates, of the transfer matrix. The result is also
written in terms of a functional T -Q equation with an inhomogeneous term, and we
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specify the constraints on the boundary parameters for which this inhomogeneous
term vanishes. We also describe the set of separate states, namely states having a
separate wave function in the SoV basis, that include all eigenstates. In Section 5 we
first recall the scalar products of the separate states in terms of dressed Vandermonde
determinants, as it is usual in integrable systems solved by SoV. Then we give the main
result of this article: the rewriting of these scalar products in terms of new dressed
Vandermonde determinants with one modified column for which the homogeneous
limit can be taken easily, and ultimately in terms of some generalized version of the
Slavnov determinant [108,130]. All technical details and proofs are gathered in a set
of five appendices.

2 The open spin-1/2 XXZ quantum chain

The Hamiltonian of the open spin-1/2 quantum XXZ chain with the most general
non-diagonal integrable boundary terms can be written in the following form:

H =

N−1∑

n=1

[
σx
nσ

x
n+1 + σy

nσ
y
n+1 + cosh η σz

nσ
z
n+1

]

+
sinh η

sinh ς−

[
σz
1 cosh ς− + 2κ−

(
σx
1 cosh τ− + iσy

1 sinh τ−
)]

+
sinh η

sinh ς+

[
σz
N
cosh ς+ + 2κ+

(
σx
N cosh τ+ + iσy

N sinh τ+
)]
. (2.1)

This is an operator acting on the quantum space of states H = ⊗N
n=1Hn of the chain,

where Hn ≃ C
2 is the bidimensional local quantum spin space at site n, on which

the operators σα
n , α ∈ {x, y, z}, act as the corresponding Pauli matrices. In (2.1),

∆ = cosh η is the anisotropy parameter, and ς±, κ±, τ± parametrize the most general
non-diagonal integrable boundary interactions. It may sometimes be convenient to
use different sets of boundary parameters α±, β± instead of ς±, κ±, by using the
following reparametrization:

sinhα± cosh β± =
sinh ς±
2κ±

, coshα± sinhβ± =
cosh ς±
2κ±

. (2.2)

The open spin-1/2 XXZ chain can be studied in the framework of the represen-
tation theory of the reflection algebra, by considering monodromy matrices U(λ) ∈
End(C2 ⊗H) satisfying the following reflection equation, on C

2 ⊗ C
2 ⊗H:

R21(λ−µ)U1(λ)R12(λ+µ−η)U2(µ) = U2(µ)R21(λ+µ−η)U1(λ)R12(λ−µ). (2.3)

In this relation, the subscripts parameterize the subspaces of C2 ⊗ C
2 on which the

corresponding operator acts non-trivially. The R-matrix,

R12(λ) =




sinh(λ+ η) 0 0 0
0 sinhλ sinh η 0
0 sinh η sinhλ 0
0 0 0 sinh(λ+ η)


 ∈ End(C2 ⊗ C

2), (2.4)
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is the 6-vertex trigonometric solution of the Yang-Baxter equation, and R21(λ) =
P12 R12(λ)P12, where P12 is the permutation operator on C

2 ⊗C
2. Note that, in the

case (2.4), R21(λ) = R12(λ).
Following Sklyanin [10], we define two classes of solutions V−(λ) ≡ U−(λ) and

V+(λ) ≡ U t0
+ (−λ) of (2.3) by considering the operators

U−(λ) = M(λ)K−(λ) M̂ (λ) =

(
A−(λ) B−(λ)
C−(λ) D−(λ)

)
, (2.5)

U t0
+ (λ) = M t0(λ)Kt0

+ (λ) M̂ t0(λ) =

(
A+(λ) C+(λ)
B+(λ) D+(λ)

)
. (2.6)

Both operators are acting on H0 ⊗H, where H0 = C
2 is called auxiliary space. They

are defined in terms of

M(λ) = R0N (λ− ξN − η/2) . . . R01(λ− ξ1 − η/2) =

(
A(λ) B(λ)
C(λ) D(λ)

)
, (2.7)

which corresponds to the bulk monodromy matrix of a chain of length N with some
inhomogeneity parameters ξ1, . . . , ξN , and of

M̂ (λ) = (−1)N σy
0 M

t0(−λ)σy
0 . (2.8)

The boundary matrices K±(λ) ∈ End(H0) are here defined as

K−(λ) = K(λ; ς−, κ−, τ−), K+(λ) = K(λ+ η; ς+, κ+, τ+), (2.9)

where

K(λ; ς, κ, τ) =
1

sinh ς

(
sinh(λ− η/2 + ς) κeτ sinh(2λ− η)
κe−τ sinh(2λ − η) sinh(ς − λ+ η/2)

)
, (2.10)

is the most general scalar solution [17–19] of the reflection equation (2.3) for general
values of the parameters ς, κ and τ .

Sklyanin [10] has shown that the transfer matrices,

T (λ) = tr0{K+(λ)M(λ)K−(λ) M̂ (λ)}

= tr0{K+(λ)U−(λ)} = tr0{K−(λ)U+(λ)}, (2.11)

form a one-parameter family of commuting operators on H. In the homogeneous limit
in which ξm = 0, m = 1, . . . , N , the Hamiltonian (2.1) of the spin-1/2 open chain can
be obtained as

H =
2 (sinh η)1−2N

tr{K+(η/2)} tr{K−(η/2)}

d

dλ
T (λ)

λ=η/2
+ constant. (2.12)

To conclude this section, let us recall some useful properties of the 6-vertex re-
flection algebra. The inversion relation for U−(λ) can be written as

U−(λ+ η/2)U−(−λ+ η/2) =
detq U−(λ)

sinh(2λ− 2η)
, (2.13)
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in terms of the quantum determinant detq U−(λ),

detq U−(λ)

sinh(2λ− 2η)
= A−(η/2 ± λ)A−(η/2 ∓ λ) + B−(η/2 ± λ) C−(η/2 ∓ λ)

= D−(η/2 ± λ)D−(η/2 ∓ λ) + C−(η/2 ± λ)B−(η/2 ∓ λ), (2.14)

which is a central element of the reflection algebra: [detq U−(λ),U−(λ)] = 0. It is
obtained as the product

detq U−(λ) = detqM(λ) detqM(−λ) detqK−(λ), (2.15)

of the bulk quantum determinant

detqM(λ) = a(λ+ η/2) d(λ − η/2), (2.16)

where

a(λ) =

N∏

n=1

sinh(λ− ξn + η/2), d(λ) =

N∏

n=1

sinh(λ− ξn − η/2), (2.17)

and of the quantum determinant of the scalar boundary matrixK−(λ). Similar results
can be obtained for U+(λ) using the fact that V+(λ) ≡ U t0

+ (−λ) satisfies the same
algebra as U−(λ). The quantum determinant of the scalar boundary matrices K∓(λ)
can be expressed as

detq K∓(λ)

sinh(2λ∓ 2η)
= ∓

(
sinh2 λ− sinh2 α∓

)(
sinh2 λ+ cosh2 β∓

)

sinh2 α∓ cosh2 β∓
. (2.18)

3 Gauge transformation of the model

It is possible to solve the model, i.e. to diagonalize the boundary transfer matrices
(2.11), by means of the quantum version of the Separation of Variable (SoV) approach
[9, 79–81]. This has been done in [49]. The idea is, as in the XXX case [1], to gauge
transform the model into an effective one in which at least one of the boundary
matrices becomes triangular [47]. The XXZ case is however much more complicated
than the XXX case, since the involved gauged transformation is a generalized (or
dynamical) one. In this section, we reformulate the generalized gauge transformation
used in [49] in a more usual way1, by using the trigonometric version of the Vertex-IRF
transformation [134] in its algebraic form [137].

1The generalized gauge transformation presented here is equivalent to the one of [49]. However,
the notations and the objects that are considered may sometimes be slightly different.
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3.1 Vertex-IRF transformation

The Vertex-IRF transformation relates the 6-vertex R-matrix (2.4) to the R-matrix
of the trigonometric solid-on-solid (SOS) model:

R12(λ− µ)S1(λ|β)S2(µ|β + σz
1) = S2(µ|β)S1(λ|β + σz

2)R
SOS
12 (λ− µ|β), (3.1)

where the trigonometric SOS (or dynamical) R-matrix reads:

RSOS(λ|β) =




sinh(λ+ η) 0 0 0

0 sinh(η(β+1))
sinh(ηβ) sinhλ sinh(λ+ηβ)

sinh(ηβ) sinh η 0

0 sinh(ηβ−λ)
sinh(ηβ) sinh η sinh(η(β−1))

sinh(ηβ) sinhλ 0

0 0 0 sinh(λ+ η)


 .

(3.2)
In this context, the parameter β is usually called dynamical parameter. The corre-
sponding Vertex-IRF transformation matrix can be written as

S(λ|β) =

(
eλ−η(β+α) eλ+η(β−α)

1 1

)
, (3.3)

where the parameter α corresponds to an arbitrary shift of the spectral parameter.
Note that the relation (3.1) can equivalently be written as

R12(λ−µ)S2(−µ|β)S1(−λ|β+σz
2) = S1(−λ|β)S2(−µ|β+σz

1)R
SOS
21 (λ−µ|β). (3.4)

3.2 Gauge transformed monodromy matrices

The Vertex-IRF transformation can easily be extended to a transformation between
bulk monodromy matrices:

M(λ)S1...N ({ξ}|β)S0(−λ+ η/2|β + Sz)

= S0(−λ+ η/2|β)S1...N ({ξ}|β + σz
0)M

SOS(λ|β), (3.5)

where M(λ) ∈ End(H0 ⊗ H) is the bulk monodromy matrix (2.7), Sz =
∑N

j=1 σ
z
j ,

S0(λ|β) denotes the Vertex-IRF transformation matrix (3.3) acting on the auxiliary
space H0, whereas S1...N ({ξ}|β) is the following product of local gauge matrices (3.3)
acting on the tensor product H = ⊗N

n=1Hn of the N local quantum spaces:

S1...N ({ξ}|β) = SN (−ξn|β)SN−1(−ξN−1|β + σz
N ) . . . S1(−ξ1|β + σz

2 + . . .+ σz
N )

=
∏

n=N→1

Sn

(
− ξn

∣∣∣ β +

N∑

j=n+1

σz
j

)
. (3.6)

The resulting gauged transformed bulk monodromy matrix MSOS(λ|β) is defined as

MSOS(λ|β) =
∏

n=N→1

RSOS
n0

(
λ− ξn −

η

2

∣∣∣β +

N∑

j=n+1

σz
j

)

=

(
ASOS(λ|β) BSOS(λ|β)
CSOS(λ|β) DSOS(λ|β)

)
. (3.7)
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In these expressions, we have used the following notation concerning an ordered prod-
uct of non-commuting operators:

∏

n=N→1

Xn ≡ XN XN−1 . . . X1. (3.8)

In a similar way, we obtain the following transformation for the matrix M̂(λ) (2.8):

M̂(λ)S0(λ− η/2|β)S1...N ({ξ}|β + σz
0)

= S1...N ({ξ}|β)S0(λ− η/2|β + Sz) M̂SOS(λ|β), (3.9)

where

M̂SOS(λ|β) =
∏

n=1→N

RSOS
0n

(
λ+ ξn −

η

2

∣∣∣β +

N∑

j=n+1

σz
j

)

=

(
ÂSOS(λ|β) B̂SOS(λ|β)

ĈSOS(λ|β) D̂SOS(λ|β)

)
. (3.10)

Let us introduce the following gauged transformed versions of the boundary mon-
odromy matrix U−(λ):

Ũ−(λ|β) = S−1
0 (−λ+ η/2|β) U−(λ) S0(λ− η/2|β)

=

(
Ã−(λ|β) B̃−(λ|β)

C̃−(λ|β) D̃−(λ|β)

)
, (3.11)

and

USOS
− (λ|β) = S−1

1...N ({ξ}|β + σz
0) Ũ−(λ|β)S1...N ({ξ}|β + σz

0)

=

(
ASOS

− (λ|β) BSOS
− (λ|β)

CSOS
− (λ|β) DSOS

− (λ|β)

)
. (3.12)

It is easy to see that both (3.11) and (3.12) satisfy the following dynamical reflection
equation:

RSOS
21 (λ− µ|β)U1(λ|β + σz

2)R
SOS
12 (λ+ µ− η|β)U2(µ|β + σz

1)

= U2(µ|β + σz
1)R

SOS
21 (λ+ µ− η|β)U1(λ|β + σz

2)R
SOS
12 (λ− µ|β). (3.13)

A few useful commutation relations issued from (3.13) are specified in Appendix A.
Moreover, the elements of the matrix (3.11) can easily be expressed in terms of the
elements of the matrix (2.5) (see (A.6)-(A.7)). Instead, the matrix (3.12) can be
expressed in terms of the SOS bulk monodromy matrices (3.7) and (3.10) as

USOS
− (λ|β) = MSOS(λ|β)KSOS

− (λ|β + Sz) M̂SOS(λ|β), (3.14)

8



where

KSOS
− (λ|β) = S−1

0 (−λ+ η/2|β)K−(λ)S0(λ− η/2|β)

=

(
a−(λ|β) b−(λ|β)
c−(λ|β) d−(λ|β)

)
. (3.15)

In particular, the expression for b−(λ|β) and c−(λ|β) in (3.15) is given by

b−(λ|β) = c−(λ| − β) = eλ−η/2 sinh(2λ− η) b−(β), (3.16)

where b−(β) depends on β, α, and on the boundary parameters as

b−(β) =
eηβ

2 sinh(ηβ) sinh ς−

[
2κ− sinh(η(β − α)− τ−)− eς−

]

=
κ− eηβ

sinh(ηβ) sinh ς−

[
sinh(η(β − α)− τ−)− sinh(α− + β−)

]
. (3.17)

The inversion relation for the matrix USOS(λ|β) follows directly from the inversion
relation (2.13) for U−(λ):

USOS
− (λ+ η/2|β) USOS

− (−λ+ η/2|β) =
detq U−(λ)

sinh(2λ− 2η)
, (3.18)

where detq U−(λ) is the quantum determinant (2.14)-(2.15). Hence we also have

detq U−(λ)

sinh(2λ− 2η)
= ASOS

− (η/2 + ǫλ|β)ASOS
− (η/2 − ǫλ|β)

