
HAL Id: hal-01850934
https://hal.science/hal-01850934v1

Preprint submitted on 28 Jul 2018 (v1), last revised 15 Aug 2020 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Type System Describing Unboundedness
Pawel Parys

To cite this version:

Pawel Parys. A Type System Describing Unboundedness. 2018. �hal-01850934v1�

https://hal.science/hal-01850934v1
https://hal.archives-ouvertes.fr

Discrete Mathematics and Theoretical Computer Science DMTCS vol. (subm.):1, by the authors, #rev

A Type System Describing Unboundedness∗

Paweł Parys

University of Warsaw, Poland

We consider nondeterministic higher-order recursion schemes as recognizers of languages of finite words or finite trees.
We propose a type system that allows to solve the simultaneous-unboundedness problem (SUP) for schemes: given a
set of letters A and a scheme G, is it the case that for every number n the scheme accepts a word (a tree) in which every
letter from A appears at least n times. Using this type system we prove that SUP is (m − 1)-EXPTIME-complete
for word-recognizing schemes of order m, and m-EXPTIME-complete for tree-recognizing schemes of order m.
Moreover, we establish the reflection property for SUP: out of an input scheme G one can create its its enhanced
version that recognizes the same language but is aware of the answer to SUP.

Keywords: simultaneous-unboundedness problem, higher-order recursion schemes, intersection types, reflection

1 Introduction
The simultaneous-unboundedness problem (SUP for short, also known as the diagonal problem) in its
original formulation over finite words asks, for a set of letters A and a language of words L, whether for
every n ∈ N there is a word in L where every letter from A occurs at least n times. The same problem
can be also considered for a language of finite trees. In this paper, we are interested in solving SUP for
languages of finite words and finite trees recognized by nondeterministic higher-order recursion schemes.

Higher-order recursion schemes (schemes in short) are used to faithfully represent the control flow of
programs in languages with higher-order functions. This formalism is equivalent via direct translations
to simply-typed λY -calculus (Salvati and Walukiewicz, 2016) and to higher-order OI grammars (Damm,
1982; Kobele and Salvati, 2015). Collapsible pushdown systems (Hague, Murawski, Ong, and Serre,
2008) and ordered tree-pushdown systems (Clemente, Parys, Salvati, and Walukiewicz, 2015) are other
equivalent formalisms. Schemes cover some other models such as indexed grammars (Aho, 1968) and
ordered multi-pushdown automata (Breveglieri, Cherubini, Citrini, and Crespi-Reghizzi, 1996).

By a recent result by Clemente, Parys, Salvati, and Walukiewicz (2016) we know that SUP for higher-
order recursion schemes is decidable. For schemes of order m their algorithm works in f(m)-fold
exponential time for some quadratic function f (although the complexity of the algorithm is not mentioned
explicitly in the paper, it can be easily estimated as being such). Their solution is based on two trans-
formations that simplify a scheme without changing the answer to SUP. These transformations, repeated
alternatingly, reduce the input scheme to a scheme of order 0 for which solving SUP becomes trivial.

∗Work supported by the National Science Centre, Poland (grant no. 2016/22/E/ST6/00041).

ISSN subm. to DMTCS c© by the authors by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

http://dmtcs.episciences.org/
http://dmtcs.episciences.org/

2 Paweł Parys

We analyse SUP for schemes using an appropriate system of intersection types. Intersection types
were intensively used in the context of schemes, for several purposes like model-checking (Kobayashi,
2009; Kobayashi and Ong, 2009; Broadbent and Kobayashi, 2013; Ramsay, Neatherway, and Ong, 2014),
pumping (Kobayashi, 2013), transformations of schemes (Kobayashi, Inaba, and Tsukada, 2014; Asada and
Kobayashi, 2016; Clemente et al., 2016), and so on. Among such type systems we have to distinguish those
(Parys, 2016, 2017b), in which the (appropriately defined) size of a type derivation for a term approximates
some quantity visible in the Böhm tree of that term. In particular, in our recent work (Parys, 2017b) we
have developed a type system that allows to solve SUP for a special case of a single-letter alphabet.

Here, we generalize the last type system mentioned above to multiple letters. In result, a type derivation in
this system is labeled by flags of different kinds. The key property lies in some (quite rough) correspondence
between words (trees) that can be generated from a term and type derivations for the term, where, for every
letter a, the number of appearances of a in the generated word (tree) is approximated by the number of
appearances of an appropriate flag in the type derivation. In effect, SUP reduces to checking whether there
exist type derivations with arbitrarily many flags corresponding to every letter from the input set A.

Thanks to a careful optimization of the developed type system, we obtain an algorithm solving SUP in
the optimal complexity. Namely, we prove that SUP is (m− 1)-EXPTIME-complete for word-recognizing
schemes of order m, and m-EXPTIME-complete for tree-recognizing schemes of order m. The corre-
sponding lower bounds are obtained effortlessly, because already much simpler problems for schemes
require such a complexity.

Let us recall from Clemente et al. (2016) that the decidability result for SUP entailed other decidability
results for recursion schemes, concerning in particular computability of the downward closure of recognized
languages (Zetzsche, 2015), and the problem of separability by piecewise testable languages (Czerwiński,
Martens, van Rooijen, and Zeitoun, 2015). Although our complexity result for SUP does not influence
directly our knowledge on the complexity of the other problems (the aforementioned reductions preserve
only decidability, but not complexity), it can be seen as the first step in establishing the complexity of the
other problems as well.

Going further, we constitute the reflection property for SUP: out of an input scheme G one can create
its enhanced version that recognizes the same language, but in every moment of the recognition process
it is aware of the answer to SUP. In order to obtain this result, we adopt a construction of Haddad (2012,
Section 4.2) to the setting of our type system. The reflection property for SUP allows to solve SUP
simultaneously for infinitely many languages at once, if they are all described by a single scheme. This
has been already used in our recent paper (Parys, 2018b) to establish decidability of model-checking trees
generated by recursion schemes with respect to the WMSO+U logic.

The current paper is a full version of a conference paper (Parys, 2017a). The part about the reflection
property (Section 10) comes from another conference paper (Parys, 2018b).

Our paper is structured as follows. In Section 2 we introduce all necessary definitions. In Section 3 we
introduce the type system describing simultaneous unboundedness, and in Section 4 we optimize the type
system in the special case of word-recognizing schemes. Sections 5-8 are devoted to a proof of correctness
of the type system. Next, in Section 9 we show how the type system can be used to solve SUP. Then, in
Section 10 we establish the reflection property for SUP. Finally, in Section 11 we comment on relations to
the task of computing downward closures of languages.

A Type System Describing Unboundedness 3

2 Preliminaries
Infinitary lambda-calculus. The set of sorts (a/k/a simple types), constructed from a unique basic
sort o using a binary operation →, is defined as usual. We omit brackets on the right of an arrow, so
e.g. o→(o→ o) is abbreviated to o→ o→ o. The order of a sort is defined by induction: ord(o) = 0, and
ord(α1→ . . .→αs→ o) = 1 + max(ord(α1), . . . , ord(αs)) for s ≥ 1.

A sort α1→ . . .→αs→ o is homogeneous if ord(α1) ≥ · · · ≥ ord(αs) and all α1, . . . , αs are homo-
geneous. In the sequel we restrict ourselves to homogeneous sorts (even if not always this is written
explicitly).

Let Σ be a set of symbols (alphabet). We assume that Σ is finite. To denote nondeterministic choices we
use a symbol nd. Assuming that nd 6∈ Σ, we denote Σnd = Σ ∪ {nd}. Let also Vars = {xα, yβ , zγ , . . . }
be a set of variables, containing infinitely many variables of every homogeneous sort (sort of a variable is
written in superscript).

We consider infinitary, sorted lambda-calculus. Infinitary lambda-terms (or just lambda-terms) are
defined by coinduction, according to the following rules:
• node constructor—if a ∈ Σnd, and P o1 , . . . , P

o
r are lambda-terms, then (a〈P o1 , . . . , P or 〉)o is a

lambda-term,
• variable—every variable xα ∈ Vars is a lambda-term,
• application—if Pα→ β and Qα are lambda-terms, then (Pα→ β Qα)β is a lambda-term, and
• lambda-binder—if P β is a lambda-term and xα is a variable, then (λxα.P β)α→ β is a lambda-term;

in the above, α, β, and α→β are homogeneous sorts. We naturally identify lambda-terms differing only
in names of bound variables. We often omit the sort annotations of lambda-terms, but we keep in mind that
every lambda-term (and every variable) has a particular sort. Free variables of a lambda-term are defined
as usual. A lambda-term P is closed if it has no free variables.

For a lambda-term P , the order of P is just the order of its sort, while the complexity of P is the smallest
number m such that the order of all subterms of P is at most m. We restrict ourselves to lambda-terms that
have finite complexity. We also define the order of a beta-reduction as the order of the involved variable.
More precisely, for a number k ∈ N, we say that there is a beta-reduction of order k from a lambda-term P
to a lambda-term Q, written P →β(k) Q, if Q is obtainable from P by replacing a redex (λx.R)S where
ord(x) = k with R[S/x].

Trees. A tree is defined as a lambda-term that is built using only node constructors, that is, not using
variables, applications, nor lambda-binders. A tree is Γ-labeled if only symbols from Γ appear in it.

Let us now define how we resolve nondeterministic choices. Although this is mainly used for trees,
we define it for arbitrary lambda-terms. We write P →nd Q if Q is obtained from P by choosing
some appearance of the nd symbol surrounded only by symbols from Σ, and removing this nd symbol
together with all but one of its arguments. Formally, we let →nd to be the smallest relation such that
nd〈P1, . . . , Pr〉 →nd Pi for i ∈ {1, . . . , r}, and if a ∈ Σ, and Pi →nd P

′
i for some i ∈ {1, . . . , r}, and

Pj = P ′j for all j ∈ {1, . . . , r} \ {i}, then a〈P1, . . . , Pr〉 →nd a〈P ′1, . . . , P ′r〉. For a relation r, by r∗

we denote the reflexive transitive closure of r. For a lambda-term P (which is usually a Σnd-labeled,
potentially infinite tree), by L(P) we denote the set of all finite, Σ-labeled trees T such that P →∗nd T .

Böhm Trees. We consider Böhm trees only for closed lambda-terms of sort o. For such a term P , its Böhm
tree BT (P) is constructed by coinduction, as follows: if there is a sequence of beta-reductions from P
to a lambda-term of the form a〈P1, . . . , Pr〉 (where a ∈ Σnd), then BT (P) = a〈BT (P1), . . . ,BT (Pr)〉;

4 Paweł Parys

otherwise BT (P) = nd〈〉.

Higher-Order Recursion Schemes. We use a very loose definition of schemes. A higher-order recursion
scheme (or just a scheme) is a triple G = (N ,R, No

0), where N ⊆ Vars is a finite set of nonterminals,R
is a rules function that maps every nonterminal N ∈ N to a finite lambda-term whose free variables are
contained in N and whose sort equals the sort of N , and No

0 ∈ N is a starting nonterminal, being of sort o.
We assume that elements of N are not used as bound variables, and thatR(N) is not a nonterminal. The
order of the scheme is defined as the maximum of complexities ofR(N) over all its nonterminals N .

For a scheme G = (N ,R, No
0), and for a lambda-term P (possibly containing some nonterminals from

N), let ΛG(P) be the lambda-term obtained as a limit of applying recursively the following operation to P :
take an appearance of some nonterminal N , and replace it byR(N) (the nonterminals should be chosen so
that every nonterminal is eventually replaced). We remark that while substitutingR(N) for a nonterminal
N , there is no need for any renaming of variables (capture-avoiding substitution), sinceR(N) does not
have free variables other than nonterminals. The infinitary lambda-term represented by G is defined as
ΛG(No

0), and is denoted Λ(G). Observe that Λ(G) is a closed lambda-term of sort o and of complexity not
greater than the order of the scheme. The language of G is defined as L(G) = L(BT (Λ(G))).

We remark that according to our definition all subterms of all lambda-terms (and all nonterminals as
well) have homogeneous sorts; usually it is not assumed that sorts used in a scheme are homogeneous. It is,
however, the case that any scheme using also non-homogeneous sorts can be converted into one in which
all sorts are homogeneous, and that this can be done in logarithmic space (Parys, 2018a). We make the
homogeneity assumption for technical convenience. We refer the reader to Appendix A for a comment on
other differences between our definition and the usual one.

A word is defined as a tree in which every node has at most one child (such a tree can be identified with
a word understood in the classic sense). We say that a lambda-term P is word-recognizing if for every its
subterm of the form a〈P1, . . . , Pr〉 with a ∈ Σ it holds r ≤ 1; a scheme G is word-recognizing if Λ(G) is
word-recognizing. In this case, all elements of L(BT (P)) or L(G), respectively, are words.

Example 2.1. Consider the higher-order recursion scheme G1 with two nonterminals, Mo (taken as the
starting nonterminal) and N(o→ o)→ o, and with rules

R(M) = N (λx.nd〈a〈x〉, b〈x〉〉) , R(N) = λf.nd〈f (c〈〉),N (λy.f (f y))〉 .

We obtain Λ(G1) = R1 (λx.nd〈a〈x〉, b〈x〉〉), where R1 is the unique lambda-term such that R1 =
λf.nd〈f (c〈〉), R1 (λy.f (f y))〉. We have BT (Λ(G1)) = nd〈T20 , nd〈T21 , nd〈T22 , . . .〉〉〉, where T0 = c〈〉
and Ti+1 = nd〈a〈Ti〉, b〈Ti〉〉. In L(G1) we have words of length 2i + 1 for all i ∈ N, where the first 2i

letters are chosen from {a, b} arbitrarily, and the last letter is c. In the following examples we continue to
consider this scheme, assuming that Σ = {a, b, c}; using our type system, we want to exhibit the fact that
in L(G1) there are words having simultaneously many letters a and many letters b.

Let us also define formally the size of a higher-order recursion scheme. The size of a sort α, denoted |α|,
is defined by induction on the structure of α: |o| = 1 and |α→β| = |α| + 1 + |β|. The size of a finite
lambda-term P , denoted |P |, is also defined by induction on its structure, as follows:

|a〈P1, . . . , Pr〉| = 1 + |P1|+ · · ·+ |Pr| , |P Q| = |P |+ 1 + |Q| ,
|xα| = 1 , |λxα.P | = |α|+ 1 + |P | .

A Type System Describing Unboundedness 5

Finally, the size of a scheme G = (N ,R, N0), denoted |G|, is defined as

|G| =
∑

Nα∈N
(|α|+ |R(Nα)|) .

Remark. We notice that to the size of a scheme we include sizes of sorts of all bound variables and all
nonterminals. Although in “reasonable cases” lambda-terms using large sorts are large anyway, this is
sometimes important. For example, to the size of the lambda-term (λxα→ o.a〈〉) (λyα.a〈〉) we prefer to
include the size of α, as otherwise the size of this lambda-term would be small even for a very large α.
Similarly, in G we can have a nonterminal N of some sort α with rule R(N) = (λxo.N) (a〈〉); in such a
case we also prefer to include the size of α to the size of G.

3 Type System for Simultaneous Unboundedness
In this section we introduce a type system that allows to solve SUP for schemes.

Definition 3.1. For a set of trees L and a set of symbolsA, the predicate SUPA(L) holds if for every n ∈ N
there is some T ∈ L with at least n occurrences of every symbol fromA. The simultaneous-unboundedness
problem (SUP) for tree-recognizing order-m schemes is to decide whether SUPA(L(G)) holds, given a
scheme G of order at most m and a set A. SUP for word-recognizing order-m schemes is as the above, but
with the restriction that G is word-recognizing.

We remark that the language of infinite trees T for which SUPA(L(T)) holds is not regular (due
to a simple pumping argument)—SUP talks about unboundedness of some quantities. This makes the
problem inaccessible for standard methods used for analyzing schemes, as they usually concern only
regular properties of the Böhm tree; it was necessary to develop methods accessing some quantities visible
in the Böhm tree.

Intuitions. The main novelty of our type system lies in labeling nodes of type derivations by two kinds
of labels called flags and markers. To each marker we assign a number, called an order. Flags, beside of
their order, are also identified by a symbol from Σ; thus we have (k, a)-flags for k ∈ N and a ∈ Σ. While
deriving a type for a lambda-term of complexity at most m+ 1 (i.e., where every variable has order at most
m), we use markers of order from the range 0, . . . ,m, and flags of order from the range 0, . . . ,m+ 1.

Let Pm+1 be a lambda-term of complexity at most m + 1. Recall that our goal is to describe a tree
T ∈ L(BT (Pm+1)) using a type derivation for Pm+1 itself. While doing that, we want to preserve the
information that T has many appearances of every symbol from a set A.

Since T can be found in some finite prefix of BT (Pm+1), in order to find T it is enough to perform
finitely many beta-reductions from Pm+1. Moreover, thanks to the fact that all sorts are homogeneous, the
beta-reductions can be rearranged so that those of higher order are performed first. Namely, we can find
lambda-terms P0, . . . , Pm such that

Pm+1 →∗β(m) Pm →
∗
β(m−1) . . .→

∗
β(0) P0 and P0 →∗nd T .

Some prefix of P0 can be seen as a tree, in which we can find all nodes of T , interleaved with some
additional nd-labeled nodes. For every symbol a ∈ Σ, let us place (0, a)-flags in all a-labeled nodes of P0

that are taken to T .

6 Paweł Parys

Notice that every node constructor of P0 was created out of some particular appearance of a node
constructor in P1. Using this correspondence, we would like to move flags from P0 back to P1, and then
to P2, and so on, so that it would be enough to check the number of flags in the original lambda-term
Pm+1. We cannot do this directly, though. The problem is that a single node constructor in P1 may result
in multiple (uncontrollably many) node constructors with a flag in P0. We rescue ourselves by considering
only |Σ| paths in P0, one for each symbol in Σ. Namely, for every symbol a ∈ Σ we place in P0 a marker
of order 0, choosing in this way the path from the root to the position of this marker. Then, for every node
labeled by a (0, a)-flag we place a (1, a)-flag in the closest ancestor that lies on the chosen path. Although
the number of (1, a)-flags may be smaller than the number of (0, a)-flags (the closest ancestor on the path
may be the same for multiple (0, a)-flags), we can ensure that it is smaller only logarithmically; to do so,
we choose the marked node in a clever way: staring from the root, we always proceed to this subtree in
which the number of (0, a)-flags is the largest. In effect, if the number of (0, a)-flags was “very large”,
then also the number of (1, a)-flags remains “very large”.

Once for every a ∈ Σ all (1, a)-flags lie on a single path of P0, we can transfer them back to P1. Namely,
we find node constructors of P1 out of which in P0 we obtain node constructors with (1, a)-flags, and
we put (1, a)-flags also in these node constructors of P1. The crucial observation is that no two flagged
node constructors of P0 could come out of a single node constructor of P1. Indeed, recall that all the
beta-reductions between P1 and P0 are of order 0. This means that in every such beta-reduction we take a
whole subtree (i.e., a lambda-term of sort o) of P1, and we replace it somewhere, possibly replicating it.
But since all (1, a)-flags lie in P0 on a single path, they may lie only in at most one copy of the replicated
subtree. In effect, the number of appearances of order-1 flags (for every symbol a) is the same in P1 as
in P0. In order to be able to easily check correctness of the labeling of P1 by order-1 flags, we transfer
there from P0 not only these flags, but also order-0 flags (whose number may change, though) and order-0
markers.

We continue by repeating the same process until reaching Pm+1: in P2 we again reduce our considera-
tions to |Σ| paths by introducing markers of order 1, we place (2, a)-flags on these paths, we transfer all
flags and markers back to P2, and so on. At the end we obtain some labeling of Pm+1 by several kinds of
flags and markers. The goal of the type system we develop is, roughly speaking, to ensure that a labeling
of Pm+1 by flags and markers is actually obtainable in the process as above (in fact, we are not labeling
nodes of Pm+1 itself, but rather nodes of a type derivation for Pm+1).

Type Judgments. For storing the information about flags and markers used in a derivation of a type we
use flag sets and marker multisets. Recall that a flag is parameterized by a pair (k, a), where k ∈ N is
called an order, and a ∈ Σ is called a symbol. For flags it is enough to remember for every order whether at
least one flag of this order was used, and if so, then also a symbol of this flag (if flags with multiple symbols
were used, it is enough for us to remember just one of these symbols). Thus for m ≥ −1 we define FMm
to contain sets F ⊆ {0, . . . ,m} × Σ such that (k, a), (k, b) ∈ F implies a = b. Such sets F are called
m-bounded flag M-sets.(i) For markers the situation is slightly different, as we want to remember precisely
how many markers were used. Moreover, markers do not have a symbol, only an order. We thus define
MMm to contain functions M : N→ {0, . . . , |Σ|} such that M(k) = 0 for all k > m. Such functions M
are called m-bounded marker M-multisets. The intention is that M(k) says how many markers of order k
were used.

(i) We use the M symbol in order to distinguish this type system, working for all tree-recognizing lambda-terms, from the type system
introduced in Section 4, working only for word-recognizing lambda-terms.

A Type System Describing Unboundedness 7

ByM+M ′ andM−M ′ we mean the coordinatewise sum or difference, respectively. We use 0 to denote
a function that maps every element of its domain to 0 (where the domain should be always clear from the
context). By {|k1, . . . , kn|} we mean the multiset M such that M(k) = |{i ∈ {1, . . . , n} | ki = k}| for all
k ∈ N. When F ∈ FMm, M ∈MMm, n ∈ N, and � is one of ≤, >, we write F ��n for {(k, a) ∈ F | k�n},
and M��n for the function that maps every k to M(k) if k�n, and to 0 if ¬(k�n).

Next, for every sort α and for m ≥ −1 we define three sets: the set T Mα of M-types of sort α, the
set T T Mαm of m-bounded type M-triples of sort α, and the set T CMα of triple M-containers of sort α (we
often ignore the prefix M, and we simply talk about types, type triples, etc.). They are defined by mutual
induction on the structure of α.

If α = α1→ . . .→αs→ o, the set T Mα contains types that are of the form C1→ . . .→Cs→ o, where
Ci ∈ T CMαi for i ∈ {1, . . . , s}.

Type triples in T T Mαm are triples (F,M, τ) ∈ FMm ×MMm × T Mα, where M(k) = 0 for all (k, a) ∈ F .
These triples store a type, together with the information about flags and markers used while deriving this
type. In order to distinguish type triples from types, the former are denoted by letters with a hat, like
τ̂ . We also define a function Mk that extracts the marker multiset out of a type triple: Mk(τ̂) = M for
τ̂ = (F,M, τ). A type triple is balanced if Mk(τ̂) = 0; otherwise it is unbalanced.

Triple containers are used to store (multi)sets of type triples that have to be derived for an argument
of a lambda-term, or for a lambda-term substituted for a free variable. For balanced type triples, triple
containers behave like sets, that is, they remember only whether every balanced type triple is required or
not. Conversely, for unbalanced type triples, triple containers behave like multisets, that is, they remember
precisely how many times every unbalanced type triple is required. Thus, formally, in T CMα we have
functions C : T T Mαord(α) → {0, . . . , |Σ|} such that C(τ̂) ≤ 1 if Mk(τ̂) = 0. For C ∈ T CMα we define

Mk(C) =
∑
τ̂∈T T Mα

ord(α)

∑C(τ̂)
i=1 Mk(τ̂). For two triple containers C,D ∈ T CMα we define their sum

C tD : T T Mαord(α) → N so that for every τ̂ ∈ T T Mαord(α),

(C tD)(τ̂) =

{
C(τ̂) +D(τ̂) if Mk(τ̂) 6= 0 ,
max(C(τ̂), D(τ̂)) if Mk(τ̂) = 0 .

We also say that C v D if C(τ̂) = D(τ̂) for every unbalanced τ̂ ∈ T T Mαord(α), and C(τ̂) ≤ D(τ̂) for
every balanced τ̂ ∈ T T Mαord(α). We sometimes write {|τ̂1, . . . , τ̂n|} or {|τ̂i | i ∈ {1, . . . , n}|} to denote the
triple container C such that C(σ̂) = |{i ∈ {1, . . . , n} | τ̂i = σ̂}| for every unbalanced type triple σ̂, and
C(σ̂) = 1⇔ ∃i ∈ {1, . . . , n} . τ̂i = σ̂ for every balanced type triple σ̂.

A type M-environment is a function Γ that maps every variable xα to a triple container from T CMαord(α).
We use ε to denote the type environment mapping every variable to 0. When Γ(x) = 0, by Γ[x 7→ C]
we denote the type environment that maps x to C, and every other variable y to Γ(y) (whenever we
write Γ[x 7→ C], we implicitly require that Γ(x) = 0). For two type environments Γ,Γ′ we define their
sum Γ t Γ′ so that (Γ t Γ′)(x) = Γ(x) t Γ′(x) for every variable x; moreover, we say that Γ v Γ′ if
Γ(x) v Γ′(x) for every variable x.

A type M-judgment is of the form Γ `Mm P : τ̂ . c, where Γ is a type M-environment, m ≥ −1 is called
the order of the type judgment, P is a lambda-term, τ̂ is an m-bounded type M-triple of the same sort as
P (i.e., τ̂ ∈ T T Mαm when P is of sort α), and c is a function Σ → N called a flag counter. Having two
functions with values in natural numbers (in particular: two flag counters), f, g : X → N, we write f ≤ g
when f(x) ≤ g(x) for every x ∈ X .

8 Paweł Parys

As usually for intersection types, the intuitive meaning of a type C→ τ is that a lambda-term having
this type can return a lambda-term having type τ , while taking an argument for which we can derive
all type triples from C. Let us now explain the meaning of a type judgment Γ `Mm P : (F,M, τ) . c.
Obviously τ is the type derived for P , and Γ contains type triples that could be used for free variables
of P in the derivation. As explained above for triple containers, balanced and unbalanced type triples
behave differently: all unbalanced type triples assigned to variables by Γ have to be used exactly once in
the derivation; conversely, balanced type triples may be used any number of times. Going further, the order
m of the type judgment bounds the order of flags and markers that can be used in the derivation: flags can
be of order at most m+ 1, and markers of order at most m. The multiset M counts markers used in the
derivation, together with those provided by free variables (i.e., we imagine that some derivations, specified
by the type environment, are already substituted for free variables in our derivation); we, however, do not
include markers provided by arguments of the lambda-term (i.e., coming from the triple containers Ci
when τ = C1→ . . .→Cs→ o). The set F contains an information about flags of order at most m used
in the derivation. A pair (k, a) can be contained in F if a (k, a)-flag is placed in the derivation itself, or
provided by a free variable, or provided by an argument. We do not have to keep in F all such pairs, that is,
if we can derive a type triple with some flag set F , then we can derive it also with every subset of F as the
flag set. In fact, we cannot keep in F all such pairs due to two restrictions. First, the definition of a flag set
allows to have in F at most one pair (k, a) for every order k. Second, we intentionally remove from F
all pairs (k, a) for which M(k) > 0. Finally, in a type judgment we have a flag counter c, which for each
symbol a counts the number of (m+ 1, a)-flags present in the derivation.

Type System. Before giving rules of the type system, let us state two general facts. First, all type
derivations are assumed to be finite—although we derive types mostly for infinite lambda-terms, each type
derivation analyzes only a finite part of a term. Second, we require that premisses and conclusions of all
rules are valid type judgments. For example, when the type environment appearing in the conclusion of a
rule is ΓtΓ′, this implies that for all x and all unbalanced type triples τ̂ it holds Γ(x)(τ̂) +Γ′(x)(τ̂) ≤ |Σ|
(so that (Γ t Γ′)(x) is indeed a valid triple container). Let us also remark that rules of the type system
guarantee that the order m of all type judgments used in a derivation is the same.

Rules of the type system correspond to particular constructs of lambda-calculus. We start by giving the
first three rules:

M�≤ord(x) = M ′

ε[x 7→ {|(F,M ′, τ)|}] `Mm x : (F,M, τ) . 0
(VAR)

Γ `Mm Pi : τ̂ . c i ∈ {1, . . . , r}
Γ `Mm nd〈P1, . . . , Pr〉 : τ̂ . c

(ND)

Γ[x 7→ C ′] `Mm P : (F,M, τ) . c C ′ v C
Γ `Mm λx.P : (F,M −Mk(C), C→ τ) . c

(λ)

The (VAR) rule allows to have in the resulting marker multiset M some numbers that do not come from
the multiset assigned to x by the type environment; these are the orders of markers placed in the leaf using
this rule. Notice, however, that we allow here only orders greater than ord(x). This is consistent with the
intuitive description of the type system (page 5), which says that a marker of order k can be put in a place
that will be a leaf after performing all beta-reductions of order at least k. Indeed, the variable x remains a
leaf after performing beta-reductions of orders greater than ord(x), but while performing beta-reductions
of order ord(x) this leaf is replaced by a subterm substituted for x. Recall also that, by definition of a
type judgment, we require that (F,M ′, τ) ∈ T T Mαord(x) and (F,M, τ) ∈ T T Mαm , for appropriate sort α;
this introduces a bound on maximal numbers that may appear in F and M .

A Type System Describing Unboundedness 9

Example 3.1. Denoting ρ̂Mall0 = (∅, {|0, 0, 0|}, o) we can derive:

ε[x 7→ {|ρ̂Mall0 |}] `M1 x : (∅, {|0, 0, 0|}, o) . 0
(VAR)

ε[x 7→ {|ρ̂Mall0 |}] `M1 x : (∅, {|0, 0, 0, 1, 1, 1|}, o) . 0
(VAR)

In the second derivation, three markers of order 1 are placed in the conclusion of the rule. We could equally
well place one or two such markers (but not four, because in our examples we assume that |Σ| = 3).

We see that to derive a type for the nondeterministic choice nd〈P1, . . . , Pr〉, we need to derive it for one
of the subterms P1, . . . , Pr.

For the (λ) rule, recall that C ′ v C means that in C ′ we have all unbalanced type triples from C, and
some subset of balanced type triples from C. Thus in a subderivation concerning the lambda-term P , we
need to use all unbalanced type triples provided by an argument of λx.P , while balanced type triples may
be used or not. Recall also that we intend to store in the marker multiset the markers contained in the
derivation itself and those provided by free variables, but not those provided by arguments. Because of this,
in the conclusion of the rule we remove from M the markers provided by x. It is required, implicitly, that
the result remains nonnegative. The set F , unlike M , stores also flags provided by arguments, so we do not
need to remove anything from F .

Example 3.2. In this example we show how the (ND) and (λ) rules can be used. The derivations work for
every flag counter c. Notice that in the conclusion of the (λ) rule, in both derivations, we remove three 0-s
from the marker multiset, because three order-0 markers are provided by x.

ε[x 7→ {|ρ̂Mall0 |}] `M1 a〈x〉 : ({(1, a)}, {|0, 0, 0|}, o) . c
ε[x 7→ {|ρ̂Mall0 |}] `M1 nd〈a〈x〉, b〈x〉〉 : ({(1, a)}, {|0, 0, 0|}, o) . c

(ND)

ε `M1 λx.nd〈a〈x〉, b〈x〉〉 : ({(1, a)},0, {|ρ̂Mall0 |}→ o) . c
(λ)

ε[x 7→ {|ρ̂Mall0 |}] `M1 a〈x〉 : (∅, {|0, 0, 0, 1, 1, 1|}, o) . c
ε[x 7→ {|ρ̂Mall0 |}] `M1 nd〈a〈x〉, b〈x〉〉 : (∅, {|0, 0, 0, 1, 1, 1|}, o) . c

(ND)

ε `M1 λx.nd〈a〈x〉, b〈x〉〉 : (∅, {|1, 1, 1|}, {|ρ̂Mall0 |}→ o) . c
(λ)

The next three rules use a predicate Compm, saying how flags and markers from premisses contribute to
the conclusion. It takes “as input” pairs (Fi, ci) for i ∈ I , consisting of a flag set Fi and a flag counter ci
from some premiss. Moreover, the predicate takes a marker multiset M that appears in the conclusion of
the rule. The goal is to compute a flag set F and a flag counter c that should be placed in the conclusion.
First, for each k ∈ {1, . . . ,m+ 1} consecutively, we decide which flags of order k should be placed in
the considered node of a type derivation. We follow here the rules mentioned in the intuitive description.
Namely, we place a (k, a)-flag if we are on the path leading to a marker of order k−1 (i.e., ifM(k−1) > 0),
and simultaneously we receive an information about a (k − 1, a)-flag. By receiving this information we
mean that either a (k − 1, a)-flag was placed in the current node, or (k − 1, a) belongs to some set Fi.
Actually, we place multiple (k, a)-flags: one per each (k − 1, a)-flag placed in the current node, and one
per each set Fi containing (k − 1, a). Then, we compute F and c. In c(a), for every a ∈ Σ, we store the
number of (m+ 1, a)-flags: we sum all the flag counters ci, and we add the number of (m+ 1, a)-flags

10 Paweł Parys

placed in the current node. In F , we allow to keep elements of all Fi, and we allow to add pairs (k, a) for
flags that were placed in the current node, but it can be chosen “nondeterministically” which of them are
actually taken to F , and which are dropped. It is often necessary to drop some elements, since when the set
F is used in a type triple, the definitions of a flag set and of a type triple put additional requirements on this
set.

Below we give a formal definition, in which f ′k,a contains the number of (k, a)-flags placed in the
current node, while fk,a additionally counts the number of premisses for which (k, a) ∈ Fi. We say that
(F, c) ∈ Compm(M ; ((Fi, ci))i∈I) when

F ⊆ {(k, a) | fk,a > 0} , and c(a) = fm+1,a +
∑
i∈I

ci(a) for all a ∈ Σ,

where, for k ∈ {0, . . . ,m+ 1} and a ∈ Σ,

fk,a = f ′k,a +
∑
i∈I
|Fi ∩ {(k, a)}|, f ′k,a =

{
0 if k = 0 or M(k − 1) = 0,
fk−1,a otherwise.

We now present rules for node constructors using symbols other than nd:

(F, c) ∈ Compm(M ; ({(0, a)},0)) a 6= nd

ε `Mm a〈〉 : (F,M, o) . c
(CON0)

Γi `Mm Pi : (Fi,Mi, o) . ci for each i ∈ {1, . . . , r} M = M1 + · · ·+Mr

(F, c) ∈ Compm(M ; ({(0, a)},0), (F1, c1), . . . , (Fr, cr)) r ≥ 1 a 6= nd

Γ1 t · · · t Γr `Mm a〈P1, . . . , Pr〉 : (F,M, o) . c
(CON≥1)

By passing the set {(0, a)} to Compm we express the fact that a (0, a)-flag is placed in the current node.
In the (CON0) rule, that is, if we are in a leaf, we are allowed to place markers of an arbitrary order: the
marker multiset M may be arbitrary.

Example 3.3. For a ∈ {a, b, c}, let ca be the flag counter such that ca(a) = 1 and ca(b) = 0 for all b ∈ Σ.
The (CON≥1) rule may be instantiated in the following ways:

ε[x 7→ {|ρ̂Mall0 |}] `M1 x : (∅, {|0, 0, 0|}, o) . 0
ε[x 7→ {|ρ̂Mall0 |}] `M1 a〈x〉 : ({(1, a)}, {|0, 0, 0|}, o) . 0

(CON≥1)

ε[x 7→ {|ρ̂Mall0 |}] `M1 x : (∅, {|0, 0, 0, 1, 1, 1|}, o) . 0
ε[x 7→ {|ρ̂Mall0 |}] `M1 a〈x〉 : (∅, {|0, 0, 0, 1, 1, 1|}, o) . ca

(CON≥1)

In the first example, (0, a)- and (1, a)-flags are placed in the conclusion of the rule. Indeed, the (CON≥1)
rule implies that the pair (0, a) is passed to the Comp1 predicate (a (0, a)-flag is placed). Because the
marker multiset contains 0 (order-0 markers are visible), we do not put (0, a) to the flag set, but instead we
create a (1, a)-flag. In the second example, additionally a (2, a)-flag is placed in the conclusion of the rule:
since order-1 markers are visible, we do not put (1, a) to the flag set, but instead we create a (2, a)-flag,
which results in increasing the flag counter.

