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Abstract: In this paper, we consider linear network systems with unknown inputs. We present
an unbiased recursive algorithm that simultaneously estimates states and inputs. We focus on
delay-` left invertible systems with intrinsic delay ` ≥ 1, where the input reconstruction is
possible only by using outputs up to ` time steps later in the future. By showing an equivalence
with a descriptor system, we state conditions under which the time-varying filter converges to
a stationary stable filter, involving the solution of a discrete-time algebraic Riccati equation.

Keywords: Simultaneous input and state estimation, unknown input, delayed filter, unbiased
estimator, network system, cyber-physical security.

1. INTRODUCTION

Monitoring a network system can require estimating not
only the network state but also unknown inputs affecting
it. For instance, in a social network with a fraction of
the agents being leaders and the rest being followers, the
influence of the leader on the dynamics of the follower
can be thought of as an unknown input, so that unknown
input estimation techniques can be used to understand
how much influence a given leader has on the followers.
Unknown inputs can also represent malicious attacks, such
as denial-of-service attacks, false data injection attacks, or
replay attacks (see Liang et al. (2016) and Slay and Miller
(2007), to cite a few).

The effect of the unknown input on the outputs might
not be immediate, that is, there might be a delay between
the input injection and its measurable effect, due to the
distance between the affected states and the sensors. Such
delay needs to be considered in the estimation: at time k,
when output measurement yh is available for all h ≤ k,
one cannot estimate input uh and state xh for all h ≤ k,
but rather can estimate input for h ≤ k − ` and state for
h ≤ k − `+ 1.

Delay-` unknown input estimation for stochastic linear
systems, in particular for the case of ` = 1, has a rich
literature which can be divided in two categories. The
first one considers systems for which there is no direct
feedthrough between the input and output. An algo-
rithm, which yields minimum-variance unbiased (MVU)
estimates of state and unknown input, with delay 1, was
given in Gillijns and De Moor (2007a) in a centralized
way, while a distributed version was proposed in Esna-
Ashari et al. (2012). In Chavan et al. (2014) the case of
an arbitrary delay was considered, under some restrictive
assumptions on the system matrices. The second category
considers direct feedthrough between the unknown input
and the output. For delay 1, an MVU estimator with a
feedthrough matrix having full column rank was studied
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Fig. 1. Timeline of delay-` estimation.

in Gillijns and De Moor (2007b). The full rank requirement
was relaxed in Yong et al. (2016). For the more general case
of ` > 1, Kirtikar et al. (2011) and Yong et al. (2015) study
the conditions for existence of a state and input estimator
with delay `, and the latter proposes an algorithm, but for
the particular case of ` = 1.

In the present paper, for systems with arbitrary direct
feedthrough, we provide a recursive linear algorithm for
estimating both states and inputs with delay `: at time k,
given output measurements up to yk, an estimate of uk−`
and xk−`+1 is obtained (see Figure 1).

The paper is organized as follows. In Section 2 we state
the problem being studied in this paper and summarize
the preliminary material needed for developing the results,
while we present our main result in Section 3. Section 4
deals with an appropriately chosen numerical example,
while some concluding remarks are presented in Section 5.

Notation: As usual, R and C denote the sets of real
and complex numbers, while E denotes the expectation
operator. A = diag(A1, A2, . . . , AN ) denotes a block-
diagonal matrix whose blocks along the diagonal are
A1, A2, . . . , AN . Ia denotes identity matrix of size a and
0a×b denotes an all-zero matrix with a rows and b columns;
indexes denoting size will be often omitted, if clear from
the context. kerA and ImA denote the kernel and the
range of a matrix A, and dimV denotes the dimension of
a vector space V .



2. PROBLEM FORMULATION

Consider a linear time-invariant system that is subject to
unknown inputs, and whose dynamics are given as follows:{

xk+1 = Axk +Buk + wk
yk = Cxk +Duk + vk

(1)

with state vector xk ∈ Rn, unknown input uk ∈ Rp
and output yk ∈ Rm; the matrices A, B, C, and D
being of appropriate dimensions. Process noise wk and
measurement noise vk are assumed to be white, zero mean,
mutually uncorrelated with covariance matrices Q and R,
respectively.

