HAL
open science

First Measurement of the Q^{2} Dependence of the Beam-Normal Single Spin Asymmetry for Elastic Scattering off Carbon

A. Esser, M. Thiel, P. Achenbach, K. Aulenbacher, S. Baunack, J. Beričič, D.
Bosnar, L. Correa, M. Dehn, M.O. Distler, et al.

To cite this version:

A. Esser, M. Thiel, P. Achenbach, K. Aulenbacher, S. Baunack, et al.. First Measurement of the Q^{2} Dependence of the Beam-Normal Single Spin Asymmetry for Elastic Scattering off Carbon. Physical Review Letters, 2018, 121 (2), pp.022503. 10.1103/PhysRevLett. 121.022503 . hal-01851161

HAL Id: hal-01851161
https://hal.science/hal-01851161
Submitted on 9 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

First Measurement of the Q^{2}-dependence of the Beam-Normal Single Spin Asymmetry for Elastic Scattering off Carbon

A. Esser, ${ }^{1}$ M. Thiel,,${ }^{1, *}$ P. Achenbach, ${ }^{1}$ K. Aulenbacher, ${ }^{1}$ S. Baunack, ${ }^{1}$ J. Beričič, ${ }^{2}$ D. Bosnar, ${ }^{3}$ L. Correa, ${ }^{4}$ M. Dehn, ${ }^{1}$ M. O. Distler, ${ }^{1}$ H. Fonvieille, ${ }^{4}$ I. Friščicić, ${ }^{3,}{ }^{\dagger}$ M. Gorchtein, ${ }^{1}$ S. Heidrich, ${ }^{1}$ P. Herrmann, ${ }^{1}$ M. Hoek, ${ }^{1}$ S. Kegel, ${ }^{1}$ Y. Kohl, ${ }^{1}$ T. Kolar,,${ }^{5,2}$ H.-J. Kreidel, ${ }^{1}$ F. E. Maas, ${ }^{1}$ H. Merkel, ${ }^{1}$ M. Mihovilovič,,${ }^{1,2}$ J. Müller, ${ }^{1}$ U. Müller, ${ }^{1}$ F. Nillius, ${ }^{1}$ C. Palatchi, ${ }^{6}$ K. D. Paschke, ${ }^{6}$ J. Pochodzalla, ${ }^{1}$ B. S. Schlimme, ${ }^{1}$ M. Schoth, ${ }^{1}$ F. Schulz, ${ }^{1}$ S. Širca, ${ }^{5,2}$ B. Spruck, ${ }^{1}$ S. Štajner, ${ }^{2}$ V. Tioukine, ${ }^{1}$ A. Tyukin, ${ }^{1}$ A. Weber, ${ }^{1}$ and C. Sfienti ${ }^{1}$
${ }^{1}$ Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
${ }^{2}$ Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
${ }^{3}$ Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
${ }^{4}$ Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, BP 10448, F-63000 Clermont-Ferrand, France
${ }^{5}$ Department of Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
${ }^{6}$ University of Virginia, Charlottesville, Virginia 22903, USA

Abstract

We report on the first Q^{2}-dependent measurement of the beam-normal single spin asymmetry A_{n} in the elastic scattering of 570 MeV vertically polarized electrons off ${ }^{12} \mathrm{C}$. We covered the Q^{2} range between 0.02 and $0.05 \mathrm{GeV}^{2} / c^{2}$ and determined A_{n} at four different Q^{2} values. The experimental results are compared to a theoretical calculation that relates A_{n} to the imaginary part of the twophoton exchange amplitude. The result emphasizes that the Q^{2}-behaviour of A_{n} given by the ratio of the Compton to charge form factors cannot be treated independently of the target nucleus.

