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Abstract

The present paper focuses on the Eshelby inclusion problem which is revisited in the framework of ageing linear
viscoelasticity. All known results established in linear viscoelasticity thanks to the correspondence principle are
recovered as particular cases of a general solution extended to ageing. A closed form solution is presented for the Hill
and Eshelby tensors related to an ellipsoidal inclusion embedded in an infinite anisotropic medium. The case of the
isotropic medium is investigated in detail and related solutions are presented for spherical and ellipsoidal inclusions.
A numerical procedure which operates in time domain and based on the trapezoidal rule to determine Volterra integral
operators allows to efficiently calculate Hill and Eshelby tensors for a wide range of behaviours including in particular
time-dependent Poisson ratios. Validation and verification of the new developed solution are presented for the ageing
spherical inclusion on the basis of recent published results and it is completed by comparisons with finite element
simulations for the general and novel case of an oblate spheroid embedded in an ageing linear viscoelastic matrix.

Keywords:
Micromechanics, Ageing linear viscoelasticity, Viscoelastic Eshelby tensor, Viscoelastic Hill tensor, Viscoelastic
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1. Introduction

This paper revisits the Eshelby inclusion problem [1] in the framework of ageing linear viscoelasticity, on the
basis of theageing correspondence principleproposed by [2], [3], [4], [5] and [6]. It must be emphasized that it
includes as a particular case the non-ageing linear viscoelasticity and all results developed in this context may be re-
covered. A novel solution is presented for the Hill polarization tensor, and the Eshelby tensor related to an ellipsoidal
inclusion embedded in an ageing linear viscoelastic material and it extends results presented in recent papers ([7], [8]).

In the context of non-ageing linear viscoelasticity, and byusing the correspondence principle, [9], [10], [11], [12]
and [13] have presented generalization of linear elastic problem to the linear viscoelastic one, using Stieltjes inte-
grals combined with Laplace-Carson transform. Such an approach has been widely used to extend homogenization
schemes based on Eshelby tensors in elasticity to linear viscoelasticity (see reviews of [14], [15], [16], and [17]). In
many cases, exact solutions may be obtained in Laplace Transform Domain (TD, see [18] and [19]) but, due to the
complexity of relations inTD, analytical inversions of Laplace transforms are only restricted to simple cases. Hashin
has presented in [20] an analytical transient solution in the case of a sphericalisotropic elastic inclusion embedded
in a non compressible isotropic viscoelastic matrix. One may find in [21] the complete linear viscoelastic solution
for ellipsoidal inclusions in anisotropic materials, and numerical results obtained thanks to a numerical inversion of
Laplace-Carson solutions performed by using collocation method ([22] and [23] for a recent extension). Exact inver-
sion of Laplace transform has been presented in [24] for the problem of a spherical inclusion, considering isotropic
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non compressible viscoelastic Maxwell materials for inclusion and matrix and self consistent homogenization scheme.
It may be noticed that, still in the context of non-ageing linear viscoelasticity, fraction-exponential operators which
are extensively used in rheology and linear viscoelasticity (see [25]) have been applied to Eshelby inclusion problem
and related homogenization approach, to obtain solutions in more general cases of ellipsoidal or penny-shaped cracks
in a viscoelastic matrix (see [26], [17] and [27]). Such operators have the advantage to accurately fit a widerange of
behaviours and to conduce to analytical expressions for inverse Laplace transform.

Although theoretically very useful to solve non-ageing linear viscoelastic problems thanks to the correspondence
principle, the Laplace-Carson transform suffers from important drawbacks mainly due to the fact that it remains diffi-
cult to ensure both accuracy and stability of the numerical algorithms available for inversion. Indeed the method based
on the correspondence principle first requires to calculatetransforms of some creep or relaxation functions of different
phases but closed-form expressions may not exist due to the complexity of the initial functions or because the latter
come from experimental points. The last step of the method consists in calculating the inverse of Laplace-Carson
transforms in order to come back to the time domain. This stepalmost systematically needs to resort to numerical
algorithms as those described in [28] which generally have to be specifically adapted to the function to inverse. It
proves in particular very difficult to reach a certain level of accuracy of the inverse whilereducing the sensitivity
to the errors in the Laplace domain. To avoid the shortcomings of the Laplace-Carson transform, homogenization
methods staying in the time domain have recently been designed ([29], [30], [16]). Among them, one may cite the
time-incremental internal variable homogenization method based on Green function techniques and related integral
representation presented in [31], [32] and [16]. In this method, the effective behaviour as well as the evolution laws
of the averaged stresses per phase are solved incrementallyin the time domain through a time-differential equation,
without need to analytical or numerical inverse of Laplace-Carson transforms.

Regarding ageing viscoelastic composite materials, some results have been obtained in the case of periodic homog-
enization applied to multilayered media in [33] but mean-field schemes based on Eshelby’s solution were previously
restricted to particular ageing behaviours for the viscoelastic phases, such as the time-shift behaviour introduced to
describe plastic materials and glasses ([34], [35], [36]). In this particular case, the correspondence principle can be
applied after the change of variable defining the equivalenttime ([37], [15]). More recently, comprehensive homog-
enization methods have been uncovered. On the one hand, the incremental homogenization approach [30] consists
in approximating the ageing viscoelastic behaviour to a non-ageing Dirichlet series on each time step. The corre-
spondence principle is then applied on each time step to solve the homogenization problem. The scheme designed
in [29] is also able to estimate the effective response of viscoelastic composites: it relies on the variational technique
proposed in [38] to rigorously approximate non-uniform eigenstrains due to internal variables by piecewise uniform
eigenstrains. On the other hand, [7] has proposed a closed-form solution to handle the case of spherical inhomo-
geneities, the ageing viscoelastic behaviours of all phases being isotropic without any particular restriction on the
bulk and shear relaxation functions. The Volterra operatorand its inverse appear in this solution. Using the properties
of the Volterra operator, the viscoelastic Eshelby inclusion problem has been solved for ellipsoidal inclusions [8],
providing that the ageing viscoelastic material features atime-independent Poisson ratio in a sense defined in [39].
Nevertheless, the viscoelastic Eshelby inclusion problemfor ellipsoidal inclusions and an ageing viscoelastic material
featuring a time-dependent Poisson ratio could only be solved by mean of approximations ([30], [40]) and an universal
closed-form solution to the viscoelastic Eshelby inclusion problem was yet to be found. All the references listed in
the present paragraph share a common feature: the strains inthe Eshelby inclusion, or in the inhomogeneity, remain
uniform at all times, as for the solutions to the elastic and the non-ageing viscoelastic Eshelby inclusion problems.