In what follows, we introduce various notions related to
the joint input and state estimation problem.

Definition 1. (Definition 2.5 Sundaram (2012)). Let ` be
a non-negative integer. The system

{
A,B,C,D} is delay-

` left invertible if the unknown input u0 is uniquely
determined by the initial state x0 and the output sequence
{y0, y1, . . . , y`} (in the absence of noise). The smallest ` for
which this condition is satisfied is called the inherent delay
of the system. �

We define Γ` ∈ R(`+1)m×(`+1)p (known as delay-` left-
invertibility matrix) and N` ∈ R(`(m+n)+m)×(`(p+n)+p) as:

Γ` =


D 0 . . . 0

CB D
.
.
. 0

CAB CB
.
. .

.
. . .

. .
.
.
.

.
.
. .

CA
`−1

B CA
`−2

B . . . . CB D


and

N` =


D 0 . . . . . . . . . . . . 0 0

B −I . . . . . . . . . . . . 0

0 C D . . . . . . . . . 0

0 A B −I . . . . . . 0

. . . . . . . . . . . . . . . . . 0

. . . . . . . . . . . . . . . . . 0

0 . . . . . . . . . . . . . . . . . . C D

 =

[
E 0

F` N`−1

]
,

where E =

[
D 0
B −In

]
, F =

[
0 −C
0 −A

]
, F` =

[
−F
0

]
.

By a suitable re-writing of (1), over ` consecutive time-
steps, the following system of equations is readily obtained:

N`



uk−`
xk−`+1

uk−`+1

xk−`+2

...
uk−1

xk
uk


=



yk−` − Cxk−`
−Axk−`
yk−`+1

0
...

yk−1

0
yk


−



vk−`
wk−`
vk−`+1

wk−`+1

...
vk−1

wk−1

vk


(2)

The following algebraic characterizations for delay-` left
invertibility can be provided in terms of Γ` and N`.

Proposition 2. The following statements are equivalent:

1) The system
{
A,B,C,D} is delay-` left invertible;

2) rank(Γ`) = p+ rank(Γ`−1);
3) rank(N`) = p+ n+ rank(N`−1). �

Proof: Equivalence of items 1) and 2) is stated in Massey
and Sain (1968) (Theorem 4). The proof of equivalence of

items 1) and 3) is based on the same idea, as detailed below
(see Garin (2017) for the case ` = 1). Notice that u0 is
uniquely determined by x0, y0, y1, . . . , y` if and only if both
u0 and x1 are uniquely determined by x0, y0, y1, . . . , y`,
since x1 is completely determined by u0 and x0. From (2),
setting noise to zero, the following is immediate:

[
E 0
F` N`−1

]


u0

x1

u1

x2

...
u`−1

x`
u`


=



y0 − Cx0

−Ax0

y1

0
...

y`−1

0
y`


. (3)

The solution for the first part u0, x1 of the unknown vector
is unique if and only if rank(N`) = p+ n+ rank(N`−1). �

In the noise-free case, it was shown in Sundaram and
Hadjicostis (2007) that delay-` left invertibility and strong

detectability, i.e., rank

[
A− zI B
C D

]
= n + p,∀z ∈ C s.t.

|z| ≥ 1, are necessary and sufficient to ensure the existence
of an observer with delay ` 1 . In the next section, we
will take noise into consideration. Assuming the system is
delay-` left-invertible, we will construct an unbiased linear
estimator for the input and the state. Further assuming
that the system is strongly detectable and satisfies a
suitable reachability condition, we will use results from the
analysis of descriptor systems to ensure the convergence
to stationary stable error dynamics, involving the unique
solution of a discrete-time algebraic Riccati equation.

3. MAIN RESULT

3.1 Construction of a recursive filter with delay `

We consider a filter structure where, at time k, we estimate
uk−` and xk−`+1 as linear functions of the measurements
yk−`+1, . . . , yk and of the previous state estimate x̂k−`,
assumed to be unbiased. Precisely, we look for an estimate
of the following form:[

ûk−`
x̂k−`+1

]
= Mkỹk−`,` , (4)

where the innovation ỹk−`,` is defined as

ỹk−`,` = ȳk−`,` − F`+1

[
0
In

]
x̂k−` (5)

with ȳTk−`,` =
[
yTk−`, 0, y

T
k−`+1, 0, . . . , y

T
k−1, 0, y

T
k

]
.

