
HAL Id: hal-01850923
https://hal.science/hal-01850923v5

Submitted on 15 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online multimodal dictionary learning
Abraham Traoré, Maxime Berar, Alain Rakotomamonjy

To cite this version:
Abraham Traoré, Maxime Berar, Alain Rakotomamonjy. Online multimodal dictionary learning.
Neurocomputing, 2019, 368 (7), pp.163-179. �10.1016/j.neucom.2019.08.053�. �hal-01850923v5�

https://hal.science/hal-01850923v5
https://hal.archives-ouvertes.fr

Online Multimodal Dictionary Learning

Abraham Traoréa , Maxime Berarb, Alain Rakotomamonjyc

a,b,c LITIS, University of Rouen Normandie 76800 Saint-Etienne du Rouvray, FRANCE
a abraham.traore@etu.univ-rouen.fr

b,c maxime.berar,alain.Rakotomamonjy@univ-rouen.fr

Abstract

We propose a new online approach for multimodal dictionary learning. The method
developed in this work addresses the great challenges posed by the computational resource
constraints in dynamic environment when dealing with large scale tensor sequences. Given
a sequence of tensors, i.e. a set composed of equal-size tensors, the approach proposed in
this paper allows to infer a basis of latent factors that generate these tensors by sequentially
processing a small number of data samples instead of using the whole sequence at once. Our
technique is based on block coordinate descent, gradient descent and recursive computations
of the gradient. A theoretical result is provided and numerical experiments on both real and
synthetic data sets are performed.

Keywords: tensor, block coordinate descent, gradient descent, recursive computations,
online dictionary learning

1. Introduction

Multimodal dictionary learning is the task of constructing succinct representations of
multiway data (also called tensor) using dictionary atoms per mode (a mode corresponding
to one dimension of the data) learned from this data. The recent interest in this problem,
motivated by the fact that the processing of multiway data with separate matrices extracted
from the data block may lead to the loss of the covariance information among various modes
[1], enhances the importance of developing efficient learning algorithms able to extract in-
formation of interest from such data. The two most common decompositions used for tensor
analysis are the Tucker decomposition, introduced by Tucker in 1963 [2] and the Canoni-
cal Polyadic Decomposition also named CPD introduced independently by Hitchcock in [3]
and by Cattell in [4]. These decompositions, which embody emerging tools for exploratory
multiway data analysis, have been successfully applied to numerous applications such as:
cluster analysis [5], image denoising [6], pattern recognition [7], face recognition [8]. Their
links with dictionary learning have already been established in the literature [9], [10].

In a wide variety of applications, multiway datasets are naturally represented by se-
quences (i.e. set of several samples representing themselves tensors), especially when we
are dealing with applications where new data samples keep coming over time (e.g. climate
data [11]). Although the application of a batch-based decomposition (i.e. using the whole

dataset) is always possible through a recomputation from scratch, this approach can swiftly
lead to a computational bottleneck for two main reasons. Firstly, we have to deal with the
storage cost of the data samples. Secondly, the intermediate problems of standard tech-
niques may lead to high space complexity (e.g. some standard approaches for nonnegative
Tucker decomposition compute the Kronecker product of the N − 1 loading matrices [12],
N being the tensor order). Hence, memory and computationally efficient methods that are
able to infer the latent factors using only a small number of samples at a time is of primary
importance.
This paper is focused on multimodal dictionary learning through online Tucker decomposi-
tion. In the literature, the online techniques for Tucker decomposition can be split into two
categories. For the first class of methods, the principle relies on inferring latent factors by
sequentially processing streaming data samples with no need to resort to the past data [13],
[14]. The second class of approaches lies in the idea of stacking both the past and the newly
acquired data and performing a recursive update of the factors [15], [16]. The difference
between the two classes of methods is that for the first one, only a small number of data
samples is processed at the same time.

In this paper, the class of methods considered is the first one. A plethora of excellent
techniques have already been proposed to tackle this problem. An approach presented in
[13] infers multidimensional separable dictionaries through recursive updates in compressive
sensing framework, the drawback being that the core tensor is assumed to be known in ad-
vance, which is not the case in general even though it is a natural assumption in compressive
sensing. A Riemannian approach proposed in [14] deals with a fixed-rank tensor comple-
tion problem by turning the problem into an optimization problem on a Stiefel manifold.
This method imposes orthogonality constraints, which may not be relevant for a specific
task at hand (e.g. the nonnegativity constraint for inherent positive data is necessary to
keep physical interpretability [17]). A Tucker -based method in the framework of multi-
variate spatio-temporal prediction has also been presented in [18] and whose core principle
is based on projection of randomly generated subspaces. The main limitation that suffers
this method is the so-called low rank assumption, which is not verified in practice for each
dataset. The remaining approaches suffer similar limitations: they are not generic enough to
take into account some characteristics of the data, impose constraints on the latent factors
sizes (which makes them unsuitable for some specific tasks, e.g. overcomplete multimodal
dictionary learning) or assume prior knowledge of some factors.

In this paper, we introduce a new online tensor decomposition approach based on block
coordinate descent, gradient descent and recursive computations. Our contributions are the
following ones:

1. We propose an online multimodal dictionary learning algorithm which is flexible enough
to incorporate common constraints such as nonnegativity, sparsity, orthogonality with
no assumption on the latent factors sizes, which makes it more general than the existing
online approaches.

2. A theoretical result stating the convergence to a stationary point of the sequence of
dictionary matrices generated by our algorithm is provided.

2

3. Comparison with state-of-the-art techniques through numerical experiments on both
synthetic and real datasets is performed.

2. Notations

An N−order tensor is denoted by a boldface Euler script letter X ∈ RI1×...×IN . The matri-
ces are denoted by bold capital letters (e.g. A). Matricization is the process of reordering all
the elements of a tensor into a matrix. The mode-n matricization of a tensor Y ∈ RI1×...×IN

arranges the mode-n fibers to be the columns of the resulting matrix Y(n) ∈ RIn×(
∏
k 6=n Ik).

The mode-n product of a tensor X ∈ RI1×...×IN with a matrix B ∈ RJn×In denoted by
X ×nB yields a tensor of the same order Ŷ ∈ RI1×..×Jn×..×IN whose mode-n matricized form
is defined by: Ŷ(n) = BY(n). The ith slice of an order tensor X ∈ RI1×...×IN , denoted by
X i ∈ RI2×...×IN , is the tensor derived from X by fixing the first index to i. The Kronecker
product of two matrices is denoted by ⊗. For writing simplicity, we introduce the following
notations:

• The set of integers from n to N is denoted by InN = {n, .., N}. If n=1, the set is simply
denoted by IN

• The set of integers from 1 to N with n excluded is defined by IN 6=n = {1, .., n− 1, n+ 1, .., N}.

• Let G ∈ RJ1×..×JN be a tensor and N matrices
{
A(m)

}
1≤m≤N ,A

(m) ∈ RIm×Jm . The

contracted form of the product of G with the matrices
{
A(m)

}
1≤m≤N is denoted by:

G ×p∈In−1 A(p) ×n A(n) ×q∈In+1
N

A(q) = G ×1 A(1) ×2 A(2)..×N A(N)

• The Kronecker product of the N matrices A(1), ...,A(N) is denoted by:

⊗m∈INA(m) = A(1) ⊗A(2)...⊗A(N)

• The Kronecker product of the N − 1 matrices A(1), ..,A(n−1),A(n+1), ..,A(N):

⊗m∈IN 6=nA(m) = A(1) ⊗A(2)...⊗A(n−1) ⊗A(n+1).....⊗A(N)

The absolute value is denoted by | · |. The Frobenius and `1 norms of a tensor X ∈ RI1×..×IN

denoted respectively by ‖X‖F and ‖X‖1 are defined by:

‖X‖F =

(∑
1≤in≤In,1≤n≤N

X 2
i1,..,iN

) 1
2

, ‖X‖1 =
∑

1≤in≤In,1≤n≤N

| X i1,..,iN |

3. Multimodal dictionary learning

The purpose of this section is to introduce briefly Tucker decomposition, present our
algorithm and our theoretical result (as well as the underlying assumptions).

3

3.1. Brief overview of Tucker decomposition

Tucker decomposition is one of the most common decompositions used in tensor frame-
work. Given a tensor X ∈ RI1×...×IN , the standard Tucker decomposition consists of approx-
imating X by the product of a tensor G ∈ RJ1×...×JN with N matrices

{
A(n)

}
1≤n≤N ,A

(n) ∈
RIn×Jn , i.e.:

X ≈ G ×n∈IN A(n)

The tensor G is generally named the core tensor and the matrices A(n) the loading ma-
trices. This decomposition associated with orthogonality constraints can be thought of as
the multidimensional counterpart of the singular value decomposition [19]. It can also be
interpreted in terms of dictionary where the matrices A(n) embody the dictionary matrices
and the entries of G, the activation coefficients [20]. For the remainder of the paper, the la-
tent factors A(n) and G will respectively be referred to as dictionary matrices and activation
tensor.
The problem we are interested in is a particular case of Tucker decomposition where a ten-
sor X ∈ RT×I1×..×IN represents a set of T observations of size I1 × ... × IN drawn from an
unknown probability distribution, the objective being to perform the decomposition:

X ≈ G ×1 I×2 A(1) ×2 ...×N+1 A(N),G ∈ RT×J1×..×JN ,A(n) ∈ RIn×Jn

This problem can be specifically expressed via the following optimization problem:

min
A(n),{Gt}1≤t≤T

T∑
i=1

‖X i − Gi ×n∈IN A(n)‖2
F (1)

with X i ∈ RI1×...×IN and Gi ∈ RJ1×..×JN being respectively the ith slices (tensor derived by
fixing the first index to i) of X and G. It is worth to notice that X i (respectively Gi) is an
N-order tensor since it corresponds to a slice of a tensor of order N + 1.
In the classical dictionary learning framework, it is common to seek to infer sparse activa-
tion coefficients while preventing dictionary atoms from diverging by introducing penalty
functions [21]. This observation paves the way to the problem:

min
A(n),{Gt}1≤t≤T

T∑
i=1

(
‖X i − Gi ×n∈IN A(n)‖2

F + Ω1(Gi)
)

+ Ω2(A(1), ..,A(N)) (2)

The sparsity and boundedness are respectively enforced via general penalty functions Ω1

and Ω2.

3.2. Online multimodal dictionary learning OTL

The problem addressed in this work is the inference of multimodal dictionary atoms
(dictionary atoms per tensor mode) while bypassing the computational bottleneck induced
by the processing of all of the data samples at once.

To solve this problem for a large tensor sequence (i.e. a large number of tensors), we pro-
pose a probabilistic approach, which has already been used for online matrix decomposition

4

(e.g. dictionary learning [21]) and has proven its effectiveness for the numerical resolution
of non-convex minimization problems [22].
Let’s assume we are dealing with samples sequentially acquired over time and drawn from
an unknown probability distribution P on the set of tensors of size I1× ...×IN . Let’s denote
by X t ∈ RI1×..IN the tensor acquired at the time step t. Let’s also consider l the discrepancy
between X t and its approximation given by the dictionary matrices defined by:

l(X ,
{
A(n)

}
) = min

G

1

2
‖X − G ×n∈IN A(n)‖2

F + Ω1(G) + Ω2(A(1), ..,A(N))

This expression is justified by the fact that our objective is to approximate each data sample
by the product of an activation tensor with dictionary matrices.
The underlying idea of our approach is to update the dictionary matrices in such a way that
the discrepancy between {X t}t≥1 and their approximation given by these matrices has a low
expectation. Hence, a relevant problem is:

min
A(1),..,A(N)

{
f(A(1), ..,A(N)) =∆ EXvP

(
l
(
X ,A(1), ..,A(N)

))}
(3)

In the sequel, we assume Ω2 is differentiable and Ω1 admits a proximal operator [23].

3.3. Algorithm

Given that the probability distribution P is unknown, the problem (3) does not admit
any analytical solution, i.e. the solution cannot be expressed in terms of a formula. To
circumvent this deadlock, we replace the objective function by its estimator given by the
mean sample, leading to the problem:

min
A(1),..A(N)

{
f̂t
(
A(1), ..A(N)

)
=∆

1

t

t∑
i=1

l
(
X t,A

(1), ..,A(N)
)}

(4)

The idea of our approach is to update the dictionary matrices
{
A(n)

}
1≤n≤N by minimizing

f̂t(A
(1), ..A(N)) using only the sample unit X t, the factors inferred from the processing

of X t−1 and a certain number of statistics (functions of the data samples). Let’s denote{
A

(n)
t

}
1≤n≤N

the factors inferred by minimizing the function f̂t.