A Type System Describing Unboundedness 11

The last rule describes application:

Γ′ `Mm P : (F ′,M ′, {|(Fi�≤ord(Q),Mi�≤ord(Q), τi) | i ∈ I|}→ τ) . c′

Γi `Mm Q : (Fi,Mi, τi) . ci for each i ∈ I M = M ′ +
∑

i∈I
Mi ord(Q) ≤ m

(F, c) ∈ Compm(M ; (F ′, c′), ((Fi�>ord(Q), ci))i∈I) {(k, a) ∈ F ′ |M(k) = 0} ⊆ F

Γ′ t
⊔

i∈I
Γi `Mm P Q : (F,M, τ) . c

(@)

In this rule, it is allowed (and potentially useful) that for two different i ∈ I the type triples (Fi,Mi, τi)
are equal. It is also allowed that I = ∅, in which case no type needs to be derived for Q. Observe
how flags and markers coming from premisses concerning Q are propagated: only flags and markers of
orders k ≤ ord(Q) are visible to P , while only flags of orders k > ord(Q) are passed to the Compm
predicate. This can be justified if we recall the intuitions staying behind the type system (see page 5).
Indeed, while considering flags and markers of order k, we should imagine the lambda-term obtained from
the current lambda-term by performing all beta-reductions of order at least k; the distribution of flags
and markers of order k in the current lambda-term actually simulates their distribution in this imaginary
lambda-term. Thus, if ord(Q) ≥ k, then our application will disappear in this imaginary lambda-term,
and Q will be already substituted somewhere in P ; for this reason we need to pass the information about
flags and markers of order k from Q to P . Conversely, if ord(Q) < k, then in the imaginary lambda-
term the considered application will be still present, and in consequence the subterm corresponding to
P will not see flags and markers of order k placed in the subterm corresponding to Q. The condition
{(k, a) ∈ F ′ | M(k) = 0} ⊆ F (saying that flags derived for P cannot disappear, unless they meet the
information about markers of the corresponding order) is added for technical reasons. It turns out to be
useful in our proofs, namely, in the proof of Lemma 8.1 on page 39.

Example 3.4. Recalling that ρ̂Mall0 = (∅, {|0, 0, 0|}, o), denote by τ̂a and τ̂m the type triples derived in
Example 3.2: τ̂a = ({(1, a)},0, {|ρ̂Mall0 |}→ o) and τ̂m = (∅, {|1, 1, 1|}, {|ρ̂Mall0 |}→ o). We can derive:

ε[f 7→ {|τ̂a|}] `M1 f : τ̂a . 0

ε[f 7→ {|τ̂m|}] `M1 f : τ̂m . 0 ε[y 7→ {|ρ̂Mall0 |}] `M1 y : ρ̂Mall0 . 0

ε[f 7→ {|τ̂m|}, y 7→ {|ρ̂Mall0 |}] `M1 f y : (∅, {|0, 0, 0, 1, 1, 1|}, o) . 0
(@)

ε[f 7→ {|τ̂a, τ̂m|}, y 7→ {|ρ̂Mall0 |}] `M1 f (f y) : (∅, {|0, 0, 0, 1, 1, 1|}, o) . ca
(@)

ε[f 7→ {|τ̂a, τ̂m|}] `M1 λy.f (f y) : τ̂m . ca
(λ)

Below the lower (@) rule the information about a (1, a)-flag (from the first premiss) meets the information
about a marker of order 1 (from the second premiss), and thus a (2, a)-flag is placed, which increases the
flag counter.

Denote ρ̂Mallm = (∅,MMallm , o), where MMallm ∈MMm is such that MMallm (k) = |Σ| for all k ∈ {0, . . . ,m}.
The key property of the type system is described by the following theorem.

Theorem 3.2. Let m ≥ −1, let P be a closed lambda-term of sort o and complexity at most m+ 1, and let
A ⊆ Σ. Then SUPA(L(BT (P))) holds if and only if for every n ∈ N we can derive ε `Mm P : ρ̂Mallm . cn
with some cn such that cn(a) ≥ n for all a ∈ A.

We postpone the proof of this theorem to Sections 5-8. Before this proof, we give some comments and
examples, and in Section 4 we present another variant of the type system, optimized for word-recognizing
lambda-terms.

12 Paweł Parys

Remark. In our type derivations and in ρ̂Mallm we allow |Σ| markers of every order, but actually, while
solving SUP for a set A, it would be enough to have |A| of them, since we are not interested in counting
letters not in A. Similarly, it is not necessary to consider (k, a)-flags for a 6∈ A.

Other Type Systems. The idea of using intersection types for counting is not completely new. In Parys
(2014, 2016) there is a type system that, essentially, allows to estimate the size of the beta-normal form
of a (finite) lambda-term just by looking at (the number of some flags in) a derivation of a type for this
term. A similar idea, but for higher-order pushdown automata, is present in Parys (2012), where we can
estimate the number] symbols appearing on a particular, deterministically chosen branch of the generated
tree. This previous approach also uses intersection types, where the derivations are marked with just one
kind of flags, denoting “productive” places of a term (oppositely to our approach, where we have different
flags for different orders and letters, and we also have markers). The trouble with the “one-flag” approach
is that it works well only in a completely deterministic setting, where looking independently at each node
of the Böhm tree we know how it contributes to the result; the method stops working (or at least we do
not know how to prove that it works) in our situation, where we first nondeterministically perform some
guesses in the Böhm tree (namely, we guess which tree T ∈ L(BT (P)) should be considered), and only
after that we want to count something that depends on the chosen values.

Our type system and the type system from Parys (2017b) are, to some extent, motivated by the algorithm
of Clemente et al. (2016) solving SUP for schemes. This algorithm works by repeating two kinds of
transformations of schemes. The first of them turns the scheme into a scheme generating trees having only
a fixed number of branches, one per each letter from A. The branches are chosen nondeterministically
out of some tree generated by the original scheme; for every a ∈ A there is a choice witnessing that a
appeared many times in the original tree. Then, such a scheme of the special form is turned into a scheme
that is of order lower by one, and generates trees having the same nodes as trees generated by the original
scheme, but arranged differently (in particular, the new trees may have again arbitrarily many branches).
After finitely many repetitions of this procedure, a scheme of order 0 is obtained, and SUP becomes easily
decidable. In some sense we do the same, but instead of applying all these transformations one by one,
we simulate all of them simultaneously in a single type derivation. In this derivation, for each order k,
we allow to place arbitrarily |A| markers of order k (actually, |Σ| of them), which corresponds to the
nondeterministic choice of |A| branches in the k-th step of the previous algorithm. We also place some
(k, a)-flags, in places that correspond to a-labeled nodes remaining after the k-th step of the previous
algorithm.

The idea of having balanced types and unbalanced types (where the former can be used arbitrarily many
times, while the latter have to be used exactly once) comes from a type system of Asada and Kobayashi
(2016).

Let us compare our type system with the type system introduced in Parys (2017b) in order to solve SUP
in the case of |A| = 1. The first difference is that we solve the case of multiple symbols in A. This is done
by replacing a single marker and a single kind of flags of every order by |Σ| markers and |Σ| kinds of flags,
one per each symbol of the alphabet Σ. This makes the proofs slightly more complex, but seeing Clemente
et al. (2016) and Hague, Kochems, and Ong (2016) it was quite natural that every symbol from Σ (or, at
least, every symbol from A) requires separate markers and flags.

Conceptually, it was more difficult to establish the optimal complexity. In Parys (2017b) no explicit
complexity bound is given, but we can observe that for schemes of order m a direct adaptation of their
algorithm to the multiple-letters case works in (m+3)-EXPTIME (which drops down to (m+2)-EXPTIME

A Type System Describing Unboundedness 13

for |A| = 1 or, more generally, for fixed A); we thus had to save four exponentiations. The previous paper
proposes a quite naive algorithm for checking whether there exist type derivations with arbitrarily many
flags, which is doubly exponential in the number of type triples, and we replace it by an algorithm that is
polynomial in the number of type triples. This saves two exponentiations. Another exponentiation is saved
by making the number of order-0 type triples polynomial in |A|; this is obtained by making all markers
of a fixed order identical (not labeled by a symbol, like flags), and by storing the information only about
one, nondeterministically chosen, flag of every order in flag sets, instead of the information about all kinds
of flags seen so far. Finally, in the case of word-recognizing schemes one more exponentiation is saved
by observing that in this case the number of order-1 types can be also made polynomial. This is possible
because in the word case there is a unique leaf in which an order-0 marker may be placed (cf. Section 4).

Example 3.5. Beside of the type triples defined previously,

ρ̂Mall0 = (∅, {|0, 0, 0|}, o) , τ̂a = ({(1, a)},0, {|ρ̂Mall0 |}→ o) ,

ρ̂Mall1 = (∅, {|0, 0, 0, 1, 1, 1|}, o) , τ̂m = (∅, {|1, 1, 1|}, {|ρ̂Mall0 |}→ o) ,

let us also define

τ̂b = ({(1, b)},0, {|ρ̂Mall0 |}→ o) and σ̂R = (∅, {|0, 0, 0|}, {|τ̂a, τ̂b, τ̂m|}→ o) .

The type judgment ε `M1 R1 : σ̂R . 0 can be derived as follows:

ε[f 7→ {|τ̂m|}] `M1 f : τ̂m . 0
(VAR)

ε `M1 c〈〉 : ρ̂Mall0 . 0
(CON0)

ε[f 7→ {|τ̂m|}] `M1 f (c〈〉) : ρ̂Mall1 . 0
(@)

ε[f 7→ {|τ̂m|}] `M1 nd〈f (c〈〉), R1 (λy.f (f y))〉 : ρ̂Mall1 . 0
(ND)

ε `M1 R1 : σ̂R . 0
(λ)

Notice that in the (CON0) rule two flags are placed: a (0, c)-flag (because of the symbol c) and a (1, c)-flag
(because we have an information about order-0 markers). It is not necessary to remember them in the type
triple, and thus we can derive ρ̂Mall0 , having an empty flag set. Notice also that the type triples τ̂a and τ̂b
required for the argument by σ̂R are not used here; recall that the (λ) rule allows to discard them, since
they are balanced. On the other hand, the type triple τ̂m is unbalanced, so it could not be discarded, and has
to be used exactly once in the derivation.

Next, we derive the same type triple for R1, but using the second argument of the nd symbol; this results
in greater values of the flag counter. In Example 3.4 we have derived the type judgment ε[f 7→ {|τ̂a, τ̂m|}]
`M1 λy.f (f y) : τ̂m . ca. Similarly we can derive ε[f 7→ {|τ̂b, τ̂m|}] `M1 λy.f (f y) : τ̂m . cb. We continue by
deriving the type triple τ̂a for the subterm λy.f (f y):

ε[f 7→ {|τ̂a|}] `M1 f : τ̂a . 0

ε[f 7→ {|τ̂a|}] `M1 f : τ̂a . 0 ε[y 7→ {|ρ̂Mall0 |}] `M1 y : ρ̂Mall0 . 0

ε[f 7→ {|τ̂a|}, y 7→ {|ρ̂Mall0 |}] `M1 f y : ({(1, a)}, {|0, 0, 0|}, o) . 0
(@)

ε[f 7→ {|τ̂a|}, y 7→ {|ρ̂Mall0 |}] `M1 f (f y) : ({(1, a)}, {|0, 0, 0|}, o) . 0
(@)

ε[f 7→ {|τ̂a|}] `M1 λy.f (f y) : τ̂a . 0
(λ)

14 Paweł Parys

In the above derivation there are no flags nor markers. Similarly we can derive ε[f 7→ {|τ̂b|}] `M1 λy.f (f y) :
τ̂b . 0. We continue with the lambda-term R1 (for an arbitrary flag counter c):

ε `M1 R1 : σ̂R . c ε[f 7→ {|τ̂a|}] `M1 λy.f (f y) : τ̂a . 0
ε[f 7→ {|τ̂b|}] `M1 λy.f (f y) : τ̂b . 0 ε[f 7→ {|τ̂a, τ̂m|}] `M1 λy.f (f y) : τ̂m . ca

ε[f 7→ {|τ̂a, τ̂b, τ̂m|}] `M1 R1 (λy.f (f y)) : ρ̂Mall1 . c+ ca
(@)

ε[f 7→ {|τ̂a, τ̂b, τ̂m|}] `M1 nd〈f (c〈〉), R1 (λy.f (f y))〉 : ρ̂Mall1 . c+ ca
(ND)

ε `M1 R1 : σ̂R . c+ ca
(λ)

In this fragment of a derivation no flag nor counter is placed. In particular, there is no order-2 flag in
conclusion of the (@) rule, although its second and third premisses provide (1, a)- and (1, b)-flags while the
last premiss provides markers of order 1. We recall from the definition of the (@) rule that the information
about flags and markers coming from the arguments is divided into two parts. Numbers not greater than the
order of the argument (which is 1 in our case) are passed to the operator, while only greater numbers (in
our case: greater than 1) contribute in creating new flags via the Comp predicate.

Similarly, out of ε `M1 R1 : σ̂R . c we can derive ε `M1 R1 : σ̂R . c + cb. By composing these two
derivation fragments, we can derive ε `M1 R1 : σ̂R . c for every c such that c(c) = 0 (by modifying
slightly the initial fragment of the derivation descending to f (c〈〉) we could also obtain c(c) = 1, but not
c(c) > 1). Finally, we apply the argument S = λx.nd〈a〈x〉, b〈x〉〉, and we derive for Λ(G1) the type triple
ρ̂Mall1 , appearing in Theorem 3.2.

ε `M1 R1 : σ̂R . c ε `M1 S : τ̂a . 0 ε `M1 S : τ̂b . 0 ε `M1 S : τ̂m . ca

ε `M1 Λ(G1) : ρ̂Mall1 . c+ ca
(@)

Recall that from Examples 3.1-3.3 we already know how to derive the three premisses concerning S. There
is a lack of symmetry here with respect to letters a and b, but instead of the last premiss we could equally
well use ε `M1 S : τ̂m . cb, obtaining flag counter c + cb at the end. We notice that there is no direct
correspondence between the considered derivation and some particular tree in L(P); we can only say that
such a derivation with flag counter c+ ca talks about trees from L(P) having 2c(a)+c(b) + 1 nodes, because
c(a) + c(b) times we have descended to the second argument of the nd symbol in R1. We remark that in
every of the above derivations only four flags of order 1 are present (two (1, a)-flags, one (1, b)-flag, and
one (1, c)-flag), in the four nodes using rules (CON≥1) or (CON0).

Example 3.6. Consider the scheme G2, similar to G1, where

R(M) = N (λx.nd〈a〈x〉, b〈x〉〉) , R(N) = λf.nd〈f (c〈〉),N (λy.f y)〉 .

The only difference, comparing to G1, is that in R(N) we have replaced f (f y) by f y. In effect, the
lambda-term R2 (defined analogously to R1 from Example 2.1) is obtained from R1 by replacing all
appearances of the subterm f (f y) with f y. We have BT (Λ(G2)) = nd〈T1, nd〈T1, nd〈T1, . . .〉〉〉, where
T1 = nd〈a〈c〈〉〉, b〈c〈〉〉〉, and thus L(G2) = {a〈c〈〉〉, b〈c〈〉〉}.

Let us see how the type derivations have to be changed. The type judgment ε `M1 R2 : σ̂R . 0 can
be obtained without any change, as its derivation descends to the first child of the outermost nd〈·, ·〉 in
R2 = λf.nd〈f (c〈〉), R2 (λy.f y)〉. The type judgment ε[f 7→ {|τ̂a|}] `M1 λy.f y : τ̂a . 0, and a similar one

A Type System Describing Unboundedness 15

for τ̂b, can be obtained without any problem, as the type judgments concerning the subterms f y and f (f y)
were the same. Let us now see what happens to the derivation of the type triple τ̂m:

ε[f 7→ {|τ̂m|}] `M1 f : τ̂m . 0 ε[y 7→ {|ρ̂Mall0 |}] `M1 y : ρ̂Mall0 . 0

ε[f 7→ {|τ̂m|}, y 7→ {|ρ̂Mall0 |}] `M1 f y : (∅, {|0, 0, 0, 1, 1, 1|}, o) . 0
(@)

ε[f 7→ {|τ̂m|}] `M1 λy.f y : τ̂m . 0
(λ)

In the subterm f y we have only one appearance of f, so we cannot use simultaneously both τ̂a and τ̂m (as
we did for f (f y)); in effect no order-2 flag is placed. Thus if we create a derivation for R2 that descends to
the second child of the outermost nd〈·, ·〉, out of ε `M1 R2 : σ̂R . cc we derive again ε `M1 R2 : σ̂R . cc,
without any change to the flag counter. In effect, the type triple ρ̂Mall1 is derived for Λ(G2) with flag counter
ca (or cb, if one prefers). This corresponds to the fact that L(G2) contains only words with one letter among
a, b.

Example 3.7. Consider now the lambda-term P2 = (λg.Λ(G2)) (λz.Pa), where Pa is the unique lambda-
term such that Pa = nd〈z, a〈Pa〉〉 (by the way, notice that P2 is a lambda-term that cannot be described by
any scheme). We see that P2 beta-reduces to Λ(G2), hence the recognized language remains unchanged.
Let us see what happens on the side of type derivations. Notice that we can create the following derivation:

ε[z 7→ {|ρ̂Mall0 |}] `M1 z : ρ̂Mall0 . 0
(VAR)

ε[z 7→ {|ρ̂Mall0 |}] `M1 Pa : ρ̂Mall0 . 0
(ND)

ε[z 7→ {|ρ̂Mall0 |}] `M1 a〈Pa〉 : ({(1, a)}, {|0, 0, 0|}, o) . 0
(CON≥1)

ε[z 7→ {|ρ̂Mall0 |}] `M1 Pa : ({(1, a)}, {|0, 0, 0|}, o) . 0
(ND)

ε `M1 λz.Pa : τ̂a . 0
(λ)

We notice that the two lines above the (λ) rule can be repeated arbitrarily many times. Then, in the
conclusion of every (CON≥1) rule, a (1, a)-flag is placed (there are no (2, a)-flags, though). Such a
derivation can be used as a part of a derivation for P2:

ε `M1 Λ(G2) : ρ̂Mall1 . ca

ε `M1 λg.Λ(G2) : (∅, {|0, 0, 0, 1, 1, 1|}, {|τ̂a|}→ o) . ca
(λ)

ε `M1 λz.Pa : τ̂a . 0

ε `M1 P2 : ρ̂Mall1 . ca
(@)

Because τ̂a is balanced, it can be discarded in the (λ) rule, and need not be used in the derivation for Λ(G2).
We thus obtain a derivation for P2 in which there are many (1, a)-flags (but only one (2, a)-flag). This
shows that in the flag counter we indeed need to count only the number of flags of the maximal order (not,
say, the total number of flags of all orders).

Example 3.8. In the derivation from Example 3.5 all order-1 markers were placed in the same leaf,
corresponding to the subterm x. Consider, however, a scheme G3, where additionally to M and N we have a
nonterminal Mb of sort o, and the rules are changed to:

R(M) = N (λx.a〈x〉) , R(Mb) = nd〈c〈〉, b〈Mb〉〉 ,
R(N) = λf.nd〈f Mb,N (λy.f (f y))〉 .

16 Paweł Parys

Here we need to place one order-1 marker (responsible for counting appearances of the a symbol) in a leaf
corresponding to x, and another order-1 marker (responsible for counting appearances of the b symbol) in a
leaf corresponding to c〈〉. We do not have to care where to put the third available order-1 marker; let put it
in a leaf corresponding to x.

Since we want to place only two order-1 markers in a leaf corresponding to x, this time we consider
the type triple τ̂ ′m = (∅, {|1, 1|}, {|ρ̂Mall0 |}→ o). We can derive τ̂ ′m and τ̂a = ({(1, a)},0, {|ρ̂Mall0 |}→ o) for
λx.a〈x〉:

ε[x 7→ {|ρ̂Mall0 |}] `M1 x : (∅, {|0, 0, 0, 1, 1|}, o) . 0
(VAR)

ε[x 7→ {|ρ̂Mall0 |}] `M1 a〈x〉 : (∅, {|0, 0, 0, 1, 1|}, o) . ca
(CON≥1)

ε `M1 λx.a〈x〉 : τ̂ ′m . ca
(λ)

ε[x 7→ {|ρ̂Mall0 |}] `M1 x : ρ̂Mall0 . 0
(VAR)

ε[x 7→ {|ρ̂Mall0 |}] `M1 a〈x〉 : ({(1, a)}, {|0, 0, 0|}, o) . 0
(CON≥1)

ε `M1 λx.a〈x〉 : τ̂a . 0
(λ)

Denote by Pb the lambda-term corresponding to Mb, that is, let Pb = nd〈c〈〉, b〈Pb〉〉. We can derive:

ε `M1 c〈〉 : (∅, {|0, 0, 0, 1|}, o) . cc
(CON0)

ε `M1 Pb : (∅, {|0, 0, 0, 1|}, o) . cc
(ND)

ε `M1 Pb : (∅, {|0, 0, 0, 1|}, o) . c
ε `M1 b〈Pb〉 : (∅, {|0, 0, 0, 1|}, o) . c+ cb

(CON≥1)

ε `M1 Pb : (∅, {|0, 0, 0, 1|}, o) . c+ cb
(ND)

Starting with the derivation fragment on the left, and then appending the fragment on the right an appropriate
number of times, we can derive ε `M1 Pb : (∅, {|0, 0, 0, 1|}, o) . c for every flag counter c such that c(a) = 0
and c(c) = 1 (where c(b) is arbitrary).

We can derive ε[f 7→ {|τ̂a|}] `M1 λy.f (f y) : τ̂a . 0 and ε[f 7→ {|τ̂a, τ̂ ′m|}] `M1 λy.f (f y) : τ̂ ′m . ca,
exactly as in Example 3.5. Let us take σ̂′R = (∅, {|0, 0, 0, 1|}, {|τ̂a, τ̂ ′m|}→ o). Consider the lambda-term
R3 corresponding to N, namely the unique lambda-term such that R3 = λf.nd〈f Pb, R3 (λy.f (f y))〉. By
continuing the above derivation concerning Pb we obtain:

ε[f 7→ {|τ̂ ′m|}] `M1 f : τ̂ ′m . 0
(VAR)

ε `M1 Pb : (∅, {|0, 0, 0, 1|}, o) . c
ε[f 7→ {|τ̂ ′m|}] `M1 f Pb : ρ̂Mall1 . c

(@)

ε[f 7→ {|τ̂ ′m|}] `M1 nd〈f Pb, R3 (λy.f (f y))〉 : ρ̂Mall1 . c
(ND)

ε `M1 R3 : σ̂′R . c
(λ)

We also have a derivation fragment that increases the flag counter on the first coordinate:

ε `M1 R3 : σ̂′R . c ε[f 7→ {|τ̂a|}] `M1 λy.f (f y) : τ̂a . 0 ε[f 7→ {|τ̂a, τ̂ ′m|}] `M1 λy.f (f y) : τ̂ ′m . ca

ε[f 7→ {|τ̂a, τ̂ ′m|}] `M1 R3 (λy.f (f y)) : ρ̂Mall1 . c+ ca
(@)

ε[f 7→ {|τ̂a, τ̂ ′m|}] `M1 nd〈f (c〈〉), R3 (λy.f (f y))〉 : ρ̂Mall1 . c+ ca
(ND)

ε `M1 R3 : σ̂′R . c+ ca
(λ)

A Type System Describing Unboundedness 17

Notice that, in the last two derivation fragments, the final (λ) rule removes two order-1 markers from the
marker multiset of ρ̂Mall1 , so that the marker multiset of σ̂′R contains one order-1 marker. This is because τ̂ ′m
provides two order-1 markers. In Example 3.5 τ̂m provided three order-1 markers, and in effect σ̂R had no
order-1 markers.

By repeating the last derivation fragment, we can derive ε `M1 R3 : σ̂′R . c for every c such that c(c) = 1.
We end the derivation as in Example 3.5:

ε `M1 R3 : σ̂′R . c ε `M1 λx.a〈x〉 : τ̂a . 0 ε `M1 λx.a〈x〉 : τ̂ ′m . ca

ε `M1 Λ(G3) : ρ̂Mall2 . c+ ca
(@)

Example 3.9. In the final example we consider a tree-recognizing scheme G4 with the following rules:

R(M) = N (λx.λy.c〈x, y〉) ,
R(N) = λf.nd〈f (a〈〉) (b〈〉),N (λx.λy.f (c〈x, x〉) (c〈y, y〉))〉 .

In L(G4) we have full binary trees of height k for every k ≥ 1, where internal nodes are labeled by c, first
2k−1 leaves are labeled by a, and remaining 2k−1 leaves are labeled by b. We want to exhibit the fact that
SUP{a,b,c}(L(G4)) holds.

In this example we are going to derive the following type triples:

σ̂a = ({(0, a)},0, o) , ρ̂Mall1 = (∅, {|0, 0, 0, 1, 1, 1|}, o) ,
σ̂b = ({(0, b)},0, o) , τ̂f = (∅, {|1, 1, 1|}, {|σ̂a, σ̂m|}→{|σ̂b, σ̂′m|}→ o) ,

σ̂m = (∅, {|0|}, o) , σ̂MR = (∅, {|0, 0, 0|}, {|τ̂f |}→ o) .

σ̂′m = (∅, {|0, 0|}, o) ,

Denote subterms of Λ(G4) as follows:

S = f (a〈〉) (b〈〉) , T = λx.λy.f (c〈x, x〉) (c〈y, y〉) , R4 = λf.nd〈S,R4 T 〉 .

Using the (CON0) rule we can derive

ε `M1 a〈〉 : σ̂a . 0 , ε `M1 b〈〉 : σ̂b . 0 ,

ε `M1 a〈〉 : σ̂m . 0 , ε `M1 b〈〉 : σ̂′m . 0 ;

denote this type judgments Ja,a, Ja,m, Jb,b, and Jb,m, respectively. Notice that while deriving Ja,m a
(1, a)-flag is created by the Comp predicate; we are, however, not obliged to store the information about
it in the flag set, and thus we can derive the type triple σ̂m instead of ({(1, a)}, {|0|}, o). Continuing, we
derive the type triple σ̂MR for R4 with empty flag counter:

ε[f 7→ {|τ̂f |}] `M1 f : τ̂f . 0
(VAR)

Ja,a Ja,m

ε[f 7→ {|τ̂f |}] `M1 f (a〈〉) : (∅, {|0, 1, 1, 1|}, {|σ̂b, σ̂′m|}→ o) . 0
(@)

Jb,b Jb,m

ε[f 7→ {|τ̂f |}] `M1 S : ρ̂Mall1 . 0
(@)

ε[f 7→ {|τ̂f |}] `M1 nd〈S,R4 T 〉 : ρ̂Mall1 . 0
(ND)

ε `M1 R4 : σ̂MR . 0
(λ)

18 Paweł Parys

We remark that the first (@) rule has premisses with (0, a) in the flag set, and with 0 and 1 in the marker
multiset. Passing them all to the Comp predicate would result in creating a (2, a)-flag and increasing the
flag counter. This is not the case, because the (@) rule does not pass (0, a) to Comp, because 0 is not
greater than ord(a〈〉) = 0.

Next, we would like to increase the flag counter, by using the second child of the nd〈·, ·〉 node constructor.
We start as follows:

ε[x 7→ {|σ̂a|}] `M1 x : σ̂a . 0
(VAR)

ε[x 7→ {|σ̂a|}] `M1 x : σ̂a . 0
(VAR)

ε[x 7→ {|σ̂a|}] `M1 c〈x, x〉 : σ̂a . 0
(CON≥1)

ε[x 7→ {|σ̂a|}] `M1 x : σ̂a . 0
(VAR)

ε[x 7→ {|σ̂m|}] `M1 x : σ̂m . 0
(VAR)

ε[x 7→ {|σ̂a, σ̂m|}] `M1 c〈x, x〉 : ({(1, a)}, {|0|}, o) . 0
(CON≥1)

ε[x 7→ {|σ̂a|}] `M1 x : σ̂a . 0
(VAR)

ε[x 7→ {|σ̂m|}] `M1 x : σ̂m . 0
(VAR)

ε[x 7→ {|σ̂a, σ̂m|}] `M1 c〈x, x〉 : ({(1, c)}, {|0|}, o) . 0
(CON≥1)

In these derivations, the (CON≥1) rule creates a (0, c)-flag. We are not obliged to keep it in the flag set, so
in the first derivation we can derive σ̂a not containing this flag. Actually, in the flag set we cannot store
simultaneously (0, a) and (0, c); we have to drop the information about one of these flags. In the latter two
derivations, this (0, c)-flag, together with the information about an order-0 marker from the second premiss,
results in creating a (1, c)-flag. Moreover, the information about a (0, a)-flag from the first premiss meets
the information about an order-0 marker from the second premiss, which results in creating a (1, a)-flag.
Again, we cannot store both (1, a) and (1, c) in the flag set; in the former derivation we keep only (1, a),
and in the latter only (1, c). Let us denote the conclusions of the above derivations by Jx,a, Jx,m, and J ′x,m,
respectively. Similarly we can derive

ε[y 7→ {|σ̂b|}] `M1 c〈y, y〉 : σ̂b . 0 , denoted Jy,b,
ε[y 7→ {|σ̂b, σ̂′m|}] `M1 c〈y, y〉 : ({(1, b)}, {|0, 0|}, o) . 0 , denoted Jy,m, and
ε[y 7→ {|σ̂b, σ̂′m|}] `M1 c〈y, y〉 : (∅, {|0, 0|}, o) . 0 , denoted J ′y,m.

Denoting cab = ca + cb, we continue as follows:

ε[f 7→ {|τ̂f |}] `M1 f : τ̂f . 0
(VAR)

Jx,a Jx,m

ε[f 7→ {|τ̂f |}, x 7→ {|σ̂a, σ̂m|}] `M1 f (c〈x, x〉) : (∅, {|0, 1, 1, 1|}, {|σ̂b, σ̂m|}→ o) . ca
(@)

Jy,b Jy,m

ε[f 7→ {|τ̂f |}, x 7→ {|σ̂a, σ̂m|}, y 7→ {|σ̂b, σ̂′m|}] `M1 f (c〈x, x〉) (c〈y, y〉) : (∅, {|0, 0, 0, 1, 1, 1|}, o) . cab
(@)

ε[f 7→ {|τ̂f |}, x 7→ {|σ̂a, σ̂m|}] `M1 λy.f (c〈x, x〉) (c〈y, y〉) : (∅, {|0, 1, 1, 1|}, {σ̂b, σ̂′m}→ o) . cab
(λ)

ε[f 7→ {|τ̂f |}] `M1 T : τ̂f . cab
(λ)

In the (@) rules, the information about order-1 flags from Jx,m and Jy,m meets the information about order-1
markers, and thus order-2 flags are created, which results in increasing the flag counter. In Jx,m and Jy,m
we do not have any information about (1, c)-flags. In order to exhibit existence of the symbol c, we can

A Type System Describing Unboundedness 19

replace Jx,m and Jy,m by J ′x,m and J ′y,m in the above fragment of a derivation, which results in deriving
ε[f 7→ {|τ̂f |}] `M1 T : τ̂f . cc. Finally, we can derive:

ε `M1 R4 : σ̂MR . c ε[f 7→ {|τ̂f |}] `M1 T : τ̂f . cab

ε[f 7→ {|τ̂f |}] `M1 R4 T : ρ̂Mall1 . c+ cab
(@)

ε[f 7→ {|τ̂f |}] `M1 nd〈S,R4 T 〉 : ρ̂Mall1 . c+ cab
(ND)

ε `M1 R4 : σ̂MR . c+ cab
(λ)

Likewise, out of ε `M1 R4 : σ̂MR . c we can derive ε `M1 R4 : σ̂MR . c + cc. By repeating these derivation
fragments some number of times, we can derive σ̂MR for R4 with arbitrarily large flag counter c (satisfying
c(a) = c(b)).

We also need to derive the type triple τ̂f for the subterm λx.λy.c〈x, y〉. This is done as follows:

ε[x 7→ {|σ̂m|}] `M1 x : (∅, {|0, 1, 1, 1|}, o) . 0
(VAR)

ε[y 7→ {|σ̂′m|}] `M1 y : σ̂′m . 0
(VAR)

ε[x 7→ {|σ̂m|}, y 7→ {|σ̂′m|}] `M1 c〈x, y〉 : ρ̂Mall1 . cc
(CON≥1)

ε[x 7→ {|σ̂m|}] `M1 λy.c〈x, y〉 : (∅, {|0, 1, 1, 1|}, {|σ̂b, σ̂′m|}→ o) . cc
(λ)

ε `M1 λx.λy.c〈x, y〉 : τ̂f . cc
(λ)

Above, we have put three order-1 markers in the leaf describing the subterm x. We could equally well put
them in the leaf corresponding to y, or distribute them between these two leaves.

This allows us to finish by applying the (@) rule:

ε `M1 R4 : σ̂MR . c ε `M1 λx.λy.c〈x, y〉 : τ̂f . cc

ε `M1 Λ(G4) : ρ̂Mall1 . c+ cc
(@)

4 Word-Recognizing Schemes
In this section we observe that the type system can be further optimised in the case of word-recognizing
lambda-terms. We thus define another type system, which works correctly only for word-recognizing
lambda-terms, and allows to solve SUP for word-recognizing schemes exponentially faster.

Recall (from the intuitive description of the type system; page 5) that by placing order-0 markers we
choose leaves of some tree T in the language recognized by the considered lambda-term. When T is a
word, there is only one leaf, so all available order-0 markers need to be placed in the same leaf. One can
see that this was the case in Examples 3.5 and 3.8, concerning word-recognizing schemes. This suggests
that it should be enough to allow only one order-0 marker. Coming back to the intuitions, a flag of order 0
is created in every node of the considered tree T , and a flag of order 1 in the closest ancestor of that node
that is on the path to an order-0 marker. When T is a word, every node of T is on the path to an order-0
marker. Thus, whenever a (0, a)-flag is placed in some node, then a (1, a)-flag is placed in the same node.
In effect, we do not need to remember order-0 flags in flag sets.

We now formalize the above observations in particular requirements on the type system. To distinguish
the two type systems, we use a parameter κ ∈ {M, \}. For the type system defined previously, we use
κ =M. The new type system, dedicated to word-recognizing lambda-terms, is denoted by κ = \.

Denote m0(M) = −1 and m0(\) = 0; this is the minimal considered value of a parameter m. Indeed, in
the previous section we were assuming that m ≥ −1, but now we only consider m ≥ 0.

20 Paweł Parys

We define the set F\m of m-bounded flag \-sets as containing only those F ∈ FMm for which F ⊆
{1, . . . ,m} × Σ, and we define the setM\m of m-bounded marker \-multisets as containing only those
M ∈MMm for which M(0) ≤ 1. Next, by mutual induction on the sort α, we define the set T \α of \-types
of sort α, the set T T \αm of m-bounded type \-triples of sort α, and the set T C\α of triple \-containers of
sort α, and basing on that we define type \-environments and type \-judgments. They are defined exactly as
in the word case, with the exception that:
• we require that m ≥ 0,
• we use F\m andM\m instead of FMm andMMm, respectively,
• in the definition of T T Mαm we add a requirement that M(0)+

∑s
i=1 Mk(Ci)(0) = 1; namely, T T Mαm

contains all elements (F,M,C1→ . . .→Cs→ o) of FMm×MMm×T Mα such that M(k) = 0 for all
(k, a) ∈ F , and M(0) +

∑s
i=1 Mk(Ci)(0) = 1, and

• in type \-judgments we write `\m instead of `Mm.
All rules of the type system remain the same. For the (CON≥1) rule we remark that the set {(0, a)},

passed to Compm, is not an element of F\m. But, the effect of passing this set is that if M(0) > 0 (i.e., we
are on the path to the order-0 marker), then Compm places a (1, a)-flag in the current node, and maybe
also some (k, a)-flags for higher k.

We denote ρ̂\allm = (∅,M\allm , o), where M\allm ∈ M\m is such that M\allm (0) = 0 and M\allm (k) = |Σ|
for all k ∈ {1, . . . ,m}. The following theorem is an analogue of Theorem 3.2 for tree-recognizing
lambda-terms.

Theorem 4.1. Let m ≥ 0, let P be a word-recognizing closed lambda-term of sort o and complexity at
most m+ 1, and let A ⊆ Σ. Then SUPA(L(BT (P))) holds if and only if for every n ∈ N we can derive
ε `\m P : ρ̂

\all
m . cn with some cn such that cn(a) ≥ n for all a ∈ A.

We prove Theorem 4.1, together with Theorem 3.2, in Sections 5-8.

5 Finite Prefixes of Infinite Lambda-terms
Theorems 3.2 and 4.1 talk about infinite lambda-terms, but the properties described by these theorems
concern actually only finite prefixes of these lambda-terms. Moreover, while proving these two theorems it
is easier to concentrate on finite lambda-terms. For this reason we now formalize the concept of taking a
finite prefix of a lambda-term.