+ BSOS
− (η/2 + ǫλ|β) CSOS

− (η/2− ǫλ|β)

= DSOS
− (η/2 + ǫλ|β)DSOS

− (η/2 − ǫλ|β)

+ CSOS
− (η/2 + ǫλ|β)BSOS

− (η/2− ǫλ|β). (3.19)

3.3 Transfer matrix and gauge for K+(λ)

It remains to express the transfer matrix (2.11) T (λ) = tr0{K+(λ)U−(λ)} in terms
of the elements of the gauged monodromy matrix (3.11) or (3.12). A natural way
to do this would be to apply the gauge transformation (3.11) to U−(λ) inside the
trace, which would result into an expression for T (λ) in terms of Ã−(λ|β), B̃−(λ|β),
C̃−(λ|β) and D̃−(λ|β). Such a representation would however not be so convenient,
since the natural commutation relations issued from (3.13) are established between
Ã−(λ|β − 1) and D̃−(λ|β + 1) (and not between Ã−(λ|β) and D̃−(λ|β), see (A.4)-
(A.5)). The same is true for the expression of D̃−(λ|β + 1) in terms of Ã−(λ|β − 1)
and Ã−(−λ|β − 1) (see (A.8)-(A.9)). It is therefore better to introduce a slightly
modified gauge transformation which, when applied to U−(λ), produces A−(λ|β − 1)
and D−(λ|β + 1). To this aim, one can for instance consider the following modified
gauged boundary monodromy matrix

Û−(λ|β) = S−1
0 (η/2− λ|β, α + 1) U−(λ) S0(λ− η/2|β, α − 1), (3.20)

9



in which we have specified the explicit dependency of (3.3) and of its inverse on the
parameter α. Indeed, by considering these different shifts of α, we obtain that the
diagonal entries of Û−(λ|β) are

2

Û−(λ|β) =

(
eη sinh(η(β−1))

sinh(ηβ) Ã−(λ|β − 1) ⋆

⋆ eη sinh(η(β+1))
sinh(ηβ) D̃−(λ|β + 1)

)
. (3.21)

Then the transfer matrix is given as

T (λ) = tr0

{
K̂+(λ|β) Û−(λ|β)

}
, (3.22)

in which

K̂+(λ|β) = S−1
0 (λ− η/2|β, α − 1) K+(λ) S0(η/2 − λ|β, α + 1)

=

(
a+(λ|β) b+(λ|β)
c+(λ|β) d+(λ|β)

)
. (3.23)

The parameters α and β can then be chosen adequately so as to simplify the
expression of T (λ). In particular, we can impose the gauged boundary matrix (3.23)
to be diagonal3, i.e. choose b+(λ|β) = c+(λ|β) = 0. The condition b+(λ|β) = 0 is
equivalent to

2κ+ sinh
(
η(β − α)− τ+

)
− e−ς+ = 0, (3.24)

which can alternatively be rewritten in terms of the boundary parameters α+ and β+
as

sinh
(
η(β − α)− τ+

)
= sinh(β+ − α+), (3.25)

or equivalently as

∃ ǫ+ ∈ {1,−1}, η(β − α) = τ+ + ǫ+(α+ − β+) +
1 + ǫ+

2
iπ mod 2iπ. (3.26)

The condition c+(λ|β) = 0 is equivalent to

2κ+ sinh
(
η(β + α) + τ+

)
+ e−ς+ = 0, (3.27)

which can alternatively be rewritten in terms of the boundary parameters α+ and β+
as

sinh
(
η(β + α) + τ+

)
= sinh(α+ − β+), (3.28)

or equivalently as

∃ ǫ′+ ∈ {1,−1}, η(β + α) = −τ+ + ǫ′+(α+ − β+) +
1− ǫ′+

2
iπ mod 2iπ. (3.29)

2We do not specify here the expression of the other entries of Û−(λ|β) since we shall not use them.
3In fact, for the use of the SoV approach, it is enough to choose K̂+(λ|β) to be lower triangular,

i.e. to impose b+(λ|β) = 0 (see [49]). The choice (3.27)-(3.28) is here just for convenience.

10



A choice for the gauged parameters α and β compatible with these two conditions is
therefore given by

ηα = −τ+ +
ǫ′+ − ǫ+

2
(α+ − β+)−

ǫ+ + ǫ′+
4

iπ mod iπ, (3.30)

ηβ =
ǫ+ + ǫ′+

2
(α+ − β+) +

2 + ǫ+ − ǫ′+
4

iπ mod iπ, (3.31)

for ǫ+, ǫ
′
+ ∈ {1,−1}.

If these two conditions are fulfilled (which we shall suppose from now on), the
transfer matrix is simply given by

T (λ) =
eη

sinh(ηβ)

{
a+(λ|β) sinh(η(β − 1)) Ã−(λ|β − 1)

+ d+(λ|β) sinh(η(β + 1)) D̃−(λ|β + 1)
}
, (3.32)

where

a+(λ|β) = d+(λ| − β)

=
e−λ− η

2

2 sinh(ηβ) sinh ς+

{
eς+ sinh(ηβ)− e−ς+ sinh(2λ+ η + ηβ)

− 2κ+ sinh(ηα + τ+) sinh(2λ+ η)
}
. (3.33)

Note that, by using (3.26) for a given choice of ǫ+, theses coefficients a+(λ|β) and
d+(λ|β) can be rewritten as4

a+(λ|β) ≡ a+(λ) = ǫ+ e−λ− η
2
sinh(λ+ η

2 + ǫ+α+) cosh(λ+ η
2 − ǫ+β+)

sinhα+ cosh β+
, (3.34)

d+(λ|β) ≡ d+(λ) = −ǫ+ e−λ− η

2
sinh(λ+ η

2 − ǫ+α+) cosh(λ+ η
2 + ǫ+β+)

sinhα+ cosh β+
. (3.35)

It may be useful to express the transfer matrix in the following form:

T (λ) = F(λ|β) + F(λ| − β), (3.36)

with F(λ|β) = eη
sinh(η(β − 1))

sinh(ηβ)
a+(λ|β) Ã−(λ|β − 1). (3.37)

One can alternatively express the transfer matrix (3.32) in terms of the elements
of SOS boundary monodromy matrix (3.12), i.e. as

T (λ) = S1...N ({ξ}|β) T SOS(λ|β) S−1
1...N ({ξ}|β), (3.38)

4These rewritings hold even if (3.28) is not satisfied.
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in terms of the following SOS transfer matrix:

T SOS(λ|β) =
eη

sinh(ηβ)

{
a+(λ|β) sinh(η(β − 1))ASOS

− (λ|β − 1)

+ d+(λ|β) sinh(η(β + 1))DSOS
− (λ|β + 1)

}
. (3.39)

Hence, we have reduced the problem of diagonalizing the transfer matrix (2.11) to
the study of the eigenstates of the SOS transfer matrix (3.39).

4 Diagonalisation of the transfer matrix by SoV

It is easy to see that, by construction, the transfer matrix T (λ) is a polynomial of
degree N+2 in sinh2 λ (or equivalently in cosh(2λ)), with leading asymptotic behavior

T (λ) ∼
λ→±∞

κ+κ− cosh(τ+ − τ−)

22N+1 sinh ς+ sinh ς−
e±2(N+2)λ. (4.1)

Its value at η
2 (respectively at η

2 + iπ2 ) can easily be computed from the fact that
U−(

η
2 ) = (−1)N detq M(0) (respectively that U−(

η
2 + iπ2 ) = i coth ς− detq M(iπ2 )σ

z):

T (η/2) = 2 (−1)N cosh η detqM(0), (4.2)

T (η/2 + iπ/2) = −2 cosh η coth ς+ coth ς− detqM(iπ/2). (4.3)

Finally, its spectrum and eigenstates are directly related to those of the SOS transfer
matrix T SOS(λ) through the gauge transformation (3.38). The latter being expressed
in a simple form (3.39) in terms of ASOS

− (λ|β−1) and DSOS
− (λ|β+1), we can construct

[47, 49] a basis of the space of states (the SoV basis) which separates the variables
for the spectral problem associated to T SOS(λ) at particular values (related to the
inhomogeneity parameters of the model) of the spectral parameter λ.

4.1 SoV basis of the space of states

The construction of the basis which separates the spectral problem for T SOS(λ) relies,
as usual, on the use of the (shifted) inhomogeneity parameters of the model. The lat-
ter have to be generic or, at least, to satisfy the following non-intersecting conditions:

ξ
(hj)
j ± ξ

(hk)
k /∈ iπZ, ∀j, k ∈ {1, . . . , N} with j 6= k, ∀hj , hk ∈ {0, 1}. (4.4)

Here we have used the notation:

ξ(h)n = ξn + η/2− hη, 1 ≤ n ≤ N, h ∈ {0, 1}. (4.5)

Let 〈 0 | be the dual reference state with all spins up and | 0 〉 be the reference
state with all spins down. For each N -tuple h ≡ (h1, . . . , hN ) ∈ {0, 1}N , we define
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the following states:

|h, β + 1 〉 =
N∏

j=1

(
DSOS

− (ξj + η/2|β + 1)

kj A−(η/2 − ξj)

)hj

| 0 〉, (4.6)

〈β − 1,h | = 〈 0 |
N∏

j=1

(
ASOS

− (η/2 − ξj|β − 1)

A−(η/2 − ξj)

)1−hj

. (4.7)

In (4.6)-(4.7), the normalization coefficients are chosen in the form

kj =
sinh(2ξj + η)

sinh(2ξj − η)
, A−(λ) = g−(λ) a(λ) d(−λ), (4.8)

in terms of a function g−(λ) satisfying the relation

g−(λ+ η/2) g−(−λ+ η/2) =
detq K−(λ)

sinh(2λ− 2η)
. (4.9)

It is easy to see that these states are right and left pseudo-eigenstates of the
operator BSOS

− (λ|β), i.e.

BSOS
− (λ|β − 1) |h, β − 1 〉 = (−1)Nah(λ) ah(−λ)

× b−(λ|β −N − 1)
sinh(η(β −N − 1))

sinh(η(β − 1))
|h, β + 1 〉, (4.10)

〈β + 1,h | BSOS
− (λ|β + 1) = (−1)Nah(λ) ah(−λ)

× b−(λ|β +N + 1)
sinh(ηβ)

sinh(η(β +N))
〈β − 1,h |, (4.11)

where

ah(λ) =
N∏

n=1

sinh(λ− ξn − η/2 + hnη). (4.12)

As usual, one can determine the action on (4.7) and (4.6) of the other operators of
the SOS boundary algebra by polynomial interpolation (see Appendix B).

From these actions, we can easily derive the orthogonality property:

〈β − 1,h |k, β + 1 〉 = δh,kN({ξ}, β)
e2

∑N
j=1 hjξj

V̂ (ξ
(h1)
1 , . . . , ξ

(hN )
N )

. (4.13)

Here and in the following, we define, for any N -tuple of variables (x1, . . . , xN ), the
quantity V̂ (x1, . . . , xN ) as

V̂ (x1, . . . , xN ) = det
1≤i,j≤N

[
sinh2(j−1) xi

]
=
∏

j<k

(sinh2 xk − sinh2 xj). (4.14)
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The normalization constant in (4.13), as computed in Appendix C, is given by the
following expression:

N({ξ}, β) = V̂ (ξ
(0)
1 , . . . , ξ

(0)
N ) 〈 0 |

N∏

j=1

ASOS
− (η/2 − ξj|β − 1)

A−(η/2 − ξj)
| 0 〉

= (−1)N V̂ (ξ1, . . . , ξN )
V̂ (ξ

(0)
1 , . . . , ξ

(0)
N )

V̂ (ξ
(1)
1 , . . . , ξ

(1)
N )

×
N∏

j=1

[
b−(

η
2 − ξj|β + 1 +N − 2j)

g−(
η
2 − ξj)

sinh(η(β + 1 +N − 2j))

sinh(η(β +N − j))

]
. (4.15)

Note that, for β /∈ Z and generic inhomogeneity parameters ξj, the condition for this
normalization constant (4.15) to be non-zero is

∀j ∈ {1, . . . , N}, sinh(η(β + 1− α+N − 2j)− τ−) 6= sinh(α− + β−), (4.16)

which, taking into account the condition (3.26) for a given choice of ǫ+, is equivalent
to the following condition on the boundary parameters:

∀j ∈ {1, . . . N}, ∀ǫ ∈ {1,−1},

τ+ − τ− + η(N − 2j + 1) 6= ǫ(α− + β−)− ǫ+(α+ − β+)−
ǫ+ + ǫ

2
iπ mod 2iπ.

(4.17)

Hence, from now on, we shall suppose that the condition (4.17) is satisfied, which
means that, for generic values of the inhomogeneity parameters (4.4), the states (4.6)
(respectively (4.7)) form a basis of H (respectively of H⋆). In that case, we have the
following resolution of the identity:

1 =
1

N({ξ}, β)

∑

h∈{0,1}N

e−2
∑N

j=1 hjξj V̂ (ξ
(h1)
1 , . . . , ξ

(hN )
N ) |h, β + 1 〉〈β − 1,h |. (4.18)

4.2 The transfer matrix spectrum and eigenstates

From the actions (B.3), (B.6) and the parity properties (A.8), (A.9), it is easy to

compute the action of T SOS(ξ
(hn)
n ) = T SOS(−ξ

(hn)
n ) on the states |h, β + 1 〉 and

〈β − 1,h |. Hence we see that the basis (4.6) of H (respectively the basis (4.7)
of H⋆) separates the variables for the spectral problem associated to T SOS(λ) at

these points ±ξ
(hn)
n , n ∈ {1, . . . , N}. This fact, together with the aforementioned

algebraic properties of the transfer matrix, leads to the following characterization for
the spectrum and eigenstates of T (λ):

Theorem 4.1. Let us suppose that the inhomogeneity parameters are generic (4.4)
and that the condition (4.16) is satisfied. Then the spectrum ΣT of the transfer matrix
T (λ) is simple and consists in the set of functions τ(λ) which satisfy the following
properties:
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(i) τ(λ) is a polynomial of degree N + 2 in sinh2 λ (or equivalently in cosh(2λ)),

(ii) its leading asymptotic behavior when λ → ±∞ is

τ(λ) ∼
λ→±∞

κ+κ− cosh(τ+ − τ−)

22N+1 sinh ς+ sinh ς−
e±2(N+2)λ, (4.19)

(iii) its values at η/2 and at η/2 + iπ/2 are respectively given by

τ(η/2) = 2 (−1)N cosh η detqM(0), (4.20)

τ(η/2 + iπ/2) = −2 cosh η coth ς+ coth ς− detqM(iπ/2), (4.21)

(iv) it satisfies the conditions

τ(ξn + η/2) τ(ξn − η/2) = −
detq K+(ξn) detq U−(ξn)

sinh(2ξn + η) sinh(2ξn − η)
, ∀n ∈ {1, . . . , N}.