PACS numbers: $13.40 .-\mathrm{f}, 25.30 . \mathrm{Bf}, 27.20 .+\mathrm{n}$

Over the last 60 years electron scattering experiments with ever increasing precision offer manifold opportunities to study the structure of nuclei. The technological progress nowadays allows to perform parity-violating electron scattering experiments [1] with statistical and systematic errors better than one part per billion (ppb). Such experiments at the precision frontier enable measurements of the strangeness contribution to the vector form factors of the proton [2-4], the weak charge of the proton and the weak mixing angle $\theta_{W}[5-7]$ as well as the neutron-skin thickness of heavy nuclei [8]. Moreover, driven by recent theoretical predictions new experiments are planned to determine parity-violating asymmetries as a portal to physics beyond the Standard Model [9, and references therein]. Two boson exchange corrections play a major role in interpreting many experiments at the precision frontier, but represent a considerable difficulty theoretically. Such is the case with the γZ-box in PVES [10], the γW-box in nuclear β-decays [11], and the 2γ-box in the form-factor measurements [12]. Dispersion relations have established themselves as the main tool for such calculations. The imaginary part of the two boson exchange diagram serves as input in these calculations, so a direct measurement of this imaginary part provides a valuable test of theoretical calculations. Experimentally, the imaginary (absorptive) part of the two-photon exchange amplitude can be accessed through the beamnormal single spin asymmetry (or so-called transverse asymmetry) A_{n} in elastic scattering of electrons polarized perpendicular to the scattering plane off unpolarized nucleons. The transverse asymmetry arises from the interference of the one-photon and two-photon exchange
${ }_{53}$ amplitudes [13] and is defined as

$$
\begin{equation*}
A_{n}=\frac{\sigma_{\uparrow}-\sigma_{\downarrow}}{\sigma_{\uparrow}+\sigma_{\downarrow}} \tag{1}
\end{equation*}
$$

${ }_{54}$ where $\sigma_{\uparrow}\left(\sigma_{\downarrow}\right)$ represents the cross section for the elas${ }_{55}$ tic scattering of electrons with spin vector \vec{P}_{e} paral${ }_{56}$ lel (antiparallel) to the normal vector, defined by $\hat{n}=$ $\left(\vec{k} \times \overrightarrow{k^{\prime}}\right) /\left|\vec{k} \times \overrightarrow{k^{\prime}}\right| . \vec{k}$ and $\overrightarrow{k^{\prime}}$ are the three-momenta of the incident and scattered electron, respectively. The experimentally measured asymmetry $A_{\text {exp }}$ is related to A_{n} by

$$
\begin{equation*}
A_{\exp }=A_{n} \vec{P}_{e} \cdot \hat{n} \tag{2}
\end{equation*}
$$

FIG. 1. (color online). The excitation energy spectrum shows the acceptance of the spectrometer without Cherenkov cut (black line) and of the Cherenkov detector only (filled area). By changing the magnetic field of the spectrometer the elastic peak was moved until it matched the position of the Cherenkov detector.

79 alized the forward inclusive model to nuclear targets

$$
\begin{equation*}
A_{n} \sim C_{0} \cdot \log \left(\frac{Q^{2}}{m_{e}^{2} c^{2}}\right) \cdot \frac{F_{\text {Compton }}\left(Q^{2}\right)}{F_{\mathrm{ch}}\left(Q^{2}\right)} \tag{3}
\end{equation*}
$$

${ }_{80}$ For the Compton slope parameter only data for the pro-
${ }_{81}$ ton and for ${ }^{4} \mathrm{He}$ are available, suggesting that the relevant
${ }_{82} Q^{2}$-behaviour for A_{n} given by the ratio of the Compton
${ }_{83}$ to charge form factors

$$
\begin{equation*}
\frac{F_{\text {Compton }}\left(Q^{2}\right)}{F_{\text {ch }}\left(Q^{2}\right)} \approx \exp \left[-4 Q^{2} /\left(\mathrm{GeV}^{2} / c^{2}\right)\right] \tag{4}
\end{equation*}
$$