Let’s assume the acquisition of a new sample unit X t at a given time step t. The updates
of the dictionary matrices (i.e. the determination of A

(n)
t), inspired from previous works

undertaken in matrix-based dictionary learning framework [24] (the difference is about the
number of dictionary matrices), is performed via a two-step strategy:

• The computation of the activation tensor Gt by projecting X t on the latent factors
inferred at the time step t − 1. In the sequel, this stage will be referred to as Sparse
coding ;

• The resolution of the problem (4) by a block coordinate descent, that is the minimiza-
tion of the objective function with respect to one variable while others are fixed in the
order 1→ ..→ N . This step will be referred to as Block Coordinate Descent.

In the sequel, our dictionary learning approach will be referred to as OTL.

5

3.3.1. Sparse coding

For this step, we consider the following minimization problem:

min
G

1

2
‖X t − G ×n∈IN A

(n)
t−1‖2

F︸ ︷︷ ︸
O(G)

+Ω1(G)

Instead of vectorizing this expression as it is the case for some Tucker decomposition tech-
niques [12], which can induce a high space complexity due to the computation of the Kro-
necker product of the dictionary matrices, we propose to apply directly a proximal mini-
mization approach [25] in the tensor domain.
A proximal minimization is a technique used to minimize of the sum of two functions: one
differentiable and the other admitting a proximal operator [23]. In our case, the differentiable
function is O whose derivative is given by:

∂O
∂G (G) = −X t ×n∈IN A

(n)T
t−1 + G ×n∈IN A

(n)T
t−1 A

(n)
t−1 (5)

Given that the penalty Ω1 is assumed to have a proximal operator denoted proxΩ1
, the

sparse coding step can be resolved numerically through Algorithm 1.

Algorithm 1 : Sparse coding

Inputs: new observation X t, the dictionary matrices
{

A
(n)
t−1

}
1≤n≤N

, the gradient descent

step η, initial value G0

Initialization: iter=0, Giter = G0

1: while a stopping criterion is not met do
2: Giter+1=proxηΩ1

(Giter − η ∂O∂G (Giter)),
∂O
∂G defined according to (5)

3: iter ← iter + 1
4: end while
5: return G

3.3.2. Block coordinate descent

In this section, we consider the updates problem of the dictionary matrices. Let’s assume
the computation of the activation tensor Gt is already performed and the n−1 first matrices

have already been updated, i.e. the matrices
{

A
(p)
k+1

}
1≤p≤n−1

are determined (k referring

to the iteration number, an iteration corresponding to a round of updates of the variables
A(1), ..,A(N)). The update of A(n) is performed by solving the problem:

A
(n)
k+1 ← arg min

A(n)

f̂n,t(A
(n)) (6)

6

with:

f̂n,t(A
(n)) =

1

t

t∑
i=1

1

2
‖X i−Gi×p∈In−1 A

(p)
k+1×nA(n)×q∈In+1

N
A

(q)
k ‖

2
F +Ω1(Gi)+Ω2(A(1), ..,A(N))

(7)
The problem (6) has no analytical solution, i.e. the solution cannot be expressed in terms of

a formula. In view of the differentiability of the objective function f̂n,t with respect to A(n)

and since the solution cannot be expressed in terms of a formula, we propose a numerical
resolution scheme based on gradient descent. With this choice, the dictionary matrix A(n)

can be updated using only X t and the matrices
{

A
(p)
k+1

}
1≤p≤n−1

,
{

A
(q)
k

}
n+1≤q≤N

provided

some statistics are updated over time. Indeed, the derivative of f̂n,t is given by:

∂f̂n,t
∂A(n)

(
A(n)

)
= −1

t

t∑
i=1

(
X̂

(n)
i G

(n)T
i −A(n)B

(n)
i B

(n)T
i

)
(8)

+
∂Ω2

∂A(n)
(..,A

(n−1)
k+1 ,A(n),A

(n+1)
k , ..)

with G
(n)
i being the mode-n matricized form of the tensor Gi, B

(n)
i and X̂

(n)
i the mode-n

matricized forms of the tensors Bi and X i defined by:

Bi = Gi ×p∈In−1 A
(p)
k+1 ×n I×q∈In+1

N
A

(q)
k (9)

X̂ i = X i ×p∈In−1 A
(p)T
k+1 ×n I×q∈In+1

N
A

(q)T
k (10)

with I representing the identity matrix (I ∈ RJn×Jn for (9) and I ∈ RIn×In for (10))
The derivative can then be rewritten in the following form:

∂f̂n,t
∂A(n)

(A(n)) = −P
(n)
t

t
+

A(n)Q
(n)
t

t
+

∂Ω2

∂A(n)
(A

(1)
k+1, .,A

(n−1)
k+1 ,A(n),A

(n+1)
k , .,A

(N)
k) (11)

with: P
(n)
t =

∑t
i=1 X̂

(n)
i G

(n)T
i , Q

(n)
t =

∑t
i=1 B

(n)
i B

(n)T
i .

It is straightforward to notice that:

P
(n)
t = P

(n)
t−1 + X̂

(n)
t G

(n)T
t (12)

Q
(n)
t = Q

(n)
t−1 + B

(n)
t B

(n)T
t (13)

Since the sequences P
(n)
t and Q

(n)
t verify the equations (12) and (13), the computation of

the gradient of f̂n,t only requires the newly acquired tensor X t and the loading matrices{
A

(p)
k+1

}
1≤p≤n−1

,
{

A
(q)
k

}
n+1≤q≤N

. Concretely, for a fixed t, the derivative of f̂n,t+1 can be

derived from the statistics P
(n)
t ,Q

(n)
t , the dictionary matrices

{
A(n)

}
1≤n≤N and the process-

ing of the sample X t+1. This is the key of our approach since it means that the inference of
the latent factors

{
A(n)

}
1≤n≤N can be performed by processing a single subtensor at a time.

The update of a single matrix A(m) for the block coordinate descent step is summarized by
Algorithm 2.

7

Algorithm 2 Update of A(n)

Inputs: X t: newly added tensor,
{

A
(p)
k+1

}
1≤p≤n−1

,
{

A
(q)
k

}
n+1≤q≤N

: dictionary matrices,

A
(n)
0 : initial value, Gt: sparse code associated to X t, P

(n)
t−1,Q

(n)
t−1: statistics at the time step

t− 1.
Statistics update:

• Compute P
(n)
t via the recursive equation (12)

• Compute Q
(n)
t via the recursive equation (13)

Initialization: iter=0,A
(n)
iter = A

(n)
0

1: while a stopping criterion is not met do

2: A
(n)
iter+1 =

(
A

(n)
iter − η

∂f̂n,t
∂A(n) (A

(n)
iter)

)
, ∂f̂n,t
∂A(n) (A

(n)
iter) defined according to (11), (12) and (13)

3: iter ← iter + 1
4: end while
5: return A(n)

3.3.3. Summary of the inference process

The whole inference process is summarised by Algorithm 3. One can notice that our
decomposition technique is quite simple and does not require any constraint on the latent
factors sizes, which makes it more general compared to the existing approaches in the sense
that it is more suitable for a larger class of problem (e.g. overcomplete multimodal dictionary
learning [9], [20]).

4. Theoretical result

Our theoretical result regarding the behavior of Algorithm 3 is about exploring a double
asymptotic behavior: the increasing of the number of samples over time and the increasing of
the number of iterations in block coordinate descent. Thus, we consider two layers of loops:
a first layer from block coordinate descent and a second one from the streaming samples.
Let’s consider the assumptions described below:

• The data samples are drawn from a probability distribution with compact support:
this a natural assumption since we work only with finite values;

• We choose `1 penalty for activation coefficients and `2 penalty for dictionary matrices,
i.e. we assume Ω1(G) = αθ‖G‖1 and Ω2(A(1), ..,A(N)) = α(1−θ)

2

∑N
n=1 ‖A(n)‖2

F with
α > 0, 0 < θ < 1: this choice is simply motivated by the fact that these functions
embody two of the most used penalty functions in dictionary learning.

• For all the minimization problems considered, the activation tensor G and the dictio-
nary matrices A(n) are assumed to belong to some compact sets, i.e. G ∈ KG,A

(n) ∈
KIn,Jn : this is a natural interpretation of the `1 − `2 penalty;

8

Algorithm 3 : OTL

Inputs: set of samples {X 1, ..,X t, ...}, Initial dictionary matrices
{

A
(n)
0

}
, initial core tensor

G0

1: while a stopping criterion is not met do
2: Draw X t according to a probability distribution P
3: Sparse coding

Gt ← arg min
1

2
‖X t − G ×n∈IN A

(n)
t−1‖2

F + Ω1(G)

4: Block Coordinate Descent
5: for n from 1 to N do
6: Update of the statistics P

(n)
t and Q

(n)
t

P
(n)
t = P

(n)
t−1 + X̂

(n)
t G

(n)T
t

Q
(n)
t = Q

(n)
t−1 + B

(n)
t B

(n)T
t

with B
(n)
i and X̂

(n)
i the mode-n matricized forms of the tensors Bi and X i defined

by the equations (9) and (10)
7: Update of A(n)

A
(n)
k+1 ← arg min

A(n)

f̂n,t(A
(n))with f̂n,t defined by the equation (6)

8: A
(n)
t ← A

(n)
k+1

9: end for
10: k ← k + 1
11: end while
12: return A(1), ...,A(N)

9

• The minimization problem related to the Sparse coding step admits a unique solution:
this assumption can be enforced by considering a `1 − `2 penalty on the activation
tensor. We drop the `2 penalty term for sake of simplicity and it does not require a
great effort to see that it does not change anything to the reasoning related to the
analysis;

• During the block coordinate descent, we seek A
(n)
k+1 in a ball centered around A

(n)
k of

radius 1

k
1
2

, i.e. ‖A(n)
k+1 − A

(n)
k ‖2

F ≤ 1
k
. A natural way to incite the enforcing of this

assumption is to increase the objective function associated to the update problem of
A(n) by ρ‖A(n) −A

(n)
k ‖2

F ;

• For ∀k ∈ N,A(n)
k is an interior point of KIn,Jn ;

Under these assumptions, the sequence
{

A
(1)
k , ..,A

(N)
k

}
generated from Algorithm 3 (ap-

plied to the update problems of all dictionary matrices
{
A(n)

}
1≤n≤N) converges to the set

of stationary points of the objective function of the problem (3) when k tends to infinity
with:

A
(n)
k+1 =

{
limt→∞A

(n)
k+1,t if A

(n)
k+1,t converges

arg minA(n) f̂∞(A(n)) otherwise

A
(n)
k+1,t = arg min

A(n)∈KIn,Jn
f̂n,t(A

(n))

f̂∞(A(n)) =
1

2
Trace

((
ξ̃t +

α(1− θ)
2

I

)
A(n)TA(n)

)
− Trace

(
A(n)η̃t

)
f̂n,t(A

(n)) =
1

t

t∑
i=1

1

2
‖X i−Gi×p∈In−1 A

(p)
k+1×nA(n)×q∈In+1

N
A

(q)
k ‖

2
F +Ω1(Gi)+Ω2(A(1), ..,A(N))

In this expression, Trace represents the trace of a matrix. The sequences ξ̃t and η̃t embody
some accumulation points of the bounded sequences ξt and ηt defined by:

ξt =
1

t

t∑
i=1

ΓiΓ
T
i , ηt =

1

t

t∑
i=1

ΓiX
(n)T
i ,Γi = G

(n)
i ⊗q∈In−1 A

(q)T
k+1 ⊗p∈In+1

N
A(p)T

Sketch of the proof
To establish our convergence result, we setup a two-step strategy:

First step: firstly, we prove that the sequence
{

A
(n)
k+1,t

}
t

for a fixed k converges to a station-

ary point of the function A(n) → f(A
(1)
k+1, ..,A

(n−1)
k+1 ,A(n),A

(n+1)
k , ..,A

(N)
k), f being defined

by the equation (3). This is mainly inspired from the work performed in [21], which can-
not be applied directly to our problem since tha objective functions are different (for our
problem, we have several dictionary matrices while the work described in [21] considers a
single dictionary matrix). To circumvent this deadlock, we rely on some simple algebraic

10

inequalities and some well known properties on the Kronecker product.
Second step: from the first step as well as the assumptions laid out in this section, we

prove that
{

A
(1)
k , ...A

(N)
k

}
converges to a stationary point of the optimization problem given

the equation (3).

5. Extensions

The purpose of this section is to propose some extensions of OTL through the incor-
poration of classical constraints encountered in tensor decomposition such as positivity or
orthogonality as well as an extension allowing to process more than one sample at a time.