(4.22)

The one-dimensional right and left T (λ)-eigenstates associated with the eigenvalue
τ(λ) are respectively generated by the following vectors

|Ψt 〉 =
∑

h∈{0,1}N

N∏

n=1

Qτ (ξ
(hn)
n ) e−

∑
j hjξj V̂ (ξ

(h1)
1 , . . . , ξ

(hN )
N ) S1...N ({ξ}|β) |h, β + 1 〉,

(4.23)

〈Ψt | =
∑

h∈{0,1}N

N∏

n=1

[(
sinh(2ξn − 2η)

sinh(2ξn + 2η)

A(ξn + η
2 )

A(−ξn + η
2 )

)hn

Qτ (ξ
(hn)
n )

]

× e−
∑

j hjξj V̂ (ξ
(h1)
1 , . . . , ξ

(hN )
N ) 〈β − 1,h |S−1

1...N ({ξ}|β), (4.24)

expressed on the gauged transformed basis (4.6) (respectively (4.7)). In these expres-

sions, Qτ denotes a function on the discrete set of values ξ
(hn)
n , n ∈ {1, . . . , N},

hn ∈ {0, 1}, which satisfies

Qτ (ξ
(1)
n )

Qτ (ξ
(0)
n )

=
t(ξ

(0)
n )

A(ξ
(0)
n )

=
A(−ξ

(1)
n )

t(ξ
(1)
n )

, (4.25)

and A(λ) is defined in terms of (3.35) and (4.8) as

A(λ) = e−λ+ η

2
sinh(2λ+ η)

sinh(2λ)
d+(−λ)A−(λ). (4.26)

Note that the explicit expression of the function A(λ) (4.26) appearing in (4.23)-
(4.25) depends on the particular choices that we make on one hand for ǫ+ ∈ {1,−1}
in fixing the gauge parameters β−α in (3.26), and on the other hand for the function
g−(λ) involved in the normalization of the states (4.6)-(4.7). In particular, since
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there is a large freedom in fixing g−(λ) (it has only to satisfy the relation (4.9)), the
resulting function A(λ) may be any function satisfying the relation

A(λ+ η/2)A(−λ + η/2) = −
detq K+(λ) detq U−(λ)

sinh(2λ+ η) sinh(2λ− η)
. (4.27)

In the following, we shall focus on the particular solutions of (4.27) which are given
by the expressions

Aε(λ) = (−1)N
sinh(2λ+ η)

sinh(2λ)
aε(λ) a(λ) d(−λ), (4.28)

with

aε(λ) =
sinh(λ− η

2 + ǫα+α+) cosh(λ− η
2 − ǫβ+β+)

sinh(ǫα+α+) cosh(ǫβ+β+)

×
sinh(λ− η

2 + ǫα−
α−) cosh(λ− η

2 + ǫβ−
β−)

sinh(ǫα−
α−) cosh(ǫβ−

β−)
(4.29)

for any choice of ε ≡ (ǫα+ , ǫα−
, ǫβ+ , ǫβ−

) ∈ {−1, 1}4 such that ǫα+ǫα−
ǫβ+ǫβ−

= 1.
Such solutions correspond, for a fixed choice of ǫ+ in (3.26), to a choice of g−(λ) in
(4.8)-(4.9) such that

g−(λ+ η/2) = ǫ+ ǫα+ (−1)N
sinh(λ+ ǫα−

α−) cosh(λ+ ǫβ−
β−)

sinh(ǫα−
α−) cosh(ǫβ−

β−)

×
sinh(λ+ ǫα+α+) cosh(λ− ǫβ+β+)

sinh(λ+ ǫ+α+) cosh(λ− ǫ+β+)
. (4.30)

From now on, we shall also denote by

|h, β + 1 〉ε and ε〈β − 1,h | (4.31)

the states (4.6) and (4.7) with normalization (4.30) given by such a particular choice
of ε.

4.3 Transfer matrix spectrum by T -Q functional equation

We now recall the results of [50] concerning the rewriting of the above SoV discrete
characterization of the transfer matrix spectrum and eigenstates in terms of particular
classes of solutions of a functional equation of Baxter’s type.

We denote by ΣM
Q the set of Q(λ) polynomials in cosh(2λ) of degree M of the

form

Q(λ) =

M∏

j=1

cosh(2λ)− cosh(2λj)

2
=

M∏

j=1

(
sinh2 λ− sinh2 λj

)
, (4.32)

with

cosh(2λj) 6= cosh(2ξ(h)n ), ∀ (j, n, h) ∈ {1, . . . ,M} × {1, . . . , N} × {0, 1}. (4.33)
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Moreover, we consider the following function:

Fε(λ) = f
(N)
ε a(λ) a(−λ) d(λ) d(−λ)

(
cosh2(2λ)− cosh2 η

)

= f
(N)
ε

(
cosh2(2λ)− cosh2 η

) N∏

n=1

1∏

h=0

cosh(2λ) − cosh(2ξ
(h)
n )

2
, (4.34)

where

f
(r)
ε ≡ f

(r)
ε (τ+, τ−, α+, α−, β+, β−) =

2κ+κ−
sinh ς+ sinh ς−

[
cosh(τ+ − τ−)

− ǫα+ǫα−
cosh(ǫα+α+ + ǫα−

α− − ǫβ+β+ + ǫβ−
β− + (N − 1− 2r)η)

]
. (4.35)

Theorem 4.2. Let us suppose that the inhomogeneity parameters are generic (4.4)
and that the condition (4.17) is satisfied. Suppose moreover that, for a given choice
of ε ≡ (ǫα+ , ǫα−

, ǫβ+ , ǫβ−
) ∈ {−1, 1}4 such that ǫα+ǫα−

ǫβ+ǫβ−
= 1,

∀r ∈ {0, ..., N − 1}, f
(r)
ε (τ+, τ−, α+, α−, β+, β−) 6= 0. (4.36)

Then, a function τ(λ) is an eigenvalue of the transfer matrix T (λ) (i.e. τ(λ) ∈ ΣT )
if and only if it is an entire function of λ such that there exists a unique Q(λ) ∈ ΣN

Q

satisfying

τ(λ)Q(λ) = Aε(λ)Q(λ− η) +Aε(−λ)Q(λ+ η) + Fε(λ). (4.37)

An interesting particular case of the above theorem corresponds to the situation
in which the function Fε(λ) cancels, so that we obtain a complete description of
the transfer matrix spectrum in terms of solutions of a usual (homogeneous) T-Q
functional equation. Denoting with ΣM

ε,T the set of entire functions of λ which can be
expressed in the form

Aε(λ)Q(λ − η) +Aε(−λ)Q(λ+ η)

Q(λ)
(4.38)

in terms of some polynomial Q(λ) ∈ ΣM
Q for a given choice of ε ≡ (ǫα+ , ǫα−

, ǫβ+ , ǫβ−
) ∈

{−1, 1}4, we obtain in that case the following corollary:

Corollary 4.1. Let us suppose that the inhomogeneity parameters are generic (4.4)
and that the conditions (4.17) and (4.36) are satisfied. Suppose moreover that

f
(N)
ε (τ+, τ−, α+, α−, β+, β−) = 0. (4.39)

Then, τ(λ) ∈ ΣT if and only if it is an entire function of λ such that there exists a
unique Q(λ) ∈ ΣN

Q satisfying

τ(λ)Q(λ) = Aε(λ)Q(λ− η) +Aε(−λ)Q(λ+ η). (4.40)

In other words, ΣN
ε,T = ΣT .
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There are other situations in which the spectrum of the transfer matrix is partially
given by solutions of the form (4.32) of a homogeneous T-Q equation, as described
by the following theorem:

Theorem 4.3. Let us suppose that the inhomogeneity parameters are generic (4.4)
and that the condition (4.17) is satisfied. Suppose moreover that, for a given choice
of ε ≡ (ǫα+ , ǫα−

, ǫβ+ , ǫβ−
) ∈ {−1, 1}4 such that ǫα+ǫα−

ǫβ+ǫβ−
= 1, there exists M ∈

{0, . . . , N − 1} such that

f
(M)
ε (τ+, τ−, α+, α−, β+, β−) = 0. (4.41)

Then ΣM
ε,T ⊂ ΣT and, for any τ(λ) ∈ ΣM

ε,T , there exists one and only one Q(λ) ∈

ΣM
ε,Q such that τ(λ) and Q(λ) satisfy the functional equation (4.40), whereas for each

τ(λ) ∈ ΣT \ΣM
ε,T , there exists one and only one Q(λ) ∈ ΣN

ε,Q such that τ(λ) and Q(λ)
satisfy the functional equation (4.37).

4.4 Separate states and eigenstates

For any polynomial Q(λ) of the form (4.32) and for a given choice of ε, let us consider
the states

|Q 〉ε =
1

N({ξ}, β)

∑

h∈{0,1}N

N∏

n=1

Q(ξ(hn)
n ) e−

∑
j hjξj

× V̂ (ξ
(h1)
1 , . . . , ξ

(hN )
N ) S1...N ({ξ}|β) |h, β + 1 〉ε, (4.42)

and

ε〈Q | =
1

N({ξ}, β)

∑

h∈{0,1}N

N∏

n=1

[
(un vn,ε)

hn Q(ξ(hn)
n )

]
e−

∑
j hjξj

× V̂ (ξ
(h1)
1 , . . . , ξ

(hN )
N )ε〈β − 1,h |S−1

1...N ({ξ}|β), (4.43)

Here we have defined

un =
sinh(2ξn − η)

sinh(2ξn + η)

a(ξn + η/2) d(−ξn − η/2)

a(−ξn + η/2) d(ξn − η/2)

= −
∏

j 6=n

sinh(ξn − ξj + η) sinh(ξn + ξj + η)

sinh(ξn + ξj − η) sinh(ξn − ξj − η)
, (4.44)

and

vn,ε =
aε(ξn + η

2 )

aε(−ξn + η
2 )

=
aε(ξn + η

2 )

a−ε(ξn + η
2 )

, (4.45)

so that
sinh(2ξn − 2η)

sinh(2ξn + 2η)

Aε(ξn + η
2 )

Aε(−ξn + η
2 )

= un vn,ε. (4.46)
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States of the form (4.42) and (4.43) are called separate states. If moreover Q(λ)
satisfies the T-Q equation (4.40) or (4.37) with some entire function τ(λ), they are
eigenstates of the transfer matrix T (λ).

As in the XXX case [1], it is simple to prove the following identity

N∏

n=1

(−un)
hn V̂ (ξ

(h1)
1 , . . . , ξ

(hN )
N ) =

V̂ (ξ
(0)
1 , . . . , ξ

(0)
N )

V̂ (ξ
(1)
1 , . . . , ξ

(1)
N )

V̂ (ξ
(1−h1)
1 , . . . , ξ

(1−hN )
N ), (4.47)

so that the state (4.43) can equivalently be rewritten as

ε〈Q | =
1

N({ξ}, β)

V̂ (ξ
(0)
1 , . . . , ξ

(0)
N )

V̂ (ξ
(1)
1 , . . . , ξ

(1)
N )

∑

h∈{0,1}N

N∏

n=1

[
(−vn,ε)

hn Q(ξ(hn)
n )

]

× e−
∑

j hjξj V̂ (ξ
(1−h1)
1 , . . . , ξ

(1−hN )
N ) ε〈β − 1,h |S−1

1...N ({ξ}|β). (4.48)

As usual, it is possible to rewrite the separate states in a Bethe-type form, using
that

N∏

n=1

Q(ξ(hn)
n ) =

M∏

j=1

ah(λj) ah(−λj), (4.49)

and the formulas (4.10), (4.11) for the action of the operators BSOS
− (λ|β − 1) and

BSOS
− (λ|β + 1) on the states (4.6) and (4.7) respectively. We obtain that

|Q 〉ε = S1...N ({ξ}|β) B̂R
−(λ1|β − 1) B̂R

−(λ2|β − 3) . . .

. . . B̂R
−(λM |β + 1− 2M) |Ωβ+1−2M 〉ε, (4.50)

and

ε〈Q | = ε〈Ωβ−1+2M | B̂L
−(λM |β − 1 + 2M) . . .