The matrix Mk will be constructed so that the estimates
are unbiased with minimum error covariance, and then
we will propose an approximation leading to sub-optimal
covariance but simpler implementation.

For this purpose, we set the linear model linking the vari-
ables to be estimated with the available information. In-

1 A delayed observer is an observer capable to reconstruct the state
despite the presence of the unknown input. In our paper, an observer
with delay ` reconstructs xk−`+1 from outputs up to yk; Sundaram
and Hadjicostis (2007) uses a different convention and denotes the
same delay as `− 1.



troducing the notation ε̃k−`,` = F`+1

[
0
In

]
(xk−`− x̂k−`) +

ε̄k−`,`, with

ε̄Tk−`,` =
[
vTk−`, w

T
k−`, v

T
k−`+1, w

T
k−`+1, . . . , v

T
k−1, w

T
k−1, v

T
k

]
,

(2) can be re-written as

[
E
F`

] [
uk−`
xk−`+1

]
+

[
0

N`−1

]
uk−`+1
xk−`+2

...
uk−1
xk
uk

 = ỹk−`,`− ε̃k−`,` . (6)

Assuming that x̂k−` is unbiased, then ε̃k−`,` has zero mean
and covariance Σk−` = E(ε̃k−`,`ε̃

T
k−`,`).

Lemma 3. Assuming that x̂k−` is unbiased, the linear
estimator (4) is unbiased if and only if

Mk

[
E
F`

]
= I and Mk

[
0

N`−1

]
= 0 . (7)

�

Proof: Pre-multiplying (6) by Mk, taking expectation, and
recalling that Eε̃k−` = 0, we obtain

Mk

[
E
F`

][
uk−`

Exk−`+1

]
+Mk

[
0

N`−1

]
uk−`+1

Exk−`+2

...
uk−1

Exk
uk

= E(Mkỹk−`,`).

Recall that Mkỹk−`,` =
[
ûk−`

x̂k−`+1

]
, and that we want this

estimate to be unbiased for all input and state sequence
(we do not allow Mk to be state-dependent). This is true
if and only if the two conditions in (7) are fulfilled. �

When the system is delay-` left invertible, it is always pos-
sible to find a matrix Mk fulfilling the two conditions (7) 2 .
Such a matrix can be written as a product Mk = GkH,
with H

[
0

N`−1

]
= 0, H having full row-rank, and a number

of rows equal to n+m+dim kerNT
`−1, i.e., rows of H form a

basis of ker
[
0, NT

`−1

]
. Pre-multiplying (6) by H, we obtain

H

[
E
F`

] [
uk−`
xk−`+1

]
= Hỹk−`,` −Hε̃k−`,`. (8)

The covariance of Hε̃k−`,` is HΣk−`H
T , which is a positive

definite matrix since H has full row rank. From (8), by
Gauss-Markov theorem, the BLUE estimate is given by[
ûk−`
x̂k−`+1

]
=Pk−`+1

[
ET , FT`

]
HT

(
HΣk−`H

T
)−1

Hỹk−`,`,

(9)
where

Pk−`+1 =
([
ET ,FT`

]
HT

(
HΣk−`H

T
)−1

H
[
E
F`

])−1

(10)

is its error covariance matrix.