5.1. Minibatch extension

So far, we devise an algorithm by assuming that the newly incoming data is a single
tensor X t ∈ RI1×...×IN . Now, let’s assume that the newly acquired data samples represent a
batch of ρ tensors {X 1, ..,X ρ} ,X i ∈ RI1×...;×IN . Instead of applying the natural strategy,
that is about processing one tensor at a time, we propose the following framework:

• Run the Sparse coding algorithm (Algorithm 1) ρ times in order to infer the activation
tensors associated to the samples X j, 1 ≤ j ≤ ρ denoted Gr.

• Run the Algorithm 2 by replacing (12) and (13) by:

P
(n)
t = P

(n)
t−1 +

∑ρ
r=1 X̂

(n)
r G

(n)T
r , X̂

(n)
r is the mode-n matricized form of the tensor X̂ r

defined by (10)

Q
(n)
t = Q

(n)
t−1 +

∑ρ
r=1 B

(n)
r B

(n)T
r , B

(n)
r is the mode-n matricized form of the tensor Br

defined by (9)

The idea of this extension is to reduce the complexity in time of the approach developed in
section 3 by incorporating simultaneously the information carried by several tensors while
accelerating the decrease of the objective function.

5.2. Decomposition with positivity constraints

In several applications, the data we deal with is inherently positive. For the tensor
decomposition of nonnegative data, it is convenient to impose nonnegativity constraint on
all the latent factors (activation tensor and the dictionary matrices) in order to keep the
physical interpretability. To perform a nonnegative tensor factorization, we simply replace
all the updates in Algorithm 1 and Algorithm 2 by projected gradient descent [26]. This
choice is motivated by the efficiency of projected gradient descent to yield good local minima
for convex minimization problems subject to linear constraints [26].

11

5.3. Orthogonality constraints

The orthogonality constraint play an important role in Tucker decomposition since it
ensures essential uniqueness [27]. To infer orthogonal factors (i.e. the dictionary matrices
are such that A(n)TA(n) = I), we apply the gradient descent method on the Stiefel manifold
defined by St(In, Jn) =

{
A ∈ RIn×Jn ,ATA = I

}
. Let’s consider the update problem of A(n)

subject to orthogonality constraints and let’s denote A
(n)
iter the value at the iteration iter.

The difference with the classical gradient descent lies in the update scheme given by:

A
(n)
iter+1 = Ψ

A
(n)
iter

(
−η × Πτ

A
(n)
iter

(St(In,Jn))

(
∂f̂n,t
∂A(n)

(A
(n)
iter)

))

with ∂f̂n,t
∂A(n)

(
A

(n)
iter

)
being the derivative of ∂f̂n,t

∂A(n) (· · ·) evaluated at A
(n)
iter. The operator

Πτ
A

(n)
iter

(St(In,Jn)) corresponds to the projection on the tangent space to St(In, Jn)) at A
(n)
iter

and Ψ
A

(n)
iter

the retraction on St(In, Jn) at A
(n)
iter. There are several ways to compute the

retraction on a Stiefel manifold such as polar decomposition [28], QR decomposition [28].
The projection of A on the tangent space to St(p, q) at X is given by [29]:

(Ip −XXT)A +
1

2
X(XTA−ATX)

The update scheme of the activation tensor Gt remains unchanged.

6. Experiments

In this section, we evaluate the efficiency of our approach on synthetic and real data sets.
The methods considered are the following ones:

• TuckerBatch: this approach infers the latent factors by processing all the samples
at once. The resolution scheme is alternate minimization: the update problems of
the dictionary matrices and the activation tensor are respectively solved by gradient
descent and proximal gradient descent for the unconstrained case. We highlight the
fact that we do not impose orthogonality constraint as it is the case for most works
on Tucker decomposition.

• OTLsingle: this corresponds to the online approach presented in this paper;

• OTLminibatch: this method is the proposed extension of OTLsingle;

• ALTO : this method, proposed in [18], is a state-of-the-art online tensor decomposition
technique. Its difference with OTLsingle is based on the update strategy of the latent
factors: projection on randomly generated subspaces for ALTO, numerical resolution of
minimization problems for OTLsingle. The ALTO method yields convergence property
if the data samples verify the so-called low rank property [18], that is: the rank of each
mode-n matricized form is no greater than R, with (R,R,R) being the size of the core
tensor.

12

The objectives of these experiments are two-fold.

• Firstly, we prove that our approach achieves similar results compared to the batch-
method with much less computation time, i.e. the gain at this point is mainly about
running time.

• Secondly, we prove the genericity of our approach: we demonstrate numerically that
the proposed method yields similar results compared to ALTO in applications frame-
work ”favorable” to ALTO while significantly outperforming it when we are dealing
with data with specificities that do not match ALTO assumptions. Contrary to the
first point, the gain at this point is about accuracy.

We also consider our OTL approach with orthogonal and positivity constraints. These con-
strained decompositions will be referred to as OTL followed by the constraint name. The
penalty functions Ω1 and Ω2 are respectively defined by the `1 norm and the square of Frobe-
nius norm, i.e.:

Ω1(G) = αθ‖G‖1,Ω2(A(1),,A(N)) =
α(1− θ)

2

N∑
n=1

‖A(n)‖2
F , α > 0, 0 ≤ θ < 1

.
The penalty functions verify the assumptions on Ω1 and Ω2 since Ω1 admits a proximal
operator, that is the Soft thresholding [23] and Ω2 is differentiable. The retraction chosen to
incorporate orthogonal constraint is the QR-based one [29], which enforces the orthogonality
by retaining the Q matrix of the QR decomposition.

6.1. Spatio-temporal data prediction

Spatio-temporal forecasting is the task of predicting the future values of multivariate
time series given historical observations. For this task, we use the Var(L) model [18]. Given
an three-order tensor X ∈ RP×T×M (whose orders represent respectively the locations, the
time and the variables), this model seeks to determine a parameter tensor W [18] through
the numerical resolution of the minimization problem given by:

min
W

{
f(W) =∆ ‖X − X̂‖2

F + µ

M∑
m=1

Trace
(
X̂T

:,:,mSX̂:,:,m

)}
(14)

subject to:
X̂:,t,m = W:,:,mXL

:,t,m

XL
:,t,m = [XT

:,t−1,m, ..,X
T
:,t−L,m]T , rank(W(n)) ≤ R

The matrices W:,:,m and W(n) respectively correspond to the subtensor derived from W
fixing its third index to m and to the mode-n matricized forms of W . The functions Trace
and rank represent the trace and the rank of a matrix. The role of the similarity matrix
S, predefined by user, is to ensure local consistency (i.e. the variables of interest are not

13

significantly different for two close locations). The parameter L is referred to as the number
of lags. It is worth to notice that this problem cannot be split into independent minimization
problems (with respect to the variables {W:,:,m}1≤m≤M) due to the constraint on the rank
of the matricized forms of W .

6.1.1. Resolution scheme

An alternative expression of f(W) is given by:

f(W) =
T∑
t=1

M∑
m=1

‖X:,t,m −W:,:,mXL
:,t,m‖2

F +
T∑
t=1

M∑
m=1

zt
(
WT

:,:,mSW:,:,m

)
zTt (15)

with zt = (XL
:,:,m)Tt,: representing tth row of the matrix (XL

:,:,m)T .
A resolution scheme named ALTO has been proposed in [18] for the problem (14). The
principle is to infer the parameter tensor W through a two-step approach. The first step
is to split the tensor X into subtensors along the second mode representing the time steps
and sequentially update the parameter tensor W (this is possible because of the equation
(15)). Let’s denote W t the tth parameter tensor of the sequence. The second step consists
to project W t in a low rank subspace via random projections using factors inferred from
W t−1. The second step of ALTO follows the same principle as OTL in the sense that the
two methods update the factors of W t using the latent factors inferred from W t−1. Hence,
to perform a fair comparison between our method and ALTO, we simply choose a two-step
approach: the first is identical to the resolution scheme of ALTO and the second is replaced
by OTLsingle. This resolution strategy will be referred to as OTLsingle. We consider a
third approach referred to as TuckerBatch following the same principle as ALTO with the
second step replaced by standard Tucker decomposition.

6.1.2. Data sets

Synthetic data set: we consider a synthetic data set X ∈ RP×T×M defined by:
X :,t,m = W :,:,mY :,t,m + E :,t,m with W = G ×1 A(1) ×2 A(2) ×3 A(3), G ∈ RR×R×R being
a diagonal tensor (i.e. all its extra-diagonal elements are equal to 0) whose rth diagonal
element is equal to r. The entries of the matrices

{
A(n)

}
1≤n≤3

are drawn from a uniform

distribution on [0, 1] and the noise E is a tensor whose entries are drawn from a centered
Gaussian distribution with standard deviation 1

2
.

The similarity matrix S is defined by: S = BBT + 10−1 × I (I being the identity matrix
and B a random matrix whose entries are drawn from a centered Gaussian distribution
with standard deviation 1

2
). This choice is motivated by the fact that the problem (14) is

easy to solve when the similarity matrix is positive definite [18]. For fairness purpose, all the
parameters that the methods have in common have been chosen identically. The parameters
α and θ are respectively fixed to 102 and 10−2. The initial activation tensor as well as the
initial dictionary matrices entries are drawn from a standard Gaussian distribution. The
number of epochs is fixed to 1.

14

Figure 1: Synthetic spatio-temporal prediction problem: left (MSE over 10 different runs), right (CPU
running time)

Real data set: we use a dataset containing 121 users ratings in the Pittsburgh area for
1200 intervals of time back on 4 months for different types of venue.
The value of the rank is determined by 5-fold cross-validation among 10 values ranging from
3 to 12. The hyperparameters α and θ are fixed to 102 and 10−2 and the number of epochs
to 1.

6.1.3. Evaluation criterion

The evaluation criterion is the Mean Square Error defined by:

MSE =
1

MT

M∑
m=1

T∑
t=L+1

‖X:,t,m −W:,:,mXL
:,t,m‖2

F

The parameter tensor W is determined by processing a training tensor X train and the
evaluation criterion evaluated using a test tensor X test different from X train.

6.1.4. Results

Synthetic data set
The Mean Square Error values over 10 runs (the tensor X is defined by 10 different random
seeds) and the CPU running time with respect to the parameter L are reported on the figure
1. Our approach yields results very close to those obtained by Tucker decomposition with
less running time and outperforms ALTO in term of Mean Square Error. This is explained
by the fact that the bias induced by solving minimization problem is less important [30] than
the one induced via random projections. The ALTO approach is faster than the two other
methods because it simply performs projections on randomly generated subspaces while the
two other approaches numerically solve minimization problems.
Real data set
The figure 2 provide the Mean Square Errors and the CPU running time. Our resolution
scheme outperforms Tucker and ALTO methods with much less running time compared to
Tucker and much important running time compared to ALTO.

15

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Lag parameter L

0.88

0.90

0.92

0.94

0.96
M

ea
n

Sq
ua

re
 E

rro
r

TuckerBatch-unconstrained
OTLsingle-unconstrained
OTLsingle-ortho
Alto

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Lag parameter L

0

20

40

60

80

CP
U

Ru
nn

in
g

Ti
m

e

TuckerBatch-unconstrained
OTLsingle-unconstrained
OTLsingle-ortho
Alto

Figure 2: Real spatio-temporal prediction problem: left (MSE), right (CPU running time)

6.2. Multimodal dictionary learning

6.2.1. Dictionary learning on synthetic data set

The synthetic data set considered is a sequence of 20000 three-order tensors of size 30×30×30
split into two sets Strain and Stest whose sizes are respectively equal to 15000 and 5000. The
set Strain is used for the training stage, i.e. the inference of the three dictionary matrices
and the evaluation criterion is determined on the test set Stest. Each tensor X t (for both
the training and the test sets) is defined by: X t = Gt ×1 A(1) ×2 A(2) ×3 A(3).
The tensor Gt ∈ RR×R×R is a three-order tensor whose entries are drawn from a cen-
tered Gaussian distribution with standard deviation 1

5
. The entries of the matrices A(1) ∈

R30×R,A(2) ∈ R30×R,A(3) ∈ R30×R are drawn from a centered Gaussian distribution with
standard deviation 1

10
. For the dictionary matrices inference, the value of the activation

tensor rank is fixed to (R,R,R), i.e. the value used for the sample definition in order to
prevent biased comparison. For fairness purpose, we choose the same initial points for the
four competitors. The activation tensors are initialized by drawing random number from a
centered Gaussian distribution with standard deviation 1

10
and the dictionary matrices from

the same distribution with standard deviation 1
100

. The gradient descent step is fixed to
η = 10−5. The hyperparameters α and θ are respectively fixed to 102 and 10−2. The block
coordinate descent is stopped when the fitting error is inferior to a threshold fixed to 10−3 or
when 20 iterations is reached (an iteration being the updates of all the dictionary matrices{
A(n)

}
1≤n≤3

). The ”Sparse coding” (Algorithm 1) and the ”Update of A(n)” (Algorithm

2) algorithms are stopped when the fitting error is inferior to 10−3 or 20 iterations (an iter-
ation being an update during the gradient descent) are reached. The number of epochs is
fixed to 1. The evaluation criterion is the Root Mean Square Error RMSE on the test set
defined by:

RMSE =

(
1

T

∑
X t∈Stest

‖X t − Gt ×1 A(1)
s ×2 A(2)

s ×3 A(3)
s ‖2

F

) 1
2

with T being the cardinality of Stest, A
(n)
s the factors inferred from the processing of Strain

and Gt the projection of X t on
{

A
(n)
s

}
1≤n≤3

.