. . . B̂L
−(λ2|β + 2) B̂L

−(λ1|β + 1)S−1
1...N ({ξ}|β). (4.51)

Here we have defined the renormalized operators B̂R
−(λ|β) and B̂L

−(λ|β) in terms of
BSOS
− (λ|β) as

B̂R
−(λ|β) =

(−1)N

b−(λ|β −N)

sinh(ηβ)

sinh(η(β −N))
BSOS
− (λ|β), (4.52)

B̂L
−(λ|β) =

(−1)N

b−(λ|β +N)

sinh(η(β +N − 1))

sinh(η(β − 1))
BSOS
− (λ|β), (4.53)

and the right and left reference states as

|Ωβ+1 〉ε =
1

N({ξ}, β)

∑

h∈{0,1}N

e−
∑

j hjξj V̂ (ξ
(h1)
1 , . . . , ξ

(hN )
N ) |h, β + 1 〉ε, (4.54)
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and

ε〈Ωβ−1 | =
1

N({ξ}, β)

∑

h∈{0,1}N

N∏

n=1

(un vn,ε)
hn e−

∑
j hjξj V̂ (ξ

(h1)
1 , . . . , ξ

(hN )
N ) ε〈β − 1,h |

(4.55)

=
1

N({ξ}, β)

V̂ (ξ
(0)
1 , . . . , ξ

(0)
N )

V̂ (ξ
(1)
1 , . . . , ξ

(1)
N )

∑

h∈{0,1}N

N∏

n=1

(−vn,ε)
hn

× e−
∑

j hjξj V̂ (ξ
(1−h1)
1 , . . . , ξ

(1−hN )
N ) ε〈β − 1,h |. (4.56)

Note that we can define the separate states (4.42) and (4.43), as well as the
reference states (4.54) and (4.56) for different choices of ε ∈ {−1, 1}4. In particular,
we can use the relation between the SoV basis for ε and −ε,

|h, β + 1 〉−ε =
N∏

n=1

v−hn
n,ε |h, β + 1 〉ε (4.57)

−ε〈β − 1,h | =
N∏

n=1

vhn−1
n,ε ε〈β − 1,h |, (4.58)

to re-express the reference states (4.54) and (4.56) associated with −ε in terms of the
SoV basis for ε as

|Ωβ+1 〉−ε =
∑

h∈{0,1}N

N∏

n=1

v−hn
n,ε e−

∑
j hjξj V̂ (ξ

(h1)
1 , . . . , ξ

(hN )
N ) |h, β + 1 〉ε, (4.59)

and

−ε〈Ωβ−1 | =
N∏

n=1

v−1
n,ε

∑

h∈{0,1}N

N∏

n=1

uhn
n e−

∑
j hjξj V̂ (ξ

(h1)
1 , . . . , ξ

(hN )
N ) ε〈β − 1,h | (4.60)

=
V̂ (ξ

(0)
1 , . . . , ξ

(0)
N )

V̂ (ξ
(1)
1 , . . . , ξ

(1)
N )

N∏

n=1

v−1
n,ε

∑

h∈{0,1}N

N∏

n=1

(−1)hn

× e−
∑

j hjξj V̂ (ξ
(1−h1)
1 , . . . , ξ

(1−hN )
N ) ε〈β − 1,h |. (4.61)

Proposition 4.1. Let us suppose that the hypothesis of Theorem 4.1 are satisfied.
For τ(λ) ∈ ΣT and for a given choice of ε, we denote by

Qτ,ε(λ) =

qε∏

j=1

cosh(2λ)− cosh(2λε,j)

2
(qε ≤ N) (4.62)

the unique solution of the T-Q equation (4.40) if the condition

f
(qε)
ε (τ+, τ−, α+, α−, β+, β−) = 0 (4.63)
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is satisfied with τ(λ) ∈ Σqε
ε,T , or the unique solution of (4.37) with qε = N otherwise.

Then, the one-dimensional right eigenspace of the transfer matrix T (λ) associated
with the eigenvalue τ(λ) is generated by any of the separate states |Qτ,ε 〉ε for any
choice of ε ≡ (ǫα+ , ǫα−

, ǫβ+ , ǫβ−
) ∈ {−1, 1}4 such that ǫα+ǫα−

ǫβ+ǫβ−
= 1. For two

such choices of ε, the corresponding states are proportional:

|Qτ,ε′ 〉ε′ =
N∏

n=1

Qτ,ε′(ξn + η
2 )

Qτ,ε(ξn + η
2 )

|Qτ,ε 〉ε =

∏q
ε
′

j=1 d(λε
′,j) d(−λ

ε
′,j)∏qε

j=1 d(λε,j) d(−λε,j)
|Qτ,ε 〉ε. (4.64)

Similarly, the one-dimensional left eigenspace of the transfer matrix T (λ) associ-
ated with the eigenvalue τ(λ) is generated by any of the separate states ε〈Qτ,ε | for
any choice of ε ≡ (ǫα+ , ǫα−

, ǫβ+ , ǫβ−
) ∈ {−1, 1}4 such that ǫα+ǫα−

ǫβ+ǫβ−
= 1. For

two such choices of ε, the corresponding states are proportional:

ε
′〈Qτ,ε′ | =

N∏

n=1

Qτ,ε′(ξn + η
2 )

Qτ,ε(ξn + η
2 )

a
ǫ
′(ξn + η

2 )

aǫ(ξn + η
2 )

ε〈Qτ,ε |

=

∏q
ε
′

j=1 d(λε
′,j) d(−λ

ε
′,j)∏qε

j=1 d(λε,j) d(−λε,j)

N∏

n=1

a
ǫ
′(ξn + η

2 )

aǫ(ξn + η
2 )

ε〈Qτ,ε |. (4.65)

Proof. This is a direct consequence of the previous study, of the following identities,

Qτ,ε′(ξ
(1)
n )

Qτ,ε′(ξ
(0)
n )

=
aǫ(ξ

(0)
n )

a
ǫ
′(ξ

(0)
n )

Qτ,ε(ξ
(1)
n )

Qτ,ε(ξ
(0)
n )

, (4.66)

and

|h, β + 1 〉
ε
′ =

N∏

n=1

(
a−ǫ(ξn + η

2 )

a−ǫ
′(ξn + η

2 )

)hn

|h, β + 1 〉ε, (4.67)

ε
′〈β − 1,h | =

N∏

n=1

(
a−ǫ(ξn + η

2 )

a−ǫ
′(ξn + η

2 )

)1−hn

ε〈β − 1,h |, (4.68)

and of the fact that the product aǫ(λ)a−ǫ(λ) does not depend on ǫ.

5 Scalar product of separate states

Let P (λ) and Q(λ) be two polynomials in cosh(2λ), of respective degree np and nq,
and which can be expressed as

P (λ) =

np∏

j=1

cosh(2λ) − cosh(2pj)

2
, Q(λ) =

nq∏

j=1

cosh(2λ) − cosh(2qj)

2
. (5.1)

It is easy to see that the scalar product of any two separate states of the form (4.42)
and (4.43) (or (4.48)) constructed from P and Q can be represented as a determinant.
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Proposition 5.1. Let us suppose that the inhomogeneity parameters are generic (4.4)
and that the condition (4.17) is satisfied. Let ε, ε′ ∈ {−1, 1}4 such that ǫα+ǫα−

ǫβ+ǫβ−
=

ǫ′α+
ǫ′α−

ǫ′β+
ǫ′β−

= 1. The scalar products of the separate states ε〈Q | built as in (4.43)
or (4.48) from Q(λ), and |P 〉

ε
′ built as in (4.42) from P (λ), admit the following

determinant representation:

ε〈Q |P 〉
ε
′ =

1

N({ξ}, β)

V̂ (ξ
(0)
1 , . . . , ξ

(0)
N )

V̂ (ξ
(1)
1 , . . . , ξ

(1)
N )

× det
1≤i,j≤N




1∑

h=0

(
−

a
ǫ
′(ξi +

η
2 )

a−ǫ(ξi +
η
2 )

)h
P (ξ

(h)
i )Q(ξ

(h)
i )

(
cosh(2ξ

(1−h)
i )

2

)j−1

 . (5.2)

The representation (5.2) of Proposition 5.1 is a direct consequence of the rep-
resentations (4.48) and (4.42) of the separate states, of the proportionality relation
(4.67), and of the orthogonality relation (4.13).

It is an important advantage of the separation of variables that the scalar products
of separate states are always expressed as determinants. However the present formula
(5.2) becomes very difficult to use in the homogeneous and thermodynamic limits.
For this reason it is important to recast this expression in a more convenient form
depending more directly on the roots of polynomials P and Q, and in which the
dependence on the inhomogeneous parameters is such that taking the homogeneous
limit becomes straightforward. As in the XXX case [1], we will in fact show that it is
possible to rewrite the expression (5.2) for the scalar product of two arbitrary separate
states (without requiring any of them to be an eigenstate) in terms of a generalized
Slavnov determinant [108]. We will proceed with this computations following an
approach similar to what was done in [1]. However, due to some additional difficulties
in the XXZ case, the most general result becomes much more involved than in the
rational case. Hence, we will gather many technical details in Appendices D and E,
and insist mainly on the cases which seem to be the most interesting for the physical
applications. As we shall see, in these cases, the obtained formulas simplify due to
the use of the Bethe equations.

5.1 Scalar product of two arbitrary separate states

Let us first notice that the whole dependence on ε, ε′ in the expression (5.2) is
contained in the ratio of a

ǫ
′(ξi +

η
2 ) and a−ǫ(ξi +

η
2 ), which is of the form

a
ǫ
′(ξi +

η
2 )

a−ǫ(ξi +
η
2 )

=

n
ε,ε′∏

ℓ=1

sinh(ξi + aℓ)

sinh(ξi − aℓ)
. (5.3)
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In this expression,

• n
ε,ε′ = 0 if ε = −ε

′ (5.4)

• n
ε,ε′ = 4, {aℓ} = {ǫ′α+

α+, ǫ
′
α−

α−, ǫ
′
β+

(−β+ + iπ/2), ǫ′β−
(β− + iπ/2)}

if ε = ε
′, (5.5)

• n
ε,ε′ = 2, {aℓ} ⊂ {ǫ′α+

α+, ǫ
′
α−

α−, ǫ
′
β+

(−β+ + iπ/2), ǫ′β−
(β− + iπ/2)}

otherwise. (5.6)

For purely technical reasons, it is in fact convenient to treat the case n
ε,ε′ = 0 as the

n
ε,ε′ = 2 case. Therefore we introduce in this case an arbitrary parameter ã so as to

rewrite the ratio (5.3) as

a
ǫ
′(ξi +

η
2 )

a−ǫ(ξi +
η
2 )

=

na∏

ℓ=1

sinh(ξi + aℓ)

sinh(ξi − aℓ)
, (5.7)

where na = 2 and {a1, a2} = {ã,−ã} if ε = −ε
′, whereas na = n

ε,ε′ and {aℓ} is given
by (5.5) or (5.6) otherwise. In the following, we shall use the notation of (5.7).

Let us also introduce some additional notations. For two arbitrary functions f
and g, and any set of variables {z} ≡ {z1, . . . , zL}, we define

A{z}[f, g] =

det1≤i,j≤L

[∑
ǭ∈{+,−} f(ǭzi)

(
cosh(2zi+ǭη)

2

)j−1
+ δj,L g(zi)

]

V̂ (z1, . . . , zL)
. (5.8)

When the function g vanishes identically, we may simply denote (5.8) by A{z}[f ].
We also consider a particular function fε,ε′ , defined in terms of the corresponding set
{aℓ}1≤ℓ≤na

as

fε,ε′(λ) = (−1)N
na∏

ℓ=1

sinh(λ− aℓ +
η
2 )

sinh(aℓ)

a(−λ) d(λ)

sinh(2λ)
, (5.9)

and, in the case ε = ε
′, a function g

(L)
ε such that

g
(N)
ε (λ) =

sinh(
∑

ℓ aℓ − η)∏
ℓ sinh(aℓ)

a(λ) d(λ) a(−λ) d(−λ), (5.10)

g
(L)
ε (λ) = (−1)L−N g

(N)
ε (λ)− f̄

(L)
ε,ε (λ) if L > N, (5.11)

whereas, if L < N , the function g
(L)
ε (λ) is defined by induction as

g
(L)
ε (z) =

∏
ℓ sinh(aℓ) f̄

(L)
ε,ε (z)

sinh((L+ 1−N)η −
∑

ℓ aℓ)
· lim
z′→∞

f̄
(L+1)
ε,ε (z′) + g

(L+1)
ε (z′)

ς(z′)N+L

− f̄
(L)
ε,ε (z) − f̄

(L+1)
ε,ε (z)− g

(L+1)
ε (z). (5.12)
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Here we have used the shortcut notation:

f̄
(l)
ε,ε′(λ) =

∑

ǭ∈{+,−}

f
ε,ε′(ǭλ)

(
cosh(2λ+ ǭη)

2

)l−1

, (5.13)

for a generic integer l. Then we have the following result:

Theorem 5.1. Let us suppose that the inhomogeneity parameters are generic (4.4)
and that the condition (4.17) is satisfied. Let ε, ε′ ∈ {−1, 1}4 such that ǫα+ǫα−

ǫβ+ǫβ−
=

ǫ′α+
ǫ′α−

ǫ′β+
ǫ′β−

= 1.
The scalar products of the separate states ε〈Q | built as in (4.43) or (4.48) from

Q(λ) with roots {q} ≡ {q1, . . . , qnq}, and |P 〉
ε
′ built as in (4.42) from P (λ) with roots

{p} ≡ {p1, . . . , pnp}, admit the following determinant representation:

ε〈Q |P 〉
ε
′ = (−1)N(np+nq) Zβ Z̄({a},{ξ}) Γ

(np+nq)
{a} A{q}∪{p}[fε,ε′ , gε,ε′ ], (5.14)

where the function fε,ε′ is given as in (5.9).
Here the function gε,ε′ is defined to be identically zero if ε 6= ε

′, while for ε = ε
′,

it is equal to the function g
(np+nq)
ε defined as in (5.10), (5.11) or (5.12) according to

whether np + nq is equal, larger or smaller than N .

Finally, the normalization coefficient Zβ, Z̄({a},{ξ}) and Γ
(np+nq)
{a} are respectively

given by

Zβ =

N∏

j=1

[
1

b−(β + 1 +N − 2j)

sinh(η(β +N − j))

sinh(η(β + 1 +N − 2j))

]
, (5.15)

Z̄({a},{ξ}) =

N∏

i=1

{
eξi g−(η/2 − ξi)

na∏

ℓ=1

sinh(aℓ)

sinh(ξi − aℓ)

}
(5.16)

and

Γ
(np+nq)
{a} =





np+nq−N∏

j=1

∏
ℓ sinh(aℓ)

sinh
(
jη −

∑
ℓ aℓ
) if np + nq ≥ N,

N−np−nq−1∏

j=0

sinh
(
− jη −

∑
ℓ aℓ
)

∏
ℓ sinh(aℓ)

if np + nq < N.

(5.17)

Proof. Using the notation (5.8), we can rewrite (5.2) as

ε〈Q |P 〉
ε
′ = (−1)N Zβ

N∏

j=1

eξj g−(η/2 − ξj)∏na

ℓ=1 sinh(ξj − aℓ)

×
N∏

i=1

P (ξ
(0)
i )Q(ξ

(0)
i )P (ξ

(1)
i )Q(ξ

(1)
i )

P (ξi)Q(ξi)
A{ξ1,...,ξN}

[
f{a},{p}∪{q}

]
(5.18)
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in terms of the function f{a},{p}∪{q} ≡ f{a1,...,ana},{p1,...,pnp}∪{q1,...,qnq}
defined as

f{a},{p}∪{q}(z) =

∏na

ℓ=1 sinh(z + aℓ)

sinh(2z)

∏

µ∈{p}∪{q}

cosh(2z)− cosh(2µ)

cosh(2z + η)− cosh(2µ)
. (5.19)

In (5.18), we have also used the explicit expression (4.15) of N({ξ}, β).
We now use the identities of Appendix D to transform (5.18) in terms of a new

ratio of determinants in which the role of the sets of variables {ξ} and {p} ∪ {q} are
exchanged. Reinserting part of the normalization coefficient into the determinant in
the numerator, we finally obtain (5.14).