Remark : The BLUE estimate (9)-(10) has an expression
which involves the matrix H. However, having fixed one
matrix H such that H

[
0

N`−1

]
= 0, having full row-rank,

and a number of rows equal to n + m + dim kerNT
`−1,

any other matrix H̃ satisfying the same properties can
be obtained as H̃ = JH, for some J square and invertible
matrix (a change of basis of the row space). Then, looking

2 This means that also in the case D = 0 we consider a larger family
of systems than Chavan et al. (2014), where the proposed filter was
unbiased only under further assumptions.

at (9)-(10), it is easy to see that replacing H with JH
gives exactly the same estimate, since J cancels out. The
estimate being the same irrespective of the choice of H, we
can use any construction of H; we will use the following
one. We construct a matrix U2 whose columns form an
orthonormal basis of ker(NT

`−1), as follows. We consider
the (full size) singular value decomposition (svd) N`−1 =
USV T , and the partition U = [U1, U2], where U1 has r
columns and U2 has d = (`− 1)(m+ n) +m− r columns,

r = rankN`−1. Using U2, we define H =

[
In+m 0

0 UT2

]
�.

The difficulty in implementing a filter based on the BLUE
estimate (9)-(10) lies in the error covariance matrix Σk−`.
Below, we propose a simpler albeit suboptimal filter,
where we approximate Σk−` by the block-diagonal matrix

diag(Σ̂k−`, Σ̄`), where Σ̄` = diag(R,Q, · · · , R,Q,R) and

Σ̂k−` =

[
R+ CP xxk−`C

T CP xxk−`A
T

AP xxk−`C
T Q+AP xxk−`A

T

]
. This amounts

at disregarding cross-correlations between x̂k−` and yk−`,
. . . , yk−1. With this approximation, together with the
above construction of H, we can exploit the block-diagonal
structure of these matrices, to obtain a simpler version of
(9)-(10), reminiscent of a Kalman filter. Notice that(

H
[

Σ̂k−` 0

0 Σ̄`

]
HT
)−1

=

[
Σ̂−1

k−`
0

0 (UT
2 Σ̄`U2)−1

]
.

We define Ψ` = FT` U2(UT2 Σ̄`U2)−1UT2 and Ω` = Ψ`F`.
With these definitions, and with the above-mentioned
approximation for Σk−`, from (10) we get

Pk−`+1 =
(
ET Σ̂−1

k−`E + Ω`

)−1

(11)

and (9) becomes[
ûk−`
x̂k−`+1

]
=Pk−`+1

[
ET Σ̂−1

k−`,Ψ`

]
ỹk−`,`.

Recalling the definition of ỹk−`,` (see (5)), one can see

that ỹTk−`,` =
[
(yk−` − CAx̂k−`)T ,−Ax̂Tk−`, ȳTk−`+1,`−1

]
.

Hence, partitioning columns of ET Σ̂−1
k−` in two blocks of

size m and n denoted as ET Σ̂−1
k−` = [K

(1)
k−`,−K

(2)
k−`], we

obtain[
ûk−`
x̂k−`+1

]
=Pk−`+1

(
K

(1)
k−` (yk−` − Cx̂k−`)

+K
(2)
k−`Ax̂k−` + Ψ` ȳk−`+1,`−1

)
. (12)

The proposed recursive filter is summarized in the follow-
ing algorithm.

Algorithm: Delay-` unbiased recursive estimator
for state and unknown input.

Pre-processing: Given system matrices A, B, C, D and
noise covariance matrices R, Q, build:

• E=

[
D 0
B −In

]
, F =

[
0 −C
0 −A

]
, F`=

[
−F

0(`−2)(m+n)+m, p+n

]
,

• N`−1 =


D . . . . . . . . . . . . . . . . . . 0

B −I . . . . . . . . . . . . 0

0 C D . . . . . . . . . 0

0 A B −I . . . . . . 0

. . . . . . . . . . . . . . . . . 0

. . . . . . . . . . . . . . . . . 0

0 . . . . . . . . . . . . . . . . . . C D

, where D appears

` times,



• Σ̄` = diag(R,Q, · · · , R,Q,R), where R appears `
times,

Compute:

• [U, S, V ] = svd(N`−1) and build U2 = U
[

0
Id

]
, d =

`m+ (`− 1)n− rankN`−1

• Ψ` = FT` U2(UT2 Σ̄`U2)−1UT2 , Ω` = Ψ`F`.

Initialization: x̂0, P xx0 > 0.

Filter iterations: for k ≥ `, use x̂k−`, P
xx
k−`, and measure-

ment yk−`, . . . , yk to compute ûk−`, x̂k−`+1 and P xxk−`+1,
as follows.