We first say what does it mean that one lambda-term is a prefix of another lambda-term. This is described
by the relation 4 defined as the smallest reflexive relation such that:
• λxα1

1 . · · · .λxαss .nd〈〉 4 Q whenever Q is of sort α1→ . . .→αs→ o,
• a〈P1, . . . , Pr〉 4 a〈P ′1, . . . , P ′r〉 if Pi 4 P ′i for all i ∈ {1, . . . , r},
• P Q 4 P ′Q′ if P 4 P ′ and Q 4 Q′, and
• λx.P 4 λx.P ′ if P 4 P ′.

In other words, we allow to replace some subterms Q by lambda-terms of the form λx1. · · · .λxs.nd〈〉
(where the quantity of variables x1, . . . , xs and their sorts are chosen so that the sort of the lambda-term
remains unchanged).

The fact that in Theorems 3.2 and 4.1 it is enough to consider finite prefixes of lambda-terms is given by
the following two lemmata.

A Type System Describing Unboundedness 21

Lemma 5.1. We can derive a type judgment Γ `κm P : τ̂ . c if and only if for some finite lambda-term P ′

such that P ′ 4 P we can derive Γ `κm P ′ : τ̂ . c.

Proof: For the left-to-right implication we recall that type derivations are finite by assumption. We can
thus cut off (i.e., replace by λx1. · · · .λxs.nd〈〉) those subterms of P to which we do not descend while
deriving Γ `κm P : τ̂ . c. For the opposite implication we observe that it is impossible to derive any type
judgment for a lambda-term of the form λx1. · · · .λxs.nd〈〉, because we cannot apply the (ND) rule to a
node constructor without any child. We can thus replace subterms of this form by the actual subterms of P ,
without altering the type derivation. Details, being easy, are left to the reader.

Lemma 5.2. Let P be a closed lambda-term of sort o. For every tree T it holds that T ∈ L(BT (P)) if
and only if there exists a finite lambda-term P ′ such that P ′ 4 P and T ∈ L(BT (P ′)).

The remaining part of this section is devoted to a formal proof of the above lemma. The first three
lemmata are useful while showing its right-to-left implication.

Lemma 5.3. Suppose that R′ 4 R and S′ 4 S, where R′ is finite.(ii) Then R′[S′/x] 4 R[S/x].

Proof: A trivial induction on the size of R′.

Lemma 5.4. Suppose that P ′ 4 P and P ′ →∗β Q′, where P ′ is finite. Then there exists a lambda-term Q
such that Q′ 4 Q and P →∗β Q.

Proof: We proceed by induction on the length of the shortest reduction sequence witnessing P ′ →∗β Q′;
only the base case of a single beta-reduction is interesting, thus assume that P ′ →β Q

′. Internally, we
proceed by induction on the depth of the redex concerned in the beta-reduction P ′ →β Q

′. Again, only the
base case is interesting, thus assume that P ′ = (λx.R′)S′ and Q′ = R′[S′/x].

We have two cases. One possibility is that P = (λx.R)S, where R′ 4 R and S′ 4 S. In this case,
taking Q = R[S/x] we have that P →∗β Q, and, by Lemma 5.3, Q′ 4 Q.

It is also possible that R′ = λx1. · · · .λxs.nd〈〉. In this case we simply take Q = P , and we observe that
Q′ = R′ 4 Q.(iii)

Lemma 5.5. Let Q′ and Q be closed lambda-terms of sort o such that Q′ 4 Q, and let T be a finite
Σ-labeled tree such that Q′ →n

nd T . Then BT (Q)→∗nd T .

Proof: The proof is by induction on |T | + n. Since Q′ →n
nd T , necessarily Q′ = a〈Q′1, . . . , Q′r〉 for

some a ∈ Σnd, but Q′ 6= nd〈〉. Since Q′ 4 Q, we also have that Q = a〈Q1, . . . , Qr〉, and thus
BT (Q) = a〈BT (Q1), . . . ,BT (Qr)〉, where Q′i 4 Qi for all i ∈ {1, . . . , r}. We have two cases.

Suppose first that a 6= nd. Then T = a〈T1, . . . , Tr〉, and for all i ∈ {1, . . . , r} it holds that |Ti| < |T |
and Q′i →

ni
nd Ti for some ni ≤ n. For every i ∈ {1, . . . , r} the induction assumption implies that

BT (Qi)→∗nd Ti, and thus BT (Q)→∗nd T , as required.

(ii) It is convenient to proceed by induction on the size of R′, and thus we assume that it is finite, but equally well the lemma could be
shown without this assumption.

(iii) In the latter case we only know that P is of the form T S, but not necessarily (λx.R)S, so we cannot proceed as in the former
case.

22 Paweł Parys

Next, suppose that a = nd. In this case we have Q′ →nd Q
′
i →

n−1
nd T for some i ∈ {1, . . . , r}. Then

BT (Qi)→∗nd T by the induction assumption (used for one fixed i only), and we can conclude observing
that BT (Q)→nd BT (Qi).

The first step needed while proving the left-to-right implication of Lemma 5.2 is to show that every tree
from L(BT (P)) can be seen already after performing finitely many beta-reductions from P .

Lemma 5.6. Let P be a closed lambda-term of sort o, and let T be a finite Σ-labeled tree such that
BT (P)→n

nd T . Then there exists a lambda-term Q such that P →∗β Q→∗nd T .

Proof: The proof is by induction on |T | + n. Since BT (P) →n
nd T , necessarily BT (P) 6= nd〈〉, and

thus P →∗β a〈P1, . . . , Pr〉 for some a ∈ Σnd and some lambda-terms P1, . . . , Pr such that BT (P) =
a〈BT (P1), . . . ,BT (Pr)〉. We have two cases.

Suppose first that a 6= nd. Then T = a〈T1, . . . , Tr〉, and for all i ∈ {1, . . . , r} it holds that |Ti| < |T |
and BT (Pi) →ni

nd Ti for some ni ≤ n. For every i ∈ {1, . . . , r} the induction assumption gives us a
lambda-term Qi such that Pi →∗β Qi →∗nd Ti. Taking Q = a〈Q1, . . . , Qr〉 we obtain P →∗β Q→∗nd T , as
required.

Next, suppose that a = nd. In this case we have BT (P)→nd BT (Pi)→n−1
nd T for some i ∈ {1, . . . , r}.

Then Pi →∗β Qi →∗nd T for some lambda-term Qi, by the induction assumption (used for one fixed i only).
Taking Qj = Pj for j ∈ {1, . . . , r} \ {i} and Q = nd〈Q1, . . . , Qr〉 we obtain P →∗β Q→nd Qi →∗nd T ,
as required.

It is convenient to introduce one more relation: we write P ≈l P ′ if the lambda-terms P and P ′ agree
up to depth l ∈ N. Formally, ≈l is defined by induction on l as the smallest equivalence relation such that:
• if l = 0, then P ≈l Q for all lambda-terms P,Q of the same sort,
• a〈P1, . . . , Pr〉 ≈l a〈P ′1, . . . , P ′r〉 if l > 0 and Pi ≈l−1 P

′
i for all i ∈ {1, . . . , r},

• P Q ≈l P ′Q′ if l > 0, and P ≈l−1 P
′, and Q ≈l−1 Q

′, and
• λx.P ≈l λx.P ′ if l > 0 and P ≈l−1 P

′.
Observe that P ≈l P ′ implies P ≈k P ′ for k < l. Next, we observe that only a finite prefix of the
lambda-term Q obtained in Lemma 5.6 is important.

Lemma 5.7. Let Q be a closed lambda-term of sort o, and let T be a finite Σ-labeled tree such that
Q→n

nd T . Then Q′ →∗nd T for all lambda-terms Q′ such that Q ≈|T |+n Q′.

Proof: Again, the proof is by induction on |T | + n. Since Q →n
nd T and |T | + n ≥ 1, necessarily Q

and Q′ are of the form a〈Q1, . . . , Qr〉 and a〈Q′1, . . . , Q′r〉, respectively, where Qi ≈|T |+n−1 Q
′
i for all

i ∈ {1, . . . , r}. We have two cases.
Suppose first that a 6= nd. Then T = a〈T1, . . . , Tr〉, and for all i ∈ {1, . . . , r} it holds that |Ti| < |T |

and Qi →ni
nd Ti for some ni ≤ n. Since |Ti| + ni ≤ |T | + n − 1, we have that Qi ≈|Ti|+ni Q′i, hence

Q′i →∗nd Ti by the induction assumption (for all i ∈ {1, . . . , r}). In consequence Q′ →∗nd T .
Next, suppose that a = nd. Then Q→nd Qi →n−1

nd T for some i ∈ {1, . . . , r}. Since Qi ≈|T |+n−1 Q
′
i,

by the induction assumption we obtain that Q′i →∗nd T , which together with Q′ →nd Q
′
i gives us that

Q′ →∗nd T , as required.

The next two lemmata describe what happens during a beta-reduction.

Lemma 5.8. If P ≈l P ′ and Q ≈l Q′ for some l ∈ N, then also P [Q/x] ≈l P ′[Q′/x].

A Type System Describing Unboundedness 23

Proof: Induction on l. For l = 0 the lemma is obvious: ≈0 always holds. When l > 0 and P = RS, then
P ′ = R′ S′ withR ≈l−1 R

′ and S ≈l−1 S
′. By the induction assumption we haveR[Q/x] ≈l−1 R

′[Q′/x]
and S[Q/x] ≈l−1 S′[Q′/x], and thus P [Q/x] ≈l P ′[Q′/x]. The cases when P = a〈P1, . . . , Pr〉
or P = λy.Q are similar. Finally, when P = P ′ is a variable, the thesis follows immediately from
Q ≈l Q′.

Lemma 5.9. If P ≈l+2 P
′ and P →β Q, then for some Q′ we have that P ′ →∗β Q′ and Q ≈l Q′.

Proof: Induction on l. If l = 0, the thesis holds for Q′ = P ′. Next, suppose that l > 0 and P = (λx.R)S
and Q = R[S/x]. Then P ′ = (λx.R′)S′, where R ≈l R′ and S ≈l+1 S

′. Taking Q′ = R′[S′/x] we
have P ′ →β Q

′, and, by Lemma 5.8, Q ≈l Q′. The remaining case is that l > 0 and the redex involved in
the beta-reduction P →β Q is not located on the front of P . Then the thesis follows from the induction
assumption. Let us consider only a representative example: suppose that P = RS, and Q = T S, and
R→β T . In this case P ′ = R′ S′ with R ≈l+1 R

′ and S ≈l+1 S
′. The induction assumption gives us T ′

such that R′ →∗β T ′ and T ≈l−1 T
′. Thus for Q′ = T ′S′ we have P ′ →∗β Q′ and Q ≈l Q′.

We can now conclude the proof of Lemma 5.2.

Proof of Lemma 5.2: Let us first establish the right-to-left implication. We assume here that P ′ 4 P
and T ∈ L(BT (P ′)) for a finite lambda-term P ′, and we need to prove that T ∈ L(BT (P)). Denote
Q′ = BT (P ′). Since P ′ is finite, we have P ′ →∗β Q′ (the Böhm tree of a finite lambda-term is just
its beta-normal form). Lemma 5.4 gives us a lambda-term Q such that Q′ 4 Q and P →∗β Q. Since
T ∈ L(BT (P ′)), by definition of L(·), we have that Q′ →n

nd T for some n ∈ N, and that T is a finite
Σ-labeled tree. In such a situation Lemma 5.5 implies BT (Q) →∗nd T . Since BT (P) = BT (Q), we
obtain T ∈ L(BT (P)), as required.

Let us now prove the opposite implication. We know that T ∈ L(BT (P)), that is, that T is a finite
Σ-labeled tree and BT (P)→n

nd T for some n ∈ N. Then, by Lemma 5.6, there exists a lambda-term Q
such that P →k

β Q →m
nd T for some k,m ∈ N. We now take a finite lambda-term P ′ such that P ′ 4 P

and P ≈2k+m+|T | P
′; it is easy to obtain such P ′: we simply need to cut off P at depth 2k+m+ |T |. By

applying Lemma 5.9 consecutively to every beta-reduction in the reduction sequence witnessing P →k
β Q

we obtain a lambda-term Q′ such that P ′ →∗β Q′ and Q ≈m+|T | Q
′. Next, Lemma 5.7 implies that

Q′ →∗nd T . Finally, we use Lemma 5.5, where we set both Q and Q′ to Q′; it gives us that BT (Q′)→∗nd T .
Since BT (P ′) = BT (Q′), we obtain T ∈ L(BT (P ′)), as required.

6 Properties of Type Judgments
Before actually proving Theorems 3.2 and 4.1 in the next two sections, we state here some properties of
those type judgments that can be derived in our type system.

We start by a simple observation, that follows directly from rules of the type system. This observation is
used implicitly later.

Observation. If we can derive Γ `κm R : τ̂ . c, and x is not free in R, then Γ(x) = 0.

Next, in Lemma 6.1, we formalize the intuition that the marker multiset of a type judgment includes all
markers provided by free variables (which are described in the type environment).

Lemma 6.1. Suppose that we can derive Γ `κm R : τ̂ . c. Then Mk(Γ) ≤ Mk(τ̂).

24 Paweł Parys

Proof: Fix some derivation of Γ `κm R : τ̂ . c; the proof is by induction on the structure of this derivation.
We analyze the shape of R.

Suppose first that R = x. The (VAR) rule says that Γ = ε[x 7→ {|τ̂ ′|}] for τ̂ ′ such that Mk(τ̂ ′) ≤ Mk(τ̂),
which implies that Mk(Γ) ≤ Mk(τ̂).

In the case when R = a〈〉 for a 6= nd, the (CON0) rule implies that Γ = ε, hence Mk(Γ) ≤ Mk(τ̂).
Next, suppose that R = λx.P . Let Γ[x 7→ C ′] `κm P : τ̂ ′ . c be the premiss of the final (λ) rule,

and let C→ τ be the type appearing in the type triple τ̂ . By conditions of the rule we have C ′ v C
and Mk(τ̂) = Mk(τ̂ ′) − Mk(C). While writing Γ[x 7→ C ′] we mean that Γ(x) = 0, so Mk(Γ) =
Mk(Γ[x 7→ C ′]) −Mk(C ′). The condition C ′ v C implies that Mk(C) = Mk(C ′), and the induction
assumption ensures that Mk(Γ[x 7→ C ′]) ≤ Mk(τ̂ ′). Putting this together we obtain Mk(Γ) ≤ Mk(τ̂).

Finally, suppose that R = a〈P1, . . . , Pr〉 where r ≥ 1 or a = nd, or R = P Q. Let τ̂1, . . . , τ̂s
be the type triples derived in premisses of the final rule (which is either (CON≥1), or (ND), or (@)),
and let Γ1, . . . ,Γs be the type environments used there. Each of the three possible rules ensures that
Mk(τ̂) = Mk(τ̂1) + · · ·+ Mk(τ̂s) and Γ = Γ1 t · · · t Γs. The induction assumption gives us inequalities
Mk(Γi) ≤ Mk(τ̂i) for all i ∈ {1, . . . , s}. It follows that Mk(Γ) ≤ Mk(τ̂).

The next important property of our type system is given in Lemma 6.2.

Lemma 6.2. If a type judgment ∆ `κm R : σ̂ . d is used in a derivation of Γ `κm S : τ̂ . c, where
Mk(τ̂)(m) = 0 and ord(S) ≤ m, then Mk(σ̂)(m) = 0.

Proof: We say that a type triple σ̂ = (F,M,C1→ . . .→Cs→ o) is m-clear if it holds that (M +∑s
i=1 Mk(Ci))(m) = 0. It is enough to prove that, in the considered derivation, there are only type

judgments with m-clear type triples; then the statement of the lemma follows immediately.
We first notice that if σ̂ is derived for a lambda-term having sortα of order at mostm, and Mk(σ̂)(m) = 0,

then σ̂ is m-clear. Indeed, let us write σ̂ = (F,M,C1→ . . .→Cs→ o). For i ∈ {1, . . . , s} by definition
we have Ci ∈ T Cκαi , where α = α1→ . . .→αs→ o; type triples in Ci belong to T T καiord(αi)

, so Mk(Ci)

is ord(αi)-bounded, and because ord(αi) < ord(α) ≤ m, we obtain Mk(Ci)(m) = 0 as needed. In
particular it follows that the type triple τ̂ derived at the end is m-clear.

It remains to prove that if a conclusion of some rule derives an m-clear type triple, then all its premisses
as well. Let ∆ `κm R : (F,M, σ) . d be the considered conclusion, where σ = C1→ . . .→Cs→ o. We
have several cases depending on the shape of R.

If R = x or R = a〈〉, the thesis is immediate, as there are no premisses. If R = nd〈P1, . . . , Pr〉, then
the (ND) rule is used, so the type triple derived in the premiss is the same as in the conclusion.

Suppose that R = λx.P . Then the (λ) rule is used, and it has a premiss ∆′ `κm P : (F,M ′, σ′) . d,
where σ′ = C2→ . . .→Cs→ o and M ′ = M + Mk(C1). We thus have (M ′ +

∑s
i=2 Mk(Ci))(m) =

(M +
∑s
i=1 Mk(Ci))(m) = 0.

Next, suppose that R = a〈P1, . . . , Pr〉, where a 6= nd and r ≥ 1. Then the premisses are ∆i `κm Pi :
(Fi,Mi, o) . di for i ∈ {1, . . . , r}, where the (CON≥1) rule ensures that M = M1 + · · ·+Mr. We thus
immediately have Mi(m) ≤M(m) = 0 for all i ∈ {1, . . . , r}.

Finally, suppose that R = P Q. Let ∆′ `κm P : (F ′,M ′, C0→σ) . d′ and ∆i `κm Q : (Fi,Mi, σi) .
di for i ∈ I be the premisses of the considered rule, which is (@). The rule implies thatM = M ′+

∑
i∈IMi,

so M ′(m) = 0 and Mi(m) = 0 for all i ∈ I . It also implies that ord(Q) ≤ m, so the type triples
(Fi,Mi, σi) derived for Q are m-clear (as observed at the beginning). Moreover, the marker multisets in
type triples in C0 are Mi�≤ord(Q), so Mk(C0)(m) = 0, and thus also (F ′,M ′, C0→σ) is m-clear.

A Type System Describing Unboundedness 25

Out of Lemma 6.2 we easily deduce the following lemma.

Lemma 6.3. Suppose that we can derive Γ `κm S : τ̂ . c, where Mk(τ̂)(m) = 0 and ord(S) ≤ m. Then
c = 0.

Proof: Suppose to the contrary that c 6= 0. Then for some rule used in the derivation, its conclusion ∆ `κm
R : (F,M, σ) . d has a nonzero flag counter d, but flag counters in all premisses are 0. This is possible only
in the following rules: (CON0), (CON≥1), or (@). In these rules we have (F, d) ∈ Compm(M ; · · ·), where
by Lemma 6.2 we haveM(m) = 0. Moreover, in all pairs (Fi, ci) passed to this Compm predicate we have
that ci = 0 and that Fi is m-bounded (this is also the case for Fi = {(0, a)} since m ≥ ord(S) ≥ 0). We
see that the numbers f ′m+1,a and fm+1,a appearing in the definition of Compm are 0, and thus necessarily
d = 0, contrary to our assumption.

One may suspect that Lemma 6.3 can be generalized to lower orders, that is, that whenever we can
derive Γ `κm S : (F,M, τ) . c with M(k) = 0 for all k ≥ ord(S), then F �>ord(S) = ∅. The justification
of such a statement would be as those of Lemma 6.3: flags of order k + 1 > ord(S) are created only when
a marker of order k ≥ ord(S) is visible, while such markers are not provided neither in the derivation
itself (since M(k) = 0) nor in the the arguments of the lambda-term. Live is not so simple, however: it
may be the case that Γ simply provides some flag of order greater than ord(S). This is illustrated by the
following example.

Example 6.1. In this example we suppose that Σ = {a}; then ρ̂Mall1 = (∅, {|0, 1|}, o). Denote

τ̂y = ({(1, a)},0,0→ o) and σ̂ = ({(1, a)},0, {|τ̂y|}→0→ o) ,

and consider the following type derivation, in which x is of sort o, y is of sort o→ o, and z is of sort
(o→ o)→ o→ o. As in the previous examples, ca is the flag counter such that ca(a) = 1.

ε `M1 a〈〉 : ρ̂Mall1 . cc}
(CON0)

ε `M1 λz.a〈〉 : (∅, {|0, 1|}, {|σ̂|}→ o) . cc
(λ)

ε[y 7→ {|τ̂y|}] `M1 y : τ̂y . 0
(VAR)

ε[y 7→ {|τ̂y|}] `M1 y x : ({(1, a)},0, o) . 0
(@)

ε[y 7→ {|τ̂y|}] `M1 λx.y x : τ̂y . 0
(λ)

ε `M1 λy.λx.y x : σ̂ . 0
(λ)

ε `M1 (λz.a〈〉) (λy.λx.y x) : ρ̂Mall1 . cc
(@)

The type judgment concerning the subterm y x is of the considered “illegal” form: it provides a flag of
order 1, but does not use any markers. This means two things: first, that such a type judgment can be
derived, and second, that it can be used in a derivation concerning a closed lambda-term of sort o. We
notice, however, that this type judgment could appear in the whole derivation only because it is actually
ignored (λz.a〈〉 ignores its argument z); otherwise, it would be necessary to derive τ̂y for some subterm
that would be given as y to λy.λx.y x, and this would be impossible, since we cannot create a flag of order
1 without using markers.

We thus have to generalize Lemma 6.3 in a more subtle way, having in mind the above issues. To this end,
we proceed in a minimalistic way: in Lemma 6.4 we prove what is really useful for us, although it might be
effortless to prove a slightly stronger result. While formulating this lemma we need the following definition.
Consider a use of the (@) rule that derives a type judgment Γ `κm P Q : τ̂ . c. We say that this use of the

26 Paweł Parys

(@) rule is wild if it has a premiss Γ′ `κm Q : (F,0, σ) . c′ such that for some (k, a) ∈ F �>ord(Q) it holds
that Mk(τ̂)(l) > 0 for all l ∈ {k, k + 1, . . . ,m}. A type derivation is wild if, at some moment, it uses the
(@) rule in a wild way.

Lemma 6.4. There is no wild derivation of Γ `κm P : ρ̂κallm . c, where P is a closed lambda-term of sort o
and complexity at most m+ 1.

This lemma is proven in Section 8. We remark that we do not use this lemma in Sections 7 and 8, only
in Section 9. Right now we only prove the following auxiliary lemma.

Lemma 6.5. There is no wild derivation of Γ `κm S : τ̂ . c if Mk(τ̂)(m) = 0 and ord(S) ≤ m.

Proof: Suppose that some use of the (@) rule is wild in a derivation of this type judgment. Let ∆ `κm P Q :
σ̂ . d be the conclusion of this rule. The wildness condition requires in particular that Mk(σ̂)(m) > 0, but
by Lemma 6.2 we have Mk(σ̂)(m) = 0, so all this could not happen.

7 Completeness
In this section we prove the left-to-right implications of Theorems 3.2 and 4.1. We divide the proof into the
following four lemmata. Recall that P →β(k) Q denotes a beta-reduction of order k, that is, concerning a
redex (λx.R)S with ord(x) = k.

Lemma 7.1. Let P be a finite closed lambda-term of sort o and complexity at most n. Then there exist
lambda-termsQn, Qn−1, . . . , Q0 such that P = Qn, and for every k ∈ {0, . . . , n−1},Qk is of complexity
at most k and Qk+1 →∗β(k) Qk, and Q0 = BT (P).

Lemma 7.2. Suppose that T ∈ L(P), and that c : Σ→ N is such that for every a ∈ Σ, c(a) is the number
of appearances of a in T . Then we can derive ε `M−1 P : ρ̂Mall−1 . c. Moreover, if T is a word, then we can
derive ε `\0 P : ρ̂

\all
0 . c.

Lemma 7.3. Suppose that P →β(m) Q, where m ≥ 0. If we can derive Γ `κm Q : τ̂ . c, then we can also
derive Γ `κm P : τ̂ . c.

Lemma 7.4. If we can derive ε `κm−1 P : ρ̂κallm−1 . c, where m − 1 ≥ m0(κ), then we can also derive

ε `κm P : ρ̂κallm . c′ for some c′ such that c′(a) ≥
⌊

1
|Σ| log2 c(a)

⌋
for all a ∈ Σ.

Now the left-to-right implication of Theorem 3.2 easily follows. Indeed, take a closed lambda-term P
of sort o and complexity at most m + 1 and a set A ⊆ Σ such that SUPA(L(BT (P))) holds, and take
any n ∈ N. Let us denote f−1(l) = l and fk(l) =

⌊
1
|Σ| log2 fk−1(l)

⌋
for k ∈ N. We can find a number

n′ such that fm(n′) ≥ n, as well as a tree T ∈ L(BT (P)) such that every symbol from A appears in
T at least n′ times. We first apply Lemma 5.2, obtaining a finite lambda-term P ′ such that P ′ 4 P and
T ∈ L(BT (P ′)). Clearly the complexity of P ′ remains at most m + 1. Then we apply Lemma 7.1 to
P ′, obtaining lambda-terms Qm+1, Qm, . . . , Q0 with T ∈ L(Q0) = L(BT (P ′)). By Lemma 7.2 we can
derive ε `M−1 Q0 : ρ̂Mall−1 . c−1 with c−1(a) ≥ n′ = f−1(n′) for all a ∈ A. Then for every k ∈ {0, . . . ,m}
we perform two steps. First, we apply Lemma 7.4, obtaining a derivation of ε `Mk Qk : ρk . ck for some ck
such that ck(a) ≥ f1(fk−1(n′)) = fk(n′) for all a ∈ A. Then, we repeatedly apply Lemma 7.3 to every
beta-reduction (of order k) between Qk+1 and Qk, obtaining a derivation of ε `Mk Qk+1 : ρk . ck. We end

A Type System Describing Unboundedness 27

up with a derivation of ε `Mm P ′ : ρm . cm, where cm(a) ≥ fm(n′) ≥ n for all a ∈ A. Using Lemma 5.1
we can convert it into a derivation of ε `Mm P : ρm . cm, as needed.

Similarly we prove the left-to-right implication of Theorem 4.1, where the lambda-term P is word-
recognizing. We start as previously. The proofs start to diverge when we use Lemma 7.2: this time T is a
word, thus we can obtain a derivation of ε `\0 Q0 : ρ̂

\all
0 . c0 with c0(a) ≥ n′ ≥

⌊
1
|Σ| log2 n

′
⌋

= f0(n′)

for all a ∈ A. We continue as for trees, alternatingly applying Lemmata 7.3 and 7.4, but we omit the first
use of Lemma 7.4 (which was used previously to derive ε `M0 Q0 : ρ̂Mall0 . c0). We end up with a derivation
of ε `Mm P : ρMm . cm, where cm(a) ≥ fm(n′) ≥ n for all a ∈ A, as needed.

Lemma 7.1 comes from our previous work (Parys, 2018a, Lemma 11). In the remaining part of this
section we prove Lemmata 7.2-7.4.

Remark. We notice that Lemma 7.1 would be false if we have allowed lambda-terms involving non-
homogeneous sorts. For example, in a lambda-term of the form (λx.λy.P)QR with ord(x) = 0 and
ord(y) = 1 we have to perform a beta-reduction of order 0 concerning x before a beta-reduction of order 1
concerning y. Homogeneity of sorts should not be seen, however, as a miracle that is necessary to construct
the whole type system considered in the paper; it is rather an assumption made for technical convenience.
Indeed, Lemma 7.1 would work also for lambda-terms involving non-homogeneous sorts if we have
defined the order of a beta-reduction (λx.R)S →β R[S/x] as ord(λx.R)− 1, not as ord(x) (notice that
these two numbers coincide for homogeneous sorts). However then it would be necessary to alter the
definition of a type environment (and similarly the (VAR) rule): Γ(x) should not be ord(x)-bounded, but
rather (ord(λx.R) − 1)-bounded, where λx.R is the superterm binding the variable x. This would be
uncomfortable, as ord(λx.R)− 1 is a contextual information, not determined by x itself. For this reason
we prefer to restrict ourselves to homogeneous sorts.

7.1 Proof of Lemma 7.2

Basically, in order to prove Lemma 7.2 we simply apply the rules of our type system, namely the rules
(CON0), (CON≥1), and (ND), in every nd-labeled node choosing the subtree in which T continues; then the
flag counter computes exactly the number of appearances of every symbol in T .

Formally, we proceed by induction on |T | + n, where n is the smallest number such that P →n
nd T

(recall that T ∈ L(P) by definition means that P →n
nd T for some n ∈ N). Take κ =M and m = −1 while

proving the first statement, and κ = \, m = 0 in the case of T being a word. In both cases, we intend to
derive ε `κm P : ρ̂κallm . c.

We have two possibilities. One possibility is that P = nd〈P1, . . . , Pr〉. In this case, the reduction
sequence witnessing P →n

nd T starts with P →nd Pi for some i ∈ {1, . . . , r}, and then we have a reduction
sequence witnessing Pi →n−1

nd T . The induction assumption gives us a derivation of ε `κm Pi : ρ̂κallm . c,
where, for all a ∈ Σ, c(a) is the number of appearances of a in T . To this type judgment we apply the (ND)
rule, deriving ε `κm P : ρ̂κallm . c, as needed.

Because P →∗nd T , and T is a tree, the only remaining case is that P = b〈P1, . . . , Pr〉 for some b ∈ Σ.
Then necessarily T = b〈T1, . . . , Tr〉, and out of the reduction sequence witnessing P →n

nd T we can extract
a reduction sequences witnessing Pi →ni

nd Ti for every i ∈ {1, . . . , r}, where ni ≤ n. For i ∈ {1, . . . , r},
by the induction assumption we know that we can derive ε `κm Pi : ρ̂κallm . ci, where ci : Σ→ N is such
that, for all a ∈ Σ, ci(a) is the number of appearances of a in Ti. Obviously, c(a) = c1(a) + · · ·+ cr(a)
for a ∈ Σ \ {b}, and c(b) = 1 + c1(b) + · · ·+ cr(b). Directly from the definition of the Comp predicate it

28 Paweł Parys

follows that

(∅, c) ∈ Comp−1(0; ({(0, b)},0), (∅, c1), . . . , (∅, cr)) , and
(∅, c) ∈ Comp0({|0|}; ({(0, b)},0), (∅, c1), . . . , (∅, cr)) , hence more generally

(∅, c) ∈ Compm(Mk(ρ̂κallm); ({(0, b)},0), (∅, c1), . . . , (∅, cr)) .

We recall here that Mk(ρ̂Mall−1) = 0 and Mk(ρ̂
\all
0) = {|0|}; in both cases the flag set in ρ̂κallm is ∅.

If r = 0, we simply apply the (CON0) rule. Otherwise, we apply the (CON≥1) rule, where we need to
notice that Mk(ρ̂Mall−1) + · · · + Mk(ρ̂Mall−1) = 0 = Mk(ρ̂Mall−1). In both cases, the derived type judgment is
ε `κm P : ρ̂κallm . c, as needed.

7.2 Proof of Lemma 7.3
Before going into details, let us sketch the proof. Knowing that we can derive Γ `κm Q : τ̂ . c, we want to
derive the same for a given lambda-term P such that P →β(m) Q. Let us consider the base case when
P = (λx.R)S and Q = R[S/x]; the general situation (redex being deeper in P) is easily reduced to
this one. In the derivation of Γ `κm Q : τ̂ . c we identify the set I of places (nodes) where we derive
a type for S substituted for x. For i ∈ I , let ∆i `κm S : σ̂i . di be the type judgment in i. We change
the nodes in I into leaves, where we instead derive ε[x 7→ {|σ̂i|}] `κm x : σ̂i . 0 (here we need to know
that ord(x) = m, since a type environment should map x into an ord(x)-bounded triple container, while
σ̂i is m-bounded). It is tedious but straightforward to repair the rest of the derivation, by changing type
environments, replacing S by x in lambda-terms, and decreasing flag counters. In this way we obtain
derivations of ∆i `κm S : σ̂i . di for every i ∈ I , and a derivation of Υx `κm R : τ̂ . e, where(iv)

Υx = Υ[x 7→ {|σ̂i | i ∈ I|}], and Γ = Υ t
⊔
i∈I ∆i, and c = e+

∑
i∈I di. To the latter type judgment we

apply the (λ) rule, and then we merge it with the type judgments for S using the (@) rule, which results
in a derivation of Γ `κm P : τ̂ . c (where again we use the fact that ord(S) = ord(x) = m). We remark
that different i ∈ I may give identical type judgments for S; this is absolutely allowed in the (@) rule. We
also need to know that {|σ̂i | i ∈ I|} is indeed a triple container, that is, that every unbalanced type triple
appears as σ̂i for at most |Σ| indices i ∈ I; this is a consequence of Lemma 6.1.

We now come to a lemma that splits a type derivation concerning R[S/x] into parts concerning R and
concerning S.

Lemma 7.5. Suppose that we can derive Γ `κm R[S/x] : τ̂ . c, where ord(x) = m. Then, for some
finite set I , we can derive ∆i `κm S : σ̂i . di for every i ∈ I , and Υx `κm R : τ̂ . e, where
Υx = Υ[x 7→ {|σ̂i | i ∈ I|}], and Γ = Υ t

⊔
i∈I ∆i, and c = e+

∑
i∈I di.

Proof: One possibility is that x is not free in R. Then R[S/x] = R, and Γ(x) = 0. We can take I = ∅,
and Υx = Υ = Γ, and e = c. We need to derive the type judgment Υx `κm R : τ̂ . e, but it actually equals
the type judgment that we can derive by assumption.

In the sequel we assume that x is free in R. We have several cases depending on the shape of R.
Suppose first that R = x is a variable. Then we take I = {1}, and (∆1, σ̂1, d1) = (Γ, τ̂ , c), and Υ = ε,

and e = 0. Obviously Γ = Υ t∆1 and c = e+ d1. Because σ̂1 is m-bounded, and ord(x) = m, we have
that Υx = Υ[x 7→ {|σ̂1|}] is a valid type environment. We can derive ∆1 `κm S : σ̂1 . d1 by assumption,
and Υx `κm R : τ̂ . e using the (VAR) rule.

(iv) Recall that whenever we write Υ[x 7→ . . .], we implicitly assume that Υ(x) = 0.

A Type System Describing Unboundedness 29

Next, suppose that R = nd〈P1, . . . , Pr〉. The original derivation ends with the (ND) rule whose premiss
is Γ `κm Pk[S/x] : τ̂ . c for some k ∈ {1, . . . , r}. By applying the induction assumption for this premiss,
we obtain derivations almost as required; we only need to apply again the (ND) rule to the obtained
derivation Υx `κm Pk : τ̂ . e

Next, suppose that R = λy.P . We have y 6= x, and, as always during a substitution, we assume (by
performing α-conversion) that y is not free in S. The original derivation ends with the (λ) rule, whose
premiss is Γ[y 7→ C ′] `κm P [S/x] : τ̂ ′ . c. We apply the induction assumption to this premiss, and we
obtain a derivation of ∆i `κm S : σ̂i . di for every i ∈ I , and of Υx[y 7→ C ′′] `κm P : τ̂ ′ . e, where
Υx = Υ[x 7→ {|σ̂i | i ∈ I|}], and Γ[y 7→ C ′] = Υ[y 7→ C ′′] t

⊔
i∈I ∆i, and c = e+

∑
i∈I di. Notice that

∆i(y) = 0 for all i ∈ I , because y is not free in S; it follows that C ′′ = C ′ and Γ = Υ t
⊔
i∈I ∆i. To the

type judgment Υx[y 7→ C ′] `κm P : τ̂ ′ . e we apply again the (λ) rule, which gives Υx `κm R : τ̂ . e.
Another possibility is that R = a〈P1, . . . , Pr〉, where a 6= nd. Then the original derivation ends

with the (CON≥1) rule, whose premisses are Γj `κm Pj [S/x] : τ̂j . cj for j ∈ {1, . . . , r}. We apply
the induction assumption to these premisses. Assuming without loss of generality that the resulting
sets Ij are disjoint, and taking I =

⋃r
j=1 Ij , we obtain a derivation of ∆i `κm S : σ̂i . di for every

i ∈ I , and of Υx
j `κm Pj : τ̂j . ej for every j ∈ {1, . . . , r}, where, for every j ∈ {1, . . . , r}, we have

Υx
j = Υj [x 7→ {|σ̂i | i ∈ Ij |}], and Γj = Υj t

⊔
i∈Ij ∆i, and cj = ej +

∑
i∈Ij di. Let Υ =

⊔r
j=1 Υj .