84 i

101

is roughly independent of the target. The calcula-
tion was compared to forward scattering data $\left(\theta \leq 6^{\circ}\right)$ taken at the Jefferson Laboratory on ${ }^{1} \mathrm{H},{ }^{4} \mathrm{He},{ }^{12} \mathrm{C}$, and ${ }^{208} \mathrm{~Pb}$ [18]: while the calculation is in good agreement with the observed asymmetries for lighter targets, it failed completely to reproduce the ${ }^{208} \mathrm{~Pb}$ data. This has a major impact on parity-violating electron scattering experiments, since the transverse asymmetry, arising from a non-zero vertical component of the beam polarization, produces false asymmetries that contribute substantially to the total systematic error. 12 This contribution will become even more crucial for ${ }_{130}$ future experiments [9, 25] aiming at a precision much higher than ever attained before. Systematic studies of A_{n} dependencies on the momentum transfer, the nuclear charge and the energy are absolutely mandatory to benchmark the current theoretical description of A_{n}, thus providing also new insight into the structure of nuclei. The aim of our measurement is to perform the first systematic study of the Q^{2}-dependence of the beam-normal single spin asymmetry for light nuclei. The experiment was performed at the spectrometer

FIG. 2. (color online). Top: Comparison between the asymmetry in the integrated signal from a beam current monitor observed in a run with beam stabilization off (red) and with beam stabilization on (black). Bottom: Raw asymmetry determined for one PMT of the Cherenkov detector in spectrometer B as a function of the current asymmetry for a run without beam stabilization. to vertical orientation using a pair of solenoids, located 120 shortly behind the Wien filter. The orientation of the electron beam polarization vector was alternating between up and down by setting the high voltage of a fast Pockels cell in the optical system of the polarized electron source. The orientation as well as the degree of the polarization have been determined and monitored during the whole measuring campaign [29]. This was accomplished using a Mott polarimeter [30] downstream of the 3.5 MeV injector linac and a Møller polarimeter [31] close to the interaction point in the spectrometer hall. The degree of the vertical polarization was deduced by subtracting the horizontal polarization components from the total polarization and was on average $P_{e}=82.7 \% \pm 0.3 \%$ (stat.) $\pm 1.1 \%$ (syst.).
For the measurement of the beam-normal single spin ${ }_{35}$ asymmetry A_{n} a $20 \mu \mathrm{~A}$ continuous-wave beam of ${ }_{36}$ vertically polarized electrons was impinging on a 2.27 ${ }^{37} \mathrm{~g} / \mathrm{cm}^{2}$ carbon target. Elastically scattered electrons 138 were focused onto two fused silica detectors positioned in ${ }_{39}$ the focal plane of the two high-resolution spectrometers ${ }_{140} \mathrm{~A}$ and B of the A1 setup [32], located to the left and

TABLE I. Measured beam-normal single spin asymmetries for each spectrometer and kinematical setting with the corresponding statistical and systematic uncertainty contributions in units of parts per million (ppm).

Spectrometer	B	B	B	A	A
Setup	3	2	1	1	$2 \& 3$
$Q^{2}\left(\mathrm{GeV}^{2} / c^{2}\right)$	0.023	0.030	0.041	0.039	0.049
A_{n}	-15.984	-20.672	-21.933	-23.877	-28.296
Energy fluctuation δE	0.007	0.006	0.009	0.009	0.001
Current asymmetry δI	0.013	0.015	0.011	0.011	0.010
Vertical beam position δy	0.003	0.001	0.005	0.005	0.002
Horizontal beam position δx	0.001	0.003	0.005	0.023	0.012
Vertical angle δy^{\prime}	0	0	0	0	0
Horizontal angle δx^{\prime}	0.003	0.001	0.001	0.001	0.001
Gate length	0.013	0.010	0.010	0.010	0.008
P_{e} measurement	0.245	0.385	0.480	0.523	0.491
PMT gain variation	0.380	0.130	1.100	0.170	0.030
Total systematic error	0.664	0.551	1.621	0.752	0.555
Statistical error	1.061		1.515	0.967	1.372