In the present article, after presenting the hypotheses of the ageing linear viscoelastic inclusion problem, a com-
prehensive closed-form solution is disclosed. Then, its expression in the case of an isotropic infinite medium is derived
and successfully compared to existing results in particular situations. In the last section, the efficient numerical pro-
cedure designed in [41], [7] and [8] is applied for further verifications.
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2. The problem of an ellipsoidal inclusion of arbitrary shape in an ageing linear viscoelastic medium

2.1. The ageing linear viscoelastic behaviour

As in [1], the studied domain is the whole three-dimensional space and the hypothesis of small perturbation is
adopted. The difference with [1] relies on the fact that the constitutive law of the materialis of the ageing linear
viscoelastic type. This means that the strain and stress tensor histories, respectivelyε(t) andσ(t), are related by
means of a Stieltjes integral [42]

ε(t) =
∫ t

t′=−∞
L(t, t′) : dσ(t′) =

∫ t

t′=−∞
L(t, t′) : σ̇(t′) dt′ (1)

whereL is the creep compliance tensor of the fourth order. In the general ageing framework, it depends on two
independant time variables and is such thatL(t, t′) = 0 if t < t′ due to the causality principle. The non-ageing case
corresponds to a dependence oft andt′ only through their differencet − t′. The resolution of the Eshelby problem in
the latter case is already available thanks to the correspondence principle and the resolution of the associated elastic
problem in the Laplace-Carson domain (see references in introduction). The present paper deals with the more general
ageing case.

The linear relationship (1), more simply denoted byε = L
◦
: σ ([7], [8]), generalizes to the tensorial framework

the so-called Volterra operator ”◦” [ 43] between scalar functions

Y = F ◦ X⇔ Y(t) =
∫ t

t′=−∞
F(t, t′) dX(t′) (2)

When explicit references to the time variables are needed for clarity, (1) can also be writtenY(t) = F(t, •)◦X(•) where
“•” represents the dummy variable involved in the Volterra integration. When a second dummy variable is needed in
any expression in the following, the symbol “⋆” will be used.

Adopting the convention of summation of repeated indices, (1) writes in components

ε = L
◦
: σ⇔ εi j = Li jkl ◦ σkl (3)

Note thatL obviously verifies the minor symmetriesL jikl = Li jlk = Li jkl .

Similarly a Volterra operator can be built between a second-order kernelK(t, t′) and a time-dependent vectoru(t)

T = K ◦· u⇔ T(t) =
∫ t

t′=−∞
K(t, t′) · du(t′) (4)

It is worth recalling that time discontinuities are allowedin all the functions involved in the previous relationships
and time derivatives must be considered in the framework of the theory of distributions as introduced by [44] (see also
[45]).

The scalar Volterra kernel (t, t′) 7→ H(t − t′) where H is the Heaviside function1 operates as an identity in (2). For
the sake of commodity, H shall also denote this function of two time variables in the following, i.e. H◦ X = X. As a
consequence, the identities of (1) and (4) are respectively HI and H1, whereI is the fourth-order identity tensor acting
over symmetric second-order tensors (Ii jkl = (δikδ jl + δilδ jk)/2) and1 is the second-order identity tensor (1i j = δi j )
with δi j denoting the Kronecker symbol2.

1H(t) = 1 if t ≥ 0 and H(t) = 0 if t < 0
2δi j = 1 if i = j andδi j = 0 if i , j
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The operations between a function of two time variables and afunction of a single time variable can easily
be extended to associative, distributive with respect to the addition, but non-commutative operations between two
functions of two time variables, either in scalar or tensorial case. As stated in [33], the commutativity between two
scalar functions of two time variables holds only for non-ageing kernels. A fourth-order tensorial example writes

(A
◦
: B)(t, t′) = A(t, •) ◦: B(•, t′) =

∫ t

τ=−∞
A(t, τ) :

∂B

∂τ
(τ, t′) dτ (5)

The definition of the inverse of a (scalar or tensorial) kernel in the sense of Volterra follows immediately. To avoid
any confusion with the classical inversion, the notationT −1◦ for the inverse of the (scalar or tensorial) kernelT is
adopted. For instance, the inverse of the creep complianceL, called the relaxation tensor and denoted byC = L−1◦ ,
satisfiesC

◦
: L = L

◦
: C = HI.

2.2. The Eshelby inclusion problem

Let E denote an ellipsoid inR3 defined by three radiiρ1, ρ2 andρ3 (alternatively denoted bya, b, andc when
useful for readability enhancement of formulas inAppendix C) and an associated orthonormal frame (e1, e2, e3) such
that the equation ofE writes

∥

∥

∥A−1 · x
∥

∥

∥ ≤ 1 with A = ρ1 e1 ⊗ e1 + ρ2 e2 ⊗ e2 + ρ3 e3 ⊗ e3 (6)

A time-dependent polarization fieldp(x, t) = p(t)χE(x) is then introduced, whereχE is the characteristic function
of E 3. In other words,p(x, t) is uniform withinE and0 outsideE. The whole space is occupied by a uniform ageing
linear viscoelastic material of relaxation tensorC so that the constitutive law is expressed as

σ(x, t) = C(t, •) ◦: ε(x, •) + p(t)χE(x) (7)

In absence of any body force, the momentum balance applied to(7), i.e. div σ = 0 involves the termdiv (pχE).
Recalling thatp does not depend on the positionx and thatgradχE = −nδ∂E whereδ∂E is the surface Dirac distribu-
tion ([44], [45]) supported by the boundary of the ellipsoidE andn is its unit outward normal vector, it comes that
div (pχE) = p · gradχE = −p · nδ∂E.

The displacement fieldu(x, t) solution to the ageing linear viscoelastic inclusion problem must finally satisfy the
following equations























div
(

C(t, •) ◦: grad u(x, •)
)

− p(t) · n(x) δ∂E(x) = 0

lim
‖x‖→∞

u(x, t) = 0

(8a)

(8b)

which is rigorously the same as in the elastic case provided that the double contracted product ”:” be replaced by the
tensorial Volterra operator ”

◦
:”.

3. Resolution and construction of ageing viscoelastic Hilland Eshelby tensors

3.1. Elementary problems and Green tensor

This section aims at deriving the complete solution of the problem (8a)-(8b) thanks to a methodology adapted
from the elastic case presented in [46] or [47]. For this purpose, it is useful to take advantage of the linearity of
the problem and introduce the second-order ageing viscoelastic Green tensorG(x, t, t′) associated to these equations:
G(x, t, t′) · P is the displacement field at timet satisfying (8b) and resulting from the application of a point force step
P concentrated at the origin and occuring att′, which means

div
(

C(t, •) ◦: grad
(

G(x, •, t′) · P)

)

+ H(t − t′)δ(x)P = 0 (9)

3χE(x) = 1 if x ∈ E and 0 otherwise
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whereδ stands here for the three-dimensional Dirac distribution associated with the origin ([44], [45]). It is worth
precising again thatt′ is arbitrarily chosen as the starting time of the loading andthe equation (9) finally depends
on x and t as well ast′. Moreover, due to the fact that the problem is posed in an infinite domain, any translation
of the loading, i.e. H(t − t′)δ(x − x′)P, results in the same translation in the first argument of the solution G, i.e.
G(x − x′, t, t′) · P, which justifies the location of the elementary loading at the origin. In contrast, if the domain was
bounded, it would have been necessary to consider unit loadings at any pointx′ and introduce this additional variable
to the Green function.