Because Γ =
⊔r
j=1 Γj , we see that Γ = Υ t

⊔
i∈I ∆i. For j ∈ {1, . . . , r} we have by Lemma 6.1 that

Mk(Υx
j) ≤ Mk(τ̂j), hence in particular

∑
i∈Ij Mk(σ̂i) ≤ Mk(τ̂j). Since Mk(τ̂) =

∑r
j=1 Mk(τ̂j) (which

follows from the (CON≥1) rule) we obtain that
∑
i∈I Mk(σ̂i) ≤ Mk(τ̂). Because Mk(τ̂) is a marker

multiset (i.e., contains every marker at most |Σ| times), we can deduce that every unbalanced type triple
appears as σ̂i for at most |Σ| indices i ∈ I , and thus {|σ̂i | i ∈ I|} is a valid triple container and Υx =
Υ[x 7→ {|σ̂i | i ∈ I|}] is a valid type environment. Another side condition of the (CON≥1) rule says that
(F, c) ∈ Compm(M ; ({(0, a)},0), (F1, c1), . . . , (Fr, cr)) for appropriate arguments M,F, Fj . Taking
e = c +

∑r
j=1(ej − cj) we also have that (F, e) ∈ Compm(M ; ({(0, a)},0), (F1, e1), . . . , (Fr, er)).

Having all this, we can apply the (CON≥1) rule again, deriving Υx `κm R : τ̂ . e. Simultaneously we
observe that c = e+

∑
i∈I di.

Finally, suppose thatR = P Q. This case is very similar to the previous one. The original derivation ends
with the (@) rule, whose premisses are Γ0 `κm P [S/x] : τ̂0 . c0 and Γj `κm Q[S/x] : τ̂j . cj for j ∈ J ,
where we assume that 0 6∈ J . We apply the induction assumption to all these premisses. Assuming without
loss of generality that the resulting sets Ij are disjoint, and taking I =

⋃
j∈{0}∪J Ij , we obtain a derivation

of ∆i `κm S : σ̂i . di for every i ∈ I , and of Υx
0 `κm P : τ̂0 . e0, and of Υx

j `κm Q : τ̂j . ej for every
j ∈ J , where, for every j ∈ {0} ∪ J , we have Υx

j = Υj [x 7→ {|σ̂i | i ∈ Ij |}], and Γj = Υj t
⊔
i∈Ij ∆i,

and cj = ej +
∑
i∈Ij di. Let Υ =

⊔
j∈{0}∪J Υj . As previously, Γ = Υ t

⊔
i∈I ∆i and using Lemma 6.1

we deduce that Υx = Υ[x 7→ {|σ̂i | i ∈ I|}] is a type environment. By applying the (@) rule again, we
derive Υx `κm R : τ̂ . e, where e = c+

∑
j∈{0}∪J(ej − cj). Side conditions of this rule remain satisfied,

since the derived type triples are the same as in the original derivation. It holds that c = e+
∑
i∈I di.

Lemma 7.6. If F ∈ Fκm, and M ∈Mκ
m, and M(k) = 0 for all (k, a) ∈ F then

(F ′, c) ∈ Compm(M ; (F, e), ((∅, di))i∈I) ⇔ F ′ ⊆ F ∧ c = e+
∑
i∈I

di .

Proof: Consider the numbers fk,a and f ′k,a appearing in the definition of the Compm predicate. Looking

30 Paweł Parys

at them consecutively for k = 0, . . . ,m + 1 we notice that f ′k,a = 0 and fk,a = |F ∩ {(k, a)}|. Indeed,
f ′k,a = 0 implies fk,a = |F ∩ {(k, a)}|, and if k = 0 or M(k − 1) = 0, we have f ′k,a = 0, while if k > 0
andM(k−1) > 0, we have f ′k,a = fk−1,a = |F∩{(k−1, a)}| = 0, because (k−1, a) ∈ F impliesM(k−
1) = 0 by assumption. It follows that F = {(k, a) | fk,a > 0}, and that fm+1,a = |F ∩{(m+ 1, a)}| = 0
for all a ∈ Σ (since F is m-bounded). Finally, recall that (F ′, c) ∈ Compm(M ; (F, e), ((∅, di))i∈I) if
and only if F ′ ⊆ {(k, a) | fk,a > 0} (i.e., F ′ ⊆ F) and c(a) = fm+1,a + e(a) +

∑
i∈I di(a) for all a ∈ Σ

(i.e., c = e+
∑
i∈I di).

Proof of Lemma 7.3: Recall that we are given a derivation of Γ `κm Q : τ̂ . c, and a beta-reduction
P →β Q that is of order m, and our goal is to derive Γ `κm P : τ̂ . c.

Suppose first that P = (λx.R)S and Q = R[S/x], where ord(x) = m. From Lemma 7.5 we obtain a
derivation of ∆i `κm S : σ̂i . di for every i ∈ I (for some set I), and a derivation of Υ[x 7→ C] `κm R :
τ̂ . e, where C = {|σ̂i | i ∈ I|}, and Γ = Υt

⊔
i∈I ∆i, and c = e+

∑
i∈I di. Let us write τ̂ = (F,M, τ),

and σ̂i = (Fi,Mi, σi) for i ∈ I . To the type judgment Υ[x 7→ C] `κm R : τ̂ . e we apply the (λ) rule,
deriving Υ `κm λx.R : (F,M −Mk(C), C→ τ) . e. Notice that Mk(C) ≤ Mk(Υ[x 7→ C]) ≤ M by
Lemma 6.1, so it makes sense to use M −Mk(C). When κ = \ and τ = C1→ . . .→Cs→ o, we also
need to know that (M −Mk(C) + Mk(C) +

∑s
i=1 Mk(Ci))(0) = 1 (see the definition of a type \-triple,

Section 4), but it follows immediately from (M +
∑s
i=1 Mk(Ci))(0) = 1.

To this type judgment, and to ∆i `κm S : σ̂i . di for i ∈ I , we want to apply the (@) rule. By definition
of a type judgment, the type triples σ̂i, hence also the sets Fi and Mi, are m-bounded. Recalling that
ord(S) = ord(x) = m we have that the type {|(Fi�≤ord(S),Mi�≤ord(S), σi) | i ∈ I|}→ τ that we have to
derive for λx.R is indeed C→ τ , and the side condition ord(S) ≤ m is satisfied. The resulting marker
multiset is (M −Mk(C)) +

∑
i∈IMi = M , and the resulting type environment is Υ t

⊔
i∈I ∆i = Γ.

Notice that the sets Fi�>ord(S) are empty, and that M(k) = 0 for all (k, a) ∈ F by definition of a type
triple (τ̂ = (F,M, τ) is a type triple), and hence (F, c) ∈ Compm(M ; (F, e), ((Fi�>ord(S), di))i∈I) by
Lemma 7.6. The condition {(k, a) ∈ F | M(k) = 0} ⊆ F is clearly satisfied. Thus the (@) rule can be
applied, and it derives Γ `κm P : τ̂ . c.

It remains to consider the general situation: the redex involved in the beta-reduction P →β(m) Q is
located somewhere deeper in P . Then the proof is by a trivial induction on the depth of this redex. Formally,
we have several cases depending on the shape of P , but let us consider only a representative example:
suppose that P = T U and Q = T V with U →β(m) V . In the derivation of Γ `κm Q : τ̂ . c we apply the
induction assumption to those premisses of the final (@) rule that concern the subterm V , and we obtain
type judgments in which V is replaced by U . We can apply the (@) rule to them, and to the premiss talking
about T , and derive Γ `κm P : τ̂ . c.

7.3 Proof of Lemma 7.4
Recall that in Lemma 7.4 we are given a type derivation of order m− 1, and we want to convert it into a
type derivation of order m, without decreasing the flag counter too much. The order of the derivation can
be raised without any problem, we only need to additionally place |Σ| markers of order m in some leaves
of the derivation. We notice, however, that in the original derivation the flag counter computed the number
of order-m flags, while in the new derivation it computes the number of order-(m+ 1) flags. We thus have
to ensure that many order-(m+ 1) flags are created in the new derivation. To this end, we appropriately
choose where the order-m markers are placed. Let us now give more details.

A Type System Describing Unboundedness 31

For the rest of the subsection fix an order m satisfying m − 1 ≥ m0(κ). We shall see derivations as
trees. A derivation tree is a finite tree with nodes labeled by type judgments, such that for every node, the
label of this node can be obtained by applying some rule of the type system to labels of children of this
node. We consider derivation trees only for type judgments of order m− 1 (that is, only the derivation that
we receive as the input to the lemma is seen as a tree, not the one that we produce). For a derivation tree t
and for its node v, by tv we denote the subtree of t starting at v, and by cv we denote the flag counter being
part of the type judgment written in v.

The proof is done in two steps: we first label the derivation tree by some additional flags and markers,
and then basing on such a labeling we construct a derivation of order m. For B ⊆ Σ, and for a derivation
tree t, a B-labeling of t assigns some number of order-m markers to every leaf of t, and for every a ∈ B,
some number of (m, a)-flags to every node of t. In the sequel, we simply talk about assigning markers and
a-flags, having implicitly in mind that they are of order m. A B-labeling ρ of t is consistent, if:
• for every node v of t having children v1, . . . , vk, and for every a ∈ B, ρ assigns at most cv(a) −
cv1

(a)− · · · − cvk(a) a-flags to v, and
• in every subtree of t in which ρ assigns no markers, ρ assigns at most one flag.

Observe that our type system ensures that the number cv(a)− cv1
(a)− · · · − cvk(a) appearing above is

always nonnegative: the flag counter in every node is not smaller than the sum of flag counters coming
from the premisses.

Lemma 7.7. Let t be a derivation tree with root r, and let a ∈ Σ. Then there exists a consistent
{a}-labeling ρa of t that assigns in total exactly one marker and at least log2 cr(a) a-flags.

Proof: Induction on the size of t. If t consists of a single node, then to this node we assign one marker,
and cr(a) a-flags. Such a labeling is consistent, and we have cr(a) ≥ log2 cr(a).

Suppose now that r has some children v1, . . . , vk with k ≥ 1. Fix some s for which cvs(a) is maximal,
that is, such that cvs(a) ≥ cvi(a) for all i ∈ {1, . . . , k}. We apply the induction assumption to the subtree
tvs ; it gives us a consistent {a}-labeling of this subtree, which assigns in total exactly one marker and at
least log2 cvs(a) a-flags. Moreover, for every i ∈ {1, . . . , k} \ {s} such that cvi(a) > 0, we choose some
node wi in the subtree tvi so that cwi(a) > 0 but cu(a) = 0 for every child u of wi (clearly such a node
exists), and we assign an a-flag to the chosen node wi. Finally, we denote l = cr(a)−cv1

(a)−· · ·−cvk(a),
and to the root of t we assign l a-flags. It should be clear that the obtained {a}-labeling is consistent.

It remains to observe that the number f of assigned a-flags is at least log2 cr(a). In the degenerate case
of cvs(a) = 0 we have cvi(a) = 0 for all i ∈ {1, . . . , k}, and thus f = l = cr(a) ≥ log2 cr(a). Suppose
now that cvs(a) > 0, and denote l′ = |{i ∈ {1, . . . , k} | cvi(a) > 0}|. Then by construction we have
f ≥ l + (l′ − 1) + log2 cvs(a). Recalling that cvs(a) > 0 and cvs(a) ≥ cvi(a) for all i ∈ {1, . . . , k}, we
obtain

f ≥ l + l′ − 1 + log2 cvs(a) ≥ log2(l + l′) + log2 cvs(a)

= log2((l + l′) · cvs(a))

≥ log2(l + l′ · cvs(a))

≥ log2(l + cv1
(a) + · · ·+ cvk(a)) = log2 cr(a) .

Lemma 7.8. Let t be a derivation tree with root r. Then there exists a consistent Σ-labeling of t that
assigns exactly |Σ| markers and at least

⌊
1
|Σ| log2 cr(a)

⌋
a-flags, for every a ∈ Σ.

32 Paweł Parys

Proof: We start by applying Lemma 7.7 for every symbol a ∈ Σ, which results in a consistent a-labeling
ρa of t. Basing on these labelings we construct the resulting labeling ρ. For every node v of t, if k among
labelings ρa assign a marker to v, then in ρ we assign k markers to v. This assigns |Σ| markers in total. For
every node v of t such that ρ assigns some markers in tv , and for every a ∈ Σ, if ρa assigns k a-flags to v,
then in ρ we also assign k a-flags to v.

Let now V be the set of all nodes v such that ρ assigns no markers in tv , but it assigns some markers in
the subtree starting in the parent of v. In subtrees starting in v ∈ V there may be plenty of flags assigned by
the labelings ρa, and we have not yet taken these flags to ρ. We do this now, using the following algorithm:
we repeat the big step as long as it gives something new. In a big step, we execute the small step for every
symbol a ∈ Σ. In a small step concerning some symbol a, we choose some v ∈ V such that ρa assigns an
a-flag to some node w in the subtree tv, but ρ does not assign any flag in this subtree yet; if such nodes
v, w exist, then in ρ we assign an a-flag to w.

We notice that ρ assigns in every node of t at most as many a-flags as ρa did. Moreover, in every subtree
starting in a node of V (and thus in every subtree of t in which ρ assigns no markers), ρ assigns at most
one flag. This means that ρ is consistent.

It remains to observe that the number of assigned flags is large enough. Fix some a ∈ Σ. Let fa be the
total number of a-flags assigned by ρa; by Lemma 7.7 we have fa ≥ log2 cr(a). These flags are of two
kinds: we have fa = ga + ha, where ga is the total number of a-flags assigned by ρa to nodes w such that
ρ assigns some marker in tw, and ha is the number of a-flags assigned by ρa to remaining nodes. The ga
flags of the first kind are simply copied to ρ. Let us now look closer on the flags of the second kind. Every
node w such that ρ assigns no markers in tw, belongs to tv for some v ∈ V . Moreover, for every v ∈ V , ρa
assigns at most one a-flag in tv . It follows that ha equals the number of nodes v ∈ V such that ρa assigns
some a-flag in tv. In every small step we assign a flag in the subtree tv for at most one node v ∈ V , and
thus in every big step we assign a flag in the subtrees tv for at most |Σ| nodes v ∈ V . This means that
during the first

⌊
ha
|Σ|

⌋
big steps there still exists a node v ∈ V such that ρa assigns an a-flag in tv, but ρ

does not assign any flag in this subtree yet, and thus a new a-flag is assigned by ρ. In consequence, the
number of a-flags assigned by ρ is at least ga +

⌊
ha
|Σ|

⌋
≥
⌊
fa
|Σ|

⌋
≥
⌊

1
|Σ| log2 cr(a)

⌋
.

Next, we show how to raise the order of a type derivation basing on a consistent labeling. In this part,
it is convenient to assume that the labeling is maximal, in the following sense: a consistent Σ-labeling
ρ of a derivation tree t is called maximal if for every a ∈ Σ and for every node v of t having children
v1, . . . , vk, if ρ assigns some marker in tv , then ρ assigns exactly cv(a)− cv1

(a)− · · · − cvk(a) a-flags to
v. Notice that in such nodes this is the maximal number of flags allowed by the first point in the definition
of consistency. We cannot require anything similar from nodes v such that no marker is assigned in tv , as
the number of flags in those nodes is strongly restricted by the second point of the definition.

We now define functions NewM and NewFc: we say that NewM(M,µ) = M ′ and NewFc(F, µ, f) =
(F ′, c′) if
• M ′(k) = M(k) for k 6= m, and M ′(m) = µ,
• if µ > 0, then F ′ = F and c′ = f , and
• if µ = 0, then F ′ = F ∪ {(m, a) | f(a) > 0} and c′ = 0.

The intended meaning is that if M and F are a marker multiset and a flag set derived in some node v of a
derivation tree, and in tv a labeling assigns µ markers and f(a) a-flags for every a ∈ Σ, then in the new
derivation that we construct, we use M ′ as the marker multiset, F ′ as the flag set, and c′ as the flag counter.

A Type System Describing Unboundedness 33

Notice that the previous value of the flag counter is not taken into account. We now have a lemma saying
that the Comp predicate remains satisfied after applying the transformation.

Lemma 7.9. Suppose that (F, c) ∈ Compm−1(M ; ((Fi, ci))i∈I), where F ∈ Fκm−1, andm−1 ≥ m0(κ).
For i ∈ I let µi ∈ N and fi : Σ→ N. Suppose also that µ ≥

∑
i∈I µi, and f ≤

∑
i∈I fi + c−

∑
i∈I ci,

and if µ > 0 then f =
∑
i∈I fi + c −

∑
i∈I ci. Finally, for every i ∈ I suppose that if µi = 0 then

fi(a) ≤ 1 for all a ∈ Σ, and that either
• Fi ∈ Fκm−1, or
• fi = 0 and Fi = {(0, a)} for some a ∈ Σ.

In such a situation, NewFc(F, µ, f) ∈ Compm(NewM(M,µ); (NewFc(Fi, µi, fi))i∈I).

Proof: Denote M ′ = NewM(M,µ), (F ′, c′) = NewFc(F, µ, f), and (F ′i , c
′
i) = NewFc(Fi, µi, fi) for

i ∈ I . We consider the numbers fk,a and f ′k,a appearing in the definition of Compm−1(M ; ((Fi, ci))i∈I).
We also consider analogous numbers defined by the predicate Compm(M ′; ((F ′i , c

′
i))i∈I), and we call

them gk,a and g′k,a. Since M ′�≤m−1 = M�≤m−1 and F ′i �≤m−1 = Fi�≤m−1 for i ∈ I , for every
a ∈ Σ we clearly have that gk,a = fk,a for k ≤ m − 1, and g′k,a = f ′k,a for k ≤ m. Moreover,
gm+1,a = g′m+1,a +

∑
i∈I |F ′i ∩ {(m + 1, a)}| = g′m+1,a since the sets F ′i are m-bounded (notice that

Fi = {(0, a)} need not to be (m− 1)-bounded, but surely is m-bounded).
Let us now see that for all i ∈ I and a ∈ Σ it holds that

|Fi ∩ {(m, a)}|+ fi(a) = |F ′i ∩ {(m, a)}|+ c′i(a) . (1)

Indeed:
• if µi > 0, then F ′i = Fi and c′i = fi;
• if µi = 0 and fi(a) = 0, then c′i(a) = 0 and F ′i = Fi;
• if µi = 0 and fi(a) > 0, then c′i(a) = 0, and (m, a) 6∈ Fi (since Fi ∈ Fκm−1), and F ′i contains

(m, a) (by definition of F ′i), and fi(a) ≤ 1 (by assumption), which gives Equality (1).
Using Equality (1) we observe that for every a ∈ Σ,∑

i∈I
fi(a) + c(a)−

∑
i∈I

ci(a) =
∑
i∈I

fi(a) + fm,a

= f ′m,a +
∑
i∈I
|Fi ∩ {(m, a)}|+

∑
i∈I

fi(a)

= g′m,a +
∑
i∈I
|F ′i ∩ {(m, a)}|+

∑
i∈I

c′i(a)

= gm,a +
∑
i∈I

c′i(a) . (2)

In order to obtain the conclusion of the lemma, we need to prove two facts: that F ′ ⊆ {(k, a) | gk,a > 0},
and that c′(a) = gm+1,a +

∑
i∈I c

′
i(a) for all a ∈ Σ. We first concentrate on the part F ′ ⊆ {(k, a) |

gk,a > 0}. By assumption we have that F ⊆ {(k, a) | fk,a > 0}, and thus also F ⊆ {(k, a) | gk,a > 0}
since F is (m− 1)-bounded, and since gk,a = fk,a for k ≤ m− 1. When µ > 0, we have F ′ = F , and
we are done. Suppose thus that µ = 0. Then F ′ contains also elements (m, a) for all a ∈ Σ such that

34 Paweł Parys

f(a) > 0. Concentrate on one such a. By assumption and by Equality (2) we obtain

0 < f(a) ≤
∑
i∈I

fi(a) + c(a)−
∑
i∈I

ci(a) = gm,a +
∑
i∈I

c′i(a) .

Since 0 = µ ≥
∑
i∈I µi, for every i ∈ I we have µi = 0 = c′i(a), and thus gm,a > 0 by the above

inequality. We thus have (m, a) ∈ {(k, a) | gk,a > 0}, as required.
Next, we fix some a ∈ Σ, and we prove that c′(a) = g′m+1,a +

∑
i∈I c

′
i(a), which is what we need

since gm+1,a = g′m+1,a. Suppose first that µ = 0. Then c′(a) = 0 and c′i(a) = 0 for all i ∈ I , since
µ = 0 implies µi = 0. We also have M ′(m) = µ = 0, and thus g′m+1,a = 0, which gives the thesis. Next,
suppose that µ > 0. In such a case, using Equality (2), we obtain that

c′(a) = f(a) =
∑
i∈I

fi(a) + c(a)−
∑
i∈I

ci(a) = gm,a +
∑
i∈I

c′i(a) = g′m+1,a +
∑
i∈I

c′i(a) .

Lemma 7.10. Let t be a derivation tree deriving Γ `κm−1 R : (F,M, τ) . c (where m− 1 ≥ m0(κ)) such
that ord(R) ≤ m, and Γ(x) 6= 0 only for variables x of order at most m − 1. Let also ρ be a maximal
consistent Σ-labeling of t, which assigns (in total) µ ≤ |Σ|markers and f(a) a-flags, for every a ∈ Σ. Then
we can derive Γ `κm R : (F ′,M ′, τ) . c′, where M ′ = NewM(M,µ) and (F ′, c′) = NewFc(F, µ, f).

Proof: Denote τ̂ = (F,M, τ) and τ̂ ′ = (F ′,M ′, τ). We first prove that τ̂ ′ is indeed an m-bounded type
κ-triple. By assumption τ̂ is an (m− 1)-bounded type κ-triple, so M ∈Mκ

m−1. Since M ′ differs from
M only on order m, and M ′(m) = µ ≤ |Σ|, we obtain that M ′ ∈ Mκ

m (if κ = \, from M(0) ≤ 1
we additionally deduce M ′(0) ≤ 1 since then m ≥ 1). We also have F ∈ Fκm−1 ⊆ Fκm. The set F ′

differs from F only when µ = 0, and then it additionally contains those pairs (m, a) for which f(a) > 0.
By consistency of ρ we know that if µ = 0 (i.e., if ρ assigns no markers) then

∑
a∈Σ f(a) ≤ 1. Thus

(m, a), (m, b) ∈ F ′ implies a = b, which establishes that F ′ ∈ Fκm. We also need to know that M ′(k) = 0
for all (k, a) ∈ F ′. For k ≤ m− 1 this is the case because M ′�≤m−1 = M and F ′�≤m−1 = F , and by
definition of F ′ we have (m, a) ∈ F ′ only when M ′(m) = µ = 0. If κ = \, we additionally need to
know that M ′(0) +

∑s
i=1 Mk(Ci)(0) = 1, where τ = C1→ . . .→Cs→ o; this is the case because then

M(0) +
∑s
i=1 Mk(Ci)(0) = 1 and M ′(0) = M(0) due to m ≥ 1.

The rest of the proof is by induction on the size of t. We have several cases depending on the shape of R.
Suppose first that R = x is a variable. Then the (VAR) rule used in the only node of t ensures that

c = 0 and that Γ = ε[x 7→ {|(F,M�≤ord(x), τ)|}]. By assumptions of the lemma ord(x) ≤ m − 1, so
M ′�≤ord(x) = M�≤ord(x). Moreover F ′ = F and c′ = 0 since f ≤ c = 0 by consistency of ρ. Thus the
(VAR) rule can equally well derive Γ `κm R : τ̂ ′ . c′ (notice that c′ = 0).

Next, suppose that R = nd〈P1, . . . , Pr〉. Then the root of t has exactly one child v, labeled by the
premiss of the (ND) rule, Γ `κm−1 Pi : τ̂ . c for some i ∈ {1, . . . , r}. Since the flag counter is the same as
in the root, ρ assigns no flags to the root of t (by consistency of ρ). Thus the induction assumption applied
to tv gives us a derivation of Γ `κm Pi : τ̂ ′ . c′. Applying back the (ND) rule we derive Γ `κm R : τ̂ ′ . c′.

Suppose now thatR = λx.P . Then the root of t has exactly one child v, labeled by the premiss of the (λ)
rule, Γ[x 7→ C ′] `κm−1 P : (F,Mλ, τλ) . c, where τ = C→ τλ, and M = Mλ −Mk(C), and C ′ v C.
As in the previous case, no flags are assigned to the root of t. Because ord(R) ≤ m, we have ord(P) ≤ m
and ord(x) ≤ m− 1, so assumptions of the lemma are satisfied for tv; the induction assumption gives us a
derivation of Γ[x 7→ C ′] `κm P : (F ′,M ′λ, τλ) . c′, whereM ′λ = NewM(Mλ, µ). The triple containerC is

A Type System Describing Unboundedness 35

ord(x)-bounded, thus since ord(x) ≤ m−1 we haveM ′(m) = µ = M ′λ(m) = M ′λ(m)−Mk(C)(m), and
henceM ′ = M ′λ−Mk(C). Thus after applying back the (λ) rule we obtain a derivation of Γ `κm R : τ̂ ′ . c′.

Next, suppose that R = a〈P1, . . . , Pr〉, where a 6= nd and r ≥ 0. The root of t has exactly r children
v1, . . . , vr, labeled by Γi `κm−1 Pi : (Fi,Mi, o) . ci for i ∈ {1, . . . , r}. Take I = {0, 1, . . . , r}, µ0 = 0,
f0 = 0, F0 = {(0, a)}, c0 = 0. For i ∈ {1, . . . , r} denote by µi the number of markers assigned by ρ in
tvi , and by fi(a) the number of a-flags assigned by ρ in tvi , for every a ∈ Σ. By the induction assumption,
for every i ∈ {1, . . . , r} we can derive Γi `κm Pi : (F ′i ,M

′
i , o) . c

′
i, where M ′i = NewM(Mi, µi) and

(F ′i , c
′
i) = NewFc(Fi, µi, fi). The rule used in the root of t (which is either (CON0) or (CON≥1)) ensures

that Γ =
⊔r
i=1 Γi, and τ = o, and (F, c) ∈ Compm−1(M ; (F0, c0), (F1, c1), . . . , (Fr, cr)); if r > 0

we also have M =
∑r
i=1Mi. We want to apply Lemma 7.9; let us check its assumptions. Clearly

µ ≥
∑
i∈I µi. By consistency of ρ, and because f0 = c0 = 0, we have that f ≤

∑
i∈I fi + c−

∑
i∈I ci,

and that for every i ∈ I , if µi = 0 then fi(a) ≤ 1 for all a ∈ Σ. By maximality of ρ we have that if µ > 0
then f =

∑
i∈I fi + c −

∑
i∈I ci. Moreover, NewFc(F0, µ0, f0) = (F0,0). Thus, by Lemma 7.9 we

obtain that (F ′, c′) ∈ Compm(M ′; (F0,0), (F ′1, c
′
1), . . . , (F ′r, c

′
r)). Applying back the appropriate rule

(namely (CON0) if r = 0 and (CON≥1) if r > 0) we can derive Γ `κm R : τ̂ ′ . c′.
Finally, suppose that R = P Q. Let Γ0 `κm−1 P : (F0,M0, C→ τ) . c0 and Γi `κm−1 Q :

(Fi,Mi, τi) . ci for each i ∈ I be the premisses of the (@) rule used in the root of t, where C =
{|(Fi�≤ord(Q),Mi�≤ord(Q), τi) | i ∈ I|}, and where without loss of generality we assume that 0 6∈ I .
Denote the children of the root of t having these type judgments as labels by vi for i ∈ {0}∪I , respectively.
For i ∈ {0}∪I denote by µi the number of markers assigned by ρ in tvi , and by fi(a) the number of a-flags
assigned by ρ in tvi , for every a ∈ Σ. The (@) rule ensures that Γ =

⊔
i∈{0}∪I Γi and ord(Q) ≤ m− 1,

and by homogeneity of the sort of P we obtain that ord(P) ≤ ord(Q) + 1 ≤ m. This allows us to
apply the induction assumption, which gives us derivations of Γ0 `κm P : (F ′0,M

′
0, C→ τ) . c′0 and

Γi `κm Q : (F ′i ,M
′
i , τi) . c

′
i for each i ∈ I , whereM ′i = NewM(Mi, µi) and (F ′i , c

′
i) = NewFc(Fi, µi, fi)

for all i ∈ {0} ∪ I . To these type judgments we would like to apply the (@) rule, but we need to check its
conditions.
• Since F ′i �≤m−1 = Fi�≤m−1 and M ′i�≤m−1 = Mi�≤m−1 for all i ∈ I , and ord(Q) ≤ m− 1, we

have that C = {|(F ′i �≤ord(Q),M
′
i�≤ord(Q), τi) | i ∈ I|}.

• From the original use of the (@) rule we know that M =
∑
i∈{0}∪IMi, and (F, c) ∈ Compm−1(M ;

(F0, c0), ((Fi�>ord(Q), ci))i∈I). Assumptions of Lemma 7.9 are satisfied: µ ≥
∑
i∈{0}∪I µi by

definition; f ≤
∑
i∈{0}∪I fi + c −

∑
i∈{0}∪I ci by consistency of ρ; for every i ∈ {0} ∪ I , if

µi = 0 then fi(a) ≤ 1 for all a ∈ Σ, again by consistency of ρ; finally, if µ > 0 then f =∑
i∈{0}∪I fi + c−

∑
i∈{0}∪I ci by maximality of ρ. Moreover, since the NewFc function modifies

only order m, and ord(Q) ≤ m− 1, we have NewFc(Fi�>ord(Q), µi, fi) = (F ′i �>ord(Q), c
′
i). Thus

by Lemma 7.9 we obtain that (F ′, c′) ∈ Compm(M ′; (F ′0, c
′
0), ((F ′i �>ord(Q), c

′
i))i∈I).

• We also need to prove that {(k, a) ∈ F ′0 |M ′(k) = 0} ⊆ F ′. We know that {(k, a) ∈ F0 |M(k) =
0} ⊆ F , and since F ′0,M

′, F ′ differ from F0,M, F only on order m, we only need to check for all
a ∈ Σ that if M ′(m) = 0 and (m, a) ∈ F ′0 then also (m, a) ∈ F ′. This is clear: (m, a) ∈ F ′0 may
only happen when f0(a) > 0, but then f(a) ≥ f0(a) > 0, which in the case of µ = M ′(m) = 0
implies that (m, a) ∈ F ′.

All this allows us to apply back the (@) rule, and derive Γ `κm R : τ̂ ′ . c′.

Proof of Lemma 7.4: Consider a derivation tree t that derives ε `κm−1 P : ρ̂κallm−1 . c. Using Lemma 7.8

36 Paweł Parys

we construct a consistent Σ-labeling ρ of t that assigns exactly |Σ| markers and at least
⌊

1
|Σ| log2 c(a)

⌋
a-flags, for every a ∈ Σ. Without loss of generality we can assume that ρ is maximal: if not, we simply
add more flags in some nodes, as required by the maximality condition.(v) Then Lemma 7.10 gives us
a derivation of ε `κm P : ρ̂κallm . c′ for some c′ such that c′(a) ≥

⌊
1
|Σ| log2 c(a)

⌋
for all a ∈ Σ, as

required.

8 Soundness
In this section we prove the right-to-left implication of Theorems 3.2 and 4.1. As a side effect, we also
obtain a proof of Lemma 6.4. We, basically, need to reverse the proof from the previous section. We give
the following three lemmata.

Lemma 8.1. Suppose that P →β(m) Q, where m ≥ 0. If we can derive Γ `κm P : τ̂ . c, then we can also
derive Γ′ `κm Q : τ̂ . c for some Γ′ v Γ. Moreover, if the original derivation was wild, then the resulting
one is also wild.

Lemma 8.2. Let P be a closed lambda-term of complexity at most m. If we can derive ε `κm P : ρ̂κallm . c,
where m− 1 ≥ m0(κ), then we can also derive ε `κm−1 P : ρ̂κallm−1 . c

′ for some c′ ≥ c. Moreover, if the
original derivation was wild, then the resulting one is also wild.

Lemma 8.3. Suppose that we can derive ε `κm0(κ) P : ρ̂κallm0(κ) . c, where P is a lambda-term of complexity
0. Then there exists a tree T ∈ L(P) such that for every a ∈ Σ, the number of appearances of a in T is
c(a).

Let us now see how the right-to-left implication of Theorem 3.2 follows from these lemmata. Thus, take
a closed lambda-term P of sort o and complexity at most m+ 1, and a set A ⊆ Σ, and suppose that for
every n ∈ N we can derive ε `Mm P : ρ̂Mallm . cm for some cm such that cm(a) ≥ n for all a ∈ A. We want
to prove that for every n ∈ N there is a tree T ∈ L(P) in which every symbol a ∈ A appears at least n
times. To this end, take some n ∈ N, and the type judgment corresponding to this n. Using Lemma 5.1
we can find a finite lambda-term P ′ 4 P for which we can also derive ε `Mm P ′ : ρ̂Mallm . cm. Then, we
apply Lemma 7.1 to P ′, obtaining lambda-terms Qm+1, Qm, . . . , Q0 such that, for every k ∈ {0, . . . ,m},
the complexity of Qk is at most k, and Qk+1 →∗β(k) Qk, and Qm+1 = P ′. Next, consecutively for
k = m,m− 1, . . . , 0 we perform two steps. First, we repeatedly apply Lemma 8.1 to every beta-reduction
(of order k) between Qk+1 and Qk, obtaining a derivation of ε `Mk Qk : ρ̂Mallk . ck. Then, we apply
Lemma 8.2, obtaining a derivation of ε `Mk−1 Qk : ρ̂Mallk−1 . ck−1 for some ck−1 ≥ c. We end up with a
derivation of ε `M−1 Q0 : ρ̂Mall−1 . c−1, where c−1(a) ≥ cm(a) ≥ n for all a ∈ A. By Lemma 8.3 we can
find a tree T ∈ L(Q0) = L(BT (P ′)) such that for every a ∈ A, the number of appearances of a in T as
at least n (recall that m0(M) = −1). Due to Lemma 5.2, we also have T ∈ L(BT (P)), as needed.

Similarly we prove the right-to-left implication of Theorem 4.1. The only difference is that when we
have the type judgment ε `\0 Q0 : ρ̂

\all
0 . c0, we do nor apply Lemma 8.2 for the last time. Instead, we

apply Lemma 8.3 directly to the type judgment ε `\0 Q0 : ρ̂
\all
0 . c0 (which is now possible, because

m0(\) = 0).
We also obtain a proof of Lemma 6.4. Indeed, suppose that we have a wild derivation of ε `κm P :

ρ̂κallm . cm for a closed lambda-term P of sort o and complexity at most m+ 1. Lemma 5.1 implies that we
(v) We notice that usually the labeling constructed by Lemma 7.8 is not maximal.

A Type System Describing Unboundedness 37

can find a finite lambda-term P ′ 4 P for which we can also derive ε `Mm P ′ : ρ̂Mallm . cm. By inspecting
the proof of this lemma we notice that if the derivation for P was wild, then the derivation for P ′ is also
wild (because this is essentially the same derivation). Then, by applying the same arguments as above,
we obtain a derivation of ε `κ0 Q0 : ρ̂κall0 . c0 for some lambda-term Q0 of complexity 0. Moreover,
this derivation is wild, since Lemmata 8.1 and 8.2 preserve wildness. On the other hand, a lambda-term
of complexity 0 does not contain any applications, so our derivation does not use the (@) rule at all, and
hence it cannot be wild. This is a contradiction implying that there could not exist a wild derivation of
ε `κm P : ρ̂κallm . cm.

In the remaining part of this section we prove the three lemmata.

8.1 Proof of Lemma 8.1
The overall idea of the proof is very simple: when P = (λx.R)S and Q = R[S/x], we perform a
surgery on the derivation concerning P and we obtain a derivation concerning S. Namely, whenever the
subderivation concerning R uses the (VAR) rule for the variable x, we should insert there a subderivation
that derives the same type triple for S. We need to notice that every unbalanced type triple derived for S is
used for exactly one appearance of x in the derivation concerning R. Balanced type triples may be used
many times, or not used at all, but we can see that duplicating or removing the corresponding derivations
for S is not problematic; in particular it does not change the flag counter, as shown in Lemma 6.3.

We start the proof by showing in Lemma 8.4 how type derivations may be composed during a substitution.
This lemma can be seen as a converse of Lemma 7.5.

Lemma 8.4. Suppose that we can derive ∆i `κm S : σ̂i . di for i ∈ I , and Υx `κm R : τ̂ . e, where
Υx = Υ[x 7→ {|σ̂i | i ∈ I|}] for a variable x of order m and of the same sort as S, and Γ = Υ t

⊔
i∈I ∆i

is a type environment. Then we can also derive Γ′ `κm R[S/x] : τ̂ . c for c = e+
∑
i∈I di and for some

Γ′ v Γ. Moreover, if some of the original derivations is wild, then the resulting derivation is also wild.