Remark 5.1. Note that the normalization coefficient (5.17), and hence the scalar
product (5.14), vanishes in the case ε = −ε

′ and np + nq < N .

Theorem 5.1 is the XXZ analog of the first part of Theorem 4.1 of [1]. The
expression (5.14) is now in a completely regular form with respect to the homogeneous
limit. However, the formulas that we obtain for the XXZ scalar products appear to
be significantly more complicated than their XXX analogs, at least in the ε = ε

′ case,
due to the appearance of the non-zero function gε,ε.

As shown in Appendix E, it is also possible to transform the functional (5.8) of
f and g into a new functional which takes the form of a generalized version of the
famous Slavnov formula [108] (see Identities 6 and 7). This can be done whatever the
form of f and g and for any arbitrary set of integers {z1, . . . , zL} defined as the union
of two subsets {x1, . . . , xL1} ∪ {y1, . . . , yL2}. This means in particular that we can
re-write the scalar product (5.14) in terms of a generalized Slavnov determinant by
using Identities 6 and 7, and this for any two arbitrary separate states (i.e. without
supposing one of the two states to be an eigenstate). However, the general formula
is quite cumbersome5. Therefore, we chose not to present it in the main text (the
interested reader can refer to Appendix E), and instead to emphasize on a particular
case which seems to be the most relevant for the computation of correlation functions:
when one of the two sets of variables satisfies the Bethe equations following from the
homogeneous T-Q equation (4.40). This is the purpose of the next subsection.

5.2 Scalar product of an eigenstate with an arbitrary separate state

As mentioned above, the generalization of the Slavnov formula for the scalar products
of two arbitrary separate states is more cumbersome than in the XXX rational case [1],
at least when ε = ε

′ due to the appearance of the non-zero function gε,ε. However,
the most general case is not the most important for the computation of correlation
functions in the thermodynamic limit (i.e. on the half line), for which we need to
consider normalized mean values of the form

E(O) = lim
N→∞

ε〈Q |O|Q 〉ε

ε〈Q |Q 〉ε
, (5.20)

5It nevertheless simplifies in the cases ε 6= ε
′, for which the function gε,ε′ vanishes: the resulting

formulas are then quite similar to the ones obtained for the XXX chain in [1].
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where O is a product of local spin operators [22,23,107]. Note that, strictly speaking,
the denominator in (5.20) is not the square of the norm of the separate state |Q 〉ε,
but it plays exactly the same role, so, by a slight abuse of language, we will still use
the terminology ’norm’ in this section.

For the consideration of quantities of the form (5.20) we can make the following
remarks:

• To compute the norms and mean values of local operators the case ε = ε
′ (i.e.

na = 4) seems to be the most relevant.

• In the half-line limit one of the boundaries should become irrelevant, which
means that we can impose the most convenient boundary constraint (4.39).
Then all the eigenstates are characterized by polynomials Q of degree N satis-
fying the homogeneous Baxter equation (4.40).

• We expect that the resulting action of the product of local operators O on an
eigenstate can always be simply expressed as a linear combination of off-shell
separate states associated to polynomials of degree L ≥ N .

Hence, in this subsection, we will restrict ourselves to the case ε = ε
′ (i.e. na = 4).

We shall moreover suppose that np ≥ nq and that the polynomial Q satisfies the
homogeneous T-Q equation (4.40). We recall that all other cases can be deduced
from the general formulas presented in Appendix E.

Theorem 5.2. Let P and Q be two trigonometric polynomials of the form (5.1)
and of the same degree np = nq = n. We suppose moreover that Q(λ) satisfies
the homogeneous T-Q equation (4.40) with τ(λ) ∈ ΣT , whereas the roots pj of the
trigonometric polynomial P are arbitrary complex numbers.

Then the scalar product of the two corresponding separate states ε〈Q | and |P 〉ε
can be written as

ε〈Q |P 〉ε = Zβ Z̄({a},{ξ}) Γ
(2n)
{a} HQ

[
fε,ε, g

(2n)
ε

] n∏

j=1

Q(pj)

sinh(2pj + η) sinh(2pj − η)

×
n∏

j=1

(
−

Aε(qj)

sinh(2qj + η)

)
V̂ (q1 −

η
2 , . . . , qn − η

2 )

V̂ (q1 +
η
2 , . . . , qn + η

2 )

det1≤j,k≤n

[
∂τ(pj)
∂qk

]

V̂ (qn, . . . , q1)V̂ (p1, . . . , pn)
, (5.21)

where the normalization coefficient Zβ, Z̄({a},{ξ}) and Γ
(2n)
{a} are respectively given by

(5.15), (5.16) and (5.17). The normalization coefficient HQ

[
fε,ε, g

(2n)
ε

]
is defined in

terms of the roots q1, . . . , qn of Q as

HQ

[
fε,ε, g

(2n)
ε

]
= 1 +

n∑

j=1

g
(2n)
ε (qj) sinh(2qj − η)

fε,ε(−qj)Q′(qj)Q(qj − η)
. (5.22)
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It involves the functions fε,ε (5.9), which can be more simply written as

fε,ε(λ) =
Aε(−λ)

sinh(2λ− η)
, (5.23)

and g
(2n)
ε defined as in (5.10), (5.11) or (5.12) according to whether 2n is equal, larger

or smaller than N .

A comment is due here. This result is essentially the Slavnov formula [108] (pre-
sented as in [105] in terms of a jacobian), the only difference being the normalization
coefficients. Note however that most of these normalization coefficients do not depend
on the off-shell separate state |P 〉. Hence, they are irrelevant for the computation of
the correlation functions since they will always be cancelled by the same coefficient
from the norm of the on-shell state in the denominator of (5.20).

Proof. This is a direct consequence of Theorem 5.1 and of Identity 5.

As a corollary of this theorem is the analog of the Gaudin formula [138] for the
square of the norm of on-shell separate states:

Corollary 5.1. Let Q be a polynomial of the form (5.1) of degree degree nq = n
satisfiyng the homogeneous T-Q equation (4.40) with τ(λ) ∈ ΣT . Then

ε〈Q |Q 〉ε = Zβ Z̄({a},{ξ}) Γ
(2n)
{a} HQ

[
fε,ε, g

(2n)
ε

] n∏

j=1

Aε(qj)
2 Q(qj − η)

sinh(2qj + η)2 sinh(2qj − η)

×
V̂ (q1 −

η
2 , . . . , qn − η

2 )

V̂ (q1 +
η
2 , . . . , qn + η

2 )

det1≤j,k≤n

[
∂

∂qk
log
(
Aε(−qj)Q(qj+η)
Aε(qj)Q(qj−η)

)]

V̂ (qn, . . . , q1)V̂ (q1, . . . , qn)
. (5.24)

Finally, we present a generalization of Theorem 5.2 in the case np > nq:

Theorem 5.3. Let P and Q be two trigonometric polynomials of the form (5.1) with
np > nq. We suppose moreover that Q(λ) satisfies the homogeneous T-Q equation
(4.40) with τ(λ) ∈ ΣT , whereas the roots pj of the trigonometric polynomial P are
arbitrary complex numbers.

Then the scalar product of the two corresponding separate states ε〈Q | and |P 〉ε
can be written as a generalised Slavnov determinant with a rank one correction:

ε〈Q |P 〉ε = (−1)N(np+nq) Zβ Z̄({a},{ξ}) Γ
(np+nq)
{a}

np∏

i=1

Q(pi)

sinh(2pi + η) sinh(2pi − η)

×

nq∏

k=1

fε,ε(−qk)

sinh η sinh(2qk)

V̂ (q1 −
η
2 , . . . , qnq −

η
2 )

V̂ (q1 +
η
2 , . . . , qnq +

η
2 )

detnp (Sτ + P)

V̂ (q1, . . . qnq)V̂ (pnp , . . . p1)
. (5.25)
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The np × np matrix Sτ is a generalized Slavnov matrix with elements:

[
Sτ

]
jk

=
∂τ(pj)

∂qk
, if k ≤ nq,

[
Sτ

]
jk

=
∑

ǭ=±1

ǭAε(−ǭpj) sinh(2pj + ǭη)
Q(pj + ǭη)

Q(pj)

(
cosh(2pj + ǭη)

2

)k−nq−1

if k > nq. (5.26)

The additional rank one matrix P has only one non-zero column: Pjk = 0 if j 6= np

and k ≤ nq, and

Pjnp = g
(np+nq)
ε (pj)

sinh(2pj + η) sinh(2pj − η)

Q2(pj)

−
∑

ǭ=±1

ǭAε(−ǭpj) sinh(2pj + ǭη)
Q(pj + ǭη)

Q(pj)

×

nq∑

l=1

2 g
(np+nq)
ε (ql) sinh(2ql − η)

fε,ε(−ql)Q′(ql)Q(ql − η)
[
cosh(2pj + ǭη)− cosh(2ql − η)

] (5.27)

if k > nq.

Proof. This is a direct consequence of Theorem 5.1 and of Identity 7.

6 Conclusion

We have shown that the program of rewriting SoV type determinant representations
for the scalar products of separate states (that include all eigenstates of the transfer
matrix) in terms of generalized Slavnov’s type determinants can be achieved for the
most general XXZ spin-1/2 integrable open chain. It generalizes to the trigonometric
case the results obtained in the rational model [1]. It paves the way to the computation
of form factors and correlation functions and to the study of the dynamics of these
models that we plan to address in future publications. In particular, these formulae
allow to start the computation of elementary blocks of correlation functions in the
SoV framework on a similar ground to that previously developed for some special
boundary conditions in [22,23]. Along these lines, it would be very important also to
pursue this program for the case of cyclic representations of the 6-vertex Yang-Baxter
algebra. Indeed this case is relevant for the lattice version of the Sine-Gordon field
theory and to the Chiral Potts model [94,139]. A rewriting of the scalar products in
a way similar to what we achieved here would give, in particular, the possibility to
obtain a direct re-derivation of the order parameter of the Chiral Potts model. More
interestingly, it would also lead to the computation of the relevant form factors of local
operators and correlation functions in the thermodynamic limit for these important
models. We would like to stress here that the rewriting of the various determinants
arising all along such a program is essential to be able to take the homogeneous limit
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and then eventually the thermodynamic limit. Hence those rewritings constitute a
cornerstone for the applicability of the SoV method itself that requires to consider
the inhomogeneity parameters to be in generic position. This is perfectly acceptable
only if the homogeneous limit can be effectively taken in this end. We have no doubt
that such a program can be achieved for general integrable models solvable by the
quantum Separation of Variables method along the lines presented in this article.
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A A few useful properties of the gauged transformed
operators

We gather here for completeness some relations involving the elements of the gauged
transformed boundary monodromy matrix (3.11) or (3.12).

Both matrices satisfy the dynamical reflection equation (3.13). A few useful com-
mutation relations (which are therefore equally valid for the elements of (3.11) or
(3.12)) issued from this equation are gathered here:

B(λ|β + 1)B(µ|β − 1) = B(µ|β + 1)B(λ|β − 1), (A.1)

[
A(λ|β),A(µ|β)

]
=

sinh η sinh(λ+ µ− ηβ)

sinh(λ+ µ) sinh(η(β − 1))

×
{
B(λ|β) C(µ|β) − B(µ|β) C(λ|β)

}
, (A.2)

[
D(λ|β),D(µ|β)

]
=

sinh η sinh(λ+ µ+ ηβ)

sinh(λ+ µ) sinh(η(β + 1))

×
{
C(µ|β)B(λ|β) − C(λ|β)B(µ|β)

}
, (A.3)

A(µ|β + 1)B(λ|β + 1) =
sinh(λ+ µ− η) sinh(λ− µ+ η)

sinh(λ+ µ) sinh(λ− µ)
B(λ|β + 1)A(µ|β − 1)

−
sinh(λ+ µ− η) sinh η sinh(λ− µ+ ηβ)

sinh(λ+ µ) sinh(λ− µ) sinh(ηβ)
B(µ|β + 1)A(λ|β − 1)

+
sinh η sinh(λ+ µ− η(β + 1))

sinh(λ+ µ) sinh(ηβ)
B(µ|β + 1)D(λ|β + 1), (A.4)
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B(λ|β − 1)D(µ|β − 1) =
sinh(λ+ µ− η) sinh(λ− µ+ η)

sinh(λ+ µ) sinh(λ− µ)
D(µ|β + 1)B(λ|β − 1)

+
sinh(λ+ µ− η) sinh η sinh(λ− µ− ηβ)

sinh(λ+ µ) sinh(λ− µ) sinh(ηβ)
D(λ|β + 1)B(µ|β − 1)

−
sinh η sinh(λ+ µ+ η(β − 1))

sinh(λ+ µ) sinh(ηβ)
A(λ|β − 1)B(µ|β − 1). (A.5)

By means of the transformation (3.11), the elements of the matrix Ũ(λ|β) can
explicitly be expressed in terms of the elements of the matrix U−(λ) (2.5) as

Ã−(λ|β) = D̃−(λ| − β) =
1

2 sinh(ηβ)

{
− e2λ−η−ηβA−(λ)− eλ−

η
2
+ηαB−(λ)

+ eλ−
η

2
−ηαC−(λ) + eηβD−(λ)

}
, (A.6)

B̃−(λ|β) = C̃−(λ| − β) =
1

2 sinh(ηβ)

{
− e2λ−η+ηβA−(λ)− eλ−

η

2
+ηαB−(λ)

+ eλ−
η

2
+η(2β−α)C−(λ) + eηβD−(λ)

}
. (A.7)

The gauged transformed matrix elements of (3.11), as well as the SOS boundary
matrix elements of (3.12), also satisfy parity properties of the form

e2λ sinh(2λ− η)A−(−λ|β − 1) =
sinh(η(β + 1))

sinh(ηβ)
sinh(2λ)D−(λ|β + 1)