right side of the incoming beam, respectively. The fused ${ }_{17}$ silica detectors were oriented at 45° with respect to 17 the direction of the electrons in the spectrometer. The ${ }_{178}$ sizes of the two fused silica bars $\left((300 \times 70 \times 10) \mathrm{mm}^{3}\right.$ and $\left.(100 \times 70 \times 10) \mathrm{mm}^{3}\right)$ were chosen according to the different focal plane geometries of the two spectrometers. The produced Cherenkov light was detected by 25 mm fused silica-window photomultipliers directly attached to 18 the fused silica bars: five for the detector in spectrometer ${ }_{184}$ A and three for the detector in spectrometer B.
To reach a sufficiently high count rate, the detectors had to be placed in the most forward direction. 18 Limited by the distance between the exit beam line 18 and its quadrupole, spectrometer A was placed at 18 its minimum angle of 23.50° which corresponds to 190 $Q^{2}=0.04 \mathrm{GeV}^{2} / c^{2}$, at a beam energy of 570 MeV . In accordance with its smaller focal plane, spectrometer B was placed at 20.61° to cover the same momentum range. This measurement allowed for identification of possible false asymmetries due to helicity correlated changes 19 of the beam parameters. With this configuration the 19 extracted asymmetries for each spectrometer were equal 197 In order to minimize helicity-correlated beamwithin the experimental uncertainties (see Fig. 3), thus 198 fluctuations, four dedicated stabilization systems confirming a negligible contribution to beam-related false 199 (beam current, beam energy, slow position (DC), and asymmetries. Therefore three more Q^{2} measurements 200 fast position (AC)) were used at MAMI. The beam were performed during the same experiment by changing 201 parameters were measured by several monitors, placed the kinematical configuration of the spectrometers: 202 in the A1 beamline, which were read out together with one measurement at $Q^{2}=0.05 \mathrm{GeV}^{2} / c^{2}$ by placing 203 the detector signals. As an example, Fig. 2 (top panel) spectrometer A at 25.90° and two more measurements at 204 shows the impact of the beam current stabilization $Q^{2}=0.03 \mathrm{GeV}^{2} / c^{2}$ and $Q^{2}=0.02 \mathrm{GeV}^{2} / c^{2}$ by placing 205 system on the current asymmetry.
spectrometer B at 17.65° and 15.11°, respectively. $\quad 206$ Moreover, calibration runs over the full beam current During the experiment, the fused silica detectors were 207 range as well as in a narrow region around $20 \mu \mathrm{~A}$ were operated in two different modes. The position of the 208 performed regularly to monitor the functioning and the Cherenkov detectors within the elastic line was opti- 209 linearity of the PMTs.
mized during the low current mode $(I=50 \mathrm{nA})$. For

FIG. 3. (color online). The transverse asymmetry $A_{\exp }$ for each PMT of the detectors placed in spectrometer A (filled red circles) and spectrometer B (open blue circles) at $Q^{2}=25$ $0.04 \mathrm{GeV}^{2} / c^{2}$. By inserting an additional $\lambda / 2$-wave plate into the laser beam of the polarized electron source, the general sign changed.

We calculate the raw detector asymmetry $A_{\text {raw }}$ as

$$
\begin{equation*}
A_{\mathrm{raw}}=\frac{N_{e}^{\uparrow}-N_{e}^{\downarrow}}{N_{e}^{\uparrow}+N_{e}^{\downarrow}} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
A_{\exp }=A_{\mathrm{raw}}-c_{1} A_{I}-c_{2} \Delta x-c_{3} \Delta y-c_{4} \Delta x^{\prime}-c_{5} \Delta y^{\prime}-c_{6} \Delta E \tag{6}
\end{equation*}
$$

where $N_{e}^{\uparrow(\downarrow)}$ denotes the integrated detector signal which is proportional to the detected number of elastically scattered electrons for each polarization state. Even though with our dedicated stabilization systems helicity correlated changes of the beam parameters were suppressed as well as possible, tiny remnants can always lead to false asymmetries. Therefore, correction factors $c_{i}(i=1 \ldots 6)$ were applied to the beam current asymmetry A_{I}, the horizontal and vertical beam position differences Δx and Δy, the horizontal and vertical beam angle differences Δx^{\prime} and Δy^{\prime}, and the beam energy difference ΔE to determine the experimental asymmetry

Typically, the correction factors would be derived from a multidimensional regression of the measured asymmetry versus the corresponding parameters. However, due to the extraordinary high-quality beam during the experimental campaign, the variation of the parameters was too ${ }^{28}$ narrow compared to the width of the asymmetry to ap- ${ }^{286}$ ply this method. Instead, analytical calculations as well as simulations were used to determine the individual correction factors. The factor c_{1} in Eq. 6 must be equal to one, since the luminosity changes linearly with the beam current. This correlation has been verified in runs taken without the beam-current stabilization system as illustrated in Fig. 2 (bottom panel). The factors c_{2} and c_{3} for position related false asymmetries were estimated by

FIG. 4. (color online). Extracted transverse asymmetries A_{n} for the detectors placed in spectrometer A (filled red circles) and spectrometer B (open blue circles) versus Q^{2}. The width of the given boxes indicates the full width at half maximum of the Q^{2} distribution which is determined by the intersection of the angular acceptance of the spectrometers and the geometry of the detectors. The statistical and systematic uncertainties are given by the error bars and the height of the boxes, respectively. The theoretical calculation of Ref. [24] (black line) is shown for comparison. The given bands belong to the uncertainty of the Compton slope parameter of 10% (dark grey) and 20% (light grey).

320

as calculated in the model of Ref. [24] upon neglecting corrections $\sim Q^{2} / E^{2}$. The given uncertainty of the theoretical prediction is obtained from two sources: the Compton slope parameter for the ${ }^{12} \mathrm{C}$ target and terms not enhanced by the large logarithm (see [24] for details). The two are expected to be independent and are added in quadrature. The Compton slope parameter introduced in Eq. 4 was allowed to vary within 10% and 20% of the central value, corresponding to the inner and outer band shown in Fig. 4. The comparison of the data with the model indicates that the assumption of the dominance of the $\log \left(Q^{2} / m_{e}^{2} c^{2}\right)$ term and the independence of $F_{\text {Compton }}\left(Q^{2}\right) / F_{\mathrm{ch}}\left(Q^{2}\right)$ of the target nucleus in Eq. 4, successfully describing ${ }^{1} \mathrm{H}$ and ${ }^{4} \mathrm{He}$ data, reproduces the ${ }^{12} \mathrm{C}$ data only within a 20% uncertainty. Even larger deviations could be expected for heavier nuclei.
Future measurements at MAMI will investigate the transverse asymmetry for heavier nuclei at the same Q^{2} values. This will serve, together with the current data set, as an important input for future theoretical calculations to achieve a better control of the two-photon exchange mechanism and they might contribute to a deeper understanding of the structure of nuclei.

We acknowledge the MAMI accelerator group and all the workshop staff members for outstanding support. We thank Krishna Kumar for many stimulating discussions and valuable suggestions in the preparation of the exper322 iment. This work was supported by the PRISMA (Preci-

2 [21] D. Androic et al. (G0), Phys. Rev. Lett. 107, 022501 (2011), arXiv:1103.3667 [nucl-ex].
[22] D. Balaguer Ríos et al., Phys. Rev. Lett. 119, 012501 (2017).
[23] S. P. Wells et al. (SAMPLE), Phys. Rev. C63, 064001 (2001), arXiv:nucl-ex/0002010 [nucl-ex].
[24] M. Gorchtein and C. J. Horowitz, Phys. Rev. C77, 044606 (2008), arXiv:0801.4575 [nucl-th].
[25] J. Benesch et al. (MOLLER), (2014), arXiv:1411.4088 [nucl-ex].

382 [26] H. Herminghaus, A. Feder, K. H. Kaiser, W. Manz, and 389 [30] K. H. Steffens, H. G. Andresen, J. Blume-Werry, H. Von Der Schmitt, Nucl. Instrum. Meth. 138, 1 (1976). 390
${ }^{385}$ (1997)
386 [28] K. Aulenbacher, Eur. Phys. J. ST 198, 361 (2011). ${ }_{393}^{392}$
387 [29] B. S. Schlimme et al., Nucl. Instrum. Meth. A850, 54394 [32] K. I Blom 388 (2017), arXiv:1612.02863 [physics.acc-ph]. Mainz (2015).
${ }^{38}$ (1998). F. Klein, K. Aulenbacher, and E. Reichert, Nucl. Instrum. Meth. A325, 378 (1993).
[31] A. Tyukin, Master Thesis, Inst. f. Kernphysik, JGU