Proof: The proof is by induction on the structure of some fixed derivation of Υx `κm R : τ̂ . e.
One possibility is that x is not free in R. In such a situation R[S/x] = R and Υx(x) = 0, so I = ∅, and

Γ = Υ = Υx, and c = e, thus we can derive Γ `κm R[S/x] : τ̂ . c by assumption.
In the sequel we assume that x is free in R. We analyze the shape of R.
Suppose first that R = x is a variable. Then R[S/x] = S, and the derivation for R consists of a single

use of the (VAR) rule, thus e = 0 and Υx = ε[x 7→ {|τ̂ |}] (since ord(x) = m, no new markers could be
added). It means that Υ = ε, and {|τ̂ |} = {|σ̂i | i ∈ I|}. We have two subcases.
• Suppose first that τ̂ is unbalanced. Then necessarily |I| = 1, say I = {1}. It follows that Γ = ∆1,

and c = d1, so we can derive Γ `κm R[S/x] : τ̂ . c by assumption.
• The situation of an unbalanced τ̂ is slightly different. We only know that |I| ≥ 1 and τ̂ = σ̂i for all
i ∈ I . Then from Lemma 6.1 we obtain that Mk(∆i) ≤ Mk(σ̂i) = 0 for all i ∈ I , that is, that all
type triples in all ∆i are balanced. In consequence ∆i v Γ (due to Γ =

⊔
i∈I ∆i). Similarly, from

Lemma 6.3 we obtain that di = 0 for all i ∈ I , so c = di. Thus as the resulting derivation we can
take ∆i `κm S : σ̂i . di for any i ∈ I .

Next, suppose that R = nd〈P1, . . . , Pr〉. Then the derivation for R ends with the (ND) rule, whose
premiss is Υx `κm Pk : τ̂ . e for some k ∈ {1, . . . , r}. The induction assumption applied to this premiss
gives us a derivation of Γ′ `κm Pk[S/x] : τ̂ . c for some Γ′ v Γ. By applying back the (ND) rule we derive
Γ′ `κm R[S/x] : τ̂ . c, as required.

38 Paweł Parys

Next, suppose that R = λy.P . We have y 6= x, and, as always during a substitution, we assume (by
performing α-conversion) that y is not free in S. The derivation forR ends with the (λ) rule, whose premiss
is Υx[y 7→ C ′] `κm P : τ̂ ′ . e. While writing Υx[y 7→ C ′] we mean that Υx(y) = 0, and since y is not free
in S, we have ∆i(y) = 0 for i ∈ I; thus we can write Γ[y 7→ C ′] = Υx[y 7→ C ′] t

⊔
i∈I ∆i. By applying

the induction assumption to our premiss we obtain a derivation of Γ′[y 7→ C ′′] `κm P [S/x] : τ̂ ′ . c for
some Γ′ v Γ and some C ′′ v C ′. We then apply again the (λ) rule obtaining Γ′ `κm R[S/x] : τ̂ . c, as
needed.

Another possibility is that R = a〈P1, . . . , Pr〉, where a 6= nd. Then the derivation for R ends
with the (CON≥1) rule, whose premisses are Υx

j `κm Pj : τ̂j . ej for j ∈ {1, . . . , r}. It holds that
Υ[x 7→ {|σ̂i | i ∈ I|}] = Υx = Υx

1 t · · · t Υx
r . Let us see that we can find sets I1, . . . , Ir such

that I = I1 ∪ · · · ∪ Ir and {|σ̂i | i ∈ Ij |} = Υx
j (x) for all j ∈ {1, . . . , r}. Indeed, recall that triple

containers behave like sets for balanced type triples, and like multisets for unbalanced type triples. Thus
if σ̂i is balanced for some i ∈ I , we can simply add this i to Ij for all these j ∈ {1, . . . , r} for which
Υx
j (x)(σ̂i) > 0. On the other hand, for an unbalanced type triple σ̂, there exist exactly Υx(x)(σ̂) elements

i ∈ I for which σ̂i = σ̂; simultaneously Υx(x)(σ̂) =
∑r
j=1 Υx

j (x)(σ̂), so we can split these elements i
into sets I1, . . . , Ir so that exactly Υx

j (x)(σ̂) of them are taken to Ij (for j ∈ {1, . . . , r}).
Having these sets, for every j ∈ {1, . . . , r} we can write Υx

j = Υj [x 7→ {|σ̂i | i ∈ Ij |}]. For these i ∈ I
for which the type triple σ̂i is balanced, from Lemma 6.1 we obtain that all type triples in ∆i are balanced,
and thus ∆i t∆i = ∆i, and from Lemma 6.3 we obtain that di = 0. These lemmata can be used, since
ord(S) = ord(x) = m ≤ m. If we recall that every i ∈ I with unbalanced σ̂i belongs to exactly one
among the sets Ij , and every i ∈ I with balanced σ̂i belongs to at least one among the sets Ij , we can
observe that

⊔
i∈I ∆i =

⊔r
j=1

⊔
i∈Ij ∆i and

∑
i∈I di =

∑r
j=1

∑
i∈Ij di. In consequence, if we denote

Γj = Υj t
⊔
i∈Ij ∆i and cj = ej +

∑
i∈Ij di for j ∈ {1, . . . , r}, we have that Γ = Γ1 t · · · t Γr and

c = c1 + · · · + cr. In particular Γj(y) ≤ Γ(y) for every j ∈ {1, . . . , r} and every variable y, so Γj is a
type environment (i.e., Γj(x) contains every unbalanced type triple at most |Σ| times).

Now for every j ∈ {1, . . . , r} we apply the induction assumption to the premiss Υx
j `κm Pj : τ̂j . ej and

to type judgments ∆i `κm S : σ̂i . di only for i ∈ Ij ; we obtain a derivation of Γ′j `κm Pj [S/x] : τ̂j . cj for
cj = ej+

∑
i∈Ij di and for some Γ′j v Γj . To the obtained type judgments we apply the (CON≥1) rule, and

we derive Γ′ `κm R[S/x] : τ̂ . c for Γ′ = Γ′1t· · ·tΓ′r. We need to notice here that c−e =
∑r
j=1(ej−cj),

and thus if (F, e) ∈ Compm(M ; ({(0, a)},0), (F1, e1), . . . , (Fr, er)) for some argumentsM,F, Fj (as en-
sured by the original use of the rule), then also (F, c) ∈ Compm(M ; ({(0, a)},0), (F1, c1), . . . , (Fr, cr))
(as needed for the new use of the rule). We also notice that Γ′ v Γ.

Finally, suppose that R = P Q. This case is very similar to the previous one. The derivation for R
ends with the (@) rule, whose premisses are Υx

0 `κm P : τ̂0 . e0 and Υx
j `κm Q : τ̂j . ej for j ∈ J , where

we assume that 0 6∈ J . As in the previous case we can find sets (Ij)j∈{0}∪J such that I =
⋃
j∈{0}∪J Ij

and {|σ̂i | i ∈ Ij |} = Υx
j (x) for all j ∈ {0} ∪ J . Again we write Υx

j = Υj [x 7→ {|σ̂i | i ∈ Ij |}], and
Γj = Υj t

⊔
i∈Ij ∆i, and cj = ej +

∑
i∈Ij di for j ∈ {0} ∪ J , and we have that Γ =

⊔
j∈{0}∪J Γj and

c =
∑
j∈{0}∪J cj . We then apply the induction assumption to all premisses, and we obtain derivations

of Γ′0 `κm P [S/x] : τ̂0 . c0 and of Γ′j `κm Q[S/x] : τ̂j . cj for j ∈ J , where Γ′j v Γj for j ∈ {0} ∪ J .
By applying the (@) rule again, we derive Γ′ `κm R[S/x] : τ̂ . c for Γ′ =

⊔
j∈{0}∪J Γ′j v Γ (the side

conditions of the rule are satisfied, because we consider the same type triples as in the original derivation).
We also need to see that if some of the original derivation is wild, then the resulting derivations is wild

as well. To this end, suppose that in the derivation of Υx `κm R : τ̂ . e there is a wild use of the (@) rule.

A Type System Describing Unboundedness 39

Then in the resulting derivation the (@) rule is used in a similar way, only the type environments and the
considered lambda-terms are changed, but this is still a wild use of the (@) rule. Next, suppose that there is
a wild use of the (@) rule in the derivation of ∆i `κm S : σ̂i . di for some i ∈ I . By Lemma 6.5 this can
happen only when σ̂i is unbalanced (recall that ord(S) = m, which allows us to use this lemma). This
means that the derivation is inserted somewhere in the resulting derivation (we discard only derivations for
balanced σ̂i), and the wild use of the (@) rule remains present.

Proof of Lemma 8.1: Recall that we are given a derivation of Γ `κm P : τ̂ . c, and a beta-reduction
P →β Q that is of order m, and our goal is to derive Γ′ `κm Q : τ̂ . c for some Γ′ v Γ.

Suppose first that P = (λx.R)S and Q = R[S/x], where ord(x) = m. Then the given derivation
ends with the (@) rule, whose premisses are Υ `κm λx.R : τ̂λ . e and ∆i `κm S : σ̂i . di for i ∈ I .
Let us write τ̂ = (F,M, τ), and τ̂λ = (F ′,M ′, C→ τ), and σ̂i = (Fi,Mi, σi) for i ∈ I . The type
judgment for λx.R is in turn derived by the (λ) rule, whose premiss is Υx `κm R : (F ′,M ′′, τ) . e, where
Υx = Υ[x 7→ C ′] for some C ′ v C, and M ′ = M ′′ −Mk(C). Because all Fi and Mi are m-bounded,
and ord(S) = ord(x) = m, for all i ∈ I we have that Fi�≤ord(S) = Fi, and Mi�≤ord(S) = Mi, and
Fi�>ord(S) = ∅. Conditions of the (@) rule imply that:

1. Γ = Υ t
⊔
i∈I ∆i;

2. C = {|(Fi�≤ord(S),Mi�≤ord(S), σi) | i ∈ I|} = {|σ̂i | i ∈ I|};
3. M = M ′ +

∑
i∈IMi = M ′′ −Mk(C) +

∑
i∈IMi = M ′′;

4. (F, c) ∈ Compm(M ; (F ′, e), ((Fi�>ord(S), di))i∈I), which by Lemma 7.6 implies that F ⊆ F ′

and c = e+
∑
i∈I di (where M(k) = M ′′(k) = 0 for all (k, a) ∈ F ′ because (F ′,M ′′, τ) is a type

triple);
5. {(k, a) ∈ F ′ |M(k) = 0} ⊆ F , so F ′ = F , and thus the type triple derived for R is actually τ̂ .

Since C ′ v C, we can find some I ′ ⊆ I such that C ′ = {|σ̂i | i ∈ I ′|}. Moreover, for every i ∈ I \ I ′
the type triple σ̂i is necessarily balanced, so Mk(∆i) = 0 by Lemma 6.1, and di = 0 by Lemma 6.3. In
consequence Υ t

⊔
i∈I′ ∆i v Γ (in particular Υ t

⊔
i∈I′ ∆i is a type environment) and c = e+

∑
i∈I′ di.

We apply Lemma 8.4 to Υx `κm R : τ̂ . e and to ∆i `κm S : σ̂i . di for i ∈ I ′; we obtain a derivation of
Γ′ `κm Q : τ̂ . c for some Γ′ v Υ t

⊔
i∈I′ ∆i v Γ, as required.

We also need to see that if the original derivation was wild, then the new one is also wild. Notice that
the final use of the (@) rule in the original derivation cannot be wild: for its wildness we would need an
element (k, a) ∈ Fi�>ord(Q) = ∅ for some i ∈ I . Moreover, the removed subderivations ending with
∆i `κm S : σ̂i . di for i ∈ I \ I ′ cannot be wild by Lemma 6.5. Thus the wild use of the (@) rule is located
in some of the subderivations passed to Lemma 8.4, and thus it is preserved.

It remains to consider the general situation: the redex involved in the beta-reduction P →β(m) Q is
located somewhere deeper in P . Then the proof is by an easy induction on the depth of this redex. In the
induction step we apply the induction assumption to appropriate premisses of the final rule, and we observe
that after applying it, the rule can still be used. For most rules, we only need the trivial observation that if
Γ′ v Γ and ∆′ v ∆ then Γ′ t∆′ v Γt∆. We have to be slightly more careful only for the (λ) rule: if its
premiss is Γ[x 7→ C ′] `κm R : (F,M, τ) . c and its conclusion is Γ `κm λx.R : (F,M−Mk(C), C→ τ) .
c, by the induction assumption we obtain a derivation of Γ′[x 7→ C ′′] `κm S : (F,M, τ) . c with Γ′ v Γ
and C ′′ v C ′ v C; we can then apply the (λ) rule and derive Γ′ `κm S : (F,M−Mk(C), C→ τ) . c.

Remark. Recall that the (λ) rule allows to forget about some balanced type triples provided by an argument,
that is, we can have C ′ v C. We notice, however, that in derivations constructed in Section 7 we use the

40 Paweł Parys

(λ) rule only for C ′ = C. This means that Theorem 3.2 holds also for a more restrictive type system in
which the condition C ′ v C in the (λ) rule is replaced by C ′ = C. On the other hand, in Lemma 8.4 it is
necessary to discard some type judgments for S (cf. the case of a variable), so the type environment Γ′ in
the resulting type judgment only satisfies Γ′ v Γ, not Γ′ = Γ. In consequence, in surrounding (λ) rules it
starts to hold C ′ v C instead of C ′ = C. Thus even if we start from a derivation in the more restrictive
type system (with C ′ = C), in the soundness proof we pass through derivations in the original type system
(with C ′ v C).

8.2 Proof of Lemma 8.2
The proof is easy; we simply replace `κm by `κm−1 in all derived type judgments, and we ignore flags of
order m+ 1 and markers of order m. To obtain the inequality c′ ≥ c we observe that when the complexity
is at most m, the information about flags of order m goes only from descendants to ancestors, and thus
every flag of order m+ 1 is created because of a different flag of order m.

We now give more details. The first lemma describes the behaviour of the Compm predicate.

Lemma 8.5. Suppose that (F, c) ∈ Compm(M ; ((Fi, ci))i∈I), and m ≥ 0, and that M(k) = 0 for all
(k, a) ∈ F . Suppose also that for every i ∈ I either
• Fi ∈ Fκm, and F ′i = Fi�≤m−1, and c′i : Σ→ N is such that c′i(a) ≥ ci(a) + |Fi ∩ {(m, a)}| for all
a ∈ Σ, or
• (Fi, ci) = (F ′i , c

′
i) = ({(0, a)},0) for some a ∈ Σ.

Then (F �≤m−1, c
′) ∈ Compm−1(M�≤m−1; ((F ′i , c

′
i))i∈I) for some c′ : Σ→ N such that c′(a) ≥ c(a) +

|F ∩ {(m, a)}| for all a ∈ Σ.

Proof: We consider the numbers fk,a and f ′k,a appearing in the definition of Compm(M ; ((Fi, ci))i∈I).
We also consider analogous numbers defined by the predicate Compm−1(M�≤m−1; ((F ′i , c

′
i))i∈I), and

we call them gk,a and g′k,a. Since the arguments are the same up to order m − 1, for every a ∈ Σ we
have gk,a = fk,a for k ≤ m− 1, and g′k,a = f ′k,a for k ≤ m. In consequence the requirements given by
Compm−1 on the set F (i.e., that gk,a > 0 for all (k, a) ∈ F �≤m−1) follow directly from the requirements
given by Compm (saying that fk,a > 0 for all (k, a) ∈ F). We take c′(a) = gm,a +

∑
i∈I c

′
i(a) for all

a ∈ Σ, as required by the definition of Compm−1.
It remains to prove that c′(a) ≥ c(a) + |F ∩ {(m, a)}| for all a ∈ Σ. For the rest of the proof fix some

a ∈ Σ. We have that

c′(a) = gm,a +
∑
i∈I

c′i(a) = g′m,a +
∑
i∈I
|F ′i ∩ {(m, a)}|+

∑
i∈I

c′i(a) .

For every i ∈ I we have one of two cases: either
• c′i(a) ≥ ci(a) + |Fi ∩ {(m, a)}|, or
• (Fi, ci) = (F ′i , c

′
i) = ({(0, b)},0) for some b ∈ Σ.

In both cases we see that |F ′i ∩ {(m, a)}|+ c′i(a) ≥ |Fi ∩ {(m, a)}|+ ci(a). Recalling that g′m,a = f ′m,a
we obtain

c′(a) ≥ f ′m,a +
∑
i∈I
|Fi ∩ {(m, a)}|+

∑
i∈I

ci(a) = fm,a +
∑
i∈I

ci(a) .

A Type System Describing Unboundedness 41

Next, let us observe that fm,a ≥ f ′m+1,a + |F ∩ {(m, a)}|. Indeed, if M(m) > 0, we have f ′m+1,a =
fm,a and (m, a) 6∈ F . Conversely, if M(m) = 0, we have f ′m+1,a = 0, and if fm,a = 0 then also
(m, a) 6∈ F .

Moreover, because all Fi are m-bounded (m ≥ 0), it holds that fm+1,a = f ′m+1,a +
∑
i∈I |Fi ∩ {(m+

1, a)}| = f ′m+1,a. We thus obtain:

c′(a) ≥ f ′m+1,a +
∑
i∈I

ci(a) + |F ∩ {(m, a)}|

= fm+1,a +
∑
i∈I

ci(a) + |F ∩ {(m, a)}| = c(a) + |F ∩ {(m, a)}| .

The statement of Lemma 8.2 is not suitable for an inductive proof (it talks only about type judgments for
closed lambda-terms of sort o). Thus, in order to prove this lemma, we now generalize it to arbitrary type
judgments.

Lemma 8.6. Let P be a lambda-term of complexity at most m, whose all free variables are of order at
most m− 1. If we can derive Γ `κm P : (F,M, τ) . c, where m− 1 ≥ m0(κ), then we can also derive
Γ `κm−1 P : (F �≤m−1,M�≤m−1, τ) . c′ for some c′ : Σ→ N such that c′(a) ≥ c(a) + |F ∩ {(m, a)}|
for all a ∈ Σ. Moreover, if the original derivation was wild, then the resulting one is also wild.

Proof: Denote τ̂ = (F,M, τ) and σ̂ = (F �≤m−1,M�≤m−1, τ). The proof is by induction on the structure
of some fixed derivation of Γ `κm P : τ̂ . c. We distinguish several cases depending on the shape of P .

Suppose first that P is a variable, P = x. Then the (VAR) rule used in the derivation implies that
Γ = ε[x 7→ (F,M�≤ord(x), τ)]), and c = 0. By assumption of the lemma we have ord(x) ≤ m− 1, so
(M�≤m−1)�≤ord(x) = M�≤ord(x) and F �≤m−1 = F (because F is ord(x)-bounded). In consequence,
we can use the (VAR) rule to derive Γ `κm−1 P : σ̂ . 0.

Next, suppose that P = nd〈P1, . . . , Pr〉. Then the final (ND) rule has a premiss Γ `κm Pk : τ̂ . c
for some k ∈ {1, . . . , r}. The induction assumption applied to this premiss gives us a derivation of
Γ `κm−1 Pk : σ̂ . c′ with c′ such that c′(a) ≥ c(a) + |F ∩ {(m, a)}| for all a ∈ Σ. We apply back the
(ND) rule, obtaining Γ `κm−1 P : σ̂ . c′.

Next, suppose that P = λx.Q. Then the final (λ) rule has a premiss Γ[x 7→ C ′] `κm Q : (F,M ′, τ ′) . c,
where τ = C→ τ ′, and M = M ′ −Mk(C), and C ′ v C. Using the induction assumption for our premiss
(which is allowed, because ord(x) ≤ ord(P)− 1 ≤ m− 1) we obtain a derivation of Γ[x 7→ C ′] `κm−1

Q : (F �≤m−1,M
′�≤m−1, τ

′) . c′ with c′ such that c′(a) ≥ c(a) + |F ∩ {(m, a)}| for all a ∈ Σ. Because
C is ord(x)-bounded, and ord(x) ≤ m−1, we have thatM ′�≤m−1−Mk(C) = (M ′−Mk(C))�≤m−1 =
M�≤m−1, so by applying back the (λ) rule we derive Γ `κm−1 P : σ̂ . c′.

Next, suppose that P = b〈P1, . . . , Pr〉 with b 6= nd. Then τ = o, and the final rule (being either
(CON0) or (CON≥1)) has premisses Γi `κm Pi : (Fi,Mi, o) . ci for i ∈ {1, . . . , r}. By the induction
assumption, for every i ∈ {1, . . . , r} we can derive Γi `κm−1 Pi : (Fi�≤m−1,Mi�≤m−1, o) . c

′
i for

some c′i such that c′i(a) ≥ ci(a) + |Fi ∩ {(m, a)}| for all a ∈ Σ. If r > 0, we have a side condition
M = M1 + · · ·+Mr, which implies M�≤m−1 = M1�≤m−1 + · · ·+Mr�≤m−1. Another side condition
says that (F, c) ∈ Compm(M ; ({(0, b)},0), (Fi, ci)i∈{1,...,r}), and we need to see that (F �≤m−1, c

′) ∈
Compm−1(M�≤m−1; ({(0, b)},0), (Fi�≤m−1, c

′
i)i∈{1,...,r}) for some c′ such that c′(a) ≥ c(a) + |F ∩

{(m, a)}| for all a ∈ Σ; this follows directly from Lemma 8.5. Thus we can apply back the appropriate
rule, and derive Γ `κm−1 P : σ̂ . c′.

42 Paweł Parys

Finally, suppose that P = QR. Then the final (@) rule has premisses Γ′ `κm Q : (F ′,M ′, C→ τ) . e
and Γi `κm R : (Fi,Mi, τi) . di for i ∈ I , where we have that C = {|(Fi�≤ord(R),Mi�≤ord(R), τi) |
i ∈ I|}. The induction assumption applied to all premisses gives us a derivation of Γ′ `κm−1 Q :
(F ′�≤m−1,M

′�≤m−1, C→ τ) . e′ with e′ such that e′(a) ≥ e(a) + |F ′ ∩ {(m, a)}| for all a ∈ Σ,
and, for all i ∈ I , a derivation of Γi `κm−1 R : (Fi�≤m−1,Mi�≤m−1, τi) . d′i with d′i such that
d′i(a) ≥ di(a) + |Fi ∩ {(m, a)}| for all a ∈ Σ. The side condition M = M ′ +

∑
i∈IMi implies

M�≤m−1 = M ′�≤m−1 +
∑
i∈IMi�≤m−1, and the side condition {(k, a) ∈ F ′ | M(k) = 0} ⊆ F

implies {(k, a) ∈ F ′�≤m−1 | M�≤m−1(k) = 0} ⊆ F �≤m−1. Another side condition says that
(F, c) ∈ Compm(M ; (F ′, e), (Fi�>ord(R), di)i∈I). Because the complexity of P is at most m, we
have ord(R) ≤ ord(Q) − 1 ≤ m − 1. In consequence d′i(a) ≥ di(a) + |Fi ∩ {(m, a)}| = di(a) +
|Fi�>ord(R) ∩ {(m, a)}| for all i ∈ I and a ∈ Σ, thus by Lemma 8.5 we obtain (F �≤m−1, c

′) ∈
Compm−1(M�≤m−1; (F ′�≤m−1, e

′), ((Fi�>ord(R))�≤m−1, d
′
i)i∈I) for some c′ such that c′(a) ≥ c(a) +

|F ∩ {(m, a)}| for all a ∈ Σ. Clearly, (Fi�>ord(R))�≤m−1 = (Fi�≤m−1)�>ord(R). Moreover, C =
{|(Fi�≤m−1)�≤ord(R), (Mi�≤m−1)�≤ord(R), τi) | i ∈ I|}, again because ord(R) ≤ m − 1. Having all
this, we can apply back the (@) rule, and derive Γ `κm−1 P : σ̂ . c′.

Still staying in the case of P = QR, suppose now that the original derivation ends with a wild use of the
(@) rule. This means that for some i ∈ I and for some (k, a) ∈ Fi�>ord(R) we have Mi = 0 and M(l) > 0
for all l ∈ {k, k + 1, . . . ,m}. If k = m, the type judgment derived by the induction assumption, Γi `κm−1

R : (Fi�≤m−1,Mi�≤m−1, τi) . d
′
i, satisfies Mi�≤m−1 = 0 and d′i(a) ≥ di(a) + |Fi ∩ {(m, a)}| ≥ 1,

which is impossible by Lemma 6.3 (we use here the fact that ord(R) ≤ m − 1). Thus k < m, so we
have as well (k, a) ∈ (Fi�≤m−1)�>ord(R). It is also true that Mi�≤m−1 = 0 and M�≤m−1(l) > 0 for all
l ∈ {k, k + 1, . . . ,m− 1}. Thus the (@) rule is used wildly also in the resulting derivation.

We notice that the proof does not remove any fragment of the original derivation. Thus, by the above, if
the original derivations contain some wild use of the (@) rule, the resulting derivation also contains a wild
use of the (@) rule, in the same place.

Lemma 8.2 is obtained by specializing Lemma 8.6 to the situation when P is closed, and (F,M, τ) =
ρ̂κallm . Notice that then (F �≤m−1,M�≤m−1, τ) = ρ̂κallm−1.

8.3 Proof of Lemma 8.3
In this lemma, we are given a derivation of ε `κm P : ρ̂κallm . c, where m = m0(κ), and where P is of
complexity 0. The proof is by induction on the structure of some fixed derivation of ε `κm P : ρ̂κallm . c.
Let us analyze the shape of P . Because the type environment is empty, and because P has complexity 0,
P cannot be a variable, nor a lambda-binder, nor an application. Thus P starts with a node constructor,
P = b〈P1, . . . , Pr〉. We have two cases.

An easier case is when b = nd. Then the final (ND) rule has one premiss ε `κm Pi : ρ̂κallm . c for some
i ∈ {1, . . . , r}. The induction assumption gives us a tree T such that Pi →∗nd T and for every a ∈ Σ, the
number of appearances of a in T is c(a). Since P →nd Pi, this gives the thesis.

Suppose now that b 6= nd. Recall that for (F,M, τ) ∈ T T Mo−1, the flag set F and the marker multiset M
should be (−1)-bounded, hence F = ∅ and M = 0, and the type τ ∈ T Mo can only be o. For (F,M, τ) ∈
T T \o0 we are required that τ = o, that F and M are 0-bounded, that M(0) = 1 (hence M = {|0|}), and
that M(k) = 0 for all (k, a) ∈ F (hence F = ∅). In consequence ρ̂κallm is the only type triple in T T κom .
It follows that premisses of the final rule are of the form ε `κm Pi : ρ̂κallm . ci for i ∈ {1, . . . , r}. By the
induction assumption, for every i ∈ {1, . . . , r} we obtain a tree Ti such that Pi →∗nd Ti and for every

A Type System Describing Unboundedness 43

a ∈ Σ, the number of appearances of a in Ti is ci(a). We take T = b〈T1, . . . , Tr〉; then P →∗nd T . As in
the proof of Lemma 7.2, we observe that (∅, c) ∈ Compm(Mk(ρ̂κallm); ({(0, b)},0), (∅, c1), . . . , (∅, cr))
holds exactly when c(a) = c1(a) + · · ·+ cr(a) for a ∈ Σ \ {b}, and c(b) = 1 + c1(b) + · · ·+ cr(b). It
follows that for every a ∈ Σ, the number of appearances of a in T is c(a).

9 Complexity of SUP
Using our type system we now establish the complexity of SUP for schemes, which is as described by the
following theorem.

Theorem 9.1. Let m ∈ N.
1. If m ≥ 1, SUP for tree-recognizing order-m schemes is m-EXPTIME-complete. If m = 0, it is

NP-complete, and it is in FPT when |A| is viewed as a parameter.
2. Ifm ≥ 2, SUP for word-recognizing order-m schemes is (m−1)-EXPTIME-complete. Ifm ∈ {0, 1},

it is NP-complete, and it is in FPT when |A| is viewed as a parameter.

In the rest of this section we prove the above theorem. In the first part we concentrate on the upper
bounds; the lower bounds are shown in Section 9.4 by easy reductions. In the proof, we assume that the
considered scheme is of order m + 1, rather than of order m. We are thus given a set A and a scheme
G = (N ,R, N0) of order at most m+ 1, and we want to decide whether SUPA(L(G)) holds. This should
be done:
• in (m+ 1)-EXPTIME for m ≥ 0, and in NP for m = −1, when G can be arbitrary, and
• in m-EXPTIME for m ≥ 1, and in NP for m = 0, assuming that G is word-recognizing.

Set κ =M in the former case, and κ = \ in the latter case. In the cases resulting in an NP algorithm (i.e.,
when m = m0(κ)) we also prove that the problem is fixed-parameter tractable when |A| is viewed as a
parameter.

Due to Theorems 3.2 and 4.1, solving SUP boils down to checking whether for every n ∈ N we can
derive ε `κm Λ(G) : ρ̂κallm . cn with some cn such that cn(a) ≥ n for all a ∈ A (here we use the trivial fact
that the complexity of Λ(G) is not greater than the order of G).

Before starting the proof, let us give three definitions.

Definition 9.2. Two type judgments are equivalent if they differ only in values of the flag counter.

Definition 9.3. For a set A ⊆ Σ, a derivation is A-pumpable if for every symbol a ∈ A, there are two
equivalent type judgments lying on one branch of the derivation and such that the a coordinate of their flag
counter differs.

Definition 9.4. We say that a type judgment Γ `κm Q : τ̂ . d is useful (with respect to a scheme G) if Q is
a subterm of Λ(G) and Γ(x) 6= 0 only for variables x that are free in Q.

Let UG be the set of useful type judgments Γ `κm Q : τ̂ . d satisfying Mk(Γ) ≤ Mk(τ̂),(vi) and let UG/∼
be the set of equivalence classes of type judgments from UG .

For every rule of the type system it is easy to see that if the conclusion is useful, then also premisses
are useful. Moreover, Lemma 6.1 tells us that all type judgments that can be derived satisfy the inequality
Mk(Γ) ≤ Mk(τ̂). It follows that all derivations of ε `κm Λ(G) : ρ̂κallm . c contain only type judgments
from UG .
(vi) As one can see in the proof, the inequality Mk(Γ) ≤ Mk(τ̂) is important only when κ = \ and m = 0.

44 Paweł Parys

We now proceed as follows. First, in Section 9.1, we bound the number of equivalence classes in UG/∼.
Then, in Section 9.2, we observe that if a flag counter c is large enough for every symbol a ∈ A, then a
derivation of ε `m Λ(G) : ρm . c needs to be A-pumpable. Moreover, the opposite implication also holds:
if we have an A-pumpable type derivation, then we can repeat (as many times as we want) its fragments
between all pairs of equivalent type judgments, increasing arbitrarily the flag counter for all a ∈ A in the
resulting type judgment. This is described in Lemma 9.6. Finally, in Section 9.3 we give an algorithm
exploiting this property.

9.1 Number of Equivalence Classes
In the first part, we bound the size of UG/∼.

Recall that by ΛG(P) we denote the lambda-term obtained by recursively expanding all nonterminals in
a lambda-term P (which could contain nonterminals). It is easy to see that every subterm of Λ(G) equals
ΛG(P) for some subterm P ofR(N) for some nonterminal N ∈ N . In consequence, there are at most |G|
subterms of Λ(G).

Let SG be the set of sorts of all subterms of R(N) for all nonterminals N of G, and of all subsorts of
these sorts (where we say that a sort α is a subsort of a sort β either if α = β or if β = γ→ δ and α is a
subsort of γ or δ). Notice that the sorts of all subterms of Λ(G) also belong to SG .

For n ∈ {0, . . . ,m+1}, denote by ηκn the maximum of |T T καk | over all k ∈ {m0(κ),m0(κ)+1, . . . , n}
and over all sorts α ∈ SG such that ord(α) ≤ n. In order to bound ηκn, we first prove that if P of sort α is
a subterm ofR(N) for some nonterminal N ∈ N , then |α| ≤ |P |+ |G| (so in particular |α| ≤ 2 · |G| for
all α ∈ SG).(vii) This is induction on the size of P . When P starts with a node constructor this is trivial,
since α = o. When P = QR, this follows directly from the inequality |β→α| ≤ |Q| + |G| obtained
from the induction assumption, where β→α is the sort of Q, since |α| < |β→α| and |Q| < |P |. When
P = λx.Q, where α = β→ γ, we obtain the thesis by adding 1 + |β| to both sides of the induction
assumption |γ| ≤ |Q|. When P = x is a variable bound by some λx.Q somewhere in R(N), we have
|α| ≤ |λx.Q| ≤ |R(N)| ≤ |P | + |G|. Finally, P = M may be a nonterminal, in which case |α| is also
included in |G|.

Let us now take a number k ∈ {m0(κ),m0(κ) + 1, . . . , n} and a sort α = α1→ . . .→αs→ o ∈ SG
with ord(α) ≤ n for which ηκn = |T T καk |, that is, for which the maximum is reached. A type triple in
T T καk contains a flag set F , a marker multiset M , and a type C1→ . . .→Cs→ o. In the flag set, for every
order in l ∈ {0, . . . , k} we either have no flags of order l, or we have an (l, a)-flag for some a ∈ Σ (and
no other flags of order l); this gives (|Σ|+ 1)k+1 possibilities. In the marker multiset, for every order in
l ∈ {0, . . . , k} the number of order-l markers is in {0, . . . , |Σ|}; this also gives (|Σ|+ 1)k+1 possibilities.
Every triple container Ci is a function from T T καiord(αi)

to {0, . . . , |Σ|}; this gives (|Σ| + 1)
|T T καi

ord(αi)
|

possibilities. Because ord(αi) ≤ ord(α)−1 ≤ n−1 and |αi| ≤ |α| ≤ 2·|G|, we have |T T καiord(αi)
| ≤ ηκn−1.

Since moreover s ≤ |α| ≤ 2 · |G| and k ≤ n ≤ m+ 1, for n ≥ 1 we obtain:

ηκn = |T T καk | ≤ (|Σ|+ 1)k+1 · (|Σ|+ 1)k+1 ·
s∏
i=1

(|Σ|+ 1)
|T T καi

ord(αi)
| ≤ (|Σ|+ 1)2m+4+2·|G|·ηκn−1 .

(vii) One may wonder why we prove that |α| ≤ 2 · |G| instead of |α| ≤ |G|, but it is not clear whether the stronger inequality is
always true. Surely analogous inequality for lambda-terms is false: for example, the lambda-term λxα.xα is of size 2 + |α|, while
its sort α→α is of size 2 · |α|+ 1.

A Type System Describing Unboundedness 45

For n = 0 we necessarily have s = 0, and thus ηκ0 ≤ (|Σ|+ 1)2. It follows that for all n ∈ N, ηκn is at most
n-fold exponential in |G| and |Σ| (where by “0-fold exponential” we mean “polynomial”).

In the case of κ = \ we need a stronger bound. It can be established, because for every type triple
(F,M,C1→ . . .→Cs→ o) ∈ T T \αk we have the additional requirement thatM(0)+

∑s
i=1 Mk(Ci)(0) =

1. For ord(α) = 0, this condition implies that M(0) = 1 (since then s = 0). In consequence, for
ord(α) = 1 the triple containers C1, . . . , Cs can contain altogether only at most one type triple (as every
type triple in some Ci adds one to the sum

∑s
i=1 Mk(Ci)(0)). It follows that we only need to remember

which one of C1, . . . , Cs is nonempty (or that all of them are empty), and which type triple from T T \o0 it
contains.(viii) Thus for k and α maximizing η\1 we obtain:

η
\
1 = |T T αk | ≤ (|Σ|+ 1)k+1 · (|Σ|+ 1)k+1 · (1 + s · |T T o0|) ≤ (|Σ|+ 1)4 · (1 + 2 · |G| · η\0) .