16

Figure 3: Left: Root Mean Square Error over three runs, Right: CPU running time on log10 scale

The results are reported on the figure 3. The predictive error of our approach is three times
less important than the error of ALTO. This is due to the fact that the synthetic data does
not verify the low rank assumption. Besides, it performs as well as the Batch method with
less running time.

6.2.2. Nonnegative multimodal dictionary learning

For this experiment, we compare our approach to ALTO for the dictionary inference from a
data set subject to positivity constraint (i.e. all the data samples have positive entries). The
evaluation is performed on the inpainting task, which aims to infer missing pixels in an image
(2D in our case). For this application, the training data set Strain is constructed by selecting
overlapping patches P t of size 8 × 8 from the input image and the dictionary matrices
(length, width dictionary matrices respectively denoted by Al ∈ R8×R,Aw ∈ R8×R, R being
an integer whose value has to be defined) are learned from Strain through a nonnegative
decomposition (motivated by the positivity of the pixel values in an image) . Each patch is
then inpainted by estimating the sparse coefficients through the projection of the non-missing
pixels on the learned dictionaries, i.e.:

P̂ t = Gt ×1 Al ×2 Aw,Gt ← arg min
G≥0

‖M� (X t − G ×1 Al ×2 Aw) ‖2
F + λ‖G‖1

P̂ t is the reconstructed patch, M is the matrix defining the mask and � the element-wise
multiplication. The sparsity level λ is fixed to 10−3 and the number of epochs to 5. The
evaluation criterion is the PSNR defined by:

PSNR = 10 log10

(
m× n× 2552

‖Î− I‖2
F

)

The variables m,n, I, Î respectively represent the image sizes, the real and the reconstructed
images.
The inpainting task results are illustrated on the figures 4, 5 and 6.

17

0 1 2 3 4 5
Epoch

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

Ob
je

ct
iv

e
fu

nc
tio

n
on

 lo
gs

ca
le

TuckerBatch-unconstrained
OTLsingle-unconstrained
OTLminibatch-unconstrained

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.004

0.005

0.006

0.007

Ob
je

ct
iv

e
fu

nc
tio

n
on

 lo
gs

ca
le

+1.01e1

OTLsingle-unconstrained
OTLminibatch-unconstrained

0 500 1000 1500 2000 2500 3000 3500
CPU running time (seconds)

0.0055

0.0060

0.0065

0.0070

0.0075

0.0080

Ob
je

ct
iv

e
fu

nc
tio

n
on

 lo
gs

ca
le

+1.01e1

OTLsingle-unconstrained
OTLminibatch-unconstrained

Figure 4: Top left: average PSNR over three different generations of the random pixels, Top right: objective
function on logarithmic scale with respect to the number of epochs (one epoch is one pass over data samples)
for Rank=16, Low left: objective function on logarithmic scale with respect to the number of epochs (one
epoch is one pass over data samples) for Rank=16, Low right: Objective function with respect to time

As expected, we notice that the nonnegativity constraint improves the image quality
in terms of PSNR, i.e. the nonnegative OTLsingle method yields greater PSNR than the
unconstrained approach and the image quality is better visually. The same remark holds
for the OTLminibatch method. It is worth to notice that all of our constrained approaches
yield better result compared to ALTO. This justifies empirically the importance of setting
up decomposition methods that take into account the characteristics of the data we are
dealing with (positivity in this experiment).
A part of figure 4 presents the convergence of the objective value with respect to the number
of epochs and confirms our intuition that is the faster convergence of OTLminibatch (see
figure 4: Low left and Low right) compared to OTLsingle as well as the faster convergence
of our approach with respect to TuckerBatch (see figure 4: Top left). The figure 4 proves
that for a fixed number of epochs, our objetcive function decreases and for a fixed number
of iteration, it learns better with the number of epochs 7: this prouves empirically the
convergence of our approach.

7. Conclusion

In this paper, we propose an online tensor decomposition approach named OTL inspired
from matrix-based online dictionary learning. The approach proposed in this work is used
to perform a multimodal dictionary learning task via online Tucker decomposition while
being enough flexible to incorporate common constraints that are frequently encountered in
signal processing, to name but a few sparsity, nonnegativity, orthogonality. A theoretical

18

Figure 5: inpainting results from left to right: image with 50% of missing pixels, real image, Nonnegative
OTLsingle, Unconstrained OTLsingle

Figure 6: inpainting results from left to right : OTLminibatch-nonnegative, OTLminibatch-unconstrained,
Tucker-unconstrained, ALTO

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Epochs
11

12

13

14

15

16

17

18

19

P
S
N

R

OTLsingle-nonnegative
1.0 1.5 2.0 2.5 3.0 3.5 4.0

Epochs
14.5

15.0

15.5

16.0

16.5

17.0

17.5

18.0

P
S
N

R

OTLminibatch-nonnegative

Figure 7: PSNR over the number of epochs for OTLsingle and OTLminibatch

19

result is provided along with numerical experiments. In our numerical experiments, we prove
the promising character of our approach with respect to standard techniques. Precisely, we
demonstrate that our approach produces a prediction error similar to the one obtained with
a batch-based technique with less running time. Besides, the comparison with a state-of
the-art-approach ALTO yields promising results under much milder convergence conditions
(i.e. with no constraints on the latent factors sizes). In future work, we aim to investi-
gate a supervised extension of this approach as well as an extension for a tensor which
simultaneously grows in every mode.

References

[1] A. H. Phan, A. Cichocki, Extended hals algorithm for nonnegative tucker decomposition and its appli-
cations for multiway analysis and classification, Neurocomput. 74 (11) (2011) 1956–1969.

[2] L. R. Tucker, Implications of factor analysis of three-way matrices for measurement of change, C.W.
Harris (Ed.), Problems in Measuring Change, University of Wisconsin Press (1963) 122–137.

[3] F. L. Hitchcock, The expression of a tensor or a polyadic as a sum of products, J. Math.Phys. 6 (1)
(1927) 164–189.

[4] R. B. Cattell, Parallel proportional profiles and other principles for determining the choice of factors
by rotation, Psychometrika 9 (4) (1944) 267–283.

[5] A. Cichocki, R. Zdunek, A. H. Phan, S.-I. Amari, Nonnegative matrix and tensor factorizations: Ap-
plications to exploratory multi-way data analysis and blind source separation, Chichester, UK: John
Wiley and Sons, Ltd, (2009) .

[6] A. Rajwade, A. Rangarajan, A. Banerjee, Image denoising using the higher order singular value de-
composition, IEEE Transactions on Pattern Analysis and Machine Intelligence 35 (4) (2013) 849–862.

[7] S. Yan, D. Xu, Q. Yang, L. Zhang, X. Tang, H.-J. Zhang, Multilinear discriminant analysis for face
recognition, IEEE Transactions on Image Processing 16 (1) (2006) 212–220.

[8] M. A. O. Vasilescu, D. Terzopoulos, Multilinear analysis of image ensembles: Tensorfaces, in: Proceed-
ings of the 7th European Conference on Computer Vision-Part I, 2002, pp. 447–460.

[9] S. Zubair, W. Wang, Tensor dictionary learning with sparse tucker decomposition, International con-
ference on digital signal processing(DSP) (2013) 1–6.

[10] F. Huang, A. Anandkumar, Convolutional dictionary learning through tensor factorization, The 1st
International Workshop Feature Extraction: Modern Questions and Challenges (2015) 116–129.

[11] J. Xu, J. Zhou, P.-N. Tan, X. Liu, L. Luo, Wisdom: Weighted incremental spatio-temporal multi-task
learning via tensor decomposition, International Conference on Big Data (2016) 522–531.

[12] Q. Shi, Y. ming Cheung, Q. Zhao, Feature extraction for incomplete data via low-rank tucker decom-
position, ECML PKDD (2017) 564–581.

[13] T. Variddhisa, D. P. Mandic, Online multilinear dictionary learning for sequential compressive sensing,
CoRR, abs/1703.02492, (2017) .

[14] H. Kasai, B. Mishra, Low-rank tensor completion:a riemannian manifold preconditioning approach,
ICML 48 (2016) 1012–1021.

[15] X. Li, W. Hu, Z. Zhang, X. Zhang, G. Luo, Robust visual tracking based on incremental tensor subspace
learning, ICCV (2007) 1–8.

[16] S. Zhou, N. X. Vinh, J. Bailey, Y. Jia, I. Davidson, Accelerating online cp decompositions for higher
order tensors, in: Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 1375–1384.

[17] G. Zhou, A. Cichocki, Q. Zhao, S. Xie, Efficient nonnegative tucker decompositions: Algorithms and
uniqueness, IEEE Transactions on Image Processing 24 (12) (2015) 4990–5003.

[18] R. Yu, D. Cheng, Y. Liu, Accelerated online low-rank tensor learning for multivariate spatio-temporal
streams, in: Proceedings of the 32Nd International Conference on International Conference on Machine
Learning, 2015, pp. 238–247.

20

[19] L. D. Lathauwer, B. D. Moor, J. Vandewalle, A multilinear singular value decomposition, SIAM J.
Matrix Anal. Appl. 21 (4) (2000) 1253–1278.

[20] A. Traoré, M. Berar, A. Rakotomamonjy, Non-negative tensor dictionary learning, ESANN (2018) .
[21] J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online dictionary learning for sparse coding, ICML ’09 (2009)

689–696.
[22] K. Slavakis, G. B. Giannakis, Online dictionary learning from big data using accelerated stochastic

approximation algorithms, ICASSP (2014) 16–20.
[23] N. G. Polson, J. G. Scott, B. T. Willard, Proximal algorithms in statistics and machine learning,

Statistical Science 30 (4) (2015) 559–581.
[24] S.-J. Kim, Online kernel dictionary learning, 2015 IEEE Global Conference on Signal and Information

Processing (GlobalSIP) (2015) 103–107.
[25] J. Bolte, S. Sabach, M. Teboulle, Proximal alternating linearized minimization for nonconvex and

nonsmooth problems, Math. Program. 146 (1-2) (2014) 459–494.
[26] R. Zdunek, A. Cichocki, Fast nonnegative matrix factorization algorithms using projected gradient

approaches for large-scale problems, Intell. Neuroscience 2008 (2008) 3:1–3:13.
[27] A. Cichocki, D. Mandic, L. D. Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, H. A. PHAN, Tensor Decom-

positions for Signal Processing Applications: From two-way to multiway component analysis, IEEE
Signal Processing Magazine 32 (2) (2015) 145–163.

[28] P.-A. Absil, R. Mahony, R. Sepulchre, Optimization algorithms on matrix manifolds, Princeton Uni-
versity Press, Princeton, NJ, USA.

[29] G. Olikier, P.-A. Absil, L. D. Lathauwer, Variable projection applied to block term decomposition of
higher-order tensors, LVA/ICA (2018) 139–148.

[30] P. Zhao, T. Zhang, Accelerating minibatch stochastic gradient descent using stratified sampling, CoRR
(2014) .

[31] W. GANDER, Algorithms for the qr-decomposition, RESEARCH REPORT (1980) .

Appendix A. Complexity (in time) analysis

In this section, we present the gain of complexities of the mini-batch extension with
respect to the standard approach in the constrained (positivity and orthogonality) and the
unconstrained cases. The complexities (in time) per update for the Sparse coding and the
dictionary update are given by the table A.1. From this table, we notice that the mini-batch
extension requires less computations than the standard online approach. Indeed, for ρ ≥ 1
sample units newly acquired {X i}1≤i≤ρ, let’s consider two update strategies StrategyI and
StrategyII, which respectively are about updating the dictionary matrices by applying
the standard approach OTLsingle and its extension OTLminibatch. For the Sparse coding,
the complexity per update is O(2ρN

∏N
k=1 IkJ

2
k) for the two strategies. For the dictionary

update stage, we have the following observations:

• Unconstrained decomposition: StrategyII requires (ρ−1)
(
In
∏N

k=1 Jk + 13InJn

)
op-

erations less than StrategyI per update;

• Nonnegative decomposition: the gain in terms of complexity of StrategyII with re-

spect to StrategyI is equal to (ρ− 1)
(
In
∏N

k=1 Jk + 14InJn

)
per update;

• Orthogonal decomposition: StrategyII requires (ρ − 1)
(
InJn + J2

n + In
∏N

k=1 Jk

)
+

(ρ− 1)J2
n

∏N
k=1,k 6=n Ik less computations than StrategyI per update.