Extended measurements vector:
ȳk−`+1,`−1 =

[
yTk−`+1, 0, y

T
k−`+2, 0, . . . , y

T
k−1, 0, y

T
k

]T
.

Approximate covariances and gains:

• Σ̂k−` =

[
R+ CP xxk−`C

T CP xxk−`A
T

AP xxk−`C
T Q+AP xxk−`A

T

]
,

• compute Σ̂−1
k−`,

• Pk−`+1 =
(
ET Σ̂−1

k−`E + Ω`

)−1

,

• K(1)
k−` = ET Σ̂−1

k−`
[
Im
0

]
, K

(2)
k−` = −ET Σ̂−1

k−`
[

0
In

]
.

Estimates:[
ûk−`
x̂k−`+1

]
=Pk−`+1

(
K

(1)
k−` (yk−` − Cx̂k−`)

+K
(2)
k−`Ax̂k−` + Ψ` ȳk−`+1,`−1

)
.

Approximate state error covariance:

P xxk−`+1 = [0, In]Pk−`+1

[
0
In

]
.

3.2 Performance analysis

In order to analyze the performance of the proposed filter,
we first show its equivalence with a recursive minimum
variance estimator designed within the linear descriptor
systems framework. We introduce the notation zTk =[
uTk−`−1, x

T
k−`
]
, ȳTk =

[
yTk−`, 0

]
, εTk = −

[
vTk−`, w

T
k−`
]
, and

χk,` = UT2 ȳk−`,`−1 and we refer to Sect. 3.1 for other
notations.

Proposition 4. The system (1) can be written in the fol-
lowing descriptor form{

Ezk+1 = Fzk + ȳk + εk
χk,` = UT2 F`zk + UT2 ε̄k−`,`−1 .

(13)

Proof: Similarly to (6), from (2) we obtain

[
E
F`

] [ uk−`
xk−`+1

]
+
[

0
N`−1

]  uk−`+1
xk−`+2
...
...
xk
uk

 =
[ ȳk
ȳk−`+1,`−1

]
−
[

−F
0(`−1)(m+n).(p+n)

] [ uk−`−1
xk−`

]
−
[ −εk
ε̄k−`+1,`−1

]
.

This can be rewritten as

Ezk+1 = Fzk + ȳk + εk (14)

F`zk+1 +N`−1

 uk−`+1
xk−`+2
...
...
xk
uk

 = ȳk−`+1,`−1 − ε̄k−`+1,`−1.

(15)

Equation (14) is the state equation. Pre-multiplying (15)
with UT2 , noting that UT2 N`−1 = 0, and replacing k + 1

with k, we get UT2 F`zk = UT2 ȳk−`,`−1−UT2 ε̄k−`,`−1, which
gives the measurement equation. �

Notice that (13) is a linear descriptor system, with state zk,
measurements χk,` and known input ȳk. Its process noise
εk has covariance Σ = diag(R,Q), while the measurement
noise UT2 ε̄k−`,`−1 has covariance UT2 Σ̄`U2.

By applying (Darouach et al., 1993b, Thm. 3) and
(Darouach et al., 1993a, Thm. 4) to the descriptor sys-
tem (13), we obtain the following filter and its stability
and convergence properties. We introduce the required
notation and then give the result in Prop. 5 below.

Assuming rank
[

E
UT

2 F`

]
= n + p, let E1 be a non-singular

upper triangular matrix, of size n+ p, obtained as[
E1

0

]
= T

[
E

UT2 F`

]
,

with T an orthogonal matrix; this decomposition can be
obtained using QR factorization. Then, use T to obtain[
F1

F2

]
= T

[
F
0

]
and

[
W1 S1

ST1 W2

]
= T diag(Σ, UT2 Σ̄`U2)TT .

Let Q
1/2
s denote any square root of

Qs = E−1
1

(
W1 − S1W

−1
2 ST1

)
E−T

1

and let Fs = E−1
1

(
F1 − S1W

−1
2 F2

)
.

We also introduce the following discrete-time algebraic
Riccati equation (DARE)

P = FsPF
T
s − FsPFT2

(
F2PF

T
2 +W2

)−1
F2PF

T
s +Qs.