This means that η\n for n ≥ 1 is at most (n− 1)-fold exponential in |G| and |Σ|.
We now bound the size of UG/∼, that is, the number of equivalence classes of useful type judgments

Γ `κm Q : τ̂ . d satisfying Mk(Γ) ≤ Mk(τ̂). As already said, there are at most |G| choices for Q. The
order of Q is at most m+ 1, and the sort of Q belongs to SG , so there are at most ηκm+1 choices for τ̂ . We
now bound the number of choices for the type environment Γ. Recall that we may take Γ(x) 6= 0 only for
variables x that are free in Q. All such variables are subterms of Λ(x), so there exist at most |G| of them.
Moreover, every free variable x of Q is bound by some subterm λx.R in Λ(G); since ord(λx.R) ≤ m+ 1,
we have ord(x) ≤ m. We now consider three cases, depending on m.
• Suppose first that κ =M and m ≥ 0, or κ = \ and m ≥ 1. Consider a free variable xα of Q. Its

sort α belongs to SG , so we obtain |T T καord(α)| ≤ ηκm. The type environment Γ assigns to xα a
triple container from T Cκα, that is a function from T T καord(α) to {0, . . . , |Σ|}. The number of such
functions is at most (|Σ| + 1)η

κ
m . By taking a product over all free variables of Q, we obtain that

the number of possible type environments Γ is at most (|Σ| + 1)|G|·η
κ
m . This number is at most

(m+ 1)-fold exponential in |G| and |Σ| for κ =M, and at most m-fold exponential in |G| and |Σ| for
κ = \.
• Suppose now that κ = \ and m = 0 (then the bound from the previous item is exponential, while

we need a polynomial one). In this case all free variables of Q are of order 0 (thus of sort o). As
already noticed, we have Mk(σ̂)(0) = 1 for all σ̂ ∈ T T \o0 . On the other hand Mk(τ̂)(0) ≤ 1 (by
definition of a marker multiset). Since we only consider type judgments satisfying Mk(Γ) ≤ Mk(τ̂),
the whole Γ assigns at most one type triple, to at most one variable. We thus only need to remember
which type triple it is, and to which variable it is assigned. We have at most 1 + |G| · η\0 possibilities
(thus polynomially many).
• Finally, suppose that κ =M and m = −1. In this case Q has no free variables, so necessarily Γ = ε.

Notice that without loss of generality we can assume that |Σ| ≤ |G|, since in Σ we do not need symbols
not appearing in G (actually, we can even assume that |Σ| = |A|+ 1, since a single symbol name can be
used for all symbols that are not in A). Altogether, it follows that |UG/∼| is at most (m+ 1)-fold exponential
in |G| for κ =M, and at most m-fold exponential in |G| for κ = \.

(viii) Actually, T T \o0 contains only one element, namely ρ̂\all0 = (∅, {|0|}, o), but this is irrelevant here.

46 Paweł Parys

9.2 Pumpable Derivations
In the second subsection, we argue that we are actually interested in finding an A-pumpable derivation.
We shall see here derivations as trees, similarly as in Section 7.3. For a node v of a derivation tree, by cv
we denote the flag counter being part of the type judgment written in v. We start by the following lemma,
saying that the flag counter cannot grow too much in a single place.

Lemma 9.5. When κ, m, Σ, and rmax ∈ N are fixed, there exists a constant C such that for every a ∈ Σ,
for every closed lambda-term S of sort o in which all node constructors have arity at most rmax, for every
derivation tree t that derives ε `κm S : ρ̂κallm . d (for some d), and for every node u of t, if cu(a) ≥ C, then
there exists a child v of u such that cv(a) ≥ 1

C · cu(a).

Proof: As C we take a number such that

C ≥ (m+ 3) · (rmax + 1) and C > (m+ 3) · (1 + |Σ| · (m+ 1)) .

Fix now some a ∈ Σ, and consider a type judgment Γ `κm R : (F,M, τ) . c appearing in t, such that
c(a) ≥ C. We have several cases, depending on the rule used to derive this type judgment. This cannot be
the (VAR) rule, since it requires that c(a) = 0, while we have c(a) ≥ C > 0. If this is the (ND) rule or the
(λ) rule, the flag counter in the unique premiss of the rule is also c, so we trivially have c(a) ≥ 1

C · c(a).
Suppose now that the considered type judgment is derived using one of the rules (CON0) or (CON≥1), that

is, that R is of the form b〈P1, . . . , Pr〉, where b 6= nd. Let Γi `κm Pi : (Fi,Mi, τi) . ci for i ∈ {1, . . . , r}
be the premisses of this rule. It holds that (F, c) ∈ Compm(M ; ({(0, b)},0), (F1, c1), . . . , (Fr, cr)).
Consider the numbers fk,a and f ′k,a as in the definition of the Compm predicate. We have that fk,a =

f ′k,a+|{(0, b)}∩{(k, a)}|+
∑r
i=1 |Fi∩{(k, a)}| ≤ f ′k,a+1+r for k ∈ {0, . . . ,m+1}, and f ′k,a ≤ fk−1,a

for k ∈ {1, . . . ,m+1}, and f ′0,a = 0. It follows that fm+1,a ≤ (m+2)·(r+1) ≤ (m+2)·(r+1)· 1
C ·c(a)

(the latter inequality holds because c(a) ≥ C). Suppose now, contrary to the thesis, that ci(a) < 1
C · c(a)

for all i ∈ {1, . . . , r}. Then we have that

c(a) = fm+1,a + c1(a) + · · ·+ cr(a) ≤ (m+ 2) · (r + 1) · 1

C
· c(a) + r · 1

C
· c(a) ,

which gives

C ≤ (m+ 3) · (r + 1)− 1 .

Since r ≤ rmax, this contradicts the assumption that C ≥ (m + 3) · (rmax + 1), thus necessarily
ci(a) ≥ 1

C · c(a) for some i ∈ {1, . . . , r}.
It remains to consider the case of the (@) rule, when R = P Q. Premisses of this rule are Γ0 `κm P :

(F0,M0, τ0) . c0 and Γi `κm Q : (Fi,Mi, τi) . ci for i ∈ I , where we assume that 0 6∈ I . It holds that
(F, c) ∈ Compm(M ; (F0, c0), ((Fi�>ord(Q), ci))i∈I). Again, we consider the numbers fk,a and f ′k,a. Let
l be the smallest natural number such that M(k) > 0 for all k ∈ {l, l + 1, . . . ,m} (when M(m) = 0, we
simply take l = m+ 1). Then by definition we have f ′l,a = 0 (since either l = 0 or M(l − 1) = 0) and
f ′k,a = fk−1,a for all k ∈ {l + 1, l + 2, . . . ,m+ 1}. We now prove that for all k ∈ {l, l + 1, . . . ,m+ 1},

fk,a ≤ f ′k,a + 1 + |Σ| · (m+ 1) . (3)

A Type System Describing Unboundedness 47

To this end, we consider two cases. Suppose first that l ≤ k ≤ ord(Q). Then Fi�>ord(Q) ∩ {(k, a)} = ∅
for all i ∈ I , so we obtain Inequality (3):

fk,a = f ′k,a + |F0 ∩ {(k, a)}|+
∑
i∈I
|Fi�>ord(Q) ∩ {(k, a)}|

≤ f ′k,a + 1 ≤ f ′k,a + 1 + |Σ| · (m+ 1) .

Next, suppose that max(ord(Q) + 1, l) ≤ k ≤ m + 1. Notice that every index i ∈ I with Mi 6= 0
adds at least one to the sum

∑
i∈I
∑∞
j=0Mi(j). This sum cannot be greater than |Σ| · (m + 1), since∑

i∈IMi ≤
∑
i∈{0}∪IMi = M ∈ Mκ

m. It follows that there are at most |Σ| · (m + 1) indices i ∈ I
for which Mi 6= 0. On the other hand, from Lemma 6.4 we know that the derivation is not wild; in
particular the considered use of the (@) rule is not wild. This means that for all i ∈ I with Mi = 0 we have
(k, a) 6∈ Fi�>ord(Q) (since k ≥ l, we haveM(j) > 0 for all j ∈ {k, k+1, . . . ,m}, so (k, a) ∈ Fi�>ord(Q)

implies wildness). Thus, Inequality (3) follows also in this case:

fk,a = f ′k,a + |F0 ∩ {(k, a)}|+
∑
i∈I
|Fi�>ord(Q) ∩ {(k, a)}| ≤ f ′k,a + 1 + |Σ| · (m+ 1) .

Using Inequality (3) for all possible k, and the assumption that c(a) ≥ C, we obtain that

fm+1,a ≤ (m− l + 2) · (1 + |Σ| · (m+ 1)) ≤ (m+ 2) · (1 + |Σ| · (m+ 1)) · 1

C
· c(a) .

Suppose now, contrary to the thesis, that ci(a) < 1
C · c(a) for all i ∈ {0} ∪ I . For every i ∈ I such that

Mi = 0, by Lemma 6.3 (which can be applied because ord(Q) ≤ m) we actually have that ci(a) = 0.
There are at most |Σ| · (m+ 1) indices i ∈ I for which Mi 6= 0, that is, for which ci(a) can be nonzero
(plus one more index i = 0). We thus obtain:

c(a) = fm+1,a +
∑

i∈{0}∪I

ci(a)

≤ (m+ 2) · (1 + |Σ| · (m+ 1)) · 1

C
· c(a) + (1 + |Σ| · (m+ 1)) · 1

C
· c(a) ,

which gives

C ≤ (m+ 3) · (1 + |Σ| · (m+ 1)) .

This contradicts the assumption that C > (m+ 3) · (1 + |Σ| · (m+ 1)), thus necessarily ci(a) ≥ 1
C · c(a)

for some i ∈ {0} ∪ I .

In the next lemma we argue that it is enough to consider A-pumpable derivations.

Lemma 9.6. Let S be a closed lambda-term of sort o, in which there is finite bound on the arity of node
constructors (for example S = Λ(G)). There exists an A-pumpable derivation of ε `κm S : ρ̂κallm . c if and
only if for every n ∈ N we can derive ε `κm S : ρ̂κallm . cn with some cn such that cn(a) ≥ n for all a ∈ A.

Proof: Let us first justify the left-to-right implication. Suppose that a derivation tree t that derives
ε `κm S : ρ̂κallm . c is A-pumpable. By definition, this means that for every symbol a ∈ A, there are

48 Paweł Parys

two nodes ua, va of t such that ua is an ancestor of va, they contain equivalent type judgments, and
cua(a) 6= cva(a). Our type system has the property that the flag counter in the conclusion of a rule is
always not smaller than the flag counter in all the premisses, which implies that cua(a) > cva(a), and
cua(b) ≥ cva(b) for all b ∈ Σ. In the considered situation, for every a ∈ A we can repeat (as many
times as we want) the fragment of the derivation between the nodes ua and va, increasing arbitrarily the
a coordinate of the flag counter in the resulting type judgment. This is possible thanks to the following
additivity property of our type system: if out of Γ `κm P : σ̂ . c we can derive Γ′ `κm P ′ : σ̂′ . c′, then out
of Γ `κm P : σ̂ . d we can derive Γ′ `κm P ′ : σ̂′ . c′ + d− c.

We now prove the right-to-left implication. Let C be the constant from Lemma 9.5 (where as rmax

we take the maximal arity of a node constructor appearing in S, which by assumption is finite), and let
K = |UG/∼|. Take n = CK , and consider a derivation tree t that derives ε `κm S : ρ̂κallm . cn for some
cn such that cn(a) ≥ n for all a ∈ A; it exists by assumption. We claim that t is A-pumpable. In order
to prove this, take some symbol a ∈ A. As already mentioned, whenever w is a child of u in t, it holds
that cw(a) ≤ cu(a). We now construct a sequence v0, . . . , vK of K + 1 nodes lying on one branch in
t, such that cvi(a) ≥ CK−i for i ∈ {0, . . . ,K}, and cvi(a) < cvi−1

(a) for i ∈ {1, . . . ,K}. As v0 we
take the root of t; then cv0

(a) = cn(a) ≥ CK . Next, suppose that v0, . . . , vi−1 are already constructed,
and we want to construct vi (we do this by induction, for i = 1, 2, . . . ,K). Let u be some node in the
subtree starting in vi−1, such that cu(a) = cvi−1

(a) but cw(a) < cvi−1
(a) for all children w of u (such a

node u has to exist, as t is finite). Then, as vi we take a child of u such that cvi(a) ≥ 1
C · cu(a), which

exists by Lemma 9.5. Because cu(a) = cvi−1(a) ≥ CK−i+1, it follows that cvi(a) ≥ CK−i; we also have
cvi(a) < cvi−1

(a).
Once v0, . . . , vK are constructed, we notice that there is more of them than equivalence classes in UG/∼.

As already noticed, only type judgments from UG/∼ may appear in t. It follows that among the nodes
v0, . . . , vK there are two, vi and vj for i < j, labeled by equivalent type judgments. By construction vi
and vj are located on the same branch, and we have that cvi(a) > cvj (a). Such a pair of nodes can be
found for every a ∈ A, so t is A-pumpable.

9.3 Algorithms
We now give two algorithms that check whether an A-pumpable derivation of ε `m Λ(G) : ρm . c exists
for some c; in effect they solve SUP for schemes. Recall that Parys (2017b) proposes an approach that
is doubly exponential in UG/∼: list all type derivations of height smaller than some number, and search
among them for an A-pumpable derivation. We show how to search for A-pumpable derivations in a more
systematic way. Our first algorithm is deterministic, and works in time polynomial in |UG/∼|+ |G|+ f(|A|)
for some exponential function f (notice that when |UG/∼| is exponential in |G|, the component f(|A|) is

anyway dominated by |UG/∼|). The second algorithm is nondeterministic, and works in time polynomial

in |UG/∼|+ |G|, so it avoids the exponential dependence on |A|. The existence of these algorithms proves

upper bounds required by Theorem 9.1, once we recall the bounds on UG/∼ from Section 9.1.
A type judgment is called basic if its flag counter is 0. Basic type judgments can be used to represent

equivalence classes of type judgments, as in every equivalence class there is exactly one basic type
judgment.

We denote type judgments using letters J , K, and L (possibly with some subscripts or superscripts).
While denoting basic type judgments, we put 0 in the superscript, like in J0. For a type judgment J , let J↓

A Type System Describing Unboundedness 49

be the basic type judgment equivalent to J , and let cJ be the flag counter appearing in J .
Our algorithm computes several sets, which we now define. The set D (containing basic type judgments

from UG) is the smallest set such that:
• if by applying a rule to type judgments J0

1 , . . . , J
0
r ∈ D one can derive a type judgment J ∈ UG ,

then J↓ ∈ D.
In the above definition we allow any r ≥ 0 (in particular, we also consider rules that do not need any
premisses). The set E (being a subset of D ×D) is the smallest set such that:
• (J0, J0) ∈ E for all J0 ∈ D, and
• if by applying a rule to type judgments J0

1 , . . . , J
0
r ∈ D one can derive a type judgment J ∈ UG ,

and (J0
l ,K

0) ∈ E for some l ∈ {1, . . . , r}, then (J↓,K0) ∈ E .
For every a ∈ A, the set Da (being a subset of D) is the smallest set such that:
• if J0

1 , . . . , J
0
r ∈ D, and J0

k ∈ Da for some k ∈ {1, . . . , r}, and by applying a rule to J0
1 , . . . , J

0
r one

can derive a type judgment J ∈ UG , then J↓ ∈ Da, and
• if by applying a rule to type judgments J0

1 , . . . , J
0
r ∈ D one can derive a type judgment J ∈ UG

satisfying cJ(a) > 0, then J↓ ∈ Da.
Finally, for every a ∈ A, the set Ea (being a subset of Da ×D) is the smallest set such that:
• if by applying a rule to type judgments J0

1 , . . . , J
0
r ∈ D one can derive a type judgment J ∈ UG ,

and (J0
l ,K

0) ∈ Ea for some l ∈ {1, . . . , r}, then (J↓,K0) ∈ Ea,
• if J0

1 , . . . , J
0
r ∈ D, and J0

k ∈ Da for some k ∈ {1, . . . , r}, and by applying a rule to J0
1 , . . . , J

0
r

one can derive a type judgment J ∈ UG , and (J0
l ,K

0) ∈ E for some l ∈ {1, . . . , r} \ {k}, then
(J↓,K0) ∈ Ea, and
• if by applying a rule to type judgments J0

1 , . . . , J
0
r ∈ D one can derive a type judgment J ∈ UG

satisfying cJ(a) > 0, and (J0
l ,K

0) ∈ E for some l ∈ {1, . . . , r}, then (J↓,K0) ∈ Ea.

Lemma 9.7. In the setting as above:
(a) the set D consists of projections J↓ of all type judgments J ∈ UG that can be derived,
(b) the set E consists of pairs (J↓,K↓) for all type judgments J ∈ UG that can be derived so that K

appears in a derivation of J ,
(c) for every a ∈ A, the set Da consists of projections J↓ of all type judgments J ∈ UG that can be

derived and that satisfy cJ(a) > 0, and
(d) for every a ∈ A, the set Ea consists of pairs (J↓,K↓) for all type judgments J ∈ UG that can be

derived so that K appears in a derivation of J , and where cJ(a) > cK(a).

Proof: We first argue that every element in D (in Da) is of the form J↓ for some type judgment J ∈ UG
that can be derived (and satisfies cJ(a) > 0, respectively). This is shown by induction on the order in
which type judgments are added to the set D (or Da) in its definition. By definition, some J ′↓ is added to
D, if it can be derived by applying some rule to basic type judgments J0

1 , . . . , J
0
r ∈ D, where from the

induction assumption we know for i ∈ {1, . . . , r} that J0
i = Ji↓ for some type judgment Ji ∈ UG that can

be derived. The same rule can be applied to the type judgments J1, . . . , Jr, and results in a type judgment
J equivalent to J ′, where cJ = cJ′ + cJ1

+ · · ·+ cJr . If J0
k ∈ Da for some k ∈ {1, . . . , r} (the first item

in the definition of Da), by the induction assumption we actually know that cJk(a) > 0, so also cJ(a) > 0.
If cJ′(a) > 0 (the second item in the definition of Da) then automatically also cJ(a) > 0.

The opposite inclusion is shown by induction on the size of a fixed derivation of the considered
derivable type judgment J ∈ UG . Consider the final rule used in the derivation; let J1, . . . , Jr be its
premisses. As already said, J1, . . . , Jr necessarily belong to UG . By the induction assumption we have

50 Paweł Parys

that J1↓, . . . , Jr↓ ∈ D. The application of the final rule remains valid if we replace the flag counters in
J1, . . . , Jr by 0, and we appropriately decrease the flag counter in J . This proves that J↓ ∈ D.

When additionally cJ(a) > 0, and we want to prove that J↓ ∈ Da, we have two cases.
• If cJk(a) > 0 for some k ∈ {1, . . . , r}, then we have Jk↓ ∈ Da by the induction assumption, so
J↓ ∈ Da according to the first item in the definition of Da.
• Otherwise, cJi(a) = 0 for all i ∈ {1, . . . , r}. Then, while replacing the flag counters in J1, . . . , Jr

by 0, we do not change the a coordinate of the flag counter in J , so it remains positive. Thus
J↓ ∈ Da according to the second item in the definition of Da.

The argumentation for the sets E and Ea is actually very similar, and thus it is left to the reader.

We now come to pumpable derivations. Here we need one more definitions: for a nonempty subset B of
A we define a B-skeleton (we use B-skeletons to describe a general shape of B-pumpable derivations).
For B = {a} we have only one B-skeleton, which is a. For B of size at least 2, a B-skeleton is of the form
either:
• a[S], where S is a (B \ {a})-skeleton, or
• (S1), . . . , (Ss), where Si is a Bi-skeleton for i ∈ {1, . . . , s}, for some partition of B into disjoint

nonempty subsets B1, . . . , Bs, where s ≥ 2.
Example {a, b, c}-skeletons are a[b[c]], and c[(b), (a)], and (b), (a), (c), and (a), ((b), (c)). It should be
clear that an A-skeleton can be represented in a space polynomial in |A|, so the number of A-skeletons is
at most exponential in A.

Below, we assume that premisses of a rule are always listed in some order, so that in the (CON≥1)
rule consecutive premisses concern consecutive subterms P1, . . . , Pr of the considered lambda-term
a〈P1, . . . , Pr〉, and in the (@) rule we first have a premiss concerning the function and then premisses
concerning the argument (listed in any order).

For every skeleton S we define a set PS as the smallest set such that:
• if J0

1 , . . . , J
0
r ∈ D, and J0

k ∈ PS for some k ∈ {1, . . . , r}, and by applying a rule to J0
1 , . . . , J

0
r one

can derive a type judgment J ∈ UG , then J↓ ∈ PS ,
• if S equals a, and (J0, J0) ∈ Ea, then J0 ∈ PS ,
• if S equals a[S′], and (J0, J0) ∈ Ea, and J0 ∈ PS′ , then J0 ∈ PS , and
• if S equals (S1), . . . , (Ss), and J0

1 , . . . , J
0
r ∈ D, and there is a subsequence J0

j1
, . . . , J0

js
of

J0
1 , . . . , J

0
r (with j1 < · · · < js) satisfying J0

ji
∈ PSi for i ∈ {1, . . . , s}, and by applying a

rule to J0
1 , . . . , J

0
r one can derive a type judgment J ∈ UG , then J↓ ∈ PS .

Lemma 9.8. Let J0 ∈ UG be a basic type judgment, and let B ⊆ A be nonempty. Then there exists a
B-pumpable derivation of a type judgment equivalent to J0 if and only if J0 ∈ PS for some B-skeleton S.

Proof: We first suppose that J0 ∈ PS for some B-skeleton S, and we show a B-pumpable derivation for a
type judgment equivalent to J0. This is induction on the size of B, and internally on the order in which
type judgments are added to PS . We have several cases:
• Suppose that J0

1 , . . . , J
0
r ∈ D, and J0

k ∈ PS for some k ∈ {1, . . . , r}, and by applying a rule to
J0

1 , . . . , J
0
r one can derive a type judgment equivalent to J0 (the first item in the definition). Then

by the induction assumption we have a B-pumpable derivation for a type judgment equivalent to J0
k ,

and for i ∈ {1, . . . , r}\{k} by Lemma 9.7(a) we have a derivation for a type judgment equivalent to
J0
i . We finish the derivation by applying the considered rule, and we obtain a B-pumpable derivation

for a type judgment equivalent to J0.

A Type System Describing Unboundedness 51

• Suppose that S equals a, and (J0, J0) ∈ Ea (the second item in the definition). In this case B = {a}.
Lemma 9.7(d) implies that there is a derivation for a type judgments J1 equivalent to J0 in which
some J2 equivalent to J0 appears, where cJ1(a) > cJ2(a). By definition such a derivation is
B-pumpable.
• Suppose that S equals a[S′], and (J0, J0) ∈ Ea, and J0 ∈ PS′ (the third item in the definition).

Recall that S′ is a B′-skeleton for B′ = B \ {a}. Lemma 9.7(d) implies that there is a derivation
tree t for a type judgments J1 equivalent to J0 in which some J2 equivalent to J0 appears, where
cJ1

(a) > cJ2
(a). Moreover, the induction assumption implies that there is a B′-pumpable derivation

tree t′ of a type judgment J3 equivalent to J0. We now insert t′ in a node of t in which J2 was
written (cutting off all children of that node), and we modify appropriately flag counters on the path
from this node to the root of t. This way, we obtain a B-pumpable derivation of a type judgment
equivalent to J0.
• Finally, suppose that S equals (S1), . . . , (Ss), and J0

1 , . . . , J
0
r ∈ D, and there is a subsequence

J0
j1
, . . . , J0

js
of J0

1 , . . . , J
0
r (with j1 < · · · < js) satisfying J0

ji
∈ PSi for i ∈ {1, . . . , s}, and

by applying a rule to J0
1 , . . . , J

0
r one can derive a type judgment equivalent to J0. Then B =

B1 ∪ · · · ∪ Bs, where Si is a Bi-skeleton for i ∈ {1, . . . , s}. For i ∈ {1, . . . , s}, by the induction
assumption we have a Bi-pumpable derivation of a type judgment equivalent to J0

ji
. Moreover, for

i ∈ {1, . . . , r}\{j1, . . . , js} by Lemma 9.7(a) we have a derivation of a type judgment equivalent to
J0
i . We finish the derivation by applying the considered rule, and we obtain a B-pumpable derivation

for a type judgment equivalent to J0.

Next, we prove the opposite implication. Consider thus a B-pumpable derivation of a type judgment J
equivalent to J0. We proceed by induction on the size of this derivation. Let J1, . . . , Jr be the premisses
of the final rule used in this derivation. We have several possibilities here:
• It is possible that already a subderivation resulting in Jk for some k ∈ {1, . . . , r} is B-pumpable.

Then, by the induction assumption, Jk↓ ∈ PS for some B-skeleton S. Moreover, J1↓, . . . , Jr↓ ∈ D
by Lemma 9.7(a). By scaling down flag counters in the rule used in the root of the derivation, we
obtain a situation as in the first item of the definition, so J0 ∈ PS .
• Suppose now that a type judgment J ′ equivalent to J0 appears somewhere inD, with cJ(a) > cJ′(a)

for some a ∈ B. Then (J0, J0) ∈ Ea by Lemma 9.7(d). If B = {a}, as S we take a, and we obtain
J0 ∈ PS by the second item of the definition. Suppose thus that |B| ≥ 2. Let B′ = B \ {a}. A
B-pumpable derivation is also B′-pumpable, so by the induction assumption we have that J0 ∈ PS′
for some B′-skeleton S′. As S we take a[S′], and then J0 ∈ PS by the third item of the definition.
• Finally, suppose that the two above possibilities do not hold. Then necessarily there is a subsequence
Jj1 , . . . , Jjs of J1, . . . , Jr, and a partition of B to disjoint nonempty subsets B1, . . . , Bs (where
s ≥ 2) such that for all i ∈ {1, . . . , s} the subderivation resulting in Jji is Bi-pumpable. Then for
all i ∈ {1, . . . , s} by the induction assumption we have that Jji↓ ∈ PSi for some Bi-skeleton Si.
Moreover, J1↓, . . . , Jr↓ ∈ D by Lemma 9.7(a). By scaling down flag counters in the rule used in the
root of the derivation, we obtain a situation as in the fourth item of the definition, so J0 ∈ PS .

Finally, let us see that all the sets can be quickly computed. We start by a lemma describing a single rule.

Lemma 9.9. Given a set of basic type judgments D ⊆ UG , and its subsets D1, . . . ,Ds ⊆ D, and a basic
type judgment J0 ∈ UG , and a symbol a+ ∈ Σ, it can be decided in time polynomial in |UG/∼|+ |G|+ s

whether there exist type judgments J0
1 , . . . , J

0
r ∈ D such that a subsequence J0

j1
, . . . , J0

js
of J0

1 , . . . , J
0
r

52 Paweł Parys

(with j1 < · · · < js) satisfies J0
ji
∈ Di for i ∈ {1, . . . , s}, and such that by applying a type system rule to

J0
1 , . . . , J

0
r (listed in this order) one can derive:

(a) a type judgment J that is equivalent to J0;
(b) a type judgment J that is equivalent to J0 and such that cJ(a+) > 0.

Proof: This lemma is not completely obvious, as the number r of premisses can be arbitrarily large (the
same type judgment can be even repeated in the list of premisses), so we cannot iterate through all possible
lists of type judgments from D. But let analyze every rule separately.

The rules (VAR) and (CON0) have no premisses, so they require s = 0. It can be easily checked whether
some J equivalent to J0 can be derived, and whether its flag counter cJ can satisfy cJ(a+) > 0.

For the rules (ND) and (λ) the situation is also easy, as they require exactly one premiss. We can thus
loop over all type judgments J0

1 ∈ D. For s = 1 we require that J0
1 ∈ D1, and for s ≥ 2 we always fail.

When the premiss and the conclusion are fixed (modulo the value of the flag counter in the conclusion), it is
straightforward to check whether the rule can be applied, and whether the flag counter c in the conclusion
can satisfy c(a+) > 0.

In the rules (CON≥1) and (@) it is useful to consider a predicate Comp′m(k, a,M,F ′) which is true if
k ∈ {0, . . . ,m+ 1}, and a ∈ Σ, and there exists l ∈ {0, . . . , k} such that (l, a) ∈ F ′ and M(i) > 0 for all
i satisfying l ≤ i ≤ k − 1. It follows directly from the definition of Compm that for any M,F1, . . . , Fn
the set

{F | (F, c) ∈ Compm(M ; (F1,0), . . . , (Fn,0)) for some c}

contains exactly these sets F for which

∀(k, a) ∈ F . ∃i ∈ {1, . . . , n} .Comp′m(k, a,M,Fi) .

Moreover, the set

{F | (F, c) ∈ Compm(M ; (F1,0), . . . , (Fn,0)) for some c with c(a+) > 0}

contains exactly these sets F for which

∀(k, a) ∈ F ∪ {(m+ 1, a+)} .∃i ∈ {1, . . . , n} .Comp′m(k, a,M,Fi) .

Consider now the (CON≥1) rule, whose conclusion should be Γ `κm b〈P1, . . . , Pr〉 : (F,M, o) . c for
some c. Its premisses should be of the form Γi `κm Pi : (Fi,Mi, o) . 0 for i ∈ {1, . . . , r}, where we have
a big choice for Γi,Mi, Fi. The key point is that we do not need to know all premisses simultaneously.
Indeed, after scanning through the first n premisses, the only things that we need to remember are:
• the union Γ′n = Γ1 t · · · t Γn,
• the sum M ′n = M1 + · · ·+Mn,
• the set F ′n of these (k, a) ∈ F ∪{(m+ 1, a+)} for which Comp′m(k, a,M,Fi) is satisfied for some
i ∈ {1, . . . , n}, and
• the maximal number sn such that a subsequence J0

j1
, . . . , J0

jsn
of the list of these n premisses

satisfies J0
ji
∈ Di for i ∈ {1, . . . , sn}.

A Type System Describing Unboundedness 53

These tuples (Γ′n,M
′
n, F

′
n, sn) satisfy Γ′n ≤ Γ, and M ′n ≤M , and F ′n ⊆ F ∪ {(m+ 1, a+)}, and sn ≤ s.

The number of such tuples is at most 2 · |UG/∼|
3 · (s+ 1), because all possible choices for Γ′n (and similarly

forM ′n and for F ′n∩F) can appear in some type judgments from UG . Thus in the algorithm we make a loop
over n ∈ {1, . . . , r}, where after each step we remember the set of all tuples (Γ′n,M

′
n, F

′
n, sn) that can be

obtained after considering any choice of the first n premisses. For every such n we consider all possible
candidates for the n-th premiss, and basing on the set of obtainable tuples (Γ′n−1,M

′
n−1, F

′
n−1, sn−1) we

compute the set of obtainable tuples (Γ′n,M
′
n, F

′
n, sn). Knowing which tuples (Γ′r,M

′
r, F

′
r, sr) can be

obtained after choosing all premisses, we can determine whether the considered conclusion can be derived
in the required way. Such an algorithm is polynomial (we remark that r can be larger than |UG/∼|, but surely
r ≤ |G|).

For the (@) rule the situation is similar. Let Γ `κm P Q : (F,M, τ) . c be the considered conclusion
(where c is not fixed). We need to have one premiss concerning P , so we can iterate over all candidates.
Fix some such candidate Γ0 `κm P : (F0,M0, C→ τ) . 0. Having some number of premisses concerning
Q, namely Γi `κm Q : (Fi,Mi, τi) . 0 for i ∈ {1, . . . , n}, we only need to remember:
• the union Γ′ = Γ1 t · · · t Γn,
• the sum M ′ = M1 + · · ·+Mn,
• the set F ′ of these (k, a) ∈ F ∪ {(m+ 1, a+)} for which Comp′m(k, a,M,Fi�>ord(Q)) is satisfied

for some i ∈ {1, . . . , n},
• the triple container C ′ = {|(Fi�≤ord(Q),Mi�≤ord(Q), τi) | i ∈ {1, . . . , n}|}, and
• the maximal number s′ such that a subsequence J0

j1
, . . . , J0

js′
of the list containing the premiss for

P and the n premisses for Q satisfies J0
ji
∈ Di for i ∈ {1, . . . , s′}.

We necessarily have that Γ′ ≤ Γ, and M ′ ≤M , and F ′ ⊆ F ∪ {(m+ 1, a+)}, and C ′ ≤ C, and s′ ≤ s,
so the number of possible tuples (Γ′,M ′, F ′, C ′, s′) is at most 2 · |UG/∼|

4 · s. Having an obtainable tuple,
and some candidate for a premiss, we can easily compute the tuple obtained after including this premiss.
When this set is computed, we can easily determine whether the conclusion can be derived in the required
way.

Having established Lemma 9.9, we come back to the main algorithm, where we want to compute all
the sets. Let us start with the set D. It can be computed by a saturation algorithm, following its definition.
We start by taking D = ∅. Then, in a loop, we check for every basic type judgment J0 ∈ UG whether
some type judgment J equivalent to J0 can be obtained by applying some rule to some type judgments
J0

1 , . . . , J
0
r belonging to the current version of D; if so, we add J0 to D. Every such check can be done

quickly due to Lemma 9.9(a) (where we take s = 0). We enlarge the set D at most |UG/∼| times, and after

every change of D we need to check at most |UG/∼| basic type judgments. Overall, the computation works

in time polynomial in |UG/∼|+ |G|.
The sets Da can be computed similarly. Here, we need to check whether some type judgment J

equivalent to J0 can be obtained by applying some rule to some type judgments J0
1 , . . . , J

0
r belonging to

the current version of D, where J0
k for some k ∈ {1, . . . , r} belongs to Da (the first item of the definition);

this can be done by Lemma 9.9(a), where as D1 we take Da, and s = 1. We also need to check whether
some type judgment J equivalent to J0 and with flag counter satisfying cJ(a) > 0 can be obtained by
applying some rule to some type judgments J0

1 , . . . , J
0
r belonging to the current version of D (the second

item of the definition); this can be done by Lemma 9.9(b) (where s = 0 and a+ = a).
The set E is also computed by a saturation algorithm. Here we loop over triples of basic type judgments

54 Paweł Parys

J0,K0, L0 such that (L0,K0) ∈ E , and in a simple check we fire Lemma 9.9(a) with D1 = {L0} and
s = 1. While computing sets Ea we have three kinds of checks, but again all of them can be handled by
Lemma 9.9, where s ≤ 2.

Finally, we want to compute the set PS for some skeleton S, assuming that we have already computed
the set PS′ if S = a[S′], and the sets PS1

, . . . ,PSs if S equals (S1), . . . , (Ss). Here we have four kinds
of checks, corresponding to the four items of the definition. The first of them is similar to what we did
previously. The next two do not even require to use Lemma 9.9. The fourth item is more complicated, but
Lemma 9.9(a) is perfectly suited to solve it.

At the end, due to the equivalence given by Lemma 9.8, we need to check whether the type judgment
ε `κm Λ(G) : ρ̂κallm . 0 belongs to PS for someA-skeleton S. Here is the only place where nondeterminism
helps. If we can proceed nondeterministically, then we simply guess an A-skeleton S, we compute PS only
for this skeleton (and recursively for its subskeletons), and we check whether the type judgment belongs
there. As already said, a single set PS can be computed in polynomial time. If we want to be deterministic,
we compute the sets PS for all A-skeletons S (their number is exponential in |A|), and we check whether
the type judgment belongs to some of them.

9.4 Lower Bounds
We now prove lower bound appearing in Theorem 9.1. We base here on the problem of nonemptiness of
L(G). The complexity of this problem was established by Engelfriet (1991) for higher-order pushdown
automata, which are equivalent to a subclass of higher-order recursion schemes (Knapik, Niwiński, and
Urzyczyn, 2002). For us it is more convenient to use results of Kobayashi and Ong (2011), as they talk
directly about schemes.

Kobayashi and Ong (2011, Theorem 4.3) prove that for m ≥ 2 the following problem is (m − 1)-
EXPTIME-hard: given a scheme G of order at most m, and a disjunctive alternating parity tree automaton
B, decide whether B accepts BT (Λ(G)). Instead of recalling the definition of a disjunctive alternating
parity tree automaton, we notice that G and B produced by their reduction are of a special form. Namely,
BT (Λ(G)) consists of binary nodes labeled by br2 and leaves labeled by e. The automaton B is always
the same, and it accepts those trees, which contain an e-labeled leaf. Let us rename all br2 symbols
appearing in G to nd; call the resulting scheme G′. Then B accepts BT (Λ(G)) if and only if L(G′)
is nonempty. Moreover, G′ is word-recognizing. It follows that for m ≥ 2 the following problem is
(m− 1)-EXPTIME-hard: given a word-recognizing scheme G′ of order at most m, decide whether L(G′)
is nonempty.

Kobayashi and Ong (2011, Corollary 3.7) also prove that for m ≥ 1 the following problem is m-
EXPTIME-hard: given a scheme G of order at most m, and a trivial alternating parity tree automaton B,
decide whether B accepts BT (Λ(G)). In this reduction, the tree BT (Λ(G)) consists of n-ary nodes (for
some n ∈ N) labeled by A or E, and of leaves labeled by T or R. Let L be the smallest language such that:
• L contains the tree T〈〉,
• if L contains a tree T , then L contains every tree of the form E〈T1, . . . , Tn〉 in which T = Ti for

some i ∈ {1, . . . , n}, and
• if L contains trees T1, . . . , Tn, then L contains the tree A〈T1, . . . , Tn〉.