−
sinh(2λ+ ηβ)

sinh(ηβ)
sinh ηA−(λ|β − 1), (A.8)

e2λ sinh(2λ− η)D−(−λ|β + 1) =
sinh(η(β − 1))

sinh(ηβ)
sinh(2λ)A−(λ|β − 1)

+
sinh(2λ− ηβ)

sinh(ηβ)
sinh ηD−(λ|β + 1), (A.9)

e2λ sinh(2λ− η)B−(−λ|β) = − sinh(2λ+ η)B−(λ|β), (A.10)

e2λ sinh(2λ− η) C−(−λ|β) = − sinh(2λ+ η) C−(λ|β). (A.11)

B Action of the SOS boundary operators on the SoV
states

Computing the action of ASOS
− (λ|β − 1) on 〈β − 1,h | at the 2N points ±ξ

(hn)
n ,

n ∈ {1, . . . , N}, using the fact that

USOS
− (η/2|β) = (−1)NdetqM(0), (B.1)

USOS
− (η/2 + iπ/2|β) = i coth ς− detqM(iπ/2), (B.2)
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and that e(2N+1)λASOS
− (λ|β − 1) is a polynomial in e2λ of degree 2N + 2, we obtain,

〈β − 1,h | ASOS
− (λ|β − 1) =

N∑

n=1

∑

ǫ=±

sinh(2λ − η) sinh(λ+ ǫξ
(hn)
n )

sinh(2ξ
(hn)
n − ǫη) sinh(2ξ

(hn)
n )

×
N∏

j=1
j 6=n

sinh2 λ− sinh2 ξ
(hj)
j

sinh2 ξ
(hn)
n − sinh2 ξ

(hj)
j

A−(ǫξ
(hn)
n ) 〈β − 1,Tǫ

nh |

+ (−1)N


detqM(0) cosh(λ− η/2)

N∏

j=1

sinh2 λ− sinh2 ξ
(hj)
j

sinh2 η
2 − sinh2 ξ

(hj)
j

+ coth ς− detqM(iπ/2) sinh(λ− η/2)

N∏

j=1

sinh2 λ− sinh2 ξ
(hj)
j

cosh2 η
2 + sinh2 ξ

(hj)
j


 〈β − 1,h |

+ 22N+1eλ+η sinh(2λ− η)
N∏

j=1

[
sinh2 λ− sinh2 ξ

(hj)
j

]
〈β − 1,h | A∞

− (β − 1), (B.3)

in which

〈β − 1,h | A∞
− (β − 1) = −

e−3η/2−η(β−1)

22N+1 sinh(η(β − 1))

{[
κ− eη(β−1) sinh(ηα+ τ−)

sinh ς−

+
(−1)N detq M(0)

2
∏N

j=1

(
sinh2 η

2 − sinh2 ξ
(hj)
j

) −
(−1)N coth ς− detq M(iπ2 )

2
∏N

j=1

(
cosh2 η

2 + sinh2 ξ
(hj)
j

)
]
〈β − 1,h |

+
N∑

n=1

∑

ǫ=±

eη/2−ǫξ
(hn)
n

sinh(2ξ
(hn)
n − ǫη) sinh(2ξ

(hn)
n )

A−(ǫξ
(hn)
n )

∏
j 6=n

[
sinh2 ξ

(hn)
n − sinh2 ξ

(hj)
j

] 〈β−1,Tǫ
nh |

}
,

(B.4)

and

T±
nh = (h1, . . . , hn ± 1, . . . , hN ) for n ∈ {1, . . . , N}. (B.5)

The action of DSOS
− (λ|β + 1) on 〈β − 1,h | can then be obtained by using the parity

identity (A.8).
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Similarly,

DSOS
− (λ|β + 1) |h, β + 1 〉 =

N∑

n=1

∑

ǫ=±

sinh(2λ− η) sinh(λ+ ǫξ
(hn)
n )

sinh(2ξ
(hn)
n − ǫη) sinh(2ξ

(hn)
n )

×
N∏

j=1
j 6=n

sinh2 λ− sinh2 ξ
(hj)
j

sinh2 ξ
(hn)
n − sinh2 ξ

(hj)
j

kǫn A−(−ǫξ(1−hn)
n ) |Tǫ

nh, β + 1 〉

+ (−1)N


detqM(0) cosh(λ− η/2)

N∏

j=1

sinh2 λ− sinh2 ξ
(hj)
j

sinh2 η
2 − sinh2 ξ

(hj)
j

+ coth ς− detqM(iπ/2) sinh(λ− η/2)

N∏

j=1

sinh2 λ− sinh2 ξ
(hj)
j

cosh2 η
2 + sinh2 ξ

(hj)
j


 |h, β + 1 〉

+ 22N+1eλ+η sinh(2λ− η)

N∏

j=1

[
sinh2 λ− sinh2 ξ

(hj)
j

]
D∞

− (β + 1) |h, β + 1 〉, (B.6)

in which

D∞
− (β + 1) |h, β + 1 〉 =

e−3η/2+η(β+1)

22N+1 sinh(η(β + 1))

{[
κ− e−η(β+1) sinh(ηα+ τ−)

sinh ς−

+
(−1)N detq M(0)

2
∏N

j=1

(
sinh2 η

2 − sinh2 ξ
(hj)
j

) −
(−1)N coth ς− detq M(iπ2 )

2
∏N

j=1

(
cosh2 η

2 + sinh2 ξ
(hj)
j

)
]
|h, β + 1 〉

+

N∑

n=1

∑

ǫ=±

eη/2−ǫξ
(hn)
n

sinh(2ξ
(hn)
n − ǫη) sinh(2ξ

(hn)
n )

kǫn A−(−ǫξ
(1−hn)
n )

∏
j 6=n

[
sinh2 ξ

(hn)
n − sinh2 ξ

(hj)
j

] |Tǫ
nh, β+1 〉

}
,

(B.7)

and the action of ASOS
− (λ|β − 1) on |h, β + 1 〉 can be obtained by means of (A.9).

C Computation of the normalization coefficient N({ξ}, β)

We want to compute the following matrix element:

F (β) = 〈 0 |
N∏

k=1

ASOS
−

(η
2
− ξk|β

)
| 0 〉, (C.1)

from which the value of the normalization N({ξ}, β) follows. From the boundary
bulk decomposition (3.14) it is easy to see that

ASOS
− (λ|β) = ASOS(λ|β) a−(λ|β+Sz) Â

SOS(λ|β)+BSOS(λ|β) c−(λ|β+Sz) Â
SOS(λ|β)

+ASOS(λ|β) b−(λ|β + Sz) Ĉ
SOS(λ|β) +BSOS(λ|β) d−(λ|β + Sz) Ĉ

SOS(λ|β). (C.2)
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Evidently only the term with b− will contribute leading to the following expression

F (β) =

N−1∏

k=0

b−(
η

2
− ξk+1|β +N − 2k)

× 〈 0 |
N∏

j=1

[
ASOS

(η
2
− ξj|β

)
ĈSOS

(η
2
− ξj|β

)]
| 0 〉. (C.3)

By using the explicit form of the MSOS and M̂SOS monodromy matrices, we can now
compute the above matrix element. We can show that

〈 0 |ĈSOS
(η
2
− ξ1|β

)
. . . ĈSOS

(η
2
− ξk|β

)
= (−1)Nk




k∏

j=1

d
(
ξj −

η

2

)

 〈 0k |⊗〈 0N−k |,

(C.4)
where in the right hand side we obtain a state with first k spins down and all the
remaining spins up, and

〈 0k | ⊗ 〈 0N−k |A
SOS(λ|β) = a(λ)

sinh(β +N − 2k)η

sinh(β +N − k)η

×
k∏

j=1

sinh(λ− ξk −
η
2 )

sinh(λ− ξk +
η
2 )

〈 0k | ⊗ 〈 0N−k |. (C.5)

These two equations lead to the following result

F (β) = (−1)N

(
N−1∏

r=0

b−

(η
2
− ξr+1|β +N − 2r

) sinh(β +N − 2r)η

sinh(β +N − r)η

)

×




N∏

j=1

a
(η
2
− ξj

)
d
(
ξj −

η

2

)

∏

j<k

sinh(ξj + ξk)

sinh(ξj + ξk − η)
. (C.6)

D Determinant identities: exchanging the role of the
two sets of variables

In this appendix we give a detailed proof of several identities that we use to establish
Theorem 5.1.

For three sets of arbitrary variables {a} ≡ {a1, . . . , ana} with na ∈ {2, 4}, {x} ≡
{x1, . . . , xN} and {z} ≡ {z1, . . . , zM}, we consider the quantity

A{x}[f{a},{z}] ≡ A{x1,...,xN}[f{a1,...,ana},{z1,...,zM}], (D.1)

defined as in (5.8) in terms of a function f{a},{z} of the form

f{a},{z1,...,zM}(λ) =

∏na

ℓ=1 sinh(λ+ aℓ)

sinh 2λ

M∏

ℓ=1

ς(λ)− ς(zℓ)

ς(λ+ η/2) − ς(zℓ)
. (D.2)

33



Here and in the following, we use for simplicity the shorthand notation:

ς(λ) =
cosh(2λ)

2
. (D.3)

It is also convenient to introduce the function

f̄
(j)
{a},{z}(λ) =

∑

ǫ=±1

f{a},{z}(ǫλ) [ς(λ + ǫη/2)]j−1, (D.4)

where f{a},{z} is given by (D.2), so that (D.1) can be simply written as

A{x}[f{a},{z}] =
det1≤i,j≤N

[
f̄
(j)
{a},{z}(xi)

]

V̂ (x1, . . . , xN )
. (D.5)

The aim of this appendix is to express the quantity (D.1) (or equivalently (D.5)),
which is a ratio of two determinants, as a new ratio of determinants in which the
role of the two sets of variables {x} and {z} has been exchanged. When applied to
scalar products, and in particular to formula (5.18), these identities lead to Theo-
rem 5.1, which makes possible the computation of the homogeneous limit of these
scalar products.

D.1 The case N = M

Identity 1. Let N = M . Then

A{x}

[
f{a},{z}

]
= (−1)N A{z}

[
f{η/2−a},{x}, g{a},{x}

]
. (D.6)

Here f{η/2−a},{x} is the function defined as in (D.2) in terms of the sets {η/2− a} ≡
{η/2 − a1, . . . , η/2 − ana} and {x} ≡ {x1, . . . , xN}, and

g{a},{x}(λ) = δna,4 sinh(a1 + a2 + a3 + a4 − η)

N∏

ℓ=1

[ς(λ)− ς(xℓ)] . (D.7)

Proof. The proof goes along the same lines as for Identity 1 of [1]. We consider the
matrices CX and CZ whose elements are defined respectively from the sets of variables
{x} and {z} as:

N∏

ℓ=1
ℓ 6=k

(
ς(λ)− ς(xℓ)

)
=

N∑

j=1

CX
j,k [ς(λ)]

j−1,
M∏

ℓ=1
ℓ 6=k

(
ς(λ)− ς(zℓ)

)
=

M∑

j=1

CZ
j,k [ς(λ)]

j−1,

and with respective determinants

det
N

[
CX
]
= V̂ (xN , . . . , x1), det

M

[
CZ
]
= V̂ (zM , . . . , z1). (D.8)
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For M = N , we can compute the product of the determinant of CZ with the deter-
minant in the numerator of (D.5) by using that

N∑

j=1

f̄
(j)
{a},{z}(xi) C

Z
j,k =

∑

ǫ∈{+,−}

f{a},{z}(ǫxi)
N∑

j=1

CZ
j,k ς

(
xi + ǫ

η

2

)j−1

=

N∏

ℓ=1

[ς(xi)− ς(zℓ)]
∑

ǫ∈{+,−}

ǫ
na∏
ℓ=1

sinh(xi + ǫaℓ)

sinh(2xi) [ς(xi + ǫη/2) − ς(zk)]
.

Noticing that

∑

ǫ∈{+,−}

ǫ
na∏
ℓ=1

sinh(xi + ǫaℓ)

sinh(2xi) [ς(xi + ǫη/2)− ς(zk)]

=
∑

ǫ∈{+,−}

ǫ
na∏
ℓ=1

sinh(zk + ǫη/2− ǫaℓ)

sinh(2zk) [ς(zk + ǫη/2)− ς(xi)]
+ δna,4 c{a}, (D.9)

with c{a} = sinh(a1 + a2 + a3 + a4 − η), we can rewrite the initial determinant as

det
1≤i,j≤N

[
f̄
(j)
{a},{z}(xi)

]
=

(−1)N

V̂ (zN , . . . , z1)
lim

Λ→+∞
det
N

[BΛ] , (D.10)

in terms of a matrix BΛ defined as

[BΛ]i,k =
∑

ǫ∈{+,−}

ǫ

na∏
ℓ=1

sinh(zi + ǫη2 − ǫaℓ)

sinh(2zi)

×
N∏

ℓ=1

ς(zi)− ς(xℓ)

ς(zi + ǫη2 )− ς(xℓ)

N∏

ℓ=1
ℓ 6=k

[
ς(zi + ǫ

η

2
)− ς(xℓ)

]

+ δna,4 c{a} ς(zi +Λ)

N∏

ℓ=1

ς(zi)− ς(xℓ)

ς(zi + Λ)− ς(xℓ)

N∏

ℓ=1
ℓ 6=k

[ς(zi + Λ)− ς(xℓ)] . (D.11)

We can now easily factor the matrix CX out of BΛ, and taking the limit Λ → +∞,
we obtain (D.6).

D.2 The case N < M

Identity 2. Let N < M . Then

A{x}

[
f{a},{z}

]
= (−1)M

A{z}

[
f{η/2−a},{x}, g̃

(M)
{a},{x}

]
∏M−N

j=1 sinh
(∑na

ℓ=1 aℓ − jη
) , (D.12)
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with

g̃
(M)
{a},{x}(λ) = δna,4

{
(−1)M−N sinh(a1 + a2 + a3 + a4 − η)

N∏

ℓ=1

[ς(λ)− ς(xℓ)]

− f̄
(M)
{η/2−a},{x}(λ)

}
, (D.13)

where f{η/2−a},{x} and f̄
(M)
{η/2−a},{x} are respectively defined as in (D.2) and (D.4) in

terms of the sets {η/2 − a} ≡ {η/2 − a1, . . . , η/2 − ana} and {x} ≡ {x1, . . . , xN}.

Proof. Let us rewrite A{x}

[
f{a},{z}

]
as the following limit:

A{x1,...,xN}

[
f{a},{z1,...,zM}

]

= lim
xN+1→+∞

. . . lim
xM→+∞

A{x1,...,xM}

[
f{a},{z1,...,zM}

]
∏M

i=N+1

[
ς(xi)

na
2
−1 sinh(

∑
ℓ aℓ + (i− 1−M)η)

] . (D.14)

By applying Identity 1 to A{x1,...,xM}

[
f{a},{z1,...,zM}

]
and by computing the successive

limits, we obtain (D.12).

D.3 The case M < N

In the case na = 2, we obtain an identity which is the analog of Identity 2 of [1], and
which can be shown similarly:

Identity 3. Let na = 2 and M < N . Then

A{x1,...,xN}[f{a},{z1,...,zM}] = (−1)M
N−M−1∏

j=0

sinh(a1 + a2 + jη)

×A{z1,...,zM}[f{η/2−a},{x1,...,xN}]. (D.15)

The case na = 4 is unfortunately much more complicated. In that case, we obtain
the following result:

Identity 4. Let na = 4 and M < N . Then

A{x1,...,xN}[f{a},{z1,...,zM}] = (−1)M
N−M−1∏

j=0

sinh
(
jη +

∑

ℓ

aℓ

)

×A{z1,...,zM}[f{η/2−a},{x}, ĝ
(M)
{a},{x}], (D.16)
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where ĝ
(L)
{a},{x}

is defined by induction for L ≤ N as

ĝ
(N)
{a},{x}

(z) = sinh(a1 + a2 + a3 + a4 − η)
N∏

ℓ=1

[ς(z) − ς(xℓ)], (D.17)

ĝ
(L)
{a},{x}(z) =

f̄
(L)
{η/2−a},{x}(z)

sinh((L+ 1−N)η −
∑

ℓ aℓ)
· lim
z′→∞

f̄
(L+1)
{η/2−a},{x}(z

′) + ĝ
(L+1)
{a},{x}(z

′)

ς(z′)L

− f̄
(L)
{η/2−a},{x}(z) − f̄

(L+1)
{η/2−a},{x}(z)− ĝ

(L+1)
{a},{x}(z). (D.18)

in terms of the function f̄
(L)
{η/2−a},{x} defined as in (D.4) in terms of the sets {η/2 −

a} ≡ {η/2 − a1, . . . , η/2 − ana} and {x} ≡ {x1, . . . , xN}.

Proof. Since M < N , we can write

f{a},{z1,...,zM}(x) = lim
zM+1→∞

. . . lim
zN→∞

f{a},{z1,...,zN}(x), (D.19)

so that

A{x1,...,xN}[f{a},{z1,...,zM}] = lim
zM+1→∞

. . . lim
zN→∞

A{x1,...,xN}[f{a},{z1,...,zN}]

= (−1)N lim
zM+1→∞

. . . lim
zN→∞

A{z1,...,zN}[f{η/2−a},{x1,...,xN}, ĝ
(N)
{a},{x1,...,xN}], (D.20)

where we have used Identity 1. We want now to show by induction that the successive
limits in (D.20) gives the right hand side of (D.16).

Let us first note that

f̄
(j)
{η/2−a},{x}(z) ∼

z→∞
sinh

(
(j + 1−N)η −

∑

ℓ

aℓ

)
[ς(z)]j , (D.21)

so that, in particular,

f̄
(N)
{η/2−a},{x}(z) + ĝ

(N)
{a},{x}(z) = O

(
ς(z)N−1

)
. (D.22)

Let us now suppose that, for some L ≤ N , ĝ(L) is well defined by the above
recursion (D.17)-(D.18), that

lim
zL+1→∞

. . . lim
zN→∞

A{z1,...,zN}[f{η/2−a},{x}, ĝ
(N)
{a},{x}] = (−1)N−L

×
N−L−1∏

j=0

sinh
(
jη +

∑

ℓ

aℓ

)
A{z1,...,zL}[f{η/2−a},{x}, ĝ

(L)
{a},{x}], (D.23)

and that f̄
(L)
{η/2−a},{x}(z) + ĝ

(L)
{a},{x}(z) = O

(
ς(z)L−1

)
. Writing explicitly

A{z1,...,zL}[f{η/2−a},{x}, ĝ
(L)
{a},{x}] =

det1≤i,j≤L

[
f̄
(j)
{η/2−a},{x}(zi) + δj,L ĝ

(L)
{a},{x}(zi)

]

V̂ (z1, . . . , zL)
,

(D.24)
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and decomposing the determinant in the numerator with respect to the last column,
we get

A{z1,...,zL}[f{η/2−a},{x}, ĝ
(L)
{a},{x}] =

L∑

l=1

(−1)L+l

V̂ (z1, . . . , zL)
det
i 6=l
j 6=L

[
f̄
(j)
{η/2−a},{x}(zi)

]

×
[
f̄
(L)
{η/2−a},{x}(zl) + ĝ

(L)
{a},{x}(zl)

]
. (D.25)

Let us remark that, in each of the first L − 1 terms, the only dependence in zL is
contained in the determinant, whereas in the last term l = L it is contained in the

last factor
[
f̄
(L)
{η/2−a},{x}(zL) + ĝ

(L)
{a},{x}(zL)

]
. Taking the respective limits zL → ∞ in

all these terms, we obtain,

A{z1,...,zL}[f{η/2−a},{x}, ĝ
(L)
{a},{x}] −→

zL→∞

L−1∑

l=1

(−1)L+l sinh

(
(L−N)η −

∑

ℓ

aℓ

)

×

deti 6=l,i<L
j<L−1

[
f̄
(j)
{η/2−a},{x}(zi)

]

V̂ (z1, . . . , zL−1)

[
f̄
(L)
{η/2−a},{x}(zl) + ĝ

(L)
{a},{x}(zl)

]

+

deti<L
j<L

[
f̄
(j)
{η/2−a},{x}(zi)

]

V̂ (z1, . . . , zL−1)
lim

z′→∞

f̄
(L)
{η/2−a},{x}(z

′) + ĝ
(L)
{a},{x}(z

′)

ς(z′)L−1
, (D.26)

in which we have used (D.21) for taking the limit in the first L − 1 terms, and the
fact that the remaining limit is well defined in the last term. Hence, recomposing the
determinant in (D.26), we obtain that

lim
zL→∞

A{z1,...,zL}[f{η/2−a},{x}, ĝ
(L)
{a},{x}] = − sinh

(
(N − L)η +

∑

ℓ

aℓ

)

×A{z1,...,zL}[f{η/2−a},{x}, ĝ
(L−1)
{a},{x}] (D.27)

with

f̄
(L−1)
{η/2−a},{x}(z) + ĝ

(L−1)
{a},{x}(z) = −f̄

(L)
{η/2−a},{x}(z) − ĝ

(L)
{a},{x}(z)

+
f̄
(L−1)
{η/2−a},{x}(z)

sinh((L−N)η −
∑

ℓ aℓ)
lim

z′→∞

f̄
(L)
{η/2−a},{x}(z

′) + ĝ
(L)
{a},{x}(z

′)

ζ(z′)L−1
. (D.28)

It remains to notice that, by construction

f̄
(L−1)
{η/2−a},{x}(z) + ĝ

(L−1)
{a},{x}(z) = O

(
ς(z)L−2

)
, (D.29)

which ends the proof of the recursion.
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E Determinant identities: transformation into general-

ized Slavnov determinants

In this appendix, we explain how to transform quantities of the form (5.8), for
two arbitrary functions f and g and a set of arbitrary parameters {z1, . . . , zN} ≡
{x1, . . . , xL1} ∪ {y1, . . . , yL2}, into some generalization of the Slavnov determinant
[108].

Throughout this appendix we will use the following shortcut notations:

X(λ) =

L1∏

ℓ=1

[
ς(λ)− ς(xℓ)

]
, (E.1)

Xk(λ) =
∏

ℓ 6=k

[
ς(λ) − ς(xℓ)

]
, (E.2)

ϕ{x}(λ) =
sinh(2λ− η)

sinh(2λ+ η)

X(λ+ η)

X(λ− η)
, (E.3)

and

Xg
f,k =−

g(xk)

f(−xk) sinh(2xk) sinh ηXk(xk)Xk(xk − η)
, (E.4)

=
g(xk) sinh(2xk − η)

f(−xk)X ′(xk)X(xk − η)
, (E.5)

with ς(λ) given as in (D.3).

E.1 A simple case: L1 = L2 with one on-shell set of parameters

Identity 5. We suppose that L1 = L2 ≡ L, and that the parameters x1, . . . , xL are
on-shell, i.e. that they satisfy the equations:

f(−xk)− f(xk)ϕ{x}(xk) = 0, k = 1, . . . , L. (E.6)

Then

A{x}∪{y}[f, g] =
L∏

j=1

(
sinh η f(−xj) sinh 2xj

) V̂ (x1 −
η
2 , . . . , xL − η

2 )

V̂ (x1 +
η
2 , . . . , xL + η

2 )

×

(
1 +

L∑

k=1

Xg
f,k

)
detL

[∑
ǫ∈{+,−} f(ǫyi)

Xk(yi+ǫη)
ς(yi)−ς(xk)

]

V̂ (xL, . . . , x1) V̂ (y1, . . . , yL)
. (E.7)

Proof. We introduce an auxiliary 2L × 2L matrix D̃ with coefficients D̃j,k given by
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the following relations:

X
(+)
k (λ) X

(−)
k (λ) =

2L∑

j=1

D̃j,k ς(λ)j−1, 1 ≤ k ≤L,

X(+)(λ) X
(−)
k (λ) =

2L∑

j=1

D̃j,L+k ς(λ)j−1, 1 ≤ k ≤L. (E.8)

Here we have defined X(±)(λ), X
(±)
k (λ) as the following polynomials in ς(λ):

X(±)(λ) =
L∏

ℓ=1

[
ς(λ)− ς(xℓ ± η/2)

]
, (E.9)

X
(±)
k (λ) =

L∏

ℓ=1
ℓ 6=k

[
ς(λ)− ς(xℓ ± η/2)

]
, 1 ≤ k ≤ L. (E.10)

The determinant of this matrix can be computed as in [1, 102]. We obtain

det
2L

D̃ = V̂
(
xL +

η

2
, . . . , x1 +

η

2

)
V̂
(
xL −

η

2
, . . . , x1 −

η

2

) L∏

k=1

X
(−)
k

(
xk +

η

2

)
. (E.11)

Computing the product of A{x}∪{y}[f, g] with the determinant of the matrix D̃,
we obtain

A{x}∪{y}[f, g] · det
2L

D̃ =
det2L G

V̂ (x1, . . . , xL, y1, . . . , yL)
, (E.12)

where G is a block matrix:

G = det
2L

(
G(1,1) G(1,2)

G(2,1) G(2,2)

)
. (E.13)

The blocks G(a,b) in (E.13) are L × L matrices. More precisely, the first block
G(1,1) is the following diagonal matrix:

G
(1,1)
i,k = δi,k

(
f(−xi) X

(+)
i

(
xi −

η

2

)
X

(−)
i

(
xi −

η

2

)

+ f(xi) X
(+)
i

(
xi +

η

2

)
X

(−)
i

(
xi +

η

2

))
. (E.14)

Using simple trigonometric relation,

[
ς(λ±η/2)− ς(xℓ +η/2)

][
ς(λ±η/2)− ς(xℓ −η/2)

]
=
[
ς(λ)− ς(xℓ)

][
ς(λ±η)− ς(xℓ)

]
,
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we can rewrite this matrix as

G
(1,1)
i,k = −δi,kXi(xi)

(
f(−xi)

X(xi − η)

sinh(2xi − η) sinh η
− f(xi)

X(xi + η)

sinh(2xi + η) sinh η

)
,

which vanishes due to the equations (E.6). It means in particular that the explicit
form of the matrix G(2,2) is irrelevant and that

det
2L

G = (−1)L det
L

G(1,2) det
L

G(2,1). (E.15)

The matrix G(1,2) is a diagonal matrix with a rank 1 addition:

G
(1,2)
i,k = δi,k f(−xi)X

(+)
(
xi −

η

2

)
X

(−)
i

(
xi −

η

2

)
+ g(xi). (E.16)

Its determinant can easily be computed:

det
L

G
(1,2)
i,k =

L∏

k=1

(
− sinh η sinh 2xk f(−xk) Xk(xk) Xk(xk − η)

)

×


1−

L∑

j=1

g(xj)

f(−xj) sinh 2xj sinh ηXj(xj)Xj(xj − η)


 . (E.17)

Finally, the matrix G(2,1) is a Slavnov-type matrix:

G
(2,1)
i,k =

∑

ǫ∈{+,−}

f(ǫyi) X
(+)
k

(
yi + ǫ

η

2

)
X

(−)
k

(
yi + ǫ

η

2

)

=
∑

ǫ∈{+,−}

f(ǫyi) Xk(yi)Xk(yi + ǫη). (E.18)

Now combining all the terms together we obtain the identity (E.7).

Let us mention that, if f coincides with the function fε,ε (5.9), then the system of
equations (E.6) coincides with the Bethe equations resulting from the homogeneous
T-Q functional equation (4.40).

We would also like to stress that in (E.7) the function g(λ) appears only in the
irrelevant normalization coefficients.

E.2 The case of two arbitrary sets of parameters

Let us now turn to the most general situation in which the two sets of variables,
as well as the functions f and g, are arbitrary. We will distinguish two different
cases according to whether the cardinality of the two sets of variables are equal
(L1 = L2 ≡ L) or different (L1 < L2).
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Identity 6. Let L1 = L2 ≡ L. Then

A{x}∪{y}[f, g] =
V̂ (x1 −

η
2 , . . . , xL − η

2 )

V̂ (x1 +
η
2 , . . . , xL + η

2 )

(
1 +

L∑

k=1

Xg
f,k

)

×
detL S̄x,y[f, g]

V̂ (xL, . . . , x1) V̂ (y1, . . . , yL)
, (E.19)

where the L× L matrix S̄x,y is given by

[
S̄x,y[f, g]

]
i,k

=
∑

ǫ∈{+,−}

f(ǫyi) X(yi + ǫη)

[
f(−xk)

ς(yi + ǫη2 )− ς(xk +
η
2 )

−
f(xk)ϕ{x}(xk)

ς(yi + ǫη2 )− ς(xk −
η
2 )

+
f(−xk)− f(xk)ϕ{x}(xk)

1 +
∑L

ℓ=1X
g
f,ℓ

L∑

j=1

Xg
f,j

ς(yi + ǫη2 )− ς(xj −
η
2 )

]

+
g(yi)

X(yi)

f(−xk)− f(xk)ϕ{x}(xk)

1 +
∑L

ℓ=1 X
g
f,ℓ

. (E.20)

Remark E.1. All the extra terms with respect to Identity 5 are proportional to the
quantity f(−xk)− f(xk)ϕ{x}(xk) which vanishes if the equations (E.6) are satisfied.