21

The proposed extension can then be a good alternative since it does not induce a substantial
lost of information with respect to OTLsingle (proved through numerical experiments) while
requiring less computations.

OTLsingle

Constraints

Steps
Sparse coding Update of A(n)

Unconstrained N
∏N

k=1 IkJk + 2N
∏N

k=1 IkJ
2
k + 10

∏N
k=1 Jk 6InJn + InJ

2
n + J2

n + In
∏N

k=1 Jk + J2
n

∏
k 6=n Ik

Nonnegativity N
∏

k=1 IkJk + 2N
∏N

k=1 IkJ
2
k + 6

∏N
k=1 Jk 7InJn + InJ

2
n + J2

n + In
∏N

k=1 Jk + J2
n

∏
k 6=n Ik

Orthogonality N
∏N

k=1 IkJk + 2N
∏N

k=1 IkJ
2
k + 10

∏N
k=1 Jk 7InJn +6InJ

2
n +2J2

n + I2n(1+ 2Jn)+ In
∏N

k=1 Jk +

J2
n

∏
k 6=n Jk

OTLminibatch
Unconstrained ρN

∏N
k=1 IkJk + 2ρN

∏N
k=1 IkJ

2
k + 10ρ

∏N
k=1 Jk 5InJn + InJ

2
n + ρ(InJn + In

∏N
k=1 Jk + J2

n +

J2
n

∏
k 6=n Ik)

Nonnegativity ρN
∏N

k=1 IkJk + 2ρN
∏N

k=1 IkJ
2
k + 6ρ

∏N
k=1 Jk 6InJn + InJ

2
n + ρ(InJn + In

∏N
k=1 Jk + J2

n +

J2
n

∏
k 6=n Ik)

Orthogonality ρN
∏N

k=1 IkJk + 2ρN
∏N

k=1 IkJ
2
k + 10ρ

∏N
k=1 Jk I2n(1 + 2Jn) + 6InJn + 6InJ

2
n + J2

n + ρ(InJn +

In
∏N

k=1 Jk + J2
n + J2

n

∏N
k 6=n Ik)

Table A.1: Complexity in time per update: gradient descent for A(n) and proximal gradient descent for the
activation tensor G

NB: these complexities have been computed by considering Ω1 and Ω2 as defined in the nu-
merical experiments. The orthogonal constraint is imposed only on the dictionary matrices.
The QR decomposition algorithm considered is the Modified Gram-Schmidt [31].

22

Convergence analysis

In the convergence analysis is about exploring a ”double” asymptotic behavior in the sense
we consider the behavior of the approach when the both the number of samples and the
number of iterations in the block coordinate go to infinity.

Appendix B. Recall of the definitions and supplemental notations

Appendix B.1. Recall of definitions

min
A(1),..,A(N)

f(A(1), ..,A(N))

with
f(A(1), ..,A(N)) = EP(l(X ,A(1), ..,A(N)))

= lim
t→∞

ft(A
(1), ..,A(N))

= lim
t→∞

1

t

t∑
i=1

l(X i,A
(1), ..,A(N))

We denote by f̂n,t the function A → f̂t(A
(1)
k+1, ..,A

(n−1)
k+1 ,A,A

(n+1)
k , ..A

(N)
k). We prove that

A
(n)
k+1,t converges to the set of stationary points of A→ f(A

(1)
k+1, ..,A

(n−1)
k+1 ,A,A

(n+1)
k , ..A

(N)
k).

From this result, we prove that
{

A
(1)
k , ..,A

(N)
k

}
converges to the set of stationary points of(

A(1), ..,A(N)
)
→ f(A(1), ..,A(N)). For the minimization f̂n,t with respect to A(n) (defin-

ing the sequence A
(n)
k+1,t: see section 4), we replace f̂n,t by f̂n,t − α(1−θ)

2
(
∑n−1

p=1 ‖A
(p)
k+1‖2

F +∑N
q=n+1 ‖A

(q)
k ‖2

F) since the terms dropped does not change anything to the minimization
problem. Hence, in the sequel, we consider the following notations:

A
(n)
k+1,t = arg min

A(n)∈KIn,Jn
f̂n,t(A

(n)) (B.1)

l(X ,A(n)) = min
G

1

2
‖X −G×p∈In−1 A

(p)
k+1×nA(n)×q∈In+1

N
A

(q)
k ‖

2
F +αθ‖G‖1 +

α(1− θ)
2

‖A(n)‖2
F

fn(A(n)) = EP(l(X ,A(n)))

fn,t(A
(n)) =

1

t

t∑
i=1

l(X t,A
(n))

f̂n,t(A
(n)) =

1

t

t∑
i=1

1

2
‖X i − Gi ×p∈In−1 A

(p)
k+1 ×n A(n) ×q∈In+1

N
A

(q)
k |

2
F + αθ‖Gi‖1 +

α(1− θ)
2

‖A(n)‖2
F

=
1

2
Trace(ξtA

(n)TA(n))− Trace(A(n)ηt) +
1

t

t∑
i=1

(
1

2
‖X i‖2

F + Ω1(Gi)) + Ω2(A(1), ..,A(N))

23

The sequences ξt and ηt are defined by:

ξt =
1

t

t∑
i=1

ΓiΓ
T
i , ηt =

1

t

t∑
i=1

ΓiX
(n)T
i ,Γi = G

(n)
i ⊗p∈In−1 A

(p)T
k+1 ⊗q∈In+1

N
A

(q)T
k (B.2)

with:

Gi = arg min
G

‖X i − G ×p∈In−1 A
(p)
k+1 ×n A

(n)
i−1 ×q∈In+1

N
A

(q)
k ‖

2
F + αθ‖G‖1 +

α(1− θ)
2

‖A(n)‖2
F

The derivatives of fn and l with respect to A(n) are simply referred to as ∂fn and ∂2l.

Appendix B.2. Supplemental notations

The norm on Rm1×n1 × ..×RmK×nK (Rmk×nk being the set of matrices of size mk × nk),
denoted by ‖ · ‖∏

k∈IK
Rmk×nk is defined by: ‖(A(1), ..,A(K))‖∏

k∈IK
Rmk×nk =

∑K
k=1 ‖A(k)‖F .

For two matrices A ∈ RM×N and B ∈ RM×N , the dot product is defined by:
〈A,B〉 =

∑
1≤m≤M,1≤n≤N Am,nBm,n. The supremum of a continuous function f defined on a

compact domain D will be referred to as ‖f‖∞: ‖f‖∞ = supx∈D | f(x) |. The sign function
is denoted by sign.

Appendix C. Assumptions

• Assumption I : the data samples are drawn from a probability distribution with com-
pact support: this a natural assumption since we work only with finite values.

• Assumption II : for all the minimization problems considered, the activation tensor G
and and the dictionary matrices A(n) are assumed to belong to some compact sets, i.e.
G ∈ KG,A

(n) ∈ KIn,Jn : this corresponds to the interpretation of `1 − `2 penalty.

• Assumption III : C:,j (vec(X)−C vec(G)) = θα vec(G)j) if sign(vec(G)j) 6= 0

|C:,j (vec(X)−C vec(G)) | ≤ αθ otherwise, with: C =
(
⊗p∈In−1A

(p)
k+1

)
⊗A⊗

(
⊗q∈In+1

N
A

(q)
k

)
This condition ensures the uniqueness of the Sparse Coding problem.

• Assumption IV : during the block coordinate descent, we seek A
(n)
k+1 in a ball centered

around A
(n)
k of radius 1

k
1
2

, i.e. ‖A(n)
k+1 −A

(n)
k ‖2

F ≤ 1
k
.

A natural way to incite the enforcing of this assumption is to increase the objective
function associated to the update problem of A(n) by ρ‖A(n) −A

(n)
k+1‖2

F . Again, it is
straightforward to see that this term does not change anything to the reasoning related
to the analysis. Thus, it is dropped for writing simplicity;

• Assumption V : ∀k ∈ N,A(n)
k is an interior point of KIn,Jn .

24

Algorithm 4 OTL-infinite

Inputs:
{

A
(n)
0

}
1≤n≤N

, the hyperparameters α > 0, 0 ≤ θ < 1

for n from 1 to N do
for k from 1 to ∞ do

A
(n)
k+1 =

{
limt→∞A

(n)
k+1,t if A

(n)
k+1,t converges

arg minA(n) f̂∞(A(n)) otherwise

with A
(n)
k+1,t defined by the equation (B.1)

end for
end for
return

{
A(n)

}
1≤n≤N

Appendix D. Algorithm for infinite number of samples and infinite number of
iterations

In the theoretical framework, we assume that the number of iterations as well as the
number of samples are infinite. Then, the rewriting of the algorithm yields Algorithm 4.

In the sequel, the penalty functions considered are the `1 norm for Ω1 (`1− penalty) and
the square of the Frobenius norm for Ω2 (l2− penalty) as in the numerical experiments. The

function f̂∞ is defined by:

f̂∞(A(n)) =
1

2
Trace

((
ξ̃t +

α(1− θ)
2

I

)
A(n)TA(n)

)
− Trace

(
A(n)η̃t

)
where: ξ̃n and η̃t represent accumulation points of the sequences ξ̃t and η̃t defined by (B.2)
whose existences are ensured by the boundedness of ξt and ηt.

Remark 1. The differences between the algorithms Algorithm ?? and Algorithm 3 result
from the gap between theory and numerical analysis: firstly, all the data samples are available
at the same time and secondly, the sparse code of a sample X t is computed via projection

on
{

A
(1)
t−1, ..,A

(N)
t−1

}
instead of

{
A

(1)
k+1, ..,A

(n−1)
k+1 ,A

(n)
t−1,A

(n+1)
k , ..,A

(N)
k

}
in order to alleviate

the computational burden of the approach.

Appendix E. Useful properties

Property 1. For two matrices A,B such that ‖A‖F ≤ δ1, ‖B‖F ≤ δ2. There exists M > 0
such that:

‖‖A‖2
F − ‖B‖2

F‖ ≤M1‖A−B‖F

Proof:
‖A‖2

F = ‖A−B + B‖2
F = ‖A−B‖2

F + 2 < A−B,B > +‖B‖2
F

25

⇒ ‖A‖2
F − ‖B‖2

F ≤ ‖A−B‖2
F + 2‖A−B‖F‖B‖F

⇒ ‖A‖2
F − ‖B‖2

F ≤ ‖A−B‖F‖A−B‖F + 2δ2‖A−B‖F
⇒ ‖A‖2

F − ‖B‖2
F ≤ (δ1 + δ2)‖A−B‖F + 2δ2‖A−B‖F

Thus, we have:

‖A‖2
F − ‖B‖2

F ≤ (δ1 + 3δ2)‖A−B‖F ≤ max(δ1 + 3δ2, δ2 + 3δ1)‖A−B‖F (E.1)

By permuting the role of A and B, we have:

‖B‖2
F − ‖A‖2

F ≤ (δ2 + 3δ1)‖A−B‖F ≤ max(δ1 + 3δ2, δ2 + 3δ1)‖A−B‖F (E.2)

By combining (E.1) and (E.2), we have:
‖‖A‖2

F − ‖B‖2
F‖ ≤ max(δ1 + 3δ2, δ2 + 3δ1)‖A−B‖F

Property 2. For four matrices A1,B1 ∈ RN×Mand A2,B2 ∈ RM×L such that ‖A1‖F ≤
δ1, ‖B2‖F ≤ δ2, the following inequality holds:
‖A1A2 −B1B2‖F ≤ δ1‖A2 −B2‖F + δ2‖A1 −B1‖F

Proof:
‖A1A2 −B1B2‖F = ‖A1(A2 −B2 + B2)−B1B2‖F = ‖A1(A2 −B2) + A1B2 −B1B2‖F
⇒ ‖A1A2 −B1B2‖F ≤ δ1‖A2 −B2‖F + δ2‖A1 −B1‖F

Property 3. If X = G ×1 A(1)..×N A(N) = G ×n∈IN A(n), the mode-n matricized form of
X denoted X(n) is defined by:

X(n) = A(n)G(n)
(
A(1) ⊗ ..⊗A(n−1) ⊗A(n+1)...⊗A(N)

)T
= A(n)G(n) ⊗m∈IN 6=n A(n)T

This is the matricization property of the Tucker decomposition.

Property 4. Let’s denote g(A(n)) = ‖X −G×1 A(1)..×n A(n)..×N A(N)‖2
F . The derivative

of f is given by:

∂g(A(n)) = −2
(
X(n) −A(n)G(n) ⊗m∈IN 6=n A(m)T

) (
⊗m∈IN 6=nA(m)

)
G(n)T

= −2
(
X̂(n)G(n)T −A(n)B(n)B(n)T

)
with X(n) and B(n) being respectively the mode-n matricized forms of the tensors X̂ and B
defined by:
X̂ = X ×p∈In−1 A(p)T ×n I×q∈In+1

N
A(q)T , I ∈ RIn×In: identity matrix

B = G ×p∈In−1 A(p) ×n I×q∈In+1
N

A(q), I ∈ RJn×Jn: identity matrix

Proof:
g(A(n) + h) = ‖X(n) − (A(n) + h)G(n) ⊗m∈IN 6=n A(m)T‖2

F

⇒ g(A(n) + h) = ‖X(n) −A(n)G(n) ⊗m∈I 6=n A(m)T + hG(n) ⊗m∈IN 6=n A(m)T‖2
F

⇒ g(A(n) + h) = ‖X(n)−A(n)G(n)⊗m∈IN 6=n A(m)T‖2
F + ‖hG(n)⊗m∈IN 6=n A(m)T‖2

F − 2〈X(n)−
A(n)G(n) ⊗m∈IN 6=n A(m)T , hG(n) ⊗m 6=n A(m)T 〉

26

⇒ g(A(n) + h) = g(A(n)) − 2〈
(
X(n) −A(n)G(n) ⊗m∈IN 6=n A(m)T

)
⊗m∈Im 6=n A(m)G(n)T , h〉 +

O (‖h‖2
F).

⇒ ∂g(A(n)) = −2
(
X(n) −A(n)G(n) ⊗m∈IN 6=n A(m)T

)
⊗m∈IN 6=n A(m)G(n)T

⇒ ∂g(A(n)) = −2X(n)
(
⊗m∈IN 6=nA(m)

)
G(n)T+2A(n)

(
G(n) ⊗m∈IN 6=n A(n)T

) (
⊗m∈IN 6=nA(n)G(n)T

)
⇒ ∂g(A(n)) = −2X(n)

(
⊗m∈IN 6=nA(m)

)
G(n)T+2A(n)

(
G(n) ⊗m∈IN 6=n A(n)T

) (
G(n) ⊗m∈IN 6=n A(n)T

)T
(property of transpose of Kronecker product).

By the Property 3, the mode-n matricization of X̂ and B are given by:
X̂(n) = X(n) ⊗m∈IN 6=n A(n) and B(n) = G(n) ⊗m∈IN 6=n A(m)T

From this observation, it is straightforward to see that:
∂g(A(n)) = −2X̂(n)G(n)T + 2A(n)B(n)B(n)T

Property 5. If the loading factors and the core tensor are bounded, f̂n,t is bounded by a
constant independent from t

Proof:
This is straightforward by triangular inequality along with Assumption II

Property 6. The function f̂n,t is strictly convex and Hessian lower bounded.

Proof:
f̂n,t(A) = 1

t

∑t
i=1

1
2
‖X i − Gi ×p∈In−1 A

(p)
k+1 ×n A ×q∈In+1

N
A

(q)
k ‖2

F + αθ‖Gi‖1 + (1−θ)α
2
‖A‖2

F ,
0 ≤ θ < 1,α > 0.

Appendix E.0.1. Strict convexity

f̂n,t(A) − (1−θ)α
2
‖A‖2

F is a convex function. Hence f̂n,t(A) is strongly convex, which
implies strict convexity.

Appendix E.0.2. Hessian (lower) boundedness

f̂n,t(A
(n)) = 1

t

∑t
i=1

1
2
‖X i−Gi×p∈In−1A

(p)
k+1×nA(n)×q∈In+1

N
A

(q)
k ‖2

F+αθ‖Gi‖1+ (1−θ)α
2
‖A(n)‖2

F

By the Property 4, we have:

∂f̂n,t(A
(n)) = 1

t

∑t
i=1

1
2

(
−2X̂

(n)
i G

(n)T
i + 2A(n)B

(n)
i B

(n)T
i

)
+ α(1− θ)A(n) with:

B
(n)
i = G

(n)
i

(
⊗p∈In−1A

(p)T
k+1 ⊗q∈In+1

N
A

(q)T
k

)
, X̂

(n)
i = X

(n)
i

(
⊗p∈In−1A

(p)
k+1 ⊗q∈In+1

N
A

(q)
k

)
Hence, we have:
∂f̂n,t(A

(n)) = A(n)St−Mt+α(1−θ)A(n) with St = 1
t

∑t
i=1 B

(n)
i B

(n)T
i , Mt = −1

t

∑t
i=1 X̂

(n)
i G

(n)T
i

Thus, the second derivative with respect to A(n) yields:
∂2f̂n,t(A

(n)) = STt ⊗IIn+(1−θ)αIInJn , IInJn ∈ RInJn×InJn and IIn ∈ RIn×In being the identity
matrices
⇒ ∂2fn,t(A

(n)) = St ⊗ IIn + (1− θ)αIInJn (symmetry of St)
Simple computations along with the mixed product property on the Kronecker operator
yield:
St ⊗ IIn = 1

t

∑t
i=1(B

(n)
i ⊗ IIn)(B

(n)
i ⊗ IIn)T

Hence, ∂2fn,t(A
(n)) is a symmetric positive definite matrix with all eigenvalues lower bounded

by (1− θ)α.

27

Property 7. The lost function l defined in the section Appendix B is a Lipschitz function
with respect to A(n) and uniformly bounded.

Proof:
A. Boundedness
This is straightforward by triangular inequality and the fact that the loading matrices and
the core tensor are bounded.
B. l est Lipschitz with respect to A(n)

The function A(n) → 1
2
‖X−G×p∈In−1A

(p)
k+1×nA(n)×q∈In+1

N
A

(q)
k ‖2

F+αθ‖G‖1+α(1−θ)
2
‖A(n)‖2

F is

differentiable and its derivative is continuous on RJ1×J2...×JN×RIn×Jn (since it is a polynomial
in the entries of G and A(n)). Given that the minimization problem with respect to G is a
minimization problem on a compact set of a continuous function, it admits a solution that
is unique (by Assumption III). Hence, by the theorem of Bonnan and Shapiro, the function

lost function A(n) → l(X ,A(n)) = minG
1
2
‖X − G ×p∈In−1 A

(p)
k+1 ×n A(n) ×q∈In+1

N
A

(q)
k ‖2

F +

αθ‖G‖1 + α(1−θ)
2
‖A(n)‖2

F is directionally differentiable and we have by Property 4

∂2l(X ,A(n)) = −
(
X̂(n)G

(n)T
0 (X ,A(n))−A(n)B(n)B(n)T

)
+ α(1− θ)A(n)

with X̂(n) and B(n) being the matricized forms of the tensors:
X̂ = X ×p∈In−1 A(p)T ×n I×q∈In+1

N
A(q)T ,B = G0 ×p∈In−1 A

(p)
k+1 ×n I×q∈In+1

N
A

(q)
k

G0(X ,A(n)) = arg minG ‖X−G×p∈In−1A
(p)
k+1×nA(n)×q∈In+1

N
A

(q)
k ‖2

F+αθ‖G‖1+α(1−θ)
2
‖A(n)‖2

F .

Since the derivative is bounded, l(X , .) is Lipschitz by the Mean Value theorem.

Property 8. f̂n,t is Lipschitz and bounded with constant independent of t.

Proof:
f̂n,t
(
A(n)

)
= 1

t

∑t
i=1

1
2
‖X(n)

i −A(n)B(n)‖2
F + αθ‖Gi‖1 + α(1−θ)

2
‖A(n)‖2

F with:

B(n) = G
(n)
i

(
⊗p∈In−1A

(p)T
k+1 ⊗q∈In+1

N
A

(q)T
k+1

)
,X

(n)
i and G

(n)
i being the mode-n matricized forms

of X i and Gi.

f̂n,t

(
A

(n)
1

)
− f̂n,t

(
A

(n)
2

)
= 1

t

∑t
i=1

1
2

(
‖X(n)

i −A
(n)
1 B(n)‖2

F − ‖X
(n)
i −A

(n)
2 B(n)‖2

F

)
+α(1−θ)

2

(
‖A(n)

1 ‖2
F − ‖A

(n)
2 ‖2

F

)
⇒| f̂n,t

(
A

(n)
1

)
− f̂n,t

(
A

(n)
2

)
|≤ 1

t

∑t
i=1M1‖

(
A

(n)
1 −A

(n)
2

)
B(n)‖F + M2‖

(
A

(n)
1 −A

(n)
2

)
‖F

(Property 1)

⇒| f̂n,t
(
A

(n)
1

)
− f̂n,t

(
A

(n)
2

)
|≤ 1

t

∑t
i=1 M3‖A(n)

1 −A
(n)
2 ‖F + M2‖A(n)

1 −A
(n)
2 ‖F (the latent

factors are bounded)

⇒| f̂n,t
(
A

(n)
1

)
− f̂n,t

(
A

(n)
2

)
|≤ (M3 +M2) ‖A(n)

1 −A
(n)
2 ‖F

Property 9. fn,t is Lipschitz and bounded with constant independent of t.

Proof: since the lost function l is Lipschitz with respect to A(n), fn,t(A
(n)) = 1

t

∑t
i=1 l(X i,A

(n))
is Lipschitz as linear combination with positive coefficients of Lipschitz functions and bound-
edness result from the boundedness of the loss function.

28

Property 10. Let’s consider the function ξ(X ,A(n),G):

ξ(X ,A(n),G) = 1
2
‖X − G ×p∈In−1 A

(p)
k+1 ×n A(n) ×q∈In+1

N
A

(q)
k ‖2

F + αθ‖G‖1 + α(1−θ)
2
‖A(n)‖2

F .

Let’s denote ∆(G) the function defined by: ∆(G) = ξ(X 1,A
(n)
1 ,G) − ξ(X 2,A

(n)
2 ,G). The

function ∆ is Lipschitz.

Proof:
∆(Gα)−∆(Gβ) = ξ(X 1,A

(n)
1 ,Gα)− ξ(X 2,A

(n)
2 ,Gα)−

(
ξ(X 1,A

(n)
1 ,Gβ)− ξ(X 2,A

(n)
2 ,Gβ)

)
⇒ ∆(Gα)−∆(Gβ) = ξ(X 1,A

(n)
1 ,Gα)−ξ(X 1,A

(n)
1 ,Gβ)−

(
ξ(X 2,A

(n)
2 ,Gα)− ξ(X 2,A

(n)
2 ,Gβ)

)
⇒| ∆(Gα)−∆(Gβ) |≤ | ξ(X 1,A

(n)
1 ,Gα)− ξ(X 1,A

(n)
1 ,Gβ) |︸ ︷︷ ︸

FT

+ | ξ(X 2,A
(n)
2 ,Gα)− ξ(X 2,A

(n)
2 ,Gβ) |︸ ︷︷ ︸

ST

ξ(X 1,A
(n)
1 ,Gα)−ξ(X 1,A

(n)
1 ,Gβ) = 1

2
‖X(n)

1 −A
(n)
1 G

(n)
α M(n)‖2

F +αθ‖Gα‖1 + α(1−θ)
2
‖A(n)

1 ‖2
F −

1
2
‖X(n)

1 −A
(n)
1 G

(n)
β M(n)‖2

F − αθ‖Gβ‖1 − α(1−θ)
2
‖A(1)

1 ‖F
FT ≤M1‖G(n)

α −G
(n)
β ‖F + αθ‖‖Gα‖ − ‖Gβ‖1‖ (boundedness+Property 1)

⇒ FT ≤M1‖Gα−Gβ‖F +M2‖Gα−Gβ‖F (second triangle inequality+norms equivalence).
An identical reasoning on ST concludes the proof.

Property 11. Let A be a matrix whose entries represent random variables, ∃β > 0, ‖E(A)‖F ≤
βE(‖A‖F) with (E(A))i,j = E(Ai,j)

Proof :
Since the set of matrices of a given size represent finite dimensional space and all norms in
a finite dimensional space are equivalent,β1, β2 > 0 deterministic such that:
β1‖A‖F ≤ ‖A‖1 ≤ β2‖A‖F . and β1‖E(A)‖F ≤ ‖E(A)‖1 ≤ β2‖E(A)‖F
Thus, we have:
‖E(A)‖F ≤ 1

β1
‖E(A)‖1 ≤ 1

β1
E(‖A‖1) ≤ β2

β1
E(‖A‖F)

The first and third inequalities are from norms equivalence in a finite dimensional vector
space and the second one is from triangular inequality.

Appendix F. Block-wise convergence

The reasoning for this section is inspired from the analysis provided by [21]. The objective

of this section is to prove that A
(n)
k+1,t converges to the set of stationary points of A(n) →

f(A
(1)
k+1, ..,A

(n−1)
k+1 ,A(n),A

(n+1)
k , ..,A

(n)
k). For notations simplicity, we denote A

(n)
k+1,t by A

(n)
t .

Appendix F.1. ∃M > 0, ‖A(n)
t −A

(n)
t+1‖F ≤ M

t

Proof:
f̂n,t(A

(n)) is strictly convex with Hessian lower bounded (Property 6)

f̂n,t(A
(n)
t+1) ≥ f̂n,t(A

(n)
t) +M‖A(n)

t+1 −A
(n)
t ‖2

F (F.1)

29

Moreover:
f̂n,t(A

(n)
t+1) = f̂n,t(A

(n)
t+1)− f̂n,t+1(A

(n)
t) + f̂n,t+1(A

(n)
t)

≤ f̂n,t(A
(n)
t+1)− f̂n,t+1(A

(n)
t+1) + f̂n,t+1(A

(n)
t) : :definition ofA

(n)
t+1

⇒ f̂n,t(A
(n)
t+1)− f̂n,t(A(n)

t) ≤ f̂n,t(A
(n)
t+1)− f̂n,t+1(A

(n)
t+1) + f̂n,t+1(A

(n)
t+1)− f̂n,t(A(n)

t)
This implies:

f̂n,t(A
(n)
t+1)− f̂n,t(A(n)

t) ≤ Qt(A
(n)
t+1)−Qt(A

(n)
t), Qt(A

(n)) = f̂n,t(A
(n))− f̂n,t+1(A(n)) (F.2)

It is worth to notice (by definition of A
(n)
t) that:

Qt(A
(n)
t+1)−Qt(A

(n)
t) ≥ 0 (F.3)

f̂n,t+1(A(n)) = t
t+1
f̂n,t(A

(n))+ α(1−θ)
2(t+1)

‖A(n)‖2
F + 1

2(t+1)
‖X t+1−Gt+1×p∈In−1A

(p)
k+1×nA(n)×q∈In+1

N

A(q)‖2
F

Hence, we have:

Qt(A
(n)) = −1

t
f̂n,t(A

(n))+ 1
t+1

(
1
2
‖X t+1 − Gt+1 ×p∈In−1 A

(p)
k+1 ×n A(n) ×q∈In+1

N
A

(q)
k ‖2

F + αθ‖Gt+1‖1

)
+

1
2(t+1)

‖A(n)‖2
F

⇒ Qt(A
(n)
1)−Qt(A

(n)
2) = 1

t

(
f̂n,t(A

(n)
2)− f̂n,t(A(n)

1)
)

+ 1
2(t+1)

(
‖X(n)

t+1 −A
(n)
1 Bn‖2

F − ‖X
(n)
t+1 −A

(n)
2 Bn‖2

F

)
+

α(1−θ)
2(t+1)

(‖A(n)
1 ‖2

F − ‖A
(n)
2 ‖2

F),B(n) = G
(n)
t+1

(
⊗p∈In−1A

(p)T
k+1 ⊗q∈In+1

N
A

(q)T
k

)
⇒| Qt(A

(n)
1) − Qt(A

(n)
2) |≤ 1

t
‖f̂n,t(A(n)

1) − f̂n,t(A
(n)
2)‖ + M

2(t+1)
‖A(n)

1 − A
(n)
2 ‖F (bounded-

ness+Property 1)

⇒ Qt(A
(n)
t+1)−Qt(A

(n)
t) ≤ M2

t
‖A(n)

t+1 −A
(n)
t ‖F + M

2(t+1)
‖A(n)

t+1 −A
(n)
t ‖F ≤ M3

t
‖A(n)

t+1 −A
(n)
t ‖F

(Property 8+equation (F.3))
Hence, we have with (F.1) and (F.2):

M‖A(n)
t+1 −A

(n)
t ‖2

F ≤ M3

t
‖A(n)

t+1 −A
(n)
t ‖F . By assuming A

(n)
t 6= A

(n)
t+1, we have:

‖A(n)
t+1 −A

(n)
t ‖F = O(1

t
)

Appendix F.2. The gradient of the function fn is Lipschitz

Proof:
fn(A(n)) = EP(l(X ,A(n)))
The function A→ l(X ,A) is differentiable and its derivative is bounded (property 7) by
a constant K, which is integrable. By the theorem of differentiation under integral, we have:
∂fn(A) = EP (∂2l(X ,A))

⇒ ∂fn(A) = EP

−(X̂(n)G
(n)T
0 (X ,A)−AB(n)B(n)T

)
+ (1− θ)αA︸ ︷︷ ︸

V(A)

with: B(n)(X ,A) = G

(n)
0 (X ,A)

(
⊗p∈In−1A

(p)T
k+1 ⊗q∈In+1

N
A

(p)T
k

)
30

V(A1)−V(A2) = −2X̂(n)
(
G

(n)
0 (X ,A1)−G

(n)
0 (X ,A2)

)
+ α(1− θ)(A1 −A2)

+2
(
A1B

(n)(X ,A1)B(n)T (X ,A1)−A2B
(n)(X ,A2)B(n)T (X ,A2

)
⇒ ‖V(A1)−V(A2)‖F ≤ α1‖G(n)

0 (X ,A1)−G
(n)
0 (X ,A2)‖F+2‖A1B

(n)(X ,A1)B(n)T (X ,A1)−
A2B

(n)(X ,A2)B(n)T (X ,A2)‖F + α(1− θ)‖A1 −A2‖F
Since all the matrices are bounded, we have:
⇒ ‖V(A1)−V(A2)‖F ≤ α1‖G(n)

0 (X ,A1)−G
(n)
0 (X ,A2)‖F + 2α2‖A1 −A2‖F

+2α3‖Bn(X ,A1)BT
n (X ,A1)−Bn(X ,A2)BT

n (X ,A2)‖F + α(1− θ)‖A1 −A2‖F (Property

2) ⇒ ‖V(A1) − V(A2)‖F ≤ α1‖G(n)
0 (X ,A1) − G

(n)
0 (X ,A1)‖F + (2α2 + α(1 − θ))‖A1 −

A2‖F +2α3(α4‖Bn(X ,A1)−Bn(X ,A2)‖F +α5‖BT
n (X ,A1)−BT

n (X ,A2)‖F)(Property 2)

⇒ ‖V(A1)−V(A2)‖F ≤ α1‖G(n)
0 (X ,A1)−G

(n)
0 (X ,A2)‖F +(2α2 +α(1−θ))‖A1−A2‖F +

α6‖Bn(X ,A1) − Bn(X ,A2)‖F (because the term ‖B(n)(X ,A1) − B(n)(X ,A2)‖F appears
two times)

⇒ ‖V(A1)−V(A2)‖F ≤ α1‖G(n)
0 (X ,A1)−G

(n)
0 (X ,A2)‖F +(2α2 +α(1−θ))‖A1−A2‖F +

α6‖G(n)
0 (X ,A1)

(
⊗p∈In−1A

(p)T
k+1 ⊗q∈In+1

N
A

(p)T
k

)
−G

(n)
0 (X ,A2)

(
⊗p∈In−1A

(p)T
k+1 ⊗q∈In+1

N
A

(p)T
k

)
‖F

(by replacing the expression of B(n)(X ,A))

⇒ ‖V(A1)−V(A2)‖F ≤ α1‖G(n)
0 (X ,A1)−G

(n)
0 (X ,A2)‖F + (2α2 + α(1− θ))‖A1 −A2‖F

+ α6‖(G(n)
0 (X ,A1) − G

(n)
0 (X ,A2))

(
⊗p∈In−1A

(p)T
k+1 ⊗q∈In+1

N
A

(p)T
k

)
‖F (distributivity of the

Kronecker product)
By the boundedness of the matrices, we have:

‖V(A1)−V(A2)‖F ≤ α8‖G(n)
0 (X ,A1)−G

(n)
0 (X ,A2)‖F +(2α2+α(1−θ))‖A1−A2‖F (F.4)

By definition of ∂fn, we have:
∂fn(A1)− ∂fn(A2) = EP(V(A1)−V(A2))
⇒ ‖∂fn(A1)− ∂fn(A2)‖F = ‖EP(V(A1)−V(A2))‖F
By Property 11,∃β > 0 such that:
‖∂fn(A1)− ∂fn(A2)‖F ≤ βEP(‖V(A1)−V(A2)‖F
By the inequality (F.4), we have:

‖∂fn(A1)− ∂fn(A2)‖F ≤M1EP(‖G(n)
0 (X ,A1)−G

(n)
0 (X ,A2)‖F) +M2‖A1 −A2‖F

It is sufficient to prove G0 is Lipschitz to prove the result
By definition,

G0(X ,A)← arg min
1

2
‖X − G ×p∈In−1 A

(p)
k+1 ×n A×q∈In+1

N
A

(q)
k ‖

2
F + αθ‖G‖1 +

α(1− θ)
2

‖A‖2
F

= arg min
G

1

2
vec (X)−

(
⊗p∈In+1A

(p)
k+1 ⊗A⊗q∈In+1

N
A

(q)
k

)
vec(G)‖F + αθ‖ vec(G)‖1

Given the Assumption III (uniqueness of the Sparse coding problem), Property 10 along
with the fact that the Sparse coding problem amounts to a classical least squares problem
with L1− penalty by vectorization of the Tucker decomposition, the same reasoning as the
one conducted in [21]: proposition 2 yields:
‖G0(X ,A1)−G0(X ,A2)‖F

31

≤M1‖
(
⊗p∈In−1A

(p)
k+1 ⊗A1 ⊗q∈In+1

N
A

(q)
k

)
−
(
⊗p∈In−1A

(p)
k+1 ⊗A2 ⊗q∈In+1

N
A

(q)
k

)
‖F

= M1‖
(
⊗p∈In−1A

(p)
k+1 ⊗ (A1 −A2)⊗q∈In+1

N
A

(q)
k

)
‖F (distributivity of the Kronecker prod-

uct)
⇒ ‖G0(X ,A1)−G0(X ,A2)‖F ≤M3‖A1 −A2‖F , which concludes the proof.

Appendix F.3. fn(A
(n)
t) converges

First step: f̂n,t(A
(n)
t) converges almost surely.

Proof
ut = f̂n,t(A

(n)
t)

ut+1 − ut = f̂n,t+1(A
(n)
t+1)− f̂n,t+1(A

(n)
t) + f̂n,t+1(A

(n)
t)− f̂n,t(A(n)

t)

⇒ ut+1 − ut ≤ f̂n,t+1(A
(n)
t)− f̂n,t(A(n)

t) (by definition of A
(n)
t+1)

f̂n,t+1(A
(n)
t) = t

t+1
f̂n,t(A

(n)
t) + 1

t+1
l(X t+1,A

(n)
t) (by definition of l(X t+1,A

(n)
t) and Gt+1)

Hence, we have:

ut+1 − ut ≤
l(X t+1,A

(n)
t)− f̂n,t(A(n)

t)

t+ 1
=
l(X t+1,A

(n)
t)− fn,t(A(n)

t) + fn,t(A
(n)
t)− f̂n,t(A(n)

t)

t+ 1
(F.5)

By noticing fn,t ≤ f̂n,t, we have:

ut+1 − ut ≤
l(X t+1,A

(n)
t)− fn,t(A(n)

t)

t+ 1
(F.6)

By conditioning the expression (F.5) with respect to the filtration F t (filtration determined
by the past information at time t), we have:

E(ut+1 − ut|F t) ≤ E(l(X t+1,A
(n)
t)|Ft)−fn,t(A(n)

t)

t+1
=

E(l(X t+1,A
(n)
t))−fn,t(A(n)

t)

t+1
(since l(X t+1,A

(n)
t) is

independent from the filtration F t)

⇒ EP(ut+1 − ut|F t) ≤ fn(A
(n)
t)−fn,t(A(n)

t)

t+1
(definition of fn(A

(n)
t))

⇒ EP(ut+1 − ut|F t) ≤ ‖fn−fn,t‖∞
t+1

,(the functions are bounded)

⇒ EP(ut+1 − ut|F t)
+ ≤ ‖fn−fn,t‖∞

t+1
(because ‖fn−fn,t‖∞

t+1
≥ 0)

Hence, we have:

EP(EP(ut+1 − ut|F t)
+) ≤ EP (‖fn − fn,t‖∞)

t+ 1
(F.7)

The lost function l(X ,A(n)) is uniformly bounded on a bounded set and EP(l2(X ,A(n)))
exists and is bounded (because the lost function is uniformly bounded). Hence, according
to the Theorem IV, ∃M > 0:
EP
(√

t | 1
t

∑t
i=1 l(X i,A

(n))− EP(l(X ,A(n)) |
)
≤M ,X drawn from P,∀A(n)

⇒ EP
(√

t | fn,t(A(n))− fn(A(n)) |
)
≤M ,∀A(n)

⇒ EP (‖fn,t − fn‖∞) ≤ M√
t

This inequality associated to (F.7) yields:
EP(EP(ut+1 − ut|F t)

+) ≤ M√
t(t+1)

≤ M

t
3
2

.