The automaton B produced in the reduction is always the same (modulo the fact that n can vary), and it
accepts those trees of the above form that do not belong to L. Let us rename all E and R symbols appearing
in G to nd; call the resulting scheme G′. It is not difficult to see that BT (Λ(G)) ∈ L (i.e., B rejects
BT (Λ(G))) if and only if L(G′) is nonempty. The m-EXPTIME complexity class is closed under taking

A Type System Describing Unboundedness 55

the complement of a language. It follows that for m ≥ 1 the following problem is m-EXPTIME-hard:
given a scheme G′ of order at most m, decide whether L(G′) is nonempty.

For the special case of A = ∅, SUP checks precisely whether the language is nonempty, that is,
SUP∅(L(G)) holds if and only if L(G) 6= ∅. Thus from the above we immediately obtain that for m ≥ 2
SUP for word-recognizing order-m schemes is (m − 1)-EXPTIME-hard, and that for m ≥ 1 SUP for
arbitrary order-m schemes is m-EXPTIME-hard.

One may wonder whether the hardness results also hold when A is nonempty or, in particular, when A
contains all letters appearing in the scheme. As expected, this is the case. Let us reduce from the problem
of nonemptiness of L(G) to the problem of deciding SUP{a}(L(G′)), where G′ is a scheme using only one
symbol a (beside of the nd symbol). To produce G′ we add to G a fresh starting nonterminal N ′0 with rule
R(N ′0) = nd〈N0, a〈N ′0〉〉, where N0 is the starting nonterminal of G. Moreover, we rename every symbol
appearing in G, other than nd, to a. Notice that G′ allows to precede every tree from L(G) by a sequence of
any number of a symbols; thus SUP{a}(L(G′)) holds if and only if L(G) 6= ∅. Moreover, the orders of G
and G′ are the same, and if G was word-recognizing, so is G′.

In the last part, we prove that SUP for order-0 word-recognizing schemes is NP-hard. Of course
this problem is a special case of SUP for order-1 word-recognizing schemes, and of SUP for order-0
tree-recognizing schemes, so the latter two problems are also NP-hard. We reduce from the undirected
Hamiltonian cycle problem, known to be NP-complete (Karp, 1972). We are thus given an undirected
graph G, and we construct a word-recognizing scheme G of order 0 such that SUPA(G) holds if and only
if there exists a Hamiltonian cycle in G. Suppose that the nodes of G are named 1, . . . , s, and s ≥ 2. In G
we use symbols a1, . . . , as, and we take all of them to A. The nonterminals of G are Nij for i ∈ {0, . . . , s}
and j ∈ {1, . . . , s}, all of sort o. For i, j ∈ {1, . . . , s} the rules are:

R(Nij) = aj〈nd〈Nij ,Ni−1
v1

, . . . ,Ni−1
vr 〉〉 ,

where v1, . . . , vr are all neighbors of j in G. Moreover,

R(N0
1) = a1〈〉, and

R(N0
j) = nd〈〉 for j ∈ {2, . . . , s}.

As the starting nonterminal we take Ns1.
By induction on i ∈ {0, . . . , s} we can see that L(BT (ΛG(Nij))) contains words of the form

(aji)
ni(aji−1

)ni−1 . . . (aj1)n1aj0 ,

where n1, . . . , ni are arbitrary positive numbers, and ji, ji−1, . . . , j0 is a path in G such that ji = j
and j0 = 1. It follows that L(G) contains words of the form (ajs)

ns(ajs−1)ns−1 . . . (aj1)n1aj0 , where
n1, . . . , ns are arbitrary positive numbers, and js, js−1, . . . , j0 is a path in G such that js = j0 = 1. If G
contains Hamiltonian cycles, as js, js−1, . . . , j0 we can take one of them, starting and ending in node 1 (by
definition all Hamiltonian cycles have length s). Then the words (ajs)

n(ajs−1
)n . . . (aj1)naj0 for all n ≥ 1

are in L(G) and contain every symbol from a1, . . . , as at least n times, so they witness that SUPA(G) holds.
Oppositely, if G does not contain Hamiltonian cycles, then on every path js, js−1, . . . , j0 with js = j0 = 1
some node k ∈ {2, . . . , s} is missing. In consequence, in every word (ajs)

ns(ajs−1)ns−1 . . . (aj1)n1aj0 ∈
L(G) some letter ak ∈ A does not appear at all, so SUPA(G) does not hold. This proves that the reduction
is correct.

56 Paweł Parys

10 Reflection for SUP
In this section we establish the reflection property for SUP (Theorem 10.1).

The notion of reflection can be defined for an arbitrary property of trees. We describe the property by a
relation Ξ between trees and symbols. Having fixed such a relation, we define by coinduction when a tree
T ′ is a Ξ-reflection of a tree T : if T = a〈T1, . . . , Tr〉, and T ′ = b〈T ′1, . . . , T ′r〉, and (T, b) ∈ Ξ, and T ′i is a
Ξ-reflection of Ti for every i ∈ {1, . . . , r}, then T ′ is a Ξ-reflection of T . In other words, a Ξ-reflection of
T has the same shape as T and is obtained by replacing the label of every node v in T by a symbol that is
related by Ξ to the subtree of T starting in v. Notice that if Ξ is a function, then every tree has a unique
Ξ-reflection (while in general there may be multiple choices for the new labels).

We describe SUP using the function ΞSUP defined by ΞSUP (T) = (a, {A ⊆ Σ | SUPA(L(T))}) if
T = a〈T1, . . . , Tr〉 6= nd〈〉, and ΞSUP (nd〈〉) = nd. This implies that in the ΞSUP -reflection of T we
decorate every node v by the collection of all sets A for which the answer to SUP for A and for the subtree
of T starting in v is positive. For technical convenience we do not relabel nd-labeled leaves to (nd, {∅}),
but rather we leave them nd-labeled (the reason is that some nd-labeled leaves in a Böhm tree are not
created explicitly by a node constructor, but rather because some subterms do not reduce to terms starting
with a node constructor, and we do not want to detect these subterms).

In Theorem 10.1 we claim that ΞSUP -reflections of trees generated by schemes are also generated by
schemes.

Theorem 10.1. Let m ∈ N. For every scheme G of order at most m one can construct a scheme GSUP

of order at most m such that BT (Λ(GSUP)) is a ΞSUP -reflection of BT (Λ(G)). Moreover, GSUP can
be constructed in time at most max(m, 1)-fold exponential in |G|, and doubly exponential in |Σ|; if G is
word-recognizing, then GSUP can be constructed in time at most max(m− 1, 1)-fold exponential in |G|,
and doubly exponential in |Σ| (in both cases, this is simultaneously a bound on the size of GSUP).

It can be assumed that |Σ| ≤ |G|, so the part saying that the running time is doubly exponential in |Σ| is
meaningful only when the complexity in |G| would be singly exponential (i.e., when m ≤ 1 for general
schemes, and when m ≤ 2 for word-recognizing schemes).

Theorem 10.1 is obtained by instantiating (and adapting) a general construction of Haddad (2012,
Section 4.2), which allows to obtain reflection for any property described by a morphism from closed
lambda-terms to a finitary applicative structure. An applicative structure D consists of a set D[α] for
each sort α, and of an application operation that to all elements χ ∈ D[α→ β] and χ′ ∈ D[α] assigns an
element (χχ′) ∈ D[β]. We say that D is finitary when D[α] is finite for every sort α. A morphismM to
an applicative structure D is defined as a mapping that to each closed lambda-term Pα assigns an element
of D[α] denoted [[P]]M, so that for every closed lambda-term that is an application P Q it holds that
[[P]]M [[Q]]M = [[P Q]]M. For such a morphismM, we let ΞM to be the set of pairs (BT (P), (a, [[P]]M))
over all closed lambda-terms P , where a is the label of the root of BT (P), containing additionally the pair
(nd〈〉, nd). Notice that in a ΞM-reflection we decorate every node v by [[P]]M for some closed lambda-term
P such that BT (P) equals the subtree starting in v. There are multiple choices for the lambda-term P , and
in general [[P]]M may depend on the choice of P (but clearly at least one such P exists, namely P equal
to the subtree starting in v itself; thus every tree has some ΞM-reflection). The construction of Haddad
can be summarized by the following lemma (recall from Section 9.1 that SG denotes the set of all sorts
appearing in G).

Lemma 10.2. Let m ∈ N. For every scheme G of order at most m, and for every morphismM to a finitary

A Type System Describing Unboundedness 57

applicative structure D, one can construct a scheme GM of order at most m such that BT (Λ(GM)) is a
ΞM-reflection of BT (Λ(G)). Moreover,

|GM| ≤ |G| ·

 max
α∈SG

ord(α)≤m−1

|D[α]|

|G|
2

,

and GM can be constructed in time polynomial in
• |GM|,
• the time needed to compute [[λxα1

1 . · · · .λxαss .ΛG(P)]]M χ1 . . . χs, where P is a subterm ofR(N)
for some nonterminal N , and x1, . . . , xs are all free variables of ΛG(P), and χ1, . . . , χs are some
elements of D[α1], . . . , D[αs], respectively, and
• the time needed to enumerate all elements of D[α] for α ∈ SG such that ord(α) ≤ m− 2.

A construction of GM is presented in Haddad (2012, Section 4.2) for a particular morphismM. In
Haddad (2013b, Theorem 4) (with a proof in an unpublished appendix (Haddad, 2013a, Appendix A)) it
is claimed to work for an arbitrary morphism that is invariant under beta-reductions, which means that
if P →β Q then necessarily [[P]]M = [[Q]]M. We remark that our morphism that we define below is
not invariant under beta-reductions. Nevertheless, one can notice that the construction remains correct
even without this assumption. Indeed, the only problem that may be caused by lack of invariance under
beta-reductions is that some node, instead of being annotated by [[P]]M for some P , will be annotated by
[[Q]]M for some Q that is beta-equivalent to P . This is not a problem, though, since for beta-equivalent
lambda-terms we have BT (P) = BT (Q), and thus if (T, (a, [[P]]M)) is in ΞM then also (T, (a, [[Q]]M))
is in ΞM. For completeness, we give the construction and we justify its correctness in details in Appendix B.

We remark that Salvati and Walukiewicz (2015, Section 5) give another construction proving Lemma 10.2.
It has the disadvantage that the resulting scheme GM is not of the same order as G; the order grows by one.
For this reason we prefer to refer to the construction of Haddad.

We now show how Theorem 10.1 follows from Lemma 10.2. To this end, fix some number m ≥ −1 and
some scheme G of order at most m+ 1 (notice the shift by 1 with respect to the statement of the theorem).
Let κ = \ if G is word-recognizing and m ≥ 0 = m0(κ), and let κ =M otherwise.

Having in mind some fixed κ and m, we define the value of a closed lambda-term P , denoted [[P]]M,
as the set of pairs (A, τ̂) for which there exists an A-pumpable derivation of ε `κm P : τ̂ . c for some c.
When P is of sort α, [[P]]M belongs to the finite set D[α] = P(P(Σ)× T T καm).

We remark that [[P]]M contains in particular pairs of the form (∅, τ̂) (i.e., with A = ∅), which simply
contain all type triples that can be derived for P .

We now equip D with an application operation, and we prove that M is a morphism. Given χ ∈
D[α→β] and χ′ ∈ D[α], let χχ′ ∈ D[β] be the set of pairs (A, τ̂) such that for some pairs (A0, σ̂0) ∈ χ
and (A1, σ̂1), . . . , (An, σ̂n) ∈ χ′ withA = A0]A1]· · ·]An one can apply the (@) rule to type judgments
ε `κm P : σ̂0 . c0 and ε `κm Q : σ̂i . ci for i ∈ {1, . . . , n} and derive ε `κm P Q : τ̂ . c (for some
lambda-terms Pα→ β , Qβ and some flag counters c, c0, c1, . . . , cn that are irrelevant here).

Lemma 10.3. For every closed lambda-term P Q it holds that [[P]]M [[Q]]M = [[P Q]]M.

Proof: Suppose that (A, τ̂) ∈ [[P Q]]M. This implies that there exists an A-pumpable derivation tree t for
ε `κm P Q : τ̂ . c for some c. By definition of A-pumpability, for every a ∈ A there is a pair of nodes

58 Paweł Parys

ua, va of t such that ua is an ancestor of va, the type judgments in ua and in va are equivalent, and the flag
counters in ua and in va differ on the a coordinate.

First, let us justify that without loss of generality we can assume that none of ua points to the root of t.
To this end, suppose that ua for some a is located in the root of t. Then we copy the fragment of t lying
between ua and va, we adjust appropriately flag counters on the path from ua to va in the copy, and we
attach the copy above ua (i.e., above the previous root). In this way we obtain a new derivation tree t′,
which derives ε `κm P Q : τ̂ . c′ for some c′, and which is again A-pumpable, but now none of ua equals
the root of t′, because all ua and va belong to t, which is a proper subtree of t′.

Thus, we assume that none of ua points to the root of t. Let w0, w1, . . . , wn be the children of the root
of t (with w0 corresponding to P), and, for i ∈ {0, . . . , n}, let Ai be the set of those a ∈ A for which ua
and va belong to the subtree of t starting in wi. Clearly A = A0]A1] · · ·]An, and the subtree starting
in wi is Ai-pumpable, for every i ∈ {0, . . . , n}. If the type judgment in wi is ε `κm Ri : σ̂i . ci (where Ri
equals either P or Q), we have that (Ai, σ̂i) ∈ [[Ri]]M. By definition of the application operation in D, it
follows that (A, τ̂) ∈ [[P]]M [[Q]]M.

For the opposite inclusion, consider a pair (A, τ̂) ∈ [[P]]M [[Q]]M. By definition of the application
operation in D, there are some pairs (A0, σ̂0) ∈ [[P]]M and (A1, σ̂1), . . . , (An, σ̂n) ∈ [[Q]]M with A =
A0] A1] · · ·] An such that one can apply the (@) rule to type judgments ε `κm P ′ : σ̂0 . c′0 and
ε `κm Q′ : σ̂i . c

′
i for i ∈ {1, . . . , n} and derive ε `κm P Q : τ̂ . c′, for some lambda-terms P ′, Q′ and

some flag counters c′, c′0, c
′
1, . . . , c

′
n. Moreover, by definition of [[P]]M and [[Q]]M, there is anA0-pumpable

derivation of ε `κm P : σ̂0 . c0, and Ai-pumpable derivations of ε `κm Q : σ̂i . ci for i ∈ {1, . . . , n} for
some flag counters c0, c1, . . . , cn. Notice that in the (@) rule we can be harmlessly change the lambda-terms
P ′, Q′ to P,Q, and the flag counters c′0, c

′
1, . . . , c

′
n to c0, c1, . . . , cn. Thus by applying the (@) rule to our

Ai-pumpable derivations, we obtain an A-pumpable derivation of ε `κm P Q : τ̂ . c, for some flag counter
c. This implies that (A, τ̂) ∈ [[P Q]]M.

We are now ready to apply Lemma 10.2. It gives us a scheme GM of order at most m + 1 such that
BT (Λ(GM)) is a ΞM-reflection of BT (Λ(G)).

In order to obtain a ΞSUP -reflection, it remains to relabel nodes of the ΞM-reflection. Namely, we
change the label in every node constructor of GM from (a, χ) to (a, {A | (A, ρ̂κallm) ∈ χ}); there is one
exception: node constructors of the form (nd, χ)〈〉 are changed to nd〈〉. The resulting scheme, called
GSUP , is of order at most m+ 1, as needed.

Clearly BT (Λ(GSUP)) is of the same shape as BT (Λ(G)). Consider now a subtree T of BT (Λ(G)), and
the roots rM and rSUP of the corresponding subtrees of BT (Λ(GM)) and BT (Λ(GSUP)), respectively.
If T = nd〈〉, then rM is either labeled by nd or by (nd, χ) for some χ, and thus rSUP is labeled by nd.
Otherwise, the label of rM is (a, [[P]]M), where a is the label of the root of T , and P is some closed
lambda-term of sort o such that BT (P) = T . In effect, the label of rSUP is (a, {A | (A, ρ̂κallm) ∈ [[P]]M}).
By definition, a pair (A, ρ̂κallm) belongs to [[P]]M if and only if there is an A-pumpable derivation of
ε `κm P : ρ̂κallm . c for some c. By Lemma 9.6 the latter holds if for every n ∈ N we can derive
ε `κm P : ρ̂κallm . cn with some cn such that cn(a) ≥ n for all a ∈ A, which by Theorems 3.2 and 4.1 is
equivalent to SUPA(L(BT (P))), that is, to SUPA(L(T)). This implies that BT (Λ(GSUP)) is indeed the
ΞSUP -reflection of BT (Λ(G)).

It remains to bound the running time. In this part, we assume that m ≥ 0 for κ =M and m ≥ 1 for κ = \.
Considering smaller m does not make sense, as anyway we want to prove that the complexity is at most
max(m+ 1, 1)-fold exponential in |G| for κ =M and at most max(m, 1)-fold exponential in |G| for κ = \

A Type System Describing Unboundedness 59

(and at most doubly exponential in |Σ|, in both cases). Moreover, without loss of generality we assume that
|Σ| ≤ |G|; symbols not appearing in G are irrelevant anyway. In order to bound |GM|, take a sort α ∈ SG
of order at most m. Recalling that D[α] = P(P(Σ) × T T καm) we see that |D[α]| = 22|Σ|·|T T καm |. In
Section 9.1 we have defined a number ηκm such that |T T καm | ≤ ηκm (assuming α ∈ SG and ord(α) ≤ m),
and we have shown that ηMm is at most m-fold exponential in |G|, and that η\m is at most (m − 1)-fold
exponential in |G| (where “0-fold exponential” means “polynomial”). In effectD[α] is at most (m+1)-fold
exponential in |G| and doubly exponential in |Σ| for κ =M, while it is at most m-fold exponential in |G|
and doubly exponential in |Σ| for κ = \. As stated in Lemma 10.2 the same is true for |GM|.

Beside of bounding |GM|, we need to prove that the two operations described by Lemma 10.2 can
be performed quickly. Enumerating all elements of D[α] is trivial. What we need is thus to compute
[[λxα1

1 . · · · .λxαss .ΛG(P)]]M χ1 . . . χs, where P is a subterm of R(N) for some nonterminal N , and
x1, . . . , xs are all free variables of ΛG(P), and χ1, . . . , χs are some elements ofD[α1], . . . , D[αs]. Denote
Q = λxα1

1 . · · · .λxαss .ΛG(P).
The value [[Q]]M can be computed by adapting the algorithm given in Section 9.3. Although originally

the algorithm works only for subterms of Λ(G), it is not a problem to use it for the lambda-term Q (one
way of seeing this is to consider a modified scheme GP , which is obtained from G by adding a fresh starting
nonterminal NP with ruleR(NP) = (λxα1

1 . · · · .λxαss .P)R1 . . . Rs for some lambda-terms R1, . . . , Rs
of sorts α1, . . . , αs, respectively; then Q is a subterm of Λ(GP)). More precisely, we compute the sets PS
for all A-skeletons, for all A ⊆ Σ. The running time is at most (m+ 1)-fold exponential in |G| for κ =M,
and at most m-fold exponential in |G| for κ =M (notice that the number of skeletons S is only exponential
in |Σ|). Then, we compute [[Q]]M following Lemma 9.8: a pair (A, τ̂) is in [[Q]]M if and only if the basic
type judgment ε `κm Q : τ̂ . 0 belongs to PS for some A-skeleton S.

It remains to explain how to compute an application χχ′. Suppose that we want to check that (A, τ̂) ∈
(χχ′). To this end, we need to choose pairs (A0, σ̂0) ∈ χ and (A1, σ̂1), . . . , (Ak, σ̂k) ∈ χ′ such that Ai
for i ∈ {1, . . . , k} are nonempty and A = A0] A1] · · ·] Ak. Then, we need to check whether the
type triple τ̂ can be derived by the (@) rule when for the operator we use the type triple σ̂0, and for the
argument we use the type triples σ̂1, . . . , σ̂k and, additionally, an arbitrary number of type triples σ̂ such
that (∅, σ̂) ∈ χ′. Such a check can be performed using Lemma 9.9.

11 Downward Closure
The downward closure of a language of words L, denoted L↓, is the set of all scattered subwords
(subsequences) of words from L. Recall that the downward closure of any set is always a regular language;
moreover, it is a finite union of ideals, that is, languages of the form Y ∗0 {x1, ε}Y ∗1 . . . {xn, ε}Y ∗n , where
x1, . . . , xn are letters, and Y0, . . . , Yn are sets of letters. The main interest on SUP comes from the fact that
this problem is closely related to computability of the downward closure of a language of words (where we
aim in presenting the result by a list of ideals, or by a finite automaton). Indeed, having a word-recognizing
scheme G, it is not difficult to compute L(G)↓ by performing multiple calls to a procedure solving SUP
(for products of G and some finite automata). The complexity of this algorithm is directly related to the
size of its output. We, however, do not know any upper bound on the size of (a representation of) L(G)↓. A
recently developed pumping lemma for nondeterministic schemes (Asada and Kobayashi, 2017) may shed
some new light on this subject (while pumping lemmata for deterministic schemes (Kartzow and Parys,
2012; Kobayashi, 2013) seem irrelevant here).

Instead of actually computing the downward closure, Zetzsche (2016) proposed to consider the following

60 Paweł Parys

decision problem of downward-closure inclusion: given two word-recognizing schemes G,H of order at
most m, check whether L(G)↓ ⊆ L(H)↓; he proved that this problem is co-m-NEXPTIME-hard. It would
be interesting to give some upper bound on the complexity of this problem. Although, again, we do know
how to do this, we can at least give a partial result.

Theorem 11.1. Let m ≥ 2. Given a word-recognizing schemeH of order at most m, and an ideal I , the
problem of deciding whether I ⊆ L(H)↓ is (m− 1)-EXPTIME-complete.

We remark that schemes of order 0 are equivalent to nondeterministic finite automata, and schemes of
order at most 1 are equivalent to context-free grammars (and translations between these formalisms can
be performed in logarithmic space). Thus from Zetzsche (2016) it follows that the problem of deciding
whether I ⊆ L(H)↓ is NL-complete forH of order 0, and P-complete forH of order at most 1.

Proof of Theorem 11.1: Let us first see that the problem is (m−1)-EXPTIME-hard. This follows directly
from (m− 1)-EXPTIME-hardness of the problem of deciding whether L(H) is nonempty (cf. Section 9.4).
Indeed, L(H) 6= ∅ if and only if {ε} ⊆ L(H)↓; we notice that the singleton containing the empty word is
a special case of an ideal.

In the remaining part of this section we prove that the problem can be actually solved in (m − 1)-
EXPTIME. We follow here the approach of Zetzsche (2015, 2016). He has shown (Zetzsche, 2015, Proof
of Theorem 1) that basing on an ideal I one can construct a nondeterministic finite-state transducer T
and a set of symbols A such that for every language L we have that I ⊆ L↓ if and only if SUPA(T (L))
holds.(ix) Here by T (L) we mean the effect of applying the transformation defined by T to the language
L (i.e., the set of all words w such that for some v ∈ L the pair (v, w) is in the relation recognized by
T). The construction of T and A can be performed in polynomial time, and SUP for word-recognizing
schemes of order at most m can be solved in (m− 1)-EXPTIME.

It remains to see that H and T can be combined (in polynomial time) into a scheme HT such that
L(HT) = T (L(H)). To this end, we perform the following steps.
• Treating nd as any other symbol, we translate H into a deterministic tree-generating collapsible

pushdown automaton (CPDA) A that generates BT (Λ(H)). Preferably, we refer here to the transla-
tion of Salvati and Walukiewicz (2016, Sections 3.1 and 4), as this translation is given for schemes
defined similarly as in the current paper, and thus it can be easily adopted. In particular, it works
well when asR(N) we allow arbitrary lambda-terms (cf. Appendix A.3). It can be seen that their
translation works in polynomial time. We shall only remark that the size of λY -terms (appearing in
their paper as intermediate objects) should be defined as the number of different subterms; in other
words, λY -terms should be represented as (directed, acyclic) graphs, without expanding them into
trees.
• We change the deterministic tree-generating CPDA A into a nondeterministic word-recognizing

CPDA B: whenever A was generating a node with nd as its label and with r children, in B we
nondeterministically choose one of the r options; whenever A was generating a node with some
other symbol as its label (and with at most one child), in B we allow to read this symbol, and if this
symbol had no children, we accept. As a result of this construction we obtain an automaton B that
recognizes the language L(H), seen as a language of words.

(ix) Definitions of finite-state transducers and collapsible pushdown automata are omitted here. We describe our procedure only on
a high level of abstraction, so details of these definitions are actually irrelevant for us. It is standard to adopt the constructions
proposed here to concrete formal definitions.

A Type System Describing Unboundedness 61

• We combine B with our finite-state transducer T , so that the resulting CPDA C recognizes T (L(H)).
This amounts to taking as the state set of C the product of state sets of B and T , and appropriately
combining their transitions.
• We change the word-recognizing nondeterministic CPDA C back to a deterministic tree-generating

CPDA D; in particular, in all configurations with multiple successors, we generate an nd-labeled
node with multiple children (and in configurations with no successors, we generate an nd-labeled
leaf). The CPDA D generates a tree T such that L(T) = T (L(H)).
• We translate D back to a recursion scheme HT such that BT (Λ(HT)) = T (Hague et al., 2008),

that is, L(HT) = T (L(H)).
• Finally, we notice that all the modifications can be performed in polynomial time (so, in particular,
HT is of polynomial size). Moreover, none of them increases the order, and thus the order ofHT is
at most m, as required.

Downward Closure for Trees. One can also consider the downward closure of a language of trees,
defined as a set of all trees that can be homeomorphically embedded in trees from the language. By
Kruskal’s tree theorem (Kruskal, 1960) downward closures of tree languages are regular languages of
trees. We notice, however, that (unlike for words) an algorithm solving SUP is highly insufficient for the
purpose of computing the downward closure. Even in the single-letter case, in order to compute L↓, one
has to check, in particular, whether for every n ∈ N, a full binary tree of depth n can be embedded in some
tree from L; using SUP, we can only determine whether L contains arbitrarily large trees. Extending our
techniques to this kind of problems is an interesting direction for further work.

References
A. V. Aho. Indexed grammars - an extension of context-free grammars. J. ACM, 15(4):647–671, 1968. doi:

10.1145/321479.321488.

K. Asada and N. Kobayashi. On word and frontier languages of unsafe higher-order grammars. In
Chatzigiannakis et al. (2016), pages 111:1–111:13. ISBN 978-3-95977-013-2. doi: 10.4230/LIPIcs.
ICALP.2016.111.

K. Asada and N. Kobayashi. Pumping lemma for higher-order languages. In I. Chatzigiannakis, P. Indyk,
F. Kuhn, and A. Muscholl, editors, 44th International Colloquium on Automata, Languages, and
Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 97:1–
97:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. ISBN 978-3-95977-041-5. doi:
10.4230/LIPIcs.ICALP.2017.97.

L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi-Reghizzi. Multi-push-down languages and grammars.
Int. J. Found. Comput. Sci., 7(3):253–292, 1996. doi: 10.1142/S0129054196000191.

C. H. Broadbent and N. Kobayashi. Saturation-based model checking of higher-order recursion schemes.
In S. R. D. Rocca, editor, Computer Science Logic 2013 (CSL 2013), CSL 2013, September 2-5, 2013,
Torino, Italy, volume 23 of LIPIcs, pages 129–148. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2013. ISBN 978-3-939897-60-6. doi: 10.4230/LIPIcs.CSL.2013.129.

62 Paweł Parys

I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani, and D. Sangiorgi, editors. 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of
LIPIcs, 2016. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-013-2.

L. Clemente, P. Parys, S. Salvati, and I. Walukiewicz. Ordered tree-pushdown systems. In P. Harsha and
G. Ramalingam, editors, 35th IARCS Annual Conference on Foundation of Software Technology and
Theoretical Computer Science, FSTTCS 2015, December 16-18, 2015, Bangalore, India, volume 45
of LIPIcs, pages 163–177. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. ISBN 978-3-
939897-97-2. doi: 10.4230/LIPIcs.FSTTCS.2015.163.

L. Clemente, P. Parys, S. Salvati, and I. Walukiewicz. The diagonal problem for higher-order recursion
schemes is decidable. In M. Grohe, E. Koskinen, and N. Shankar, editors, Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8,
2016, pages 96–105. ACM, 2016. ISBN 978-1-4503-4391-6. doi: 10.1145/2933575.2934527.

W. Czerwiński, W. Martens, L. van Rooijen, and M. Zeitoun. A note on decidable separability by piecewise
testable languages. In A. Kosowski and I. Walukiewicz, editors, Fundamentals of Computation Theory -
20th International Symposium, FCT 2015, Gdańsk, Poland, August 17-19, 2015, Proceedings, volume
9210 of Lecture Notes in Computer Science, pages 173–185. Springer, 2015. ISBN 978-3-319-22176-2.
doi: 10.1007/978-3-319-22177-9_14.

W. Damm. The IO- and OI-hierarchies. Theor. Comput. Sci., 20:95–207, 1982. doi: 10.1016/0304-3975(82)
90009-3.

J. Engelfriet. Iterated stack automata and complexity classes. Inf. Comput., 95(1):21–75, 1991. doi:
10.1016/0890-5401(91)90015-T.

A. Haddad. IO vs OI in higher-order recursion schemes. In D. Miller and Z. Ésik, editors, Proceedings
8th Workshop on Fixed Points in Computer Science, FICS 2012, Tallinn, Estonia, 24th March 2012.,
volume 77 of EPTCS, pages 23–30, 2012. doi: 10.4204/EPTCS.77.4.

A. Haddad. Model checking and functional program transformations. HAL, 2013a. URL https:
//hal.archives-ouvertes.fr/hal-00865682.

A. Haddad. Model checking and functional program transformations. In A. Seth and N. K. Vishnoi,
editors, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2013, December 12-14, 2013, Guwahati, India, volume 24 of LIPIcs, pages 115–
126. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013b. ISBN 978-3-939897-64-4. doi:
10.4230/LIPIcs.FSTTCS.2013.115.

M. Hague, A. S. Murawski, C. L. Ong, and O. Serre. Collapsible pushdown automata and recursion
schemes. In Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer Science,
LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, pages 452–461. IEEE Computer Society, 2008. ISBN
978-0-7695-3183-0. doi: 10.1109/LICS.2008.34.

M. Hague, J. Kochems, and C. L. Ong. Unboundedness and downward closures of higher-order pushdown
automata. In R. Bodík and R. Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,

https://hal.archives-ouvertes.fr/hal-00865682
https://hal.archives-ouvertes.fr/hal-00865682

A Type System Describing Unboundedness 63

January 20 - 22, 2016, pages 151–163. ACM, 2016. ISBN 978-1-4503-3549-2. doi: 10.1145/2837614.
2837627.

R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editors,
Proceedings of a symposium on the Complexity of Computer Computations, held March 20-22, 1972,
at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York., The IBM Research
Symposia Series, pages 85–103. Plenum Press, New York, 1972. ISBN 0-306-30707-3. doi: 10.1007/
978-1-4684-2001-2_9.

A. Kartzow and P. Parys. Strictness of the collapsible pushdown hierarchy. In B. Rovan, V. Sassone,
and P. Widmayer, editors, Mathematical Foundations of Computer Science 2012 - 37th International
Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31, 2012. Proceedings, volume 7464 of
Lecture Notes in Computer Science, pages 566–577. Springer, 2012. ISBN 978-3-642-32588-5. doi:
10.1007/978-3-642-32589-2_50.

T. Knapik, D. Niwiński, and P. Urzyczyn. Higher-order pushdown trees are easy. In M. Nielsen and
U. Engberg, editors, Foundations of Software Science and Computation Structures, 5th International
Conference, FOSSACS 2002. Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2002 Grenoble, France, April 8-12, 2002, Proceedings, volume 2303 of Lecture
Notes in Computer Science, pages 205–222. Springer, 2002. ISBN 3-540-43366-X. doi: 10.1007/
3-540-45931-6_15.

N. Kobayashi. Types and higher-order recursion schemes for verification of higher-order programs. In
Z. Shao and B. C. Pierce, editors, Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, pages
416–428. ACM, 2009. ISBN 978-1-60558-379-2. doi: 10.1145/1480881.1480933.

N. Kobayashi. Pumping by typing. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 398–407. IEEE Computer Society, 2013.
ISBN 978-1-4799-0413-6. doi: 10.1109/LICS.2013.46.

N. Kobayashi and C. L. Ong. A type system equivalent to the modal mu-calculus model checking of higher-
order recursion schemes. In Proceedings of the 24th Annual IEEE Symposium on Logic in Computer
Science, LICS 2009, 11-14 August 2009, Los Angeles, CA, USA, pages 179–188. IEEE Computer Society,
2009. ISBN 978-0-7695-3746-7. doi: 10.1109/LICS.2009.29.

N. Kobayashi and C. L. Ong. Complexity of model checking recursion schemes for fragments of the modal
mu-calculus. Logical Methods in Computer Science, 7(4), 2011. doi: 10.2168/LMCS-7(4:9)2011.

N. Kobayashi, K. Inaba, and T. Tsukada. Unsafe order-2 tree languages are context-sensitive. In
A. Muscholl, editor, Foundations of Software Science and Computation Structures - 17th Interna-
tional Conference, FOSSACS 2014, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8412 of
Lecture Notes in Computer Science, pages 149–163. Springer, 2014. ISBN 978-3-642-54829-1. doi:
10.1007/978-3-642-54830-7_10.

G. M. Kobele and S. Salvati. The IO and OI hierarchies revisited. Inf. Comput., 243:205–221, 2015. doi:
10.1016/j.ic.2014.12.015.

64 Paweł Parys

J. B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Transactions of the
American Mathematical Society, 95(2):210–225, 1960. ISSN 00029947. doi: 10.2307/1993287.

P. Parys. On the significance of the collapse operation. In Proceedings of the 27th Annual IEEE Symposium
on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012, pages 521–530. IEEE
Computer Society, 2012. ISBN 978-1-4673-2263-8. doi: 10.1109/LICS.2012.62.

P. Parys. How many numbers can a lambda-term contain? In M. Codish and E. Sumii, editors, Functional
and Logic Programming - 12th International Symposium, FLOPS 2014, Kanazawa, Japan, June 4-6,
2014. Proceedings, volume 8475 of Lecture Notes in Computer Science, pages 302–318. Springer, 2014.
ISBN 978-3-319-07150-3. doi: 10.1007/978-3-319-07151-0_19.

P. Parys. A characterization of lambda-terms transforming numerals. Journal of Functional Programming,
26(e12), 2016. doi: 10.1017/S0956796816000113.

P. Parys. The complexity of the diagonal problem for recursion schemes. In S. V. Lokam and R. Ramanu-
jam, editors, 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2017, December 11-15, 2017, Kanpur, India, volume 93 of LIPIcs, pages
45:1–45:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017a. ISBN 978-3-95977-055-2.
doi: 10.4230/LIPIcs.FSTTCS.2017.45.

P. Parys. Intersection types and counting. In N. Kobayashi, editor, Proceedings Eighth Workshop on
Intersection Types and Related Systems, Porto, Portugal, 26th June 2016, volume 242 of Electronic
Proceedings in Theoretical Computer Science, pages 48–63. Open Publishing Association, 2017b. doi:
10.4204/EPTCS.242.6.

P. Parys. Homogeneity without loss of generality. In H. Kirchner, editor, 3rd International Conference on
Formal Structures for Computation and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, volume
108 of LIPIcs, pages 27:1–27:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018a. ISBN
978-3-95977-077-4. doi: 10.4230/LIPIcs.FSCD.2018.27.

P. Parys. Recursion schemes and the WMSO+U logic. In R. Niedermeier and B. Vallée, editors, 35th
Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018,
Caen, France, volume 96 of LIPIcs, pages 53:1–53:16. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2018b. ISBN 978-3-95977-062-0. doi: 10.4230/LIPIcs.STACS.2018.53.

S. J. Ramsay, R. P. Neatherway, and C. L. Ong. A type-directed abstraction refinement approach to
higher-order model checking. In S. Jagannathan and P. Sewell, editors, The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January
20-21, 2014, pages 61–72. ACM, 2014. ISBN 978-1-4503-2544-8. doi: 10.1145/2535838.2535873.

S. Salvati and I. Walukiewicz. Using models to model-check recursive schemes. Logical Methods in
Computer Science, 11(2), 2015. doi: 10.2168/LMCS-11(2:7)2015.

S. Salvati and I. Walukiewicz. Simply typed fixpoint calculus and collapsible pushdown automata. Mathe-
matical Structures in Computer Science, 26(7):1304–1350, 2016. doi: 10.1017/S0960129514000590.