Proof. The proof follows the same lines as the proof of Identity 5 with a slightly
different auxiliary (2L) × (2L) matrix C̃ with coefficients C̃j,k given by the following
relations:

X(+)(λ) X
(−)
k (λ) =

2L∑

j=1

C̃j,k ς(λ)j−1, 1 ≤ k ≤L,

X
(+)
k (λ) X(−)(λ) =

2L∑

j=1

C̃j,L+k ς(λ)j−1, 1 ≤ k ≤L. (E.21)

Here the polynomials X(±)(λ) and X
(±)
k (λ) are defined by (E.9) and (E.10). The

determinant of the matrix C̃ can easily be computed:

det
2L

C̃ = V̂
(
xL +

η

2
, . . . , x1 +

η

2

)
V̂
(
xL −

η

2
, . . . , x1 −

η

2

) L∏

k=1

X(+)
(
xk −

η

2

)
. (E.22)

Similarly as in the proof of Identity 5, we can write

A{x}∪{y}[f, g] · det
2L

C̃ =
det2L G

V̂ (x1, . . . , xL, y1, . . . , yL)
, (E.23)

with

G =

(
G̃(1,1) G̃(1,2)

G̃(2,1) G̃(2,2)

)
. (E.24)
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The matrices G̃(a,b) can here be written in the following form:

G̃
(1,b)
i,k = G

(1,b)
i,k + g(xi), G̃

(2,b)
i,k = G

(2,b)
i,k + g(yi), b = 1, 2,

where G(1,1) and G(1,2) are L× L diagonal matrices with elements

G
(1,1)
i,k = δi,k f(−xi) X

(+)
(
xi −

η

2

)
X

(−)
i

(
xi −

η

2

)
, (E.25)

G
(1,2)
i,k = δi,k f(xi) X

(+)
i

(
xi +

η

2

)
X(−)

(
xi +

η

2

)
, (E.26)

and G(2,1) and G(2,2) are L× L matrices with elements

G
(2,1)
i,k =

∑

ǫ∈{+,−}

f(ǫyi)
X(+)(yi + ǫη2 ) X

(−)(yi + ǫη2 )

ς(yi + ǫη2 )− ς(xk −
η
2 )

, (E.27)

G
(2,2)
i,k =

∑

ǫ∈{+,−}

f(ǫyi)
X(+)(yi + ǫη2 ) X

(−)(yi + ǫη2 )

ς(yi + ǫη2 )− ς(xk +
η
2 )

. (E.28)

We now use the following formula for the determinant of block matrix:

det
2L

(
G̃(1,1) G̃(1,2)

G̃(2,1) G̃(2,2)

)
= det

L
G̃(1,1) det

L

(
G̃(2,2) − G̃(2,1) G̃(1,1)−1

G̃(1,2)
)
. (E.29)

Since G̃(1,1) is the sum of a diagonal invertible matrix with a rank 1 matrix it is
possible to compute its determinant

det G̃(1,1) =


1 +

L∑

j=1

(
G
(1,1)
j,j

)−1
g(xj)


 detG(1,1), (E.30)

and its inverse by the Sherman-Morrison formula:

(
G̃(1,1)

)−1

i,k
= δi,k

(
G
(1,1)
i,i

)−1
−

(
G
(1,1)
i,i

)−1
g(xi)

(
G
(1,1)
k,k

)−1

1 +
∑L

j=1

(
G
(1,1)
j,j

)−1
g(xj)

. (E.31)

Then after straightforward but cumbersome computations we obtain the expression
(E.19).

Identity 7. Let L1 < L2. Then

A{x}∪{y}[f, g] =
V̂ (x1 −

η
2 , . . . , xL1 −

η
2 )

V̂ (x1 +
η
2 , . . . , xL1 +

η
2 )

detL2 S̃x,y[f, g]

V̂ (xL1 , . . . , x1) V̂ (y1, . . . , yL2)
, (E.32)
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where

[
S̃x,y[f, g]

]
i,k

=
∑

ǫ∈{+,−}

f(ǫyi) X(yi + ǫη)

×

[
f(−xk)

ς(yi + ǫη2 )− ς(xk +
η
2 )

−
f(xk)ϕ{x}(xk)

ς(yi + ǫη2 )− ς(xk −
η
2 )

]
if k ≤ L1, (E.33)

and

[
S̃x,y[f, g]

]
i,k

=
∑

ǫ∈{+,−}

f(ǫyi) X(yi + ǫη)

{
ς(yi + ǫη/2)k−L1−1

− δk,L2

L1∑

j=1

Xg
f,j

ς(yi + ǫη2 )− ς(xj −
η
2 )

}
+ δk,L2

g(yi)

X(yi)
if k > L1. (E.34)

Proof. Once again, the proof follows the lines of [1]. As before we introduce an
auxiliary (L1 +L2)× (L1 +L2) matrix C̃ with coefficients C̃j,k given by the following
relations:

X(+)(λ) X
(−)
k (λ) =

L1+L2∑

j=1

C̃j,k ς(λ)j−1, 1 ≤ k ≤L1,

X
(+)
k (λ) X(−)(λ) =

L1+L2∑

j=1

C̃j,L1+k ς(λ)j−1, 1 ≤ k ≤L1,

X(+)(λ) X(−)(λ) Wk(λ) =

L1+L2∑

j=1

C̃j,2L1+k ς(λ)j−1, 1 ≤ k ≤ L2 − L1. (E.35)

Here the polynomials X(±)(λ) are defined by (E.9) while X
(±)
k (λ) by (E.10) and

Wk(λ) is the following polynomials in ς(λ):

Wk(λ) =

S∏

ℓ=1
ℓ 6=k

[
ς(λ) − ς(wℓ)

]
, 1 ≤ k ≤ S = L2 − L1, (E.36)

where w1, . . . , wS are arbitrary pairwise distinct auxiliary variables. Note in particular
that, for k ≤ 2L1, C̃j,k = 0 if j > 2L1 and C̃2L1,k = 1. Note also that C̃L1+L2,k = 1 for
k > 2L1. The determinant of this matrix can be computed as in [1, 102]. We obtain

det
L1+L2

C̃ = V̂ (wS , . . . , w1) V̂
(
xL1 +

η

2
, . . . , x1 +

η

2
, xL1 −

η

2
, . . . , x1 −

η

2

)
. (E.37)

Computing the product of A{x}∪{y}[f, g] with the determinant of the matrix C̃,
we obtain:

A{x}∪{y}[f, g] · det
L1+L2

C̃ =
detL1+L2 G

V̂ (x1, . . . , xL1 , y1, . . . , yL2)
, (E.38)
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where G is given as the following block matrix:

G =

(
G(1,1) G(1,2) G(1,3)

G(2,1) G(2,2) G(2,3)

)
. (E.39)

In this expression, G(1,1) and G(1,2) are L1 × L1 matrices with elements given by
(E.25) and (E.26) for 1 ≤ i, k ≤ L1, whereas G(2,1) and G(2,2) are L2 × L1 matrices
with elements given by (E.27) and (E.28) for 1 ≤ i ≤ L2 and 1 ≤ k ≤ L1. Finally, we
have extra blocks G(1,3) and G(2,3). G(1,3) is a L1 × S rank 1 matrix with elements:

G
(1,3)
i,k = g(xi) =

S∑

j=1

CW
j,k

{
δj,S g(xi)

}
, (E.40)

for 1 ≤ i ≤ L1 and 1 ≤ k ≤ S, whereas G(2,3) is a L2 × S matrix with elements

G
(2,3)
i,k =

∑

ǫ∈{+,−}

f(ǫyi) X
(+)
(
yi + ǫ

η

2

)
X(−)

(
yi + ǫ

η

2

)
Wk

(
yi + ǫ

η

2

)
+ g(yi)

=

S∑

j=1

CW
j,k

{ ∑

ǫ∈{+,−}

f(ǫyi)X
(+)
(
yi + ǫ

η

2

)
X(−)

(
yi + ǫ

η

2

)
ς(yi + ǫη/2)j−1

+ δj,S g(yi)

}
. (E.41)

In these expressions, CW is the S×S matrix with determinant V̂ (wS , . . . , w1) defined
from the set of variables {w1, . . . , wS} by the relations

Wk(λ) =

S∑

j=1

CW
j,k ς(λ)j−1. (E.42)

Hence we obtain

det
L1+L2

G = det
L1+L2

(
G(1,1) G(1,2) G̃(1,3)

G(2,1) G(2,2) G̃(2,3)

)
· V̂ (wS , . . . , w1), (E.43)

where the elements of the L1 × S block G̃(1,3) and of the L2 × S block G̃(2,3) are
respectively given by

G̃
(1,3)
i,k = δk,S g(xi),

G̃
(2,3)
i,k =

∑

ǫ∈{+,−}

f(ǫyi)X
(+)
(
yi + ǫ

η

2

)
X(−)

(
yi + ǫ

η

2

)
ς(yi + ǫη/2)k−1 + δk,S g(yi).

It is easy to compute by blocks the determinant in (E.43) using the fact that G(1,1)

is a diagonal invertible matrix. It leads to the final expression (E.32).
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[36] N. Crampé, E. Ragoucy and D. Simon, Eigenvectors of open XXZ
and ASEP models for a class of non-diagonal boundary conditions,
J. Stat. Mech. 2010, P11038 (2010).

[37] G. Filali and N. Kitanine, Partition function of the trigonometric SOS model
with reflecting end, J. Stat. Mech. L06001 (2010).

[38] G. Filali and N. Kitanine, Spin chains with non-diagonal boundaries and
trigonometric SOS model with reflecting end, SIGMA 7, 012 (2011).

[39] G. Filali, Elliptic dynamical reflection algebra and partition function of SOS
model with reflecting end, J. Geom. Phys. 61, 1789 (2011).

[40] J. Cao, W.-L. Yang, K. Shi and Y. Wang, Off-diagonal Bethe ansatz
solutions of the anisotropic spin-1/2 chains with arbitrary boundary fields,
Nucl. Phys. B 877, 152 (2013).

[41] X. Xu, K. Hao, T. Yang, J. Cao, W.-L. Yang and K.-J. Shi, Bethe ansatz
solutions of the τ2-model with arbitrary boundary fields, JHEP 11, 80 (2016).

[42] S. E. Derkachov, G. P. Korchemsky and A. N. Manashov, Baxter Q-operator and
separation of variables for the open SL(2,R) spin chain, JHEP 10, 053 (2003).

48

http://dx.doi.org/10.1088/1742-5468/2007/09/P09006
http://dx.doi.org/10.1016/S0550-3213(01)00585-5
http://dx.doi.org/10.1088/0305-4470/36/45/003
http://dx.doi.org/10.1088/1742-5468/2006/08/P08006
http://dx.doi.org/10.1016/j.nuclphysb.2007.09.011
http://dx.doi.org/10.1016/j.physletb.2005.12.022
http://dx.doi.org/10.1088/1742-5468/2007/09/P09009
http://dx.doi.org/10.1088/1742-5468/2010/11/P11038
http://dx.doi.org/10.1088/1742-5468/2010/06/L06001
http://dx.doi.org/10.3842/SIGMA.2011.012
http://dx.doi.org/10.1016/j.geomphys.2011.01.002
http://dx.doi.org/10.1016/j.nuclphysb.2013.10.001
http://dx.doi.org/10.1007/JHEP11(2016)080
http://dx.doi.org/10.1088/1126-6708/2003/10/053


[43] H. Frahm, A. Seel and T. Wirth, Separation of variables in the open XXX
chain, Nucl. Phys. B 802, 351 (2008).

[44] H. Frahm, J. H. Grelik, A. Seel and T. Wirth, Functional Bethe ansatz methods
for the open XXX chain, J. Phys A: Math. Theor. 44, 015001 (2011).

[45] L. Amico, H. Frahm, A. Osterloh and G. Ribeiro, Integrable spin-boson models
descending from rational six-vertex models, Nucl. Phys. B 787(3), 283 (2007).

[46] L. Amico, H. Frahm, A. Osterloh and T. Wirth, Separation of variables for
integrable spin-boson models, Nucl. Phys. B 839(3), 604 (2010).

[47] G. Niccoli, Non-diagonal open spin-1/2 XXZ quantum chains by separation of
variables: Complete spectrum and matrix elements of some quasi-local opera-
tors, J. Stat. Mech. 2012, P10025 (2012).

[48] S. Faldella and G. Niccoli, SOV approach for integrable quantum models asso-
ciated with general representations on spin-1/2 chains of the 8-vertex reflection
algebra, J. Phys. A: Math. Theor. 47, 115202 (2014).

[49] S. Faldella, N. Kitanine and G. Niccoli, Complete spectrum and scalar products
for the open spin-1/2 XXZ quantum chains with non-diagonal boundary terms,
J. Stat. Mech. 2014, P01011 (2014).

[50] N. Kitanine, J. M. Maillet and G. Niccoli, Open spin chains with generic in-
tegrable boundaries: Baxter equation and Bethe ansatz completeness from sep-
aration of variables, J. Stat. Mech. 2014, P05015 (2014).

[51] H. Fan, B.-Y. Hou, K.-J. Shi and Z.-X. Yang, Algebraic Bethe
ansatz for the eight-vertex model with general open boundary conditions,
Nucl. Phys. B 478(3), 723 (1996).

[52] J. Cao, H.-Q. Lin, K.-J. Shi and Y. Wang, Exact solution of XXZ spin chain
with unparallel boundary fields, Nucl. Phys. B 663, 487 (2003).

[53] W.-L. Yang and Y.-Z. Zhang, On the second reference state and complete
eigenstates of the open XXZ chain, JHEP 04, 044 (2007).
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