32

⇒
∑∞

t=1 EP(δt(ut+1 − ut)) =
∑∞

t=1 EP(EP(ut+1 − ut|F t)
+) <∞(δt being defined in Theorem

III). By the Theorem III, ut converges almost surely to u∞.

Second step: fn,t(A
(n)
t)− f̂n,t(A(n)

t)→ 0 a.s.
By the equation (F.5) we have:

ut+1 − ut ≤ l(X t+1,A
(n)
t)−fn,t(A(n)

t)

t+1
+

fn,t(A
(n)
t)−f̂n,t(A(n)

t)

t+1

⇒ E(ut+1 − ut) ≤ E(
fn,t(A

(n)
t)−f̂n,t(A(n)

t

t+1
)(the expectation of the first term is zero since the

data samples are assumed to be identically distributed)

⇒ EP(
f̂n,t(A

(n)
t)−fn,t(A(n)

t)

t+1
) ≤ EP(ut − ut+1)(*)

⇒
∑T−1

t=1 EP(
f̂n,t(A

(n)
t)−fn,t(A(n)

t)

t+1
) ≤

∑T−1
t=1 EP(ut − ut+1) = EP(u1 − uT)(**)

The sequence {u1 − uT}T converges (First step). Since it is bounded, by the dominated
convergence theorem, the sequence {EP(u1 − uT)}T converges. Therefore, we deduce from
the equality (**) the convergence of the series EP(ut − ut+1).

Since the series EP(
f̂n,t(A

(n)
t)−fn,t(A(n)

t)

t+1
) and EP(ut−ut+1) are positive (positivity of the first and

the second terms result respectively from the definition and (*)) and the series EP(ut−ut+1)

converges , by the inequality (*), the series EP(
f̂n,t(A

(n)
t)−fn,t(A(n)

t)

t+1
) converges. Hence, we have:∑∞

t=1 EP(
f̂n,t(A

(n)
t)−fn,t(A(n)

t)

t+1
) <∞

⇒ EP(
∑∞

t=1
f̂n,t(A

(n)
t)−fn,t(A(n)

t)

t+1
) <∞ (by Fubini Theorem for positive random variables)

Given that
∑∞

t=1
f̂n,t(A

(n)
t)−fn,t(A(n)

t)

t+1
is a positive random variable and its expectation is finite,

this implies (see Processus Aléatoires:page 9 by Delmas and al.):

∞∑
t=1

f̂n,t(A
(n)
t)− fn,t(A(n)

t)

t+ 1
<∞a.s. (F.8)

Let’s consider two sequences at, bt defined by: at = 1
t+1
, bt = fn,t(A

(n)
t)− f̂n,t(A(n)

t)
It does not require great effort to see that the assumptions of Theorem II are verified. Thus,
we have:
fn,t(A

(n)
t)− f̂n,t(A(n)

t)→ 0 a.s. when t→∞
Third step: fn(A

(n)
t) converges almost surely.

By triangular inequality and the definition of |.|∞, we have:

| fn(A
(n)
t)− f̂n,t(A(n)

t) |≤ ‖fn − fn,t‖∞+ | fn,t(A(n)
t)− f̂n,t(A(n)

t) | (F.9)

A class of function F =
{
f : Ω×KIn,Jn → R, f(X ,A(n)) = l(X ,A(n))

}
,Ω representing the

set of tensors of compact support. Since KIn,Jn is compact and the class of functions F
verifies Theorem V , we have:
limt→∞ | 1

t

∑t
i=1 l(X i,A

(n))− EP(l(X ,A(n))) |= 0,∀A(n)

⇒ limt→∞ | 1
t

∑t
i=1 l(X i,A

(n))− EP(l(X ,A(n))) |= 0,∀A(n)

⇒ limt→∞ | fn,t(A(n))− fn(A(n)) |= 0, ∀A(n)

⇒ limt→∞ ‖fn,t − fn‖∞ = 0
By Glivenko-Cantelli and the Second step, the inequality (F.9) yields:

33

| fn(A
(n)
t)− f̂n,t(A(n)

t) |→ 0 when t→∞
⇒ fn(A

(n)
t)− f̂n,t(A(n)

t)→ 0 a.s. t→∞
⇒ fn(A

(n)
t) converges a.s when t→∞ (since f̂n,t(A

(n)
t) converges a.s. by the First step)

Appendix F.4. A
(n)
t converges to a stationary point of fn: asymptotic behavior with respect

to t

Proof :
With the assumptions I, II, III, a reasoning identical to the one presented in [21] (Proposition
4) yields this convergence.

Appendix G. Global convergence: asymptotic behavior with respect to k

In this section, we extend the result of the last section to the set of stationary point of
f considered as a function of all of the dictionary matrices.
From the section Appendix F.4, ∀n,A(n)

t converges to A
(n)
∞ = A

(n)
k+1, a stationary point of

fn on KIn,Jn . This implies the derivative of − ∂fn
∂A(n) (A

(n)
k+1) belongs to the normal cone of

KIn,Jn at A
(n)
k+1. Since A

(n)
k+1 is an interior point of KIn,Jn (Assumption V), it is well known

that this normal cone is reduced to the singleton {0}. Hence:
∂f

∂A(n) (A
(1)
k+1, ..,A

(n−1)
k+1 ,A

(n)
k+1,A

(n+1)
k , ..,A

(N)
k) = 0 since A(n) → f(..,A

(n−1)
k+1 ,A(n),A

(n+1)
k , ..)

and A(n) → fn(A
(1)
k+1, ..,A

(n−1)
k+1 ,A(n),A

(n+1)
k , ..,A

(N)
k) are proportional up to an additive

constant.
We proved in Appendix F.2 that:
∂f(A)

∂A(n) (A(1), ..,A(n−1),A(n),A(n+1), ..,A(N)) = EP
(
V(A(1), ..,A(n−1),A(n),A(n+1), ..,A(N))

)
V(A(1), ..,A(n−1),A(n),A(n+1), ..,A(N)) = −

(
X̂(n)G

(n)T
0 (X ,A(n))−A(n)B(n)B(n)T

)
+ (1 −

θ)αA(n), B(n)(X ,A(n)) = G
(n)
0 (X ,A(n))⊗p∈In−1 A

(p)T
k+1 ⊗q∈In+1

N
A

(p)T
k

Since the function A(n) → G0(X ,A(n)) is uniformly continuous because it is Lipschitz
(proved in section Appendix E), the function V is uniformly continuous. Thus, we have:
∀ε > 0,∃η > 0,∀x, y, ‖x− y‖∏

n∈IN
RIn×Jn ≤ η ⇒ ‖V(x)−V(y)‖F ≤ ε

Let’s choose y = (A
(1)
k , ..,A

(n−1)
k ,A

(n)
k ,A

(n+1)
k , ..,A

(N)
k) and x = (A

(1)
k+1, ..,A

(n−1)
k+1 ,A

(n)
k+1,A

(n+1)
k , ..,A

(N)
k)

By Assumption IV, we have:
‖x− y‖∏

n∈IN
RIn×Jn ≤ n

k
1
2

By convergence of n

k
1
2

to 0 when k goes to infinity (n being fixed):

∃k0 ∈ N, ∀k ≥ k0,
n

k
1
2
≤ η

Hence, for all k ≥ k0, we have:
‖x− y‖∏

n∈IN
RIn×Jn ≤ η

⇒ ‖V(x)−V(y)‖F ≤ ε
⇒ EP (‖V(x)−V(y)‖F) ≤ ε
⇒ ‖EP(V(x))− E(V(y))‖F ≤ βε (Property 11)

By definition, EP(V(x)) = 0 and ∂f
∂A(n) (A

(1)
k , ..,A

(n−1)
k ,A

(n)
k ,A

(n+1)
k , ..,A

(N)
k) = EP(V(y)).

So far, we have proven that:

34

∀ε > 0,∃k0 ∈ N, ∀k ≥ k0, ‖ ∂f
∂A(n) (A

(1)
k , ..,A

(n−1)
k ,A

(n)
k ,A

(n+1)
k , ..,A

(N)
k)‖F ≤ βε, ∀n

⇒ limk→∞ ‖ ∂f
∂A(n) (A

(1)
k , ..,A

(n−1)
k ,A

(n)
k ,A

(n+1)
k , ..,A

(N)
k)‖F = 0.

This means that the more k increases, the more the N − uplet
{

A
(1)
k , ..,A

(N)
k

}
gets closer

to the set of stationary point of the function
{
A(1), ..,A(N)

}
∈ RI1×J1 .. × RIN×JN →

f(A(1), ..,A(N)) , which concludes the proof.

Miscellaneous results used for the analysis.

Theorem I: from Bonnan and Shapiro
Let f : Rp×Rq ← R. Suppose that for all x ∈ Rp the function u← f(x, u) is differentiable,
and that f and ∂2f(x, u) the derivative of u→ f(x,u) are continuous on Rp ×Rq. Let ν(u)
be the optimal value function ν(u) = minx∈C f(x,u), where C is a compact subset of Rp.
Then ν(u) is directionally differentiable.
Furthermore, if for u0 ∈ Rq, f(.,u0) has a unique minimizer x0 then ν(u) is differentiable in
u0 and ∂ν(u0) = ∂2f(x0,u0)
Theorem II (see Lemma 8 in [21])
Let an, bn be two real sequences such that for all n, an ≥ 0,bn ≥ 0

∑∞
n=1 an =∞,

∑∞
n=1 anbn <

∞,∃K > 0 s.t |bn+1 − bn| ≤ Kan. Then, limn→∞ bn = 0.
Theorem III (see Theorem 6 in [21])
Let (W ,F ,P) be a measurable probability space, ut , for t ≥ 0, be the realization of
a stochastic process and Ft be the filtration determined by the past information at time
t. Let δt defined by: δt = 1 if E(ut+1 − ut|Ft) > 0 otherwise. If for all t, ut ≥ 0 and∑∞

t=1 E(δt(ut+1 − ut)) < ∞. Then ut is a quasi-martingale and converges almost surely.
Moreover,

∑∞
t=1 ‖E(ut+1 − ut|Ft)‖ <∞ a.s

Theorem IV(A corollary of Donsker theorem see Van der Vaart, 1998, chap. 19.2, lemma
19.36 and example 19.7)
Let F = {fθ : β → R, θ ∈ Θ} be a set of measurable functions indexed by a bounded subset
Θ ⊂ Rd. Suppose that there exists a constant K such that:
|fθ1(x)− fθ2(x)| ≤ K|θ1 − θ2| for every θ1, θ2 ∈ Θ, x ∈ β.Then, F is P-Donsker (see Van der
Vaart, 1998, chap. 19.2).
For any f in F , let us define Pnf,Pf and Gn(f) as: Pnf = 1

n

∑n
i=1 f(Xi),

Pf = EX (f(X)) ,Gnf =
√
n (Pnf − Pf)

Let us also suppose that for all f, Pf 2 ≤ δ2 and ‖f‖∞ ≤M and that the variables X1, .. are
Borel-measurable. Then, we have: EP (‖Gn‖F) = O(1),‖Gnf‖F = supf∈F |Gnf |
Theorem V: from Wald (1949) and Le Cam (1953)
Let F = {f : Ω× T→ R} where the functions f : Ω × T → R, are continuous in t for P
almost all x ∈ Ω (P : probability on Ω). Suppose that T is compact and that the envelope
function F defined by: F (x) = supt∈T | f(x, t) | satisfying P(F) = EP(F (X)) <∞,X ∼ P.
Then, N[](ε,F , L1(P)) <∞, ∀ε > 0 (hence, F is P−Glivenko-Cantelli.)

35