After eliminatingP, (9) writes in components

Ci jkl (t, •) ◦Gkn, jl (x, •, t′) + H(t − t′)δinδ(x) = 0 (10)

where indices following the comma (j andl) represent derivatives with respect to the corresponding components ofx
(x j andxl).

Two equivalent strategies can then be adoped to solve (10): one based on Fourier transforms as in [47] and another
one, inspired by [46] and followed in the sequel, based on the plane-wave expansion (seeAppendix A for a brief
proof)

δ(x) = − 1
8π2

∫

‖ξ‖=1
δ′′(ξ · x) dSξ (11)

Note thatδ in the left hand side is the three-dimensional Dirac distribution wherasδ′′ in the right hand side corre-
sponds to the second derivative of the scalar Dirac distribution ([44], [45]).

Considering (11) as a linear decomposition, it becomes interesting to find the solutionsGξ(x, t, t′) of the following
equations parametrized by the unit vectorξ

Ci jkl (t, •) ◦Gξkn, jl (x, •, t′) + H(t − t′)δinδ′′(ξ · x) = 0 (12)

such that the relationship betweenG andGξ stems from the superposition principle

G(x, t, t′) = − 1
8π2

∫

‖ξ‖=1
Gξ(x, t, t′) dSξ (13)

The solution to (12) can easily be built by analogy with the elastic case

Gξ(x, t, t′) = −δ(ξ · x)
(

ξ · C · ξ
)−1◦

(t, t′) = −δ(ξ · x) Nξ(t, t′) (14)

where the viscoelastic counterpart of the elastic acoustictensor is identified in (14) by Kξ(t, t′) = ξ · C(t, t′) · ξ and

its inverse (in the sense of Volterra) byNξ(t, t′) = Kξ
−1◦

(t, t′) =
(

ξ · C · ξ
)−1◦

(t, t′). Both are second-order Volterra

kernels. In order to verify thatGξ given by (14) satisfies (12), the derivatives of its components are calculated

Gξkn, jl (x, t, t′) = −ξ j ξl δ
′′(ξ · x) Nξkn(t, t

′) (15)

which successively implies

Ci jkl (t, •) ◦Gξkn, jl (x, •, t′) = −
(

ξ j Ci jkl (t, •) ξl
)

◦ Nξkn(•, t
′) δ′′(ξ · x) (16)

= −Kξik(t, •) ◦ Nξkn(•, t
′) δ′′(ξ · x) (17)

= −H(t − t′) δin δ′′(ξ · x) (18)

The definition of the inverse in the sense of VolterraNξ = Kξ
−1◦

in (17) leads to (18) which is indeed identical to
(12).
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The determination ofG is finally completed by introducing (14) in (13)

G(x, t, t′) =
1

8π2

∫

‖ξ‖=1
δ(ξ · x) Nξ(t, t′) dSξ (19)

It should also be noticed that (19) allows to verify that lim‖x‖→∞G(x, t, t′) = 0 sinceδ(ξ · x) = δ(ξ · e)/ ‖x‖ where
e = x/ ‖x‖.

3.2. Solution to the Eshelby inclusion problem

The solution to (8a)-(8b) is obtained by remarking that the loading−p(t) · n(x)δ∂E(x) can be viewed as a su-
perposition of translated elementary Dirac contributions. Consequently the displacement field writes (omitting time
dependences)

u(x, t) = −
∫

x′∈∂E
G(x − x′, t, •) ◦· p(•) · n(x′) dSx′ (20)

Note that (8b) is satisfied thanks to the behaviour at infinity of the Green kernel.

Using (19), (20) becomes

u(x, t) = − 1
8π2

∫

x′∈∂E

∫

‖ξ‖=1
δ
(

ξ · (x − x′)
)

Nξ(t, •) ◦· p(•) · n(x′) dSξ dSx′ (21)

Equivalently, (21) yields in components

ui(x, t) = − 1
8π2

∫

x′∈∂E

∫

‖ξ‖=1
δ
(

ξ · (x − x′)
)

Nξik(t, •)nl(x′) dSξ dSx′ ◦ pkl(•) (22)

Applying Fubini’s theorem and Stokes’ theorem to the integral over∂E leads to

ui(x, t) =
1

8π2

∫

‖ξ‖=1

∫

x′∈E
δ′
(

ξ · (x − x′)
)

Nξik(t, •)ξl dΩx′ dSξ ◦ pkl(•) (23)

Finally the strain tensor is given by a relationship analogous to the elastic case

ε(x, t) = −P(x, t, •) ◦: p(•) (24)

in which the fourth-order Volterra kernelP(x, t, t′) writes

P(x, t, t′) = − 1
8π2

∫

‖ξ‖=1

∫

x′∈E
δ′′

(

ξ · (x − x′)
)

Γ(ξ, t, t′) dΩx′ dSξ (25)

with

Γ(ξ, t, t′) = ξ
s
⊗ Nξ(t, t′)

s
⊗ ξ = ξ

s
⊗

[(

ξ · C · ξ
)−1◦

(t, t′)
] s
⊗ ξ (26)

where the notation
s
⊗ denotes a tensor product with symmetrization over the two adjacent indices (here, on the one

hand the two first and on the other hand the two last indices ofΓ(ξ, t, t′)).

The end of the reasoning relies on the observation that the dependence ofP on x in (25) does not differ from that
of the elastic case. In particular, the integrations are simplified thanks to the following change of variables

x′ = A · y′ and ξ =
A−1 · ζ

∥

∥

∥A−1 · ζ
∥

∥

∥

(27)
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implying (seeAppendix Bfor a proof of the second equation)

dΩx′ = detA dΩy′ and dSξ =
detA−1

∥

∥

∥A−1 · ζ
∥

∥

∥

3
dSζ (28)

and consequently

dΩx′ dSξ =
dΩy′ dSζ
∥

∥

∥A−1 · ζ
∥

∥

∥

3
(29)

Introducing (27) and (29) in (25), P(x, t, t′) becomes

P(x, t, t′) = − 1
8π2

∫

‖ζ‖=1
Γ















A−1 · ζ
∥

∥

∥A−1 · ζ
∥

∥

∥

, t, t′














∫

‖y′‖≤1
δ′′















ζ · (A−1 · x − y′)
∥

∥

∥A−1 · ζ
∥

∥

∥















dΩy′ dSζ
∥

∥

∥A−1 · ζ
∥

∥

∥

3
(30)

Observing thatΓ (26) is positively homogeneous of degree 0 and thatδ′′(z/λ) = λ3δ′′(z) for λ > 0 (obtained by
differentiating twiceδ(z/λ) = λδ(z)), P (30) is finally simplified

P(x, t, t′) = − 1
8π2

∫

‖ζ‖=1
Γ(A−1 · ζ, t, t′)

∫

‖y′‖≤1
δ′′

(

ζ · (A−1 · x − y′)
)

dΩy′ dSζ (31)

The integration over the unit ball with respect to the variable y′ is then performed by means of cylindrical coordi-
nates (r, θ, z) around the axis directed byζ (i.e. z = ζ · y′), which means dΩy′ = r dr dθ dz with θ varying from 0 to
2π, z from−1 to 1 andr from 0 to

√
1− z2 for eachz. Hence (31) becomes

P(x, t, t′) = − 1
8π

∫

‖ζ‖=1
Γ(A−1 · ζ, t, t′)

∫ 1

z=−1
(1− z2)δ′′(ζ · A−1 · x − z) dzdSζ (32)

which can also write by application of the derivative rules of distributions ([44], [45])

P(x, t, t′) =
1
4π

∫

‖ζ‖=1
Γ(A−1 · ζ, t, t′)

∫ 1

z=−1
δ(ζ · A−1 · x − z) dzdSζ (33)

This expression still depends onx. Nevertheless, similarly to the elastic case, ifx belongs to the ellipsoidE of
equation (6), the scalarζ · A−1 · x belongs to the interval [−1, 1] and the integral onz is 1 whatever the positionx
within E. An important consequence is that the well known result of uniformity of ε andσ within E in the elastic case
still holds in the ageing linear viscoelastic framework

∀ x ∈ E ε(x, t) = −P(t, •) ◦: p(•) , σ(x, t) = −C(t, •) ◦: P(•, ⋆)
◦
: p(⋆) (34)

The strain tensorε is uniform withinE but depends ont and the polarization tensorP extending to ageing vis-
coelasticity the elastic Hill polarization tensor (but acting here as a Volterra kernel or in other words a function of two
time variables) writes

P(t, t′) =
1
4π

∫

‖ζ‖=1
Γ(A−1 · ζ, t, t′) dSζ (35)

or alternatively thanks to (26), (27) and (B.4)

P(t, t′) =
detA

4π

∫

‖ξ‖=1

ξ
s
⊗

[(

ξ · C · ξ
)−1◦

(t, t′)
] s
⊗ ξ

‖A · ξ‖3
dSξ (36)

This general result recalls thatP depends only on the shape and orientation of the ellipsoid and on the relaxation
C of the reference medium. It is valid for any ellipsoid (even with three different radii) and possibly for an anisotropic
tensorC. Nevertheless, as in elasticity, only few cases can lead to analytical expressions ofP. In section4, that of an
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isotropic relaxation tensorC is considered and a complete analytical expression ofP is derived.

By analogy with the elastic case, the ageing viscoelastic Eshelby tensor is defined byS = P
◦
: C. It is useful to

relate the uniform strain tensor history within the ellipsoid subjected to a uniform eigenstrain historyε∗(t)

∀ x ∈ E ε(x, t) = S(t, •) ◦: ε∗(•) = P(t, •) ◦: C(•, ⋆)
◦
: ε∗(⋆) (37)

obtained thanks to the previous reasoning by introducing the polarization tensorp = −C ◦: ε∗ in (34).

3.3. Extension to the inhomogeneity problem

The resolution of the inhomogeneity problem may also be inspired by that of the elastic case combined with the
previous result as in [8]. Indeed, instead of (8b) let us consider now that the infinite domain is subjected to aremote
boundary condition of the type

u(x, t) ∼
‖x‖→∞

E(t) · x (38)

whereE(t) is a given history of the macroscopic strain tensor. The relaxation tensor outside the ellipsoidE is still
C but the material withinE is now characterized by a different relaxation tensor denoted byCE. No polarization is
considered here but the strain history solutionε(t) within E of the present problem can be built by considering the
superposition in an infinite uniform medium of the uniform tensorE(t) and the response to a fictitious polarization of
the form (CE − C)

◦
: ε within E assuming by anticipation thatε(t) remains uniform withinE. Therefore, omitting the

time variables for the sake of conciseness, it comes that

∀ x ∈ E ε = E − P
◦
: (CE − C)

◦
: ε (39)

and eventually

∀ x ∈ E ε = A
◦
: E with A =

(

HI + P
◦
: (CE − C)

)−1◦

(40)

whereA, which depends on two time variables, is the ageing viscoelastic counterpart of the concentration tensor pre-
vailing in the elastic framework [48]. The uniformity ofε within E is then also ensured in the ageing viscoelastic
framework:ε within E only depends on time.

It is worth emphasizing again the fact that the result (40) is valid whatever the shape and orientation of the
ellipsoid and whatever the anisotropy of the matrix and inhomogeneity behaviours. Nevertheless the case of an
anisotropic matrix behaviour may prevent from determiningP (36) in a simple form. On the contrary, when the
matrix is isotropic, the determination ofP is easy to obtain as shown in the next section, allowing then the calculation
of the concentration tensor (40) even ifCE is anisotropic (see section6.1for practical calculations).

4. Analytical expression of the viscoelastic Hill tensor associated to an isotropic infinite medium

The isotropy of the reference medium means that the tensor kernelC(t, t′) can be decomposed by means of a bulk
relaxation kernelk(t, t′) and a shear oneµ(t, t′)

C(t, t′) = 3k(t, t′) J + 2µ(t, t′) K (41)

whereJ = (1 ⊗ 1)/3 andK = I − J denote the orthogonal projectors onto the spaces of respectively spherical and
deviatoric symmetric second-order tensors. Introducing the conjugated orthogonal projectorsξ ⊗ ξ and1− ξ ⊗ ξ for
any unit vectorξ, the following relationships

ξ · J · ξ = 1
3
ξ ⊗ ξ and ξ · K · ξ = 2

3
ξ ⊗ ξ + 1

2
(1− ξ ⊗ ξ) (42)
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allow to write the isotropic acoustic tensor and its inversein the form

Kξ =
(

k+
4
3
µ

)

ξ ⊗ ξ + µ(1− ξ ⊗ ξ) (43)

Nξ = Kξ
−1◦
= 3(3k+ 4µ)−1◦ξ ⊗ ξ + µ−1◦ (1− ξ ⊗ ξ) (44)

whereKξ, Nξ, k andµ implicitly depend on two time variables not recalled here for conciseness.

Introducing (44) in (36) yields

P = 3(3k+ 4µ)−1◦Q + µ−1◦ (R − Q) (45)

whereP depends on two time variables through the kernelsk andµ andQ andR are constant tensors defined by

Q =
detA

4π

∫

‖ξ‖=1

ξ ⊗ ξ ⊗ ξ ⊗ ξ
‖A · ξ‖3

dSξ (46)

=
1
4π

∫

‖ζ‖=1
ξ ⊗ ξ ⊗ ξ ⊗ ξ dSζ with ξ =

A−1 · ζ
∥

∥

∥A−1 · ζ
∥

∥

∥

(47)

and

R =
detA

4π

∫

‖ξ‖=1

ξ
s
⊗ 1

s
⊗ ξ

‖A · ξ‖3
dSξ (48)

=
1
4π

∫

‖ζ‖=1
ξ

s
⊗ 1

s
⊗ ξ dSζ with ξ =

A−1 · ζ
∥

∥

∥A−1 · ζ
∥

∥

∥

(49)

Remarkably the tensorsQ andR depend only on the shape and orientation of the ellipsoid through A and not
on the material properties. They are consequently rigorously identical as those that can be used to express the Hill
polarization tensor in the elastic framework. In the lattercase, replacing the relaxation functionsk andµ by bulk and
shear moduli and the inverse in the sense of Volterra by simple scalar inverse, (45) also provides the expression ofP

in the elastic case. For practical implementation, the components ofQ andR are explicited inAppendix C.

In the case of a spherical inclusion, the tensorsQ andR are simply derived by projection of the integrands of (47)
and (49) ontoJ andK [49]

Q =
1
3
J +

2
15

K and R =
1
3
I =

1
3

(J + K) (50)

It follows from (45) and (41) that the viscoelastic Hill and Eshelby tensors associatedto a spherical inclusion
respectively write

P = (3k+ 4µ)−1◦ ◦
(

HJ +
3
5

(k+ 2µ) ◦ µ−1◦K

)

(51)

and

S = P
◦
: C = 3 (3k+ 4µ)−1◦ ◦

(

kJ +
2
5

(k+ 2µ)K

)

(52)

5. Consistency with known results

5.1. The elastic and non-ageing viscoelastic cases

All the previous results obtained in the very general framework of ageing linear viscoelastic behaviour and ellip-
soidal inclusion are consistent with their well established counterparts in elasticity or non-ageing viscoelasticity.
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The consistency with the elastic behaviour is easily verified. Indeed, this behaviour corresponds to a relaxation
tensor of the formC(t, t′) = H(t, t′)C0 whereC0 is the elastic stiffness tensor. As a consequence, (36) becomes

P(t, t′) = H(t − t′) P0 with P0 =
detA

4π

∫

‖ξ‖=1

ξ
s
⊗ (ξ · C0 · ξ)−1 s

⊗ ξ
‖A · ξ‖3

dSξ (53)

whereP0 is the well known elastic Hill tensor [47]. The other relationships (37), (40) or (45) give the corresponding
elastic expressions by replacing the inverses and the tensor contractions in the sense of Volterra by classical inverses
and tensor contractions and by multiplying the resulting fourth-order tensors by H.

The non-ageing viscoelastic case is almost as simple as the elastic one. As already mentioned in introduction, the
correspondence principle can be applied to the set of equations characterizing the inclusion problem and the resolution
in Laplace Transform Domain relies on the results already available in the elastic domain. But the objective here is to
verify that the solution previously obtained by considering a general ageing behaviour is consistent with the particular
non-ageing one. This verification is in fact straightforward by taking advantage of the properties of the Laplace-
Carson transform (LCT) [42]. Indeed the LCT of a Volterra product with a non-ageing kernel, i.e. depending on the
pair (t, t′) only through the differencet − t′, becomes the corresponding product between the LCT of each terms. In
addition the LCT of identities and inverses in the sense of Volterra are the corresponding (tensor or scalar) identities
and inverses in the usual sense applied in the Laplace Transform Domain. Hence, as expected, all the classical elastic
results, in particular the expressions of the Hill and Eshelby tensors and those of the concentration rules, are retrieved
in the Laplace domain by applying the LCT to all the previous equations of this article.

5.2. The ageing linear viscoelastic spherical inhomogeneity with isotropic phases

This particular case has been solved in [7] using a direct displacement approach which eventually provides an
explicit expression of the concentration tensor relating the strain tensor history within the sphere to the remote strain
history. It is shown here that this tensor is exactly retrieved by (40) thanks to (51) as a function of the relaxation bulk
and shear moduli of the matrix (k andµ) and those of the spherical inhomogeneity (kE andµE)

A(t, t′) = AJ(t, t′) J + AK(t, t′) K (54)

with

AJ = (3kE + 4µ)
−1◦ ◦ (3k+ 4µ) (55)

AK = 5
(

9k+ 8µ + 6(k+ 2µ) ◦ µ−1◦ ◦ µE
)−1◦
◦ (3k+ 4µ) (56)

On the one hand the expression ofAJ obtained in [7] is strictly identical to (55) but on the other hand the ex-
pression ofAK provided in [7] requires some algebraic manipulations developed inAppendix Dto lead to the more
condensed relationship (56).

Note that the well known elastic expressions recalled in [7] are immediately retrieved by replacing the relaxation
functions in (55) and (56) by the elastic bulk and shear moduli and the Volterra products and inverses by usual prod-
ucts and inverses within the set of real numbers.

It is worth emphasizing here that the scope of (40) is much wider in terms of inhomogeneity shape and behaviour
since it can easily be applied to an anisotropic ellipsoidalinhomogeneity.

5.3. The case of a time-independent Poisson ratio

In [8], the ageing viscoelastic Eshelby inclusion problem is solved for materials featuring a relaxation tensorC of
the form described by [39]

C(t, t′) = f (t, t′)C0 (57)
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where f (t, t′) is a scalar function such thatf (0, 0) = 1 andC0 is the instantaneous stiffness tensor at timet = 0. When
C0 is isotropic, the relationship (57) implies thatµ(t, t′)/k(t, t′) does not depend on (t, t′), which means a constant
viscoelastic Poisson ratio. Nevertheless, the following conclusion remains valid ifC0 is anisotropic.

On the one hand, for such a material, it is shown in [8] that the ageing viscoelastic Eshelby tensorS is

S(t, t′) = H(t − t′)S0 (58)

whereS0 is the elastic Eshelby tensor associated toC0 and an ellipsoid of the same shape.

On the other hand, introducing (57) in the comprehensive expression (36) yields a polarization tensor of the form
f −1◦P0 where the constant tensorP0 writes as in (53). Applying then the formula (37) providingS with (57) finally
leads to the same expression as (58).

6. Practical implementation and validation

6.1. Numerical procedure to evaluate Volterra operators

The expressions of the Hill, Eshelby and strain concentration tensors established in this paper involve the Volterra
operator and its inverse. In most practical cases, analytical evaluation is not tractable. Nevertheless, taking advantage
of the algorithm proposed in [41], it is possible to numerically evaluate the Volterra operator and its inverse. This
approach, successfully used in [7] on the concentration problem on a spherical inhomogeneity, is briefly recalled here
for scalar functions.

Considering that the value of all the involved functions of asingle time variable is zero beforet0 and that the time
interval of interest is [t0, tn], a time samplingt0 ≤ t1 ≤ . . . ≤ tn is introduced and the time integral appearing in the
Volterra operator (2) is discretized using the trapezoidal rule

Yi =

i
∑

j=0

F(ti , t j) + F(ti , t j−1)

2
(X j − X j−1) (∀ 0 ≤ i ≤ n)

=
F(ti, ti) + F(ti, ti−1)

2
Xi +

i−1
∑

j=0

F(ti, t j−1) − F(ti , t j+1)

2
X j (59)

in which the conventionst−1 = t0, Xi = X(ti), Yi = Y(ti) for 0 ≤ i ≤ n andX−1 = 0 have been adopted.

