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Abstract

The present paper focuses on the Eshelby inclusion probleithws revisited in the framework of ageing linear
viscoelasticity. All known results established in lineasooelasticity thanks to the correspondence principle are
recovered as particular cases of a general solution extidnd®eing. A closed form solution is presented for the Hill
and Eshelby tensors related to an ellipsoidal inclusionezidbd in an infinite anisotropic medium. The case of the
isotropic medium is investigated in detail and related sohs are presented for spherical and ellipsoidal inchsio

A numerical procedure which operates in time domain anddasdhe trapezoidal rule to determine Volterra integral
operators allows toféciently calculate Hill and Eshelby tensors for a wide ranfjeahaviours including in particular
time-dependent Poisson ratios. Validation and verificatibthe new developed solution are presented for the ageing
spherical inclusion on the basis of recent published resuit it is completed by comparisons with finite element
simulations for the general and novel case of an oblate sfthembedded in an ageing linear viscoelastic matrix.

Keywords:
Micromechanics, Ageing linear viscoelasticity, Viscagia Eshelby tensor, Viscoelastic Hill tensor, Viscodtast
inclusion problem

1. Introduction

This paper revisits the Eshelby inclusion problethip the framework of ageing linear viscoelasticity, on the
basis of theageing correspondence principfgoposed by 23], [3], [4], [5] and [6]. It must be emphasized that it
includes as a particular case the non-ageing linear viastieity and all results developed in this context may be re-
covered. A novel solution is presented for the Hill polatiza tensor, and the Eshelby tensor related to an ellipsoida
inclusion embedded in an ageing linear viscoelastic netand it extends results presented in recent pap8r§ ).

In the context of non-ageing linear viscoelasticity, andubing the correspondence principl@], [ 10], [11], [12]
and [L3] have presented generalization of linear elastic problerié linear viscoelastic one, using Stieltjes inte-
grals combined with Laplace-Carson transform. Such ancgmbrhas been widely used to extend homogenization
schemes based on Eshelby tensors in elasticity to lineeneiasticity (see reviews ol f], [15], [16], and [L7]). In
many cases, exact solutions may be obtained in Laplaceforamn®omain D, see L8 and [19) but, due to the
complexity of relations i D, analytical inversions of Laplace transforms are onlyriet&td to simple cases. Hashin
has presented irR[] an analytical transient solution in the case of a spheigmtopic elastic inclusion embedded
in a non compressible isotropic viscoelastic matrix. One fivad in [21] the complete linear viscoelastic solution
for ellipsoidal inclusions in anisotropic materials, andmwerical results obtained thanks to a numerical inversfon o
Laplace-Carson solutