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Abstract We present a general concept for evolutionary, collaborative, multiscale inversion of
geophysical data, specifically applied to the construction of a first-generation Collaborative Seismic Earth
Model. This is intended to address the limited resources of individual researchers and the often limited
use of previously accumulated knowledge. Model evolution rests on a Bayesian updating scheme, simplified
into a deterministic method that honors today’s computational restrictions. The scheme is able to harness
distributed human and computing power. It furthermore handles conflicting updates, as well as variable
parameterizations of different model refinements or different inversion techniques. The first-generation
Collaborative Seismic Earth Model comprises 12 refinements from full seismic waveform inversion, ranging
from regional crustal- to continental-scale models. A global full-waveform inversion ensures that regional
refinements translate into whole-Earth structure.

Plain Language Summary Modern geophysical data are often characterized by their
distribution across multiple spatial scales, meaning that high-density local or regional deployments
are complemented by coarser global-scale recordings. Examples include data from seismic, electromagnetic,
or Global Positioning System (GPS) measurements. While data volumes increase steadily, the actually usable
amount of information is limited by the available human and computing power of individual researchers.
Here we present a new framework that supports collaborative and evolutionary inversion of geophysical
data, where prior knowledge from earlier data can be incorporated. We exemplify our method with a
seismological application, that is, the construction of a Collaborative Seismic Earth Model of the 3-D
internal structure of our planet.

1. Introduction
1.1. Evolving Multiscale Data and Inversion
Modern geophysical data are often characterized by their distribution across multiple spatial scales, mean-
ing that high-density local or regional deployments are complemented by coarser global-scale recordings.
Examples include data from seismic (e.g., Díaz et al., 2009; Meltzer et al., 1999), electromagnetic (e.g., Chulliat
et al., 2017), gravity (e.g., International Gravimetric Bureau [http://bgi.omp.obs-mip.fr]), or Global Positioning
System (GPS) (e.g., Kreemer et al., 2014) measurements. While data volumes increase steadily, the actually
usable amount of information is limited by the available human and computing power of individual research
groups. It therefore becomes increasingly difficult to assimilate all data consistently into one model using
modern inversion techniques. The problem may be overcome by an inversion framework that supports
collaborative and evolutionary inversion, where prior knowledge from earlier data can be incorporated.

Though being only one class of data, seismic recordings exemplify many of these challenges. Seismic data
used for tomography are key to understand the Earth’s structure and dynamics (e.g., Bunge et al., 2003; Colli
et al., 2017; Koelemeijer et al., 2015; Trampert et al., 2004), explore and monitor reservoirs and volcanoes
(e.g., Koulakov et al., 2013; Prieux et al., 2013), characterize earthquakes (e.g., Chen et al., 2007; Hejrani et al.,
2017; Liu et al., 2004), and predict the ground motion they induce (e.g., Graves et al., 2010; Lee et al., 2014).
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Performing multiscale tomography is essential, as failure to resolve crustal details may induce artificial
anisotropy (Bozdağ & Trampert, 2008; Ferreira et al., 2010; Fichtner, Kennett et al., 2013) that may be misinter-
preted as mantle flow. While the need to jointly resolve crust and mantle is well recognized, prior knowledge
with a level of detail known from crustal studies (e.g., Chen et al., 2007; Tape et al., 2010) is hardly incorpo-
rated in (global) tomography (e.g., Bozdağ et al., 2016; Koelemeijer et al., 2015; Schaeffer & Lebedev, 2013).
The combination of resource limitations and insufficient use of prior knowledge prevent tomography from
achieving the ideal of a multiscale model that assimilates the actually available wealth of data. A side effect
are discrepancies between models, especially in parameters with strong dependence on small-scale structure,
for example, anisotropy and attenuation (Dalton et al., 2008; Ferreira et al., 2010).

1.2. Objectives and Outline
The main objective of this work is the development of an inversion framework that addresses the challenges of
evolving multiscale data by meeting the following design criteria: (a) Enable a collaborative and evolutionary
model construction to harness distributed human and computing power. (b) Consistently incorporate prior
knowledge, accumulated during previous model updates. (c) Allow for variable parameterizations of different
model refinements and of potentially different inversion techniques.

In section 2 we present the methodological developments, using the example of a Collaborative Seismic Earth
Model (CSEM) for illustration. This includes the construction of an initial model, a Bayesian updating scheme
for evolutionary multiscale refinement, pragmatic simplifications demanded by current computational limi-
tations, and the handling of apparently conflicting updates. Following the general developments, we more
specifically consider the first-generation CSEM in section 3, which comprises 12 refinements from full seismic
waveform inversion, ranging from regional crustal to global scales.

2. Evolutionary, Collaborative, Multiscale Inversion

In the following, we present a scheme for evolutionary, collaborative, multiscale inversion. It is designed to
ensure computational efficiency, easy handling, completeness and flexibility of the parametrization, a clean
refinement procedure, and the ability to handle both successive and simultaneous updates. Though being
per se application independent, the general development is exemplified by the CSEM, which serves as a
large-scale use case that allows us to identify bottlenecks. In this context, we abandoned an earlier prototype
based on a whole-Earth refinable tetrahedral mesh (Afanasiev et al., 2016). While elegant in theory, it was too
difficult to handle in practice, already requiring supercomputing resources for trivial tasks such as visualization
and the addition of a refinement region.

2.1. Initial Model
We begin with the construction of an initial model. A physical parameter of the initial model m̂0 as a function
of position x, for example, an elastic parameter, can be expressed in terms of N0 basis functions bi

0(x):

m̂0(x) =
N0∑
i=1

m̂i
0 bi

0(x) . (1)

These may include polynomials, spherical harmonics, blocks, or a combination of these. The initial model
vector m̂0 = (m̂1

0,… , m̂N0
0 )T is the maximum-likelihood model of the prior probability density function (pdf),

p0(m0), the shape of which will be specified in section 2.3.

In the specific context of the CSEM, the initial model is designed to be conservative in the sense of not con-
taining structure that seismic data cannot modify, while still matching our longest-period data to within half a
cycle. It is built upon Preliminary Reference Earth Model (PREM; Dziewoński & Anderson, 1981). Since PREM’s
220-km discontinuity has been suggested to be only a regional feature (e.g., Gu et al., 2001), it is replaced by
a linear gradient, as shown in Figures S2 and S3 in the supporting information. Superimposed are the S veloc-
ity variations of S20RTS (Ritsema et al., 1999), to which P velocity variations are scaled (Ritsema & van Heijst,
2002). The crust of PREM is replaced by the crustal model of (Meier et al., 2007), derived from surface wave
inversion. Images of the initial model are presented in Figures S5 to S16.

Since bandlimited data can only constrain smooth, effective versions of discontinuities (Capdeville et al.,
2013), we implemented the initial Moho as a gradient over ∼5 km, derived from the original crustal model by
Backus averaging (Backus, 1962). This choice ensures that the effective sharpness of the Moho and thickness
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of the crust can be simply adjusted by not making an explicit distinction between crust and mantle during
the inversion.

2.2. Model Parametrization and Bayesian Regional Updating
From the initial model the CSEM evolves through regional refinements that can be described within a rigor-
ous Bayesian framework. While computational limitations currently enforce pragmatic simplifications (section
2.3), the idealistic Bayesian approach defines possible future improvements and offers solutions to emerging
issues, such as simultaneous updates within overlapping regions.

The construction of a regionally refined version m1(x) of m0(x) starts with the addition of N1 basis functions
bi

1(x) to the initial model representation,

m1(x) =
N0∑
i=1

mi
0 bi

0(x) +
N1∑
i=1

mi
1 bi

1(x) . (2)

The coefficient vector m1 of the new basis functions may, for example, represent smaller-scale variations rel-
ative to the initial model. They are initially constrained by the prior p0(m1|m0), which is conditioned on the
initial model itself because the probability of newly added variations depends on the structure that is already
present. The prior contains, for instance, parameter correlations derived from mineral-physics arguments or
information on the allowable variations relative to the initial model. Through the assimilation of additional
regional data, d1, we obtain a conditional likelihood function L0(m1|m0). Combining prior and likelihood via
Bayes’ theorem, yields the conditional posterior for the variations m1,

p(m1|m0) = k p0(m1|m0)L0(m1|m0) , (3)

with normalization factor k. While both likelihood and posterior depend on d1, this is omitted in the interest of
a more succinct notation, especially in later developments. The joint posterior for the initial model coefficients
m0 and the variations m1 follows from the conjunction of the conditional posterior p(m1|m0) with the initial
model prior p0(m0),

p(m0,m1) = p(m1|m0)p0(m0) . (4)

This process can be iterated using p(m0,m1) as new prior, adding basis functions with coefficients m2 for
further refinement with a new data set d2, and then using Bayes’ theorem and the conjunction of pdfs to
obtain the next posterior or next state of the CSEM, p(m0,m1,m2). The basis functions of different refinements
need not be the same.

The geometric parametrization of the CSEM differs strongly from the earlier prototype, defined on a large,
regionally refined, tetrahedral mesh (Afanasiev et al., 2016). Each regional refinement m̂n retains its genuine
basis functions bi

n(x) used during its construction. The CSEM is thus a library of continuously defined updates
that are assembled when the elastic properties of the Earth at some position x are queried. A set of positions
may then be used for visualization or as grid points in a numerical wave propagation solver. The main benefits
of the library versus the large, single mesh are greater flexibility in removing and adding refinement regions,
as well as vastly reduced computational requirements for visualization and the extraction of submodels.

2.3. Pragmatic Simplifications
To avoid the computationally unfeasible sampling of high-dimensional model spaces, the pure Bayesian
approach requires simplifications. The first of these consists in the assumption that all pdfs are Gaussian,
described by a mean and a covariance. The mean, or equivalently the maximum-likelihood model m̂1 of
p(m1|m0), is then not computed via Bayes’ theorem, as in equation (3), but approximated by minimizing a
quadratic misfit functional 𝜒 , starting from the maximum-likelihood initial model m̂0. Repeating the process
leads to the representation of the current state’s maximum-likelihood model in terms of a sum of successive
regional refinements, as illustrated in Figure 1.

The Hessian H of 𝜒 evaluated at m̂1 equals the inverse covariance, C−1
1 of the posterior p(m1|m0). While

H cannot be computed or stored explicitly, computationally manageable approximations can be estimated
(e.g., Bui-Thanh et al., 2013; Fichtner & Trampert, 2011a; Fichtner & van Leeuwen, 2015). Furthermore, arbi-
trary Hessian-vector products can be evaluated efficiently using second-order adjoints (e.g., Fichtner &
Trampert, 2011b; Santosa & Symes, 1988), which is sufficient for uncertainty analysis and gradient-based
optimization schemes.
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Figure 1. Technical implementation and updating of the CSEM. (a) Schematic illustration of successive refinements, m̂1, m̂2, … , being added to the smooth
maximum-likelihood initial model m̂0. Each update is treated as a new item in an ordered library, keeping the parametrization used during its construction.
Different updates may be parametrized differently, that is, have different types of basis functions. (b) Concrete example of SV velocity, vsv, at 120-km depth in the
initial model (top) and in the generation-1 model of the CSEM (bottom). Refinement regions visible in this view include Europe, Turkey, the Sea of Marmara
region, the North Atlantic, the South Atlantic, and North America. CSEM = Collaborative Seismic Earth Model.

2.3.1. Apparent Inconsistencies and Dependent Updates
In the simplified scheme, the coefficients of already existing basis functions, m0,… ,mn, remain unchanged
when a new regional refinement with coefficients mn+1 is added. Instead of honoring potential dependencies
of previous on newly added coefficients, the approximation of the maximum-likelihood refinement m̂n+1 is
based on the minimization of a misfit functional with coefficients m̂0,… , m̂n as fixed initial model and not
by finding the actual maximum of the joint posterior p(m0,… ,mn,mn+1). The approximation error of the
maximum-likelihood model may lead to inconsistencies, meaning that previously assimilated data sets, di≤n

cannot be explained adequately anymore.

The occurrence of simplification-related inconsistencies would in principle require reiterations of previously
incorporated refinements. Alternatively, the Gaussian approximation allows us to replace repeated iterations
by the solution of a least squares problem. To illustrate the concept, we combine two sets of model param-
eters, m′

1 and m′′
1 , for instance from successive updates, into a joint parameter vector m1 = (m′

1,m′′
1 ). We

then consider two updates with conditional priors p′
0(m1|m0) and p′′

0 (m1|m0), and with likelihood functions
L′0(m1|m0) and L′′0 (m1|m0), Bayes’ theorem from equation (3) modifies to

p(m1|m0) = k p′
0(m1|m0)L′0(m1|m0) p′′

0 (m1|m0)L′′0 (m1|m0) . (5)

Within the simplified framework of section 2.3, the maximum-likelihood models, m̂′
1 and m̂′′

1 , and poste-
rior covariances, C′

1 and C′′
1 , of the individual posteriors, p′

0(m1|m0)L′0(m1|m0) and p′′
0 (m1|m0)L′′0 (m1|m0), are

determined by independent misfit minimizations. It follows that the joint maximum-likelihood model, m̂1, of
p(m1|m0) is the minimum of

− log p(m1|m0) =
1
2
(m1 − m̂′

1)
T C′

1
−1(m1 − m̂′

1) +
1
2
(m1 − m̂′′

1 )
T C′′

1
−1(m1 − m̂′′

1 ) − log k . (6)

Noting that C′
1 and C′′

1 are the Hessians H′ and H′′ from the independent inversions; m̂1 can be approximated
iteratively from equation (6) using efficiently computable Hessian-vector products (e.g., Fichtner & Trampert,
2011b; Santosa & Symes, 1988). Rearranging equation (6) and substituting the minimum m̂1 yields the joint
(inverse) posterior covariance,

C−1
1 = C′

1
−1 + C′′

1
−1 = H′ + H′′ . (7)
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Equation (7) indicates that the action of C−1
1 on a model (vector), needed for resolution analysis and further

optimization, is simply the sum of actions of the individual Hessians on the model.

Equations (6) and (7) remove an apparent inconsistency by finding the solution that optimally agrees with
the independent updates. While illustrated for updates of the initial model, the equations straightforwardly
generalize to later-stage updates of the CSEM, using the concept introduced in section 2.2.

In the current CSEM, described in detail in section 3, no regional refinement has so far led to an apparent incon-
sistency that would require the actual execution of the above-derived scheme. This indicates that individual
regional refinements indeed tend to improve the CSEM as a whole, at least at the scales that we currently
consider. A more detailed discussion of this aspect can be found in section 4.

3. CSEM Generation 1
3.1. Data
The first-generation CSEM includes 12 partially overlapping subregions, refined using three-component
waveform data at variable minimum periods, T . These are, in the order in which they have been incorporated,
Australasia (T = 40 s; Fichtner et al., 2010), Europe (T = 50 s; Fichtner, Trampert et al., 2013), the North Atlantic
(T = 25 s; Rickers et al., 2013), Turkey (T = 10 s; Fichtner, Saygin et al., 2013), the South Atlantic (T = 55 s; Colli
et al., 2013), the Western Mediterranean (T = 15 s; Fichtner & Villaseñor, 2015), the wider Japanese Islands
region (T = 20 s; Simute et al., 2016), the Iberian Peninsula (T = 8 s), Japan (T = 15 s), North America (T = 30 s),
Southeast Asia (T = 20 s), and Western Turkey (T = 8 s; Çubuk Sabuncu et al., 2017). For the Iberian Peninsula
and Southeast Asia, we incorporated vertical-component ambient noise correlations, working under the sim-
plifying assumption that correlations are proportional to interstation Rayleigh wave Green’s functions (e.g.,
Lobkis & Weaver, 2001; Wapenaar & Fokkema, 2006).

To ensure consistency of regional refinements that do not overlap with previous ones, we incorporate
three-component waveforms from 223 events recorded globally by 149 high-quality broadband stations at
T = 55 s. The global data, assimilated between the updates in the Japanese Islands and the Western Mediter-
ranean, translate the effects of regional refinements into improved whole-Earth structure. As illustrated in the
supporting information Figure S4, the global-scale update changes S velocities by less than 1% within the
uppermost mantle, mostly in response to large regional-scale updates in Eurasia and Australasia.

A data summary is presented in Figure 2 in the form of a surface ray density plot. Since full-waveform inver-
sion used for the updates exploits a wide range of wave types with different finite-frequency wave paths, ray
coverage is only a rough, though useful, proxy for coverage. It illustrates, for instance, that western Europe,
Japan, Australasia, and North America are already well covered, whereas the Pacific, central Africa, and central
Asia remain to be improved. In total, the current CSEM incorporates waveform data from 948 events (includ-
ing virtual events of noise correlations) recorded at 8,975 stations. The total number of source-receiver pairs
is 160,797.

3.2. Inversion
To ensure that 3-D wave propagation and finite-frequency effects are properly taken into account, all updates
to the CSEM have been performed using full-waveform inversion, following the approach of Fichtner et al.
(2010), to which we refer for technical aspects outside the focus of this work. We quantified differences
between observed and synthetic seismograms using time-frequency phase misfits (Fichtner et al., 2008),
which we reduced iteratively until observations were explained to within the errors or the iteration stalled. To
solve the forward and adjoint equations, we employed the spectral-element solvers SPECFEM (Komatitsch &
Tromp, 2002a, 2002b) and SES3D (Fichtner et al., 2009; Gokhberg & Fichtner, 2016) at the global and regional
scales, respectively. Region-specific inversion details and resolution analyses can be found in the references
given in Figure 3.

Since the initial model is not the result of an inversion but an assembly of independent models, a consistent
prior p0(m) was not available and thus had to be designed. For simplicity, we set p0(m) to be uniform. For
all subsequent priors, p0(mn+1|m0,… ,m1), we chose a covariance that enforces spatial correlation length
scales approximately equal to the minimum wavelength. This common choice prevents the appearance of
artifacts that are unlikely to be resolved. In all cases, we did not include correlations between physical model
parameters.

FICHTNER ET AL. 5
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Figure 2. Data coverage proxy. Shown are minor-arc great circles connecting earthquake epicenters (red stars) and noise correlation virtual sources (yellow stars)
to stations (green triangles). Gray scale represents the minimum period, T , of the waveform data used within a refinement region. Pale blue is used for the global
data set with T = 55 s. Marked refinement regions are Australasia (Aus), Europe (Eu), Iberian Peninsula (Ib), wider Japanese Islands (Jp1), Japan (Jp2), North
America (NAm), North Atlantic (NAt), South Atlantic (SAt), Southeast Asia (SEA), Turkey (Tu), Western Mediterranean (WMe), and Western Turkey (WTu).
Refinement regions Ib, JP2, and WTu are marked by a white box for better visibility. The total number of distinct sources (earthquakes plus virtual sources from
noise correlations) is 948. With 8,975 distinct stations , they provide 160,797 distinct source-station pairs.

Though the CSEM has flexibility to represent variations in any viscoelastic parameter, we restricted the inver-
sions to parameters that are well resolved by the intermediate-period waveform data, that is, P, SH, and SV
velocities. Furthermore, we allowed for 3-D density variations in order to avoid artifacts (Blom et al., 2017).
Within the lower mantle, the CSEM is practically isotropic, though this has not been enforced explicitly.

3.3. Structural Model
A selection of slices through the SV velocity distribution of the current CSEM are presented in Figure 3. A more
comprehensive gallery is shown in the supporting information Figures S5 to S16. Since a geologic interpre-
tation is not among the objectives of this work, these are mostly intended to provide an impression of the
multiscale nature of the CSEM. The images illustrate the large variation in length scales, ranging from ∼10 km
in the crust of Western Turkey to ∼3,000 km in the Central Pacific upper mantle. Most of the significant devi-
ations relative to the initial model are confined to the upper 500 km, that is, approximately the maximum
penetration depth of regional long-period surface and body waves.

To roughly separate crust and mantle visually, the 15-km slice is shown in a mixed color scale, with gray scale
above and colors below 4.0 km/s. The SV velocity distribution is marked by the outline of the continents and
the smooth lateral variations of the initial crustal model (Meier et al., 2007). More detailed structure appears
where regional-scale shorter-period data (<15 s) have been assimilated, that is, in western Europe, Turkey,
and Japan.

From 70- to 200-km depth, the model mostly represents upper-mantle structure, an exception being the
Tibetan Plateau. A general feature are anomalous SV velocities below −15%, compared to around −10% in
S20RTS (Ritsema et al., 1999). In contrast, the largest positive SV variations of ∼10% are similar to those in
S20RTS. While a clear causal relationship between anomalously low velocities, data, and inversion scheme

FICHTNER ET AL. 6
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Figure 3. Distribution of SV velocity, vsv, at depths of 15 km (top), 70 km (middle), and 200 km (bottom). At 15-km depth, gray scale roughly corresponds to
mantle velocities (4.0–4.8 km/s), and colors from red over white to blue roughly indicate crustal velocities (2.7–4.0 km/s). Key to marked features in regional
close-ups: (a) a.KM: Kazdağ Massif, a.KVP: Kula Volcanic Province, and a.MM: Menderes Massif; (b) b.JB: Japan Basin, b.SB: Shikoku Basin, and b.TB: Tsushima Basin;
(c) c.PB: Pannonian Basin and c.TTL: Tornquist-Teisseyre Line; (d) d.GC: Gawler Craton, d.KB: Kimberley Block, d.NFB: New England Fold Belt, d.PB: Pilbara Block,
and d.YB: Yilgarn Block; (e) e.ACS: Apennine-Calabria Slab, e.AS: Alboran Slab, and e.LPB: Liguro-Provena̧l Basin; (f ) f.PS: Pacific Slab, f.PSS: Philippine Sea Slab, and
f.UA: Ulleung Anomaly.

is hard to establish, the iterative improvements of full-waveform inversion and its ability to account for
wavefront healing are likely to contribute (e.g., Igel & Gudmundsson, 1997; Malcolm & Trampert, 2011;
Wielandt, 1987).

4. Discussion and Conclusions

The CSEM is not intended to be a long-wavelength 3-D reference for tomography or a community model in
the sense of the Southern California Earthquake Center (SCEC) models (e.g., Small et al., 2017). Instead, it is
designed as a framework for successive refinements on all scales and for the consistent use of prior knowledge.
As such, it primarily tries to respond to current data and computing challenges, without claiming to be the
only possible solution.

The updating scheme from section 2.2 is the foundation upon which the CSEM operates. Its generality makes
it translatable to other domains, for example, the inversion of multiscale gravity, electromagnetic, or Global
Positioning System (GPS) data. The current need to simplify suggests future improvements, especially in
uncertainty quantification. Though the framework enables the incorporation of prior knowledge already at
the level of the initial model, we decided not to do so, because previously constructed models usually have
different parameterizations or lack sufficiently complete uncertainty information. Thus, the ability of the CSEM
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to take advantage of prior knowledge is to be understood in the sense of an update using information from
all previous updates.

With the exception of the global update, the regional updates included in the current CSEM are sufficiently
independent in coverage and frequency content to avoid the need for reiterations or the application of the
scheme from section 2.3.1 in order to ensure consistency. Though this need not be the case for future refine-
ments, our experience from global-scale updates indicates that only one or two iterations are required to
account for regional updates, thus keeping the computational costs at a reasonable level.

In this context, we note that the iterative refinement of the CSEM, including potential reiterations, consti-
tutes an implementation of a stochastic gradient method. Instead of updating with a complete misfit function
including all data (also from future deployments), only a quasi-random subset of the data is used within an
updating cycle. Since convergence of stochastic descent has been shown theoretically and empirically (e.g.,
Díaz & Guitton, 2011; Kiwiel, 2001), we expect that the CSEM should in fact converge towards a global opti-
mum as new updates are added in a quasi-random fashion, provided of course that cycle skipping issues
continue to be carefully avoided.

Though all updates have so far been based on intermediate-period waveform data, the generality of the
framework allows for the incorporation of other data types, including derived data. The combination of the
current full-waveform updates with other seismic data types and inversion methods, for example, traveltime
ray tomography, is work in progress.

To facilitate the participation of an increasing number of collaborators, the addition of refinements requires
further automation. This, combined with the prospect of having CSEM hosted by the European Plate Observ-
ing System, will open the model to a wider community.

While multiscale tomography has been applied for at least two decades (e.g., Bijwaard et al., 1998; Karason &
van der Hilst, 2000), the CSEM constitutes, to the best of our knowledge, the first collaborative and evolution-
ary framework for the construction of a multiscale seismic model. Despite imperfections of the early-stage
implementation, the CSEM is operational, and further refinements are in progress.
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