Thus, it follows that the function of two different timesF(t, t′) playing the role of a Volterra kernel in (2) is now
transformed into a lower triangular matrix [F] of rankn+1 relating the vector [Y] = [Y0, . . . ,Yn] to [X] = [X0, . . . ,Xn]

[Y] = [F][X] with Fi j =











































0 if j > i
(

F(ti , ti) + F(ti , ti−1)
)

/2 if j = i
(

F(ti , t j−1) − F(ti , t j+1)
)

/2 if j < i

(60)

still with the conventiont−1 = t0.

As already presented in [8], the previous methodology can be extended to tensor functions in order to build the
numerical counterparts to expressions such as (3), (4) or even (40) especially in the case of geometrical or physical
anisotropy of the inhomogeneity. Indeed the expressions (59) are also valid for tensor variablesX, Y andF provided
that the scalar multiplications be replaced by adequate tensor contractions. In addition, tensor contractions can be
seen as matrix-vector multiplications involving components in a particular vector frame. It is worth recalling here
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that the Voigt or the Kelvin-Mandel notations allow to represent strain or stress tensors as vectors of 6 components
depending on time and to represent the relaxation, creep or even concentration tensor kernels as 6× 6 matrices of
functions of two time variables. As a consequence and takinginto account the matrix or vector representations of
tensors in a given frame, the matrix-vector product (60) remains also valid but should be considered in the sense of a
block matrix operation since theith component of [X] (resp. [Y]) contains itself a vector ofX (resp.Y) at timeti and
each component of the matrix [F] represents a block matrix computed with the relationships(60) applied on the tensor
kernelF. For example, (3) becomes a matrix-vector product in a space of dimension 6(n+ 1) in which the matrix is
lower triangular and contains (n+ 1)× (n+ 1) blocks of 6× 6 submatrices. Alternatively the block matrix operations
can also be built by means of a 6× 6 matrix of (n+ 1)× (n+ 1) block matrices if the components corresponding to
space and time are reordered. The inverse of a tensor kernel in the sense of Volterra simply becomes a matrix inverse
in this numerical procedure.

Thus, practical implementation of the results derived in this paper is straightforward and only requires

• to time-discretize relaxation functions into matrices using (60),

• to implement expressions of the Hill and concentration tensors, replacing the Volterra operator and its inverse
by matrix multiplication and inversion, using any softwarepackage implementing numerical matrix algebra.

6.2. Validation of the strain concentration tensor with respect to FEM computations

Apart form the well known elastic or non ageing cases (section 5.1), and the spherical inhomogeneity with ageing
case (section5.2), reference results in more general situations can be obtained resorting to numerical computations.

The concentration problem is solved here in ageing linear viscoelasticity, for an oblate spheroid of axise3 and
aspect ratio 0.2, using the Code_Aster [50] finite element code. A spheroid of radiia = b = 5, c = 1 is embedded
into a boxΩ which half lengthes areχΩ times the spheroid radii. Uniform strain type boundary conditions following
a macroscopic strain step are imposed, and the evolution of the average strain in the inhomogeneity is sought. The
six independent components of the concentration tensor areobtained by considering six elementary orientations of
the macroscopic strain. Taking advantage of the axisymmetric nature of the geometry, some computations can be
performed in 2D axisymmetric conditions. Besides, taking advantage of the three symmetry planes, only one eight of
the domain needs to be meshed (one half in the 2D axisymmetriccase). Thus, 2D and 3D quadratic meshes have been
prepared, using the Salome [51] platform, ensuring similar element sizes in critical zones of the computation domain
as detailed hereafter. The numerical parameters affecting accuracy are the relative sizeχΩ of the computing domain
(which is not infinite, in contrary to the Eshelby problem), and mesh refinement.

A preliminary convergence analysis is performed, considering (see details in table1)

• three relative domain sizes:χΩ = 10, 20 and 40,

• three sets of meshes: coarse, medium and fine. The meshes are refined around the inhomogeneity and especially
around the highest curvature zone of the interface (figure1).

This analysis is restricted to elastic behaviours (see elastic characteristics of inhomogeneity and matrix in table2),
to use the classical Eshelby result as a reference. The relative errors on components 1133 and 3333 of the strain
concentration tensor are plotted on figure2. The relative domain sizeχΩ is found to have a much larger influence on
accuracy than mesh refinement. Similar trends are found on the other components of the strain concentration tensor.
Thus, the ageing linear viscoelastic numerical computations, subsequently used as references, are performed on the
largest domain (χΩ = 40) and with the medium mesh, as a compromise to keep computing times reasonable.

As it is the only ageing linear viscoelastic behaviour available in Code_Aster, the Granger model [52] is adopted
for both matrix and inhomogeneity. A constant Poisson ratiois assumed:

L(t, t′) = LE(t, t′) [(1 − 2ν)J + (1+ ν)K] (61)

12



χΩ = 10 χΩ = 20 χΩ = 40

2D axi 3D 2D axi 3D 2D axi 3D

mesh nod. el. nod. el. nod. el. nod. el. nod. el. nod. el.

coarse 474 213 16962 11094 462 207 10236 6492 418 185 6753 4145

medium 976 453 36537 24452 924 427 23283 15205 891 410 18582 12044

fine 3802 1835 161373 112311 3533 1700 113106 77959 3401 1632 91576 62695

Table 1: Number of nodes and elements in the considered quadratic meshes.

Figure 1: 2D axisymmetric (left) and 3D (right) medium meshes forχΩ = 10: global view (top) and detailed view on inhomogeneity (bottom).

The uniaxial compliance is here defined with two Kelvin chains, and an arbitrary ageing functionfa(t′):

LE(t, t′) =
1
E
+ fa(t′)

2
∑

i=1

si

(

1− e−
t−t′
τi

)

with fa(t′) = e−
(

t′
τa

)2

(62)

Arbitrary material parameters are chosen with the inhomogeneity stiffer than the matrix (see table2). Bulk and
shear compliance functions of both matrix and inhomogeneity phases are plotted in figure3.

ν E s1 s2 τ1 τ2 τa

matrix 0.25 1 2 3 2 10 30

inhomogeneity 0.15 10 0.5 0.7 0.1 7 15

Table 2: Material properties of matrix and inhomogeneity phases (arbitrary units).

The six independent components of the strain concentrationtensor are plotted in figures4 and5. The latter are
functions of (t, t′) and correspond to the uniform strain arising in the inhomogeneity att for a unit strain step occurring
at t′ at the domain boundary. The semi-analytical result put in evidence in this paper agrees very well with reference
FEM computations for all the six components and is able to capture all the details of non-monotonic evolutions.