A Type System Describing Unboundedness 65

G. Zetzsche. An approach to computing downward closures. In M. M. Halldórsson, K. Iwama,
N. Kobayashi, and B. Speckmann, editors, Automata, Languages, and Programming - 42nd Inter-
national Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of
Lecture Notes in Computer Science, pages 440–451. Springer, 2015. ISBN 978-3-662-47665-9. doi:
10.1007/978-3-662-47666-6_35.

G. Zetzsche. The complexity of downward closure comparisons. In Chatzigiannakis et al. (2016), pages
123:1–123:14. ISBN 978-3-95977-013-2. doi: 10.4230/LIPIcs.ICALP.2016.123.

66 Paweł Parys

A Our Definition of Schemes(x)

In this section we comment on differences between definitions contained in our paper and those that appear
usually.

A.1 Symbols Are Unranked
In the context of higher-order recursion schemes one usually considers alphabets that are ranked. This
means that every symbol a ∈ Σ has assigned a number rank(a), so that every a-labeled node has rank(a)
children. Since our definition is less restrictive, our type system and our algorithm carry over to the situation
of a ranked alphabet. On the other hand, reductions of our hardness proofs (Section 9.4) can be easily
adopted to produce schemes using a ranked alphabet.

A.2 Node Constructors
The usual definition of lambda-terms does not include node constructors. Instead, for every symbol
a of rank r one has a lambda-term a of sort o→ . . .→ o︸ ︷︷ ︸

r

→ o; after applying r arguments P1, . . . , Pr

we obtain a lambda-term equivalent to our a〈P1, . . . , Pr〉. There are easy translations between lambda-
terms in these formalisms: a〈P1, . . . , Pr〉 can be replaced by aP1 . . . Pr, and a can be replaced by
λx1. · · · .λxr.a〈x1, . . . , xr〉; these translations preserve Böhm trees, and can be performed in logarithmic
space.

A.3 Looser Definition of Schemes
Let us recall the classic definition of a nondeterministic recursion scheme, and of a language recognized
by such a scheme. In this definition, instead of a function R, we have a set Rcl of rules of the form
Nα1→...→αs→ o xα1

1 . . . xαss → P o, where N ∈ N is a nonterminal, and P is a finite applicative term
whose all free variables are contained N ∪ {xα1

1 , . . . , xαss }, and where the nd symbol is not used. By an
applicative term we understand a lambda-term that does not contain lambda-binders. Having a scheme Gcl ,
we define→Gcl as the smallest relation such that
• N P1 . . . Ps →Gcl Q[P1/x1, . . . , Ps/xs] if (N x1 . . . xs → Q) ∈ Rcl , and
• a〈P1, . . . , Pr〉 →Gcl a〈P ′1, . . . , P ′r〉 if Pi →Gcl P ′i for some i ∈ {1, . . . , r} and Pj = P ′j for all
j ∈ {1, . . . , r} \ {i}.

The language recognized by Gcl , denoted Lcl(Gcl), contains all finite trees T such that N0 →∗Gcl T (where
N0 is the starting nonterminal). The order of Gcl is defined as the maximum of orders of its nonterminals.

Proposition A.1. For every scheme Gcl understood in the classic sense one can construct in logarithmic
space a scheme G that sticks to our definition, is of the same order, and such that L(G) = Lcl(Gcl).

Proof: Consider a scheme Gcl = (N ,Rcl , N0) understood in the classic sense. Out of it, we construct
a scheme G = (N ,R, N0) sticking to our definition: for every nonterminal N we consider all rules
(N x1 . . . xs → P1), . . . , (N x1 . . . xs → Pm) of Gcl concerning this nonterminal, and we takeR(N) =
λx1. · · · .λxs.nd〈P1, . . . , Pm〉. Notice thatR(N) never equals a nonterminal, as required by our definition.
Clearly this translation preserves the order of the scheme and can be performed in logarithmic space. We
now show that L(G) = Lcl(Gcl).

(x) To reviewers and editors: our intention is to publish the two appendices as an integral part of the paper.

A Type System Describing Unboundedness 67

Denote by h−→β the head beta-reduction, that is, P h−→β Q if P = (λx.R)S S1 . . . Ss and Q =
R[S/x]S1 . . . Ss. It is a well-known fact that while generating the Böhm tree of a lambda-term it
is enough to consider outermost beta-reductions only, that is, BT (P) = a〈BT (P1), . . . ,BT (Pr)〉 if
P

h−→∗β a〈P1, . . . , Pr〉, and BT (P) = nd〈〉 if there is no sequence of head beta-reductions to a lambda-
term of the form a〈P1, . . . , Pr〉.

Consider a finite Σ-labeled tree T = a〈T1, . . . , Tr〉, and a finite applicative term P with free variables in
N , and not using the nd symbol. We are going to prove by induction on n+ |T | that P →n

Gcl T if and only
if BT (ΛG(P))→n

nd T . This equivalence implies that L(G) = Lcl(Gcl), since by definition L(G) contains
finite Σ-labeled trees T such that BT (ΛG(N0)) →n

nd T for some n ∈ N, while Lcl(Gcl) contains finite
trees T such that N0 →n

Gcl T for some n ∈ N (all the latter trees are also Σ-labeled since Gcl does not
use the nd symbol). There are two possible shapes of P . Suppose first that P = N Q1 . . . Qs, where N
is a nonterminal. Let (N x1 . . . xs → R1), . . . , (N x1 . . . xs → Rm) be all rules of Gcl concerning N .
We have that P →n

Gcl T if and only if P = N Q1 . . . Qs →Gcl Ri[Q1/x1, . . . , Qs/xs]→n−1
Gcl T for some

i ∈ {1, . . . ,m}. On the other hand,

ΛG(P) = (λx1. · · · .λxs.nd〈ΛG(R1), . . . ,ΛG(Rm)〉) ΛG(Q1) . . . ΛG(Qs)

h−→s
β nd〈ΛG(R1[Q1/x1, . . . , Qs/xs]), . . . ,ΛG(Rm[Q1/x1, . . . , Qs/xs])〉 .

Thus BT (ΛG(P))→n
nd T if and only if

BT (ΛG(P))→nd BT (ΛG(Ri[Q1/x1, . . . , Qs/xs]))→n−1
nd T for some i ∈ {1, . . . ,m} .

We have Ri[Q1/x1, . . . , Qs/xs] →n−1
Gcl T if and only if BT (ΛG(Ri[Q1/x1, . . . , Qs/xs])) →n−1

nd T by
the induction assumption.

The other possible case is that P = b〈P1, . . . , Pk〉, where b 6= nd. Then P →n
Gcl T if and only if

b = a, k = r, and Pi →ni
Gcl Ti for all i ∈ {1, . . . , r}, where n = n1 + · · · + nr. On the other hand,

BT (ΛG(P))→n
nd T if and only if b = a, k = r, and BT (ΛG(Pi))→ni

nd Ti for all i ∈ {1, . . . , r}, where
n = n1 + · · ·+ nr. We have Pi →ni

Gcl Ti if and only if BT (ΛG(Pi))→ni
nd Ti by the induction assumption.

This finishes the proof of the equality L(G) = Lcl(Gcl).

Due to the above translation, our algorithm can be applied to schemes conforming to the classic definition.
On the other hand, it is easy to modify the hardness proof so that the reductions used there will produce
schemes conforming to the classic definition, which will show hardness also for such schemes.(xi)

B Proof of Lemma 10.2
In this section we recall from Haddad (2012, Section 4.2) the construction of a scheme GM generating a
ΞM-reflection of a given scheme G, and we prove its correctness. We need to adapt the construction slightly,
because Haddad uses the more restrictive definition of recursion schemes described in Appendix A.3
(without lambda-binders inside right sides of rules), and because he uses constants instead of node
constructors.

For the rest of this section we fix a morphismM to a finitary applicative structure D, and a recursion
scheme G = (N ,R, N0).

(xi) A translation in the opposite direction is also possible, but we do not give it here, as it is more technical.

68 Paweł Parys

B.1 Transformation of the Scheme.
For every sort α = α1→ . . .→αs→ o let Argα = D[α1]× · · · ×D[αs]; fix also some (arbitrary) linear
order � on elements of Argα, for every α. Moreover, for every lambda-term P , let Free↑(P) be the set of
lists of the form [(x1, χ1), . . . , (xn, χn)], where the variables x1, . . . , xn ∈ Vars \N are pairwise distinct,
where χi ∈ D[αi] for αi being the sort of xi, for all i ∈ {1, . . . , n}, and where every free variable of P
not being a nonterminal appears as xi for some i. Furthermore, let Free(P) ⊆ Free↑(P) contain only
those lists, where every variable xi is free in P . Given a list ν ∈ Free↑(P), by ν�P we denote the sublist
in Free(P) obtained from ν by removing all pairs (x, χ) with x not being free in P . Elements of Argα

and Free(P) are used to store values of the morphism for all arguments of a lambda-term P of sort α, and
for all its free variables (other than nonterminals), respectively.

Next, we extend our morphism to lambda-terms that are not closed: for a lambda-term P , and for a list
ν = [(x1, χ1), . . . , (xn, χn)] ∈ Free(P), we let [[P]]νM = [[λx1. · · · .λxk.P]]M χ1 . . . χn. Notice that if
P is closed, then the list ν is empty, and in effect [[P]]νM is just [[P]]M.

For a finite lambda-term R of sort α (possibly containing nonterminals), and for ζ ∈ Argα and
ν ∈ Free(R), we define a lambda-term θ(R, ζ, ν) of sort α•, where sorts α• are defined by induction:

o• = o and (β→ γ)• = β•→ . . .→β•︸ ︷︷ ︸
|Argβ |

→ γ• .

The translation is defined by induction on the structure of R as follows:
• if R = a〈P1, . . . , Pr〉, let θ(R, ζ, ν) = (a, [[ΛG(R)]]νM)〈θ(P1, ζ, ν�P1

), . . . , θ(Pr, ζ, ν�Pr)〉;
• if R = xα (including the case when it is a nonterminal), let θ(R, ζ, ν) = xα

•

ζ ;

• if R = P β→ γ Qβ , let θ(R, ζ, ν) = θ(P, [[Q]]
ν�Q
M :: ζ, ν�P) θ(Q, ξ1, ν�Q) . . . θ(Q, ξn, ν�Q), where

ξ1, . . . , ξn are all the elements of Argβ , ordered by �;
• if R = λxβ .P and ζ = χ :: ζ ′, let θ(R, ζ, ν) = λxβ

•

ξ1
. · · · .λxβ

•

ξn
.θ(P, ζ ′, ν ::(xβ , χ)�P), where

ξ1, . . . , ξn are all the elements of Argβ , ordered by �.
To the resulting scheme GM we take a nonterminal Nα•

ζ for every nonterminal Nα of G and every
ζ ∈ Argα. In particular, for the starting nonterminal No

0 of G this results in No
0,() (notice that the only

element of Argo is ()), which we take as the starting nonterminal of GM. The rules are defined by
RM(Nα•

ζ) = θ(R(Nα), ζ, []).

B.2 Correctness Proof
Once the resulting scheme GM is defined, we need to prove that it indeed generates a ΞM-reflection of
BT (Λ(G)). To this end, we need to relate lambda-terms obtained while reducing Λ(G) to lambda-terms
obtained while reducing Λ(GM). We now define an appropriate relation.

First, for every lambda-term P , and for every list ν = [(x1, χ1), . . . , (xn, χn)] ∈ Free(P), we let
Val(P, ν) to be the set of values [[Q]]M χ1 . . . χn over all closed lambda-terms Q such that Q →∗β
λx1 · · ·λxk.P . Notice that elements of Val(P, ν) are similar to [[P]]νM, with the exception that in the
definition we allow to replace λx1 · · ·λxk.P by an arbitrary closed lambda-term Q such that Q →∗β
λx1 · · ·λxk.P . In particular, by taking Q = λx1 · · ·λxk.P we obtain the following lemma.

Lemma B.1. For every lambda-term P and for every ν ∈ Free(P) it holds that [[P]]νM ∈ Val(P, ν).

A Type System Describing Unboundedness 69

Next, for a lambda-term R of sort α, for ζ ∈ Argα, and for ν ∈ Free(R), we define a set Θ(R, ζ, ν) of
lambda-terms of sort α•, by coinduction on the structure of R:
• if R = a〈P1, . . . , Pr〉, then Θ(R, ζ, ν) contains lambda-terms (a, χ)〈S1, . . . , Sr〉 such that χ ∈
Val(R, ν) and Si ∈ Θ(Pi, ζ, ν�Pi) for i ∈ {1, . . . , r};
• if R = xα, then Θ(R, ζ, ν) = {xα•ζ };
• if R = P β→αQβ , then Θ(R, ζ, ν) contains lambda-terms S U1 . . . Un such that S ∈ Θ(P, χ :: ζ,
ν�P) for some χ ∈ Val(Q, ν�Q), and Ui ∈ Θ(Q, ξi, ν�Q) for all i ∈ {1, . . . , n}, where ξ1, . . . , ξn
are all the elements of Argβ , ordered by �;
• if R = λxβ .P and ζ = χ :: ζ ′, then Θ(R, ζ, ν) contains lambda-terms λxβ

•

ξ1
. · · · .λxβ

•

ξn
.S such that

S ∈ Θ(P, ζ ′, ν ::(xβ , χ)�P), where ξ1, . . . , ξn are all the elements of Argβ , ordered by �.
Easy coinduction shows that elements of Θ(R, ζ, ν) have the same free variables as R, up to an

appropriate renaming.

Lemma B.2. If R′ ∈ Θ(Rα, ζ, ν) for some ζ ∈ Argα and ν ∈ Free(R), and if zβ is not free in R, then
zβ
•

ξ is not free in R′ for any ξ ∈ Argβ .

In the next lemma we notice that θ is a special case of Θ.

Lemma B.3. Let R be a finite lambda-term of sort α, let ζ ∈ Argα, and let ν ∈ Free(R). Then
ΛGM(θ(R, ζ, ν)) ∈ Θ(ΛG(R), ζ, ν).

Notice that R and ΛG(R) have the same free variables (except for nonterminals used in R), and thus we
have ν ∈ Free(ΛG(R)). We use the same observation in the proof below, while saying that ν�P equals
ν�ΛG(P), for any subterm P of R.

Proof of Lemma B.3: The proof is by coinduction on the structure of ΛG(R). Suppose first that R = Nα

is a nonterminal. Then we have ΛG(R) = ΛG(R(Nα)) and ν = []. Observe that ΛGM(θ(R, ζ, ν)) =
ΛGM(Nα•

ζ) = ΛGM(RM(Nα•

ζ)) = ΛGM(θ(R(Nα), ζ, [])). We can thus equally well consider R(Nα)
instead of R. Recalling that R(Nα) cannot be equal to a nonterminal, we have reduced this case to the
case when R is not a nonterminal. Thus, for the remaining part of the proof we suppose that R is not a
nonterminal.

We have four cases depending on the shape of R. Suppose first that R = a〈P1, . . . , Pr〉. Then
θ(R, ζ, ν) = (a, [[ΛG(R)]]νM)〈θ(P1, ζ, ν�P1

), . . . , θ(P1, ζ, ν�P1
)〉, and thus

ΛGM(θ(R, ζ, ν)) = (a, [[ΛG(R)]]νM)〈ΛGM(θ(P1, ζ, ν�P1
)), . . . ,ΛGM(θ(Pr, ζ, ν�Pr))〉 .

On the other hand, ΛG(R) = a〈ΛG(R1), . . . ,ΛG(Rr)〉. By the assumption of coinduction we obtain that
ΛGM(θ(Pi, ζ, ν�Pi)) ∈ Θ(ΛG(Pi), ζ, ν�Pi) for all i ∈ {1, . . . , r}, and due to Lemma B.1 we have that
[[ΛG(R)]]νM ∈ Val(ΛG(R), ν). Thus from the definition of Θ we can deduce that ΛGM(θ(R, ζ, ν)) ∈
Θ(ΛG(R), ζ, ν).

Next, suppose that R = xα. Recall that R is not a nonterminal, thus we have ΛG(R) = xα and
ΛGM(θ(xα, ζ, ν)) = ΛGM(xα

•

ζ) = xα
•

ζ . It follows from the definition of Θ that xα
•

ζ ∈ Θ(xα, ζ, ν).
Suppose now that R = P Q. Let ξ1, . . . , ξn be all the elements of Argβ , ordered by �, where β is the

sort of Q. Then θ(R, ζ, ν) = θ(P, [[Q]]
ν�Q
M :: ζ, ν�P) θ(Q, ξ1, ν�Q) . . . θ(Q, ξn, ν�Q), and thus

ΛGM(θ(R, ζ, ν)) = ΛGM(θ(P, [[Q]]
ν�Q
M :: ζ, ν�P)) ΛGM(θ(Q, ξ1, ν�Q)) . . . ΛGM(θ(Q, ξn, ν�Q)) .

70 Paweł Parys

On the other hand, ΛG(R) = ΛG(P) ΛG(Q). By the assumption of coinduction we obtain that

ΛGM(θ(P, [[Q]]
ν�Q
M :: ζ, ν�P)) ∈ Θ(ΛG(P), [[Q]]

ν�Q
M :: ζ, ν�P) and

ΛGM(θ(Q, ξi, ν�Q)) ∈ Θ(ΛG(Q), ξi, ν�Q) for all i ∈ {1, . . . , n},

and due to Lemma B.1 we have that [[ΛG(Q)]]
ν�Q
M ∈ Val(ΛG(Q), ν�Q). Thus from the definition of Θ we

can deduce that ΛGM(θ(R, ζ, ν)) ∈ Θ(ΛG(R), ζ, ν).
Finally, suppose that R = λxβ .P . Again, let ξ1, . . . , ξn be all the elements of Argβ , ordered by �. Let

also ζ = χ :: ζ ′. Then θ(R, ζ, ν) = λxβ
•

ξ1
. · · · .λxβ

•

ξn
.θ(P, ζ ′, ν ::(xβ , χ)�P), and thus

ΛGM(θ(R, ζ, ν)) = λxβ
•

ξ1
. · · · .λxβ

•

ξn
.ΛGM(θ(P, ζ ′, ν ::(xβ , χ)�P)) .

On the other hand, ΛG(R) = λxβ .ΛG(P). By the assumption of coinduction we obtain

ΛGM(θ(P, ζ ′, ν ::(xβ , χ)�P)) ∈ Θ(ΛG(P), ζ ′, ν ::(xβ , χ)�P) .

Thus from the definition of Θ we can deduce that ΛGM(θ(R, ζ, ν)) ∈ Θ(ΛG(R), ζ, ν).

Next, we prove that the relation Θ is preserved during head beta-reductions (Lemma B.6). Before that,
we need auxiliary lemmata for substitution (Lemmata B.4 and B.5).

Lemma B.4. Let Rα and Sγ be lambda-terms, where S is closed, let zγ be a variable, let ν ∈
Free(R[S/z]), and let χ ∈ Val(S, []). Then Val(R, (z, χ) :: ν�R) ⊆ Val(R[S/z], ν).

Proof: If z is not free in R, we have R[S/z] = R and (z, χ) :: ν�R = ν, which immediately gives
the thesis. In the sequel we assume that z is free in R; then, in particular, (z, χ) :: ν�R = (z, χ) :: ν.
Denote ν = [(x1, χ1), . . . , (xn, χn)]. Take some element of Val(R, (z, χ) :: ν); by definition it is of the
form [[P]]M χχ1 . . . χn for some closed lambda-term P such that P →∗β λz.λx1 · · ·λxk.R. Moreover,
because χ ∈ Val(S, []), there is a closed lambda-term Q such that Q →∗β S and χ = [[Q]]M. We have
that P Q →∗β (λz.λx1 · · ·λxk.R)S →β λx1 · · ·λxk.R[S/z]. BecauseM is a morphism, we have that
[[P]]M [[Q]]M = [[P Q]]M, and in effect [[P]]M χχ1 . . . χn = [[P Q]]M χ1 . . . χn ∈ Val(R[S/z], ν), as
needed. Notice that in this lemma it is rather important that the pair (z, χ) is the first element of the list
(z, χ) :: ν.

Lemma B.5. Let Rα and Sγ be lambda-terms, where S is closed, let zγ be a variable, let ζ ∈ Argα, let
ν ∈ Free(R[S/zγ]), and let χ′ ∈ Val(S, []). Let ξ′1, . . . , ξ

′
m be all the elements of Argγ , ordered by �.

Let also R′ ∈ Θ(R, ζ, (zγ , χ′) :: ν�R), and let Sj ∈ Θ(S, ξ′j , []) for j ∈ {1, . . . ,m}. Then it holds that

R′[S1/z
γ•

ξ′1
] . . . [Sm/z

γ•

ξ′m
] ∈ Θ(R[S/zγ], ζ, ν).

Proof: To shorten the notation, denote η(P) = P [S1/z
γ•

ξ′1
] . . . [Sm/z

γ•

ξ′m
] for any lambda-term P .

The proof is by coinduction on the structure ofR. Observe first that if zγ is not free inR, then η(R′) = R

(the variables zγ
•

ξ′j
are not free in R′ by Lemma B.2), and R[S/zγ] = R, and (zγ , χ′) :: ν�R = ν,

which immediately gives the thesis. In the sequel we assume that zγ is free in R; then in particular
(zγ , χ′) :: ν�R = (zγ , χ′) :: ν. We have four cases depending on the shape of R.

A Type System Describing Unboundedness 71

Suppose first that R = a〈P1, . . . , Pr〉. Then R′ ∈ Θ(R, ζ, (zγ , χ′) :: ν) implies by the definition
of Θ that R′ is of the form (a, χ)〈Q1, . . . , Qr〉, where χ ∈ Val(R, (zγ , χ′) :: ν) and Qi ∈ Θ(Pi, ζ,
(zγ , χ′) :: ν�Pi) for i ∈ {1, . . . , r}. We have that χ ∈ Val(R[S/zγ], ν) by Lemma B.4, and η(Qi) ∈
Θ(Pi[S/z

γ], ζ, ν�Pi) for all i ∈ {1, . . . , r} by the assumption of coinduction. Thus, by the definition of Θ,

η(R′) = (a, χ)〈η(Q1), . . . , η(Qr)〉 ∈ Θ(a〈P1[S/zγ], . . . , Pr[S/z
γ]〉, ζ, ν) = Θ(R[S/zγ], ζ, ν) .

Next, suppose that R = zγ (recall that zγ is free in R, so R cannot be a variable other than zγ). Then
R′ ∈ Θ(R, ζ, (zγ , χ′) :: ν) implies by the definition of Θ that R′ = zγ

•

ζ . Moreover, ζ = ξ′j for some

j ∈ {1, . . . ,m}, and ν = []. Because S is closed, by Lemma B.2 we have that variables zγ
•

ξ′i
are not free

in Sj . Thus η(R′) = Sj [Sj+1/z
γ•

ξ′j+1
] . . . [Sm/z

γ•

ξ′m
] = Sj ∈ Θ(S, ξ′j , []) = Θ(R[S/zγ], ζ, ν).

Suppose now that R = P Q. Let ξ1, . . . , ξn be all the elements of Argβ , ordered by �, where
β is the sort of Q. Then R′ ∈ Θ(R, ζ, (zγ , χ′) :: ν) implies by the definition of Θ that R′ is of the
form P ′Q1 . . . Qn, where P ′ ∈ Θ(P, χ :: ζ, (zγ , χ′) :: ν�P) for some χ ∈ Val(Q, (zγ , χ′) :: ν�Q), and
Qi ∈ Θ(Q, ξi, (z

γ , χ′) :: ν�Q) for all i ∈ {1, . . . , n}. We have that η(P ′) ∈ Θ(P [S/zγ], χ :: ζ, ν�P)
and η(Qi) ∈ Θ(Q[S/zγ], ξi, ν�Q) for all i ∈ {1, . . . , n} by the assumption of coinduction, and χ ∈
Val(Q[S/zγ], ν�Q) by Lemma B.4. Thus

η(R′) = η(P ′) η(Q1) . . . η(Qn) ∈ Θ(P [S/zγ]Q[S/zγ], ζ, ν) = Θ(R[S/zγ], ζ, ν)

by the definition of Θ.
Finally, suppose that R = λxβ .P . Let ξ1, . . . , ξn be all the elements of Argβ , ordered by �, and

let ζ = χ :: ζ ′. Since zγ is free in R, we have xβ 6= zγ . Then R′ ∈ Θ(R, ζ, (zγ , χ′) :: ν) implies
by the definition of Θ that R′ = λxβ

•

ξ1
. · · · .λxβ

•

ξn
.Q, where Q ∈ Θ(P, ζ ′, (zγ , χ′) :: ν ::(xβ , χ)�P). By

the assumption of coinduction we obtain that η(Q) ∈ Θ(P [S/zγ], ζ ′, ν ::(xβ , χ)�P), thus η(R′) =

λxβ
•

ξ1
. · · · .λxβ

•

ξn
.η(Q) ∈ Θ(λxβ .P [S/zγ], ζ, ν) = Θ(R[S/zγ], ζ, ν) by the definition of Θ.

Lemma B.6. Let P and Q be closed lambda-terms of sort o such that P h−→β Q. If U ∈ Θ(P, (), []), then

there exists V ∈ Θ(Q, (), []) such that U h−→+
β V .

Proof: The condition P h−→β Q implies that P is of the form (λxα0 .R)S0 S1 . . . Ss, and then Q =
R[S0/x

α0]S1 . . . Ss. For i ∈ {0, . . . , s}, let αi be the sort of Si, and let ξi,1, . . . , ξi,ni be all the elements
of Argαi , ordered by �. From the definition of Θ we deduce that R is of the form

(λx
α•0
ξ0,1
· · ·λxα

•
0

0,n0
.R′)S0,1 . . . S0,n0 S1,1 . . . S1,n1 . . . Ss,1 . . . Ss,ns ,

where R′ ∈ Θ(R, (χ1, . . . , χs), [(x
α0 , χ0)]�R), and χi ∈ Val(Si, []) for i ∈ {0, . . . , s}, and Si,j ∈

Θ(Q, ξi,j , []) for i ∈ {0, . . . , s} and j ∈ {1, . . . , ni}. As V we take

R′[S0,1/x
α•0
ξ0,1

] . . . [S0,n0
/x

α•0
ξ0,n0

]S1,1 . . . S1,n1
. . . Ss,1 . . . Ss,ns .

Clearly U h−→n0

β V , and n0 ≥ 1. From Lemma B.5 we obtain that R′[S0,1/x
α•0
ξ0,1

] . . . [S0,n0/x
α•0
ξ0,n0

] ∈
Θ(R[S0/x

α•0], (χ1, . . . , χs), []). Using again the definition of Θ we conclude that V ∈ Θ(Q, (), []).

72 Paweł Parys

Lemma B.7. Let P be a closed lambda-term of sort o. If U ∈ Θ(P, (), []) then BT (U) is a ΞM-reflection
of BT (P).

Proof: Coinduction on the structure of BT (P). Suppose first that P →∗β a〈Q′1, . . . , Q′r〉. It is a
folklore that then some (not necessarily the same) lambda-term of the form a〈Q1, . . . , Qr〉 can be
reached from P by using only head beta-reductions: P h−→∗β a〈Q1, . . . , Qr〉. We have that BT (P) =
a〈BT (Q1), . . . ,BT (Qr)〉. Because U ∈ Θ(P, (), []), using Lemma B.6 consecutively for every head
beta-reduction in a sequence witnessing that P h−→∗β a〈Q1, . . . , Qr〉, we obtain a lambda-term V ∈
Θ(a〈Q1, . . . , Qr〉, (), []) such that U h−→∗β V . From the definition of Θ it follows that V is of the form
(a, χ)〈R1, . . . , Rr〉, where Ri ∈ Θ(Qi, (), []) for i ∈ {1, . . . , r}, and χ ∈ Val(a〈Q1, . . . , Qr〉, []). By
the assumption of coinduction we have that BT (Ri) is a ΞM-reflection of BT (Ki). Moreover, by the
definition of Val , there is a closed lambda-term Q such that χ = [[Q]]M and Q →∗β a〈Q1, . . . , Qr〉.
Then BT (Q) = BT (a〈Q1, . . . , Qr〉) = BT (P), so (BT (P), (a, χ)) ∈ ΞM. It follows that BT (U) is a
ΞM-reflection of BT (P).

It remains to consider the situation when there is no sequence of beta-reductions from P to a lambda-term
starting with a node constructor. Then we have one of two cases:
• there is an infinite sequence of head beta-reductions starting in P , or
• P h−→∗β Q for a lambda-term Q from which no head beta-reduction can be performed, and which

does not start with a node constructor.
Moreover, BT (P) = nd〈〉 and (nd〈〉, nd) ∈ ΞM, so it is enough to prove that BT (U) = nd〈〉. In the
former case we can apply Lemma B.6 to every reduction in the infinite sequence of head beta-reductions
starting from P , and we obtain an infinite sequence of head beta-reductions starting from U . This
implies that from U we cannot reach a lambda-term starting with a node constructor, and thus indeed
BT (U) = nd〈〉. In the latter case, we observe that the only possible form of a closed lambda-termQ of sort
o from which no head beta-reduction can be performed and which does not start with a node constructor is
an infinite sequence of applications Q = . . . Q3Q2Q1. By applying Lemma B.6 consecutively for every
head beta-reduction in a sequence witnessing P h−→∗β Q, we obtain a lambda-term V ∈ Θ(Q, (), []) such

that U h−→∗β V . From the definition of Θ it follows that V is also an infinite sequence of applications, which
implies that BT (U) = nd〈〉, as needed.

Having all this, we can easily finish the correctness proof. Indeed, Λ(GM) = ΛGM(N0,()) =
ΛGM(θ(N0, (), [])) ∈ Θ(ΛG(N0), (), []) = Θ(Λ(G), (), []) by Lemma B.3, and thus BT (Λ(GM)) is
a ΞM-reflection of BT (Λ(G)) by Lemma B.7.

B.3 Size and Running Time
It remains to bound the size of GM, and the time needed to construct it. Denote

d =

 max
α∈SG

ord(α)≤m−1

|D[α]|

|G| .
Our goal is to prove that |GM| ≤ |G| · d|G|. This is done in subsequent lemmata. First, we bound the size
of the sets Argα and of the new sorts α•.

A Type System Describing Unboundedness 73

Lemma B.8. For every α ∈ SG it holds that |Argα| ≤ d.

Proof: Denoting α = α1→ . . .→αs→ o we recall that Argα = D[α1]× · · · ×D[αs]. In Section 9.1 we
have shown that |α| ≤ 2 · |G| for α ∈ SG , hence s ≤ |G|. Moreover, because α ∈ SG we have ord(α) ≤ m,
and thus ord(αi) ≤ m− 1 for all i ∈ {1, . . . , s}. We easily conclude recalling the definition of d.

Lemma B.9. For every α ∈ SG it holds that |α•| ≤ |α| · d|α|.

Proof: The proof is by induction on the structure of α. For α = o also α• = o, and the thesis is immediate.
Consider the case when α = β→ γ; then

α• = β•→ . . .→β•︸ ︷︷ ︸
|Argβ |

→ γ• .

Recall that |α| = |β|+ 1 + |γ|. Using the induction assumption and Lemma B.8 we obtain that

|α•| = (|β•|+ 1) · |Argβ |+ |γ•| ≤ |β| · d|β| · d+ d+ |γ| · d|γ| ≤ (|β|+ 1 + |γ|) · d|α| = |α| · d|α| .

Next, we bound the size of lambda-terms.

Lemma B.10. When Rα is a subterm ifR(N) for some nonterminal N , and ζ ∈ Argα, and ν ∈ Free(P),
it holds that |θ(R, ζ, ν)| ≤ |R| · d|R|.

Proof: The proof is by induction on the structure of R. We have four cases, depending on the shape of R.
Suppose first that R = a〈P1, . . . , Pr〉. Then, |R| = 1 + |P1| + · · · + |Pr|, and, by the induction

assumption, |θ(Pi, ζ, ν�Pi)| ≤ |Pi| · d
|Pi| ≤ |Pi| · d|R| for all i ∈ {1, . . . , r}. We thus have

|θ(R, ζ, ν)| = |(a, [[ΛG(R)]]νM)〈θ(P1, ζ, ν�P1
), . . . , θ(Pr, ζ, ν�Pr)〉|

= 1 + |θ(P1, ζ, ν�P1
)|+ · · ·+ |θ(Pr, ζ, ν�Pr)|

≤ d|R| + |P1| · d|R| + · · ·+ |Pr| · d|R| = |R| · d|R| .

In the case of R = xα we simply have that |θ(R, ζ, ν)| = |xα•ζ | = 1 ≤ |R| · d|R|.
Suppose now that R = P β→ γ Qβ . Let ξ1, . . . , ξn be all the elements of Argβ , ordered by �. Clearly

β ∈ SG , so n = |Argβ | ≤ d by Lemma B.8. Using the induction assumption we conclude that

|θ(R, ζ, ν)| = |θ(P, [[Q]]
ν�Q
M :: ζ, ν�P) θ(Q, ξ1, ν�Q) . . . θ(Q, ξn, ν�Q)|

= |θ(P, [[Q]]
ν�Q
M :: ζ, ν�P)|+ 1 + |θ(Q, ξ1, ν�Q)|+ · · ·+ 1 + |θ(Q, ξn, ν�Q)|

≤ |P | · d|P | + d · (1 + |Q| · d|Q|) ≤ (|P |+ 1 + |Q|) · d|R| = |R| · d|R| .

Finally, suppose that R = λxβ .P γ . Let ζ = χ :: ζ ′, and let ξ1, . . . , ξn be all the elements of Argβ ,
ordered by �. Again n ≤ d by Lemma B.8. Using the induction assumption and Lemma B.9 we conclude
that

|θ(R, ζ, ν)| = |λxβ
•

ξ1
. · · · .λxβ

•

ξn
.θ(P, ζ ′, ν ::(xβ , χ)�P)|

= n · (|β•|+ 1) + |θ(P, ζ ′, ν ::(xβ , χ)�P)|
≤ d · (|β| · d|β| + 1) + |P | · d|P | ≤ (|β|+ 1 + |P |) · d|R| = |R| · d|R| .

74 Paweł Parys

Finally, recall that

|G| =
∑

Nα∈N
(|α|+ |R(Nα)|) and |GM| =

∑
Nα∈N

∑
ζ∈Argα

(|α•|+ |RM(Nα•

ζ)|) .

For every nonterminal Nα ∈ N and for every ζ ∈ Argα, recalling that RM(Nα•

ζ) = θ(R(Nα), ζ, []),
from Lemma B.10 we obtain know |RM(Nα•

ζ)| ≤ |R(Nα)| · d|R(Nα)|. Using also Lemmata B.8 and B.9,
for every Nα ∈ N we have that∑

ζ∈Argα

(|α•|+ |RM(Nα•

ζ)|) ≤ d · (|α| · d|α| + |R(Nα)| · d|R(Nα)|) ≤ (|α|+ |R(Nα)|) · d|G| .

In consequence, |GM| ≤
∑
Nα∈N (|α|+ |R(Nα)|) · d|G| = |G| · d|G|, as we wanted.

We notice that the transformation is defined in a straightforward way, and thus the running time is
essentially proportional to the size of the resulting scheme GM. However, in the case of a node constructor
and in the case of an application, we need to compute [[ΛG(R)]]νM for some subterms R appearing in
G. Moreover, in the case of an application and in the case of a lambda-binder, we need to enumerate
all elements of Argβ . We notice that ord(β) ≤ m − 1, because a sort β→ γ also appears there, and
ord(β) < ord(β→ γ) ≤ m. When β = α1→ . . .→αs→ o, by definition Argβ = D[α1]× · · · ×D[αs],
thus we actually need to enumerate all elements of D[αi] for all i ∈ {1, . . . , s}, where ord(αi) ≤
ord(β)− 1 ≤ m− 2.

	Introduction
	Preliminaries
	Type System for Simultaneous Unboundedness
	Word-Recognizing Schemes
	Finite Prefixes of Infinite Lambda-terms
	Properties of Type Judgments
	Completeness
	Proof of Lemma 7.2
	Proof of Lemma 7.3
	Proof of Lemma 7.4

	Soundness
	Proof of Lemma 8.1
	Proof of Lemma 8.2
	Proof of Lemma 8.3

	Complexity of SUP
	Number of Equivalence Classes
	Pumpable Derivations
	Algorithms
	Lower Bounds

	Reflection for SUP
	Downward Closure
	Our Definition of Schemes
	Symbols Are Unranked
	Node Constructors
	Looser Definition of Schemes

	Proof of Lemma 10.2
	Transformation of the Scheme.
	Correctness Proof
	Size and Running Time