(16)
With this notation in place, we have the following result.

Proposition 5. (Darouach et al. (1993b) Thm. 3 and
Darouach et al. (1993a) Thm. 4). If

i) rank

[
E

UT2 F`

]
= n+ p;

ii) rank

[
zE − F
UT2 F`

]
= n+ p, ∀z ∈ C s.t. |z| ≥ 1,

then there exists a recursive estimator ẑk−`+1 given by

P̄−1
k+1 = ET (Σ + FP̄kF

T )−1E + FT` U2(UT2 Σ̄`U2)−1UT2 F`,
(17)

ẑk+1 = P̄k+1E
T (Σ + FP̄kF

T )−1(F ẑk + ȳk)

+ P̄k+1F
T
` U2(UT2 Σ̄`U2)−1χk+1,`. (18)

Furthermore, if

iii) the pair (Fs, Q
1/2
s ) has no unreachable mode on the

unit circle, i.e., rank [ zI−Fs Q
1/2
s ] = p + n, ∀z ∈ C s.t.

|z| = 1,

then the DARE (16) has a unique solution P , P̄k converges
exponentially fast to P , and the corresponding steady-
state filter is stable. �

We will now show that the estimator obtained in Sect. 3.1
is equivalent to the filter in Prop. 5, and hence inherits its
convergence and stability.

Proposition 6. Given x̂k−` and P xxk−`, use an arbitrary

ûTk−`−1 to set ẑTk =
[
ûTk−`−1, x̂

T
k−`
]
, and let P̄k be such

that [0, In] P̄k
[

0
In

]
= P xxk−`, other entries of P̄k being



arbitrarily chosen, provided P̄k > 0. Then, the estimates
and covariance matrices from (12)-(11) and those from
(17)-(18) are related as follows:[

ûk−`
x̂k−`+1

]
= ẑk+1 and Pk−`+1 = P̄k+1. �

Proof: The proof is immediate by noting that Σ̂k−` = Σ+

FPk−`F
T and F ẑk + ȳk =

[
yk−` − Cx̂k−`
−Ax̂k−`

]
. �

Prop. 6 means that the algorithm described in Sect. 3.1
and the filter for the descriptor system (13) (running for
k ≥ `) give exactly the same estimates, provided they are
consistently initialized. Hence, they also share the same
convergence properties. The two lemmas below show the
relation between properties of the system (1) (delay-` left-
invertibility and strong detectability) and the conditions
in Prop. 5 concerning the descriptor system (13).

Lemma 7. If the system is delay-` left invertible, then

rank

[
E

UT2 F`

]
= n+ p. �

Proof: To prove that rank
[

E
UT

2 F`

]
= n + p, we will prove

that
[

E
UT

2 F`

]
w = 0 implies w = 0. The delay-` left

invertibility condition rank(N`) = p + n + rank(N`−1)
can be equivalently rephrased as: rank

[
E
F`

]
= p + n and

Im
[
E
F`

]
∩Im

[
0

N`−1

]
= {0}. Notice that

[
E

UT
2 F`

]
= H

[
E
F`

]
,

with H =
[
In+m 0

0 UT
2

]
. By definition of U2, Im(U2) =

ker(NT
`−1), which implies that Im(H) = ker

[
0, NT

`−1

]
and

hence ker(H) = Im
[

0
N`−1

]
. If
[

E
UT

2 F`

]
w = 0, then Hv = 0,

with v =
[
E
F`

]
w. This implies v ∈ Im

[
E
F`

]
∩ kerH, and

hence v = 0. Then also w = 0, since rank
[
E
F`

]
= n+ p. �

Lemma 8. If rank

[
A− zI B
C D

]
= n+p,∀z ∈ C s.t. |z| ≥ 1,

then rank

[
zE − F
UT2 F`

]
= n+ p, ∀z ∈ C s.t. |z| ≥ 1.