Regarding convergence analysis of FEM results, trends similar to the elastic case are found:
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Figure 2: Relative error on selected components of the strain concentration tensor, with elastic behaviours, between FEM computations and the
analytical reference result from Eshelby, using 3 different mesh refinements and 3 different domain sizes.

• the relative domain sizeχΩ has a large impact on accuracy (see details in the right part of figures4 and5),
especially on components 1122, 1133 and 3311,

• the mesh refinement has a much lesser impact on accuracy (figure6), suggesting that ageing linear viscoelastic
computations on the fine mesh would not provide significant improvements.

6.3. Performance of the present numerical method based on quadrature in time domain compared to the correspon-
dence principle in the non-ageing case

In order to assess the performance of the numerical procedure based on the trapezoidal rule ([41], [7]) presented
in this paper to calculate the viscoelastic concentration tensor of the Eshelby problem, a comparison with an alterna-
tive technique based on the correspondence principle (Laplace-Carson) is proposed for the non-ageing case. To this
aim, the hypotheses of the concentration problem presentedin the previous section devoted to FEM computations are
considered again except that the ageing functions in (62) are replaced by 1.

On the one hand, the Laplace-Carson transforms of the elementary behaviours modelled as Kelvin chains have
very simple analytical forms. The concentration problem becomes elastic in the Laplace domain and the application
of the Gaver-Stehfest algorithm (see [53]) allows to come back to the time domain and to express the sixindependent
components of the concentration tensor at any time. IfN denotes the number of times at which the latter is calculated,
it comes that the complexity of this technique isO(N) since the number of calls of the elastic problem with the Gaver-
Stehfest algorithm at each time is limited.

On the other hand, the procedure developped in the present paper allows to compute the whole history (with re-
spect to the chosen discrete set of times) of the concentration tensor in only one calculation. As shown in the paper
the latter requires to inverse lower triangular block matrices of rank 6N which is the most time consuming step of the
procedure. It follows that the expected complexity is at best O(N2).

Both techniques have been implemented in Python 2.7 codes and performed on only one core of an Intel i7-
3840QM CPU @ 2.80GHz with 8Gb of RAM. The Gaver-Stehfest algorithm has been used with parameterM = 8
(summation on 2M = 16, see [53]). It must be precised that both methods perfectly coincide, even for the lowest
number of times (N = 150 betweent = 0 andt = 10). The evolutions of the concentration tensor are not presented
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Figure 3: Bulk (plain lines) and shear (dashed lines) compliance functions of matrix and inhomogeneity phases, fort′ = 0, 10, 20, 30, 40, 50.

because they are identical to the ones appearing in right figures4 and5. The computing time is plotted against the
size of time sampling in figure7. The results are consistent with the expected complexitiesevoked in the previous
paragraphs. In particular, it appears that the method basedon the use of the correspondence principle is more efficient.
Nevertheless, this method is designed only for non-ageing behaviours whereas the approach proposed in this paper is
more general since it can address the ageing case. Moreover,as recalled in introduction, it should be kept in mind that
the algorithms allowing to calculate the inverse of the Laplace transform suffer from several shortcomings and should
be carefully adapted to the function to inverse.

7. Concluding remarks

In this paper, the complete solution to the Eshelby problem of an ellipsoidal inclusion submitted to a uniform
polarization history and embedded in an infinite matrix has been derived in the general framework of ageing linear
viscoelasticity. In particular it has been proven that the strain state and subsequently the stress state are uniform within
the ellipsoid and depend only on time. The structure of the solution is similar to that of the elastic case provided that
tensor contractions be replaced by Volterra products: the strain tensor is related to the polarization tensor thanks to
a polarization fourth-order Volterra kernel generalizingthe elastic Hill polarization tensor. Furthermore, this polar-
ization kernel writes as an integral over the unit sphere of afunction depending on the shape of the ellipsoid and of
the viscoelastic counterpart of the elastic acoustic tensor of the matrix. In addition, generalizations to ageing linear
viscoelasticity of the Eshelby tensor and of the concentration tensor in the case of an ellipsoidal inhomogeneity are
provided. Complete analytical expressions of the Hill polarization kernel are determined in the case of an isotropic
matrix. The theoretical calculations of the paper are then compared to several published results in order to verify their
consistency in particular cases (elasticity, non-ageing viscoelasticity, spherical inclusion). Finally, after recalling an
efficient numerical procedure to evaluate Volterra operators,solutions in the case of an ageing spheroidal inhomo-
geneity in an ageing matrix are very satisfactorily compared to finite element simulations.

The generalization of Eshelby’s results to ageing linear viscoelasticity as presented in this paper combined with
the numerical procedure to evaluate Volterra operators opens a new way to tackle upscaling problems of random
media made up with general ageing linear viscoelastic constituents of anisotropic shape. Indeed it becomes rather
straightforward to implement classical schemes such as theMori-Tanaka (for an isotropic matrix) or the self-consistent
ones (by means of an iterative fixed-point procedure for a macroscopically isotropic material so as to keep an isotropic
fictitious matrix at each iteration) in order to estimate themacroscopic properties of heterogeneous materials with
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ageing linear viscoelastic random microstructure. As in the elastic framework, the particular case of cracks deserves
a special attention: it is currently under investigation and is the topic of a paper in preparation.
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Appendix A. Proof of the plane-wave expansion (11)

The starting point of the proof is the relationship

1
‖x‖ =

1
2π

∫

‖ξ‖=1
δ(ξ · x) dSξ (A.1)

obtained by introducing spherical coordinates (θ, ϕ) of ξ such thatz = ξ · x = ‖x‖ cosθ. The change of variable
(θ, ϕ) 7→ (z, ϕ) allows to write the right hand side of (A.1) under the form

1
2π

∫

‖ξ‖=1
δ(ξ · x) dSξ =

∫ 2π

ϕ=0

dϕ
2π

∫ ‖x‖

z=−‖x‖

δ(z)
‖x‖ dz (A.2)

which leads to the relationship (A.1) thanks to the property of the Dirac distributionδ ([44], [45]).

Finally taking the Laplacian with respect to the variablex to each side of (A.1) and recalling that‖ξ‖ = 1 and
∆ (1/‖x‖) = −4πδ (three-dimensional Poisson formula [44]), the relationship (11) is retrieved.

Appendix B. Change of variable over the unit sphere

This appendix aims at studying the change of variable from the unit sphere to itselfζ 7→ ξ = A−1·ζ/
∥

∥

∥A−1 · ζ
∥

∥

∥ with
A a symmetric second-order tensor and more specifically at proving the relationship (28) between the infinitesimal
surface elements dSξ and dSζ .

By differentation, the infinitesimal vectors are related by

dξ = (1− ξ ⊗ ξ) · A−1

∥

∥

∥A−1 · ζ
∥

∥

∥

· dζ (B.1)

This corresponds to the application of a transformation gradientA−1/
∥

∥

∥A−1 · ζ
∥

∥

∥ followed by an orthogonal projec-
tion onto the plane of normalξ. The infinitesimal surface elements are then related by

dSξ =
detA−1

∥

∥

∥A−1 · ζ
∥

∥

∥

2
ξ · A · ζ dSζ (B.2)

The definition of the unit vectorsξ andζ implies

ξ · A · ζ = ζ · A · ξ = ‖ζ‖2
∥

∥

∥A−1 · ζ
∥

∥

∥

=
1

∥

∥

∥A−1 · ζ
∥

∥

∥

(B.3)
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which ends the proof by inserting (B.3) in (B.2). It is worth precising that the following relationships are similarly
obtained

ζ =
A · ξ
‖A · ξ‖ and dSζ =

detA

‖A · ξ‖3
dSξ (B.4)

It may be noticed that this change of variable has been considered in [47] and the relationship between surface
elements has been obtained by a reasoning on components (see(16.10), (17.09) and (17.10) in [47]).

Appendix C. TensorsQ and R and Newtonian potential

The dependence ofQ andR on A implies that those tensors are orthotropic in the frame (e1, e2, e3) defining the
ellipsoid (6). The non-zero components ofQ andR in this frame are given by (the summation over repeated indices is
not applied in what follows)

Qiiii =
3(I i − ρ2

i I ii )

2
∀ i ∈ {1, 2, 3} (C.1)

Qii j j = Qi ji j = Qi j ji =
I j − ρ2

i I i j

2
=

I i − ρ2
j I i j

2
∀ i , j ∈ {1, 2, 3} (C.2)

and

Riiii = I i ∀ i ∈ {1, 2, 3} (C.3)

Ri ji j = Ri j ji =
I i + I j

4
∀ i , j ∈ {1, 2, 3} (C.4)

The coefficientsI i and I i j used in (C.1), (C.2), (C.3) and (C.4) are adapted from those provided in [54] and [1]
(i.e. differ by a factor of 4π/3 for I i j with i , j and by 4π for the others). Assuming thatρ1 ≥ ρ2 ≥ ρ3 without loss
of generality and renamingρ1 = a, ρ2 = b andρ3 = c when useful for a better readability of the following formulas,
different cases are considered

• if a > b > c

I1 =
a b c

(a2 − b2)
√

a2 − c2
(F − E) (C.5)

I3 =
a b c

(b2 − c2)
√

a2 − c2















b
√

a2 − c2

a c
− E















(C.6)

I2 = 1− I1 − I3 (C.7)

I i j =
I j − I i

ρ2
i − ρ2

j

∀ i , j ∈ {1, 2, 3} (C.8)

I ii =
1
3

















1

ρ2
i

−
∑

j,i

I i j

















∀ i ∈ {1, 2, 3} (C.9)

whereF = F (θ, κ) andE = E(θ, κ) are respectively the elliptic integrals of the first and second kinds of ampli-
tude and parameter

θ = arcsin

√

1− c2

a2
; κ =

√

a2 − b2

a2 − c2
(C.10)
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• if a > b = c (prolate spheroid)

I2 = I3 = a
a
√

a2 − c2 − c2 arccosh (a/c)

2
(

a2 − c2)3/2
(C.11)

I1 = 1− 2 I3 (C.12)

I1i = I i1 =
I i − I1

a2 − ρ2
i

∀ i ∈ {2, 3} (C.13)

I i j =
1
4

(

1
c2
− I31

)

∀ i, j ∈ {2, 3} (C.14)

I11 =
1
3

(

1
a2
− 2 I31

)

(C.15)

• if a = b > c (oblate spheroid)

I1 = I2 = c
a2 arccos (c/a) − c

√
a2 − c2

2
(

a2 − c2
)3/2

(C.16)

I3 = 1− 2 I1 (C.17)

I3i = I i3 =
I3 − I i

ρ2
i − c2

∀ i ∈ {1, 2} (C.18)

I i j =
1
4

(

1
a2
− I31

)

∀ i, j ∈ {1, 2} (C.19)

I33 =
1
3

(

1
c2
− 2 I31

)

(C.20)

• if a = b = c (sphere)

I1 = I2 = I3 =
1
3

(C.21)

I i j =
1

5a2
∀ i, j ∈ {1, 2, 3} (C.22)

Appendix D. Proof of equality between (56) and the expression ofAK provided in [7]

The expression ofAK provided in [7] writes with the notations of the present paper

AK = H + 2(2H+ 3D) ◦
(

2µE ◦ (2H+ 3D) + µ ◦ (6H− D)
)−1◦ ◦ (µ − µE) (D.1)

with

D =
2
3

(k+ µ)−1◦ ◦ µ (D.2)

Replacing

2H+ 3D = 2(k+ µ)−1◦ ◦ (k+ 2µ) (D.3)

and

6H− D =
2
3

(k+ µ)−1◦ ◦ (9k+ 8µ) (D.4)

in (D.1) yields

AK = H + 6
(

6µE + M
)−1◦ ◦ (µ − µE) (D.5)

with
M = µ ◦ (k+ µ)−1◦ ◦ (9k+ 8µ) ◦ (k+ 2µ)−1◦ ◦ (k+ µ) (D.6)
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The terms appearing inM in (D.6) do not commute butM advantageously rewrites with respect toρ = k ◦ µ−1◦

M = (ρ + H)−1◦ ◦ (9ρ + 8H) ◦ (ρ + 2H)−1◦ ◦ (ρ + H) ◦ µ (D.7)

Considering now thatρ, H, linear combinations of the latter as well as their inverses commute, (D.7) becomes

M = (ρ + 2H)−1◦ ◦ (9ρ + 8H) ◦ µ = µ ◦ (k+ 2µ)−1◦ ◦ (9k+ 8µ) (D.8)

The last expression ofM in (D.8) is then used in (D.5) to end the proof

AK = H + 6
(

6µE + µ ◦ (k+ 2µ)−1◦ ◦ (9k+ 8µ)
)−1◦
◦ (µ − µE) (D.9)

= H + 6
(

9k+ 8µ + 6(k+ 2µ) ◦ µ−1◦ ◦ µE
)−1◦
◦ (k+ 2µ) ◦ µ−1◦ ◦ (µ − µE) (D.10)

= 5
(

9k+ 8µ + 6(k+ 2µ) ◦ µ−1◦ ◦ µE
)−1◦ ◦ (3k+ 4µ) (D.11)
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Figure 4: Components of strain concentration tensor: Eshelby and FEM (medium mesh) results, fort′ = 0, 10, 20, 30, 40, 50. Right: zoom on small
t, for t′ = 0; FEM results for the medium mesh and the 3 investigated domain sizes are plotted with dotted/dashed lines.
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Figure 5: Components of strain concentration tensor: Eshelby and FEM (medium mesh) results, fort′ = 0, 10, 20, 30, 40, 50. Right: zoom on small
t, for t′ = 0; FEM results for the medium mesh and the 3 investigated domain sizes are plotted with dotted/dashed lines.
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