Proof: Notice that [zE − F ] =
[
zD C
zB A−zI

]
, so that

rank [zE − F ] = rank
[
A−zI zB
C zD

]
. For every z 6= 0, the

latter is equal to rank
[
A−zI B
C D

]
, and hence is n+ p for all

|z| ≥ 1. As a consequence, rank

[
zE − F
UT2 F`

]
= n+p, ∀z ∈ C

s.t. |z| ≥ 1. �

Propositions 5 and 6 and Lemmas 7 and 8, together, give
the following result.

Theorem 9. If the system is

i) delay-` left-invertible,
ii) strongly detectable, and

iii) the pair (Fs, Q
1/2
s ) has no unreachable mode on the

unit circle,

then, for the filter described in Section 3.1, the matrix Pk
converges exponentially fast to the unique solution P of
the DARE (16), and the corresponding steady-state filter
is stable. �
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Fig. 2. Input signals estimation: True signals (blue solid
lines) vs estimated signals (red dashed lines)

4. NUMERICAL EXAMPLE

To illustrate the performance of the proposed algorithm,
simulation results are given in this section. The considered
system is defined by the following matrices:

A =

[
1 −1/2 −1/2 −1/2
0 1/2 1 −2
0 0 0 1
0 0 −1/2 −1/2

]
B =

[
1 0
0 0
0 −1
0 0

]
,

C =
[

1 −1 0 −3
0 1 0 2
0 1 −1 4

]
, D =

[
0 0
0 0
1 0

]
.

Since D 6= 0, this example cannot be treated with methods
from Chavan et al. (2014). This system has inherent
delay 2 and is strongly observable (see Sundaram and
Hadjicostis (2007)). Moreover, after obtaining Qs and Fs,
one can see that the reachability condition on the unit
circle is also satisfied.

The system is affected by a square wave and a sawtooth
wave, assumed to be unknown, while the initial state, x0 =
[8; 4; 6; 7], is also unknown. In addition, the process noise
and the measurement noise are independent identically
distributed zero-mean Gaussian processes with covariance
R = Q = σ2I, with σ = 0.35; they are mutually
uncorrelated.

The purpose of the proposed algorithm is then to estimate
both the four states of the system and the two inputs with
a delay ` = 2. It is initialized with x̂0 = 0 and P0 = 103I.
Performance with respect to input estimation is depicted
in Figure 2, while performance with respect to the four
states is shown in Figure 3. These figures show that both
inputs and states are very well reconstructed.

The convergence of the algorithm is illustrated in Figure 4,
which depicts the time evolution of the trace of the sample
error covariance matrix and the trace of Pk (i.e., the ap-
proximate covariance matrix computed by the algorithm).
After 25 iterations, trace(Pk) is equal to 3.846, the same
as trace(P ), P being the unique strong solution of the
DARE (16); this is consistent with the result in Thm. 9.
The sample covariance is computed over 1000 runs, with
same initial condition and the same noise distributions
as described above. The initial sample covariance trace is
small, due to all runs having a same initial condition, and
then the evolution shows an almost stationary behavior,
around a value near the one computed by the algorithm.

5. CONCLUSION

In this paper we have presented a recursive algorithm
providing unbiased estimates of state and unknown input,
with delay; this algorithm is a simpler approximation of
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Fig. 3. State estimation: True states (blue solid lines) vs estimated states (red square lines)
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Fig. 4. In solid red, trace of the sample covariance of the
error (uTk − ûTk , xk− x̂Tk )T ; in dashed blue trace of the
approximate covariance matrix Pk, computed by the
algorithm.

the minimum-variance unbiased estimator. We have stud-
ied stability and convergence of this filter, and we have
illustrated its performance in an example. Future work
will explore theoretical guarantees on the quality of the
proposed covariance approximation. Also, it will be inter-
esting to look for simple ways to implement the optimal
estimator itself. Given the importance of scalability for
large network systems, another line of future work is the
study of distributed algorithms for delay-` estimation.

This work concerns the case where the external input
is completely unknown. A broad area for future works
includes problems where some partial knowledge about the
input is available, and can be exploited to improve estima-
tion. For example, some knowledge could be available on
the input statistics or about its dynamics, or some physical
limitations could be known, that impose constraints on the
possible inputs, such as maximum intensity or maximum
number of non-zero entries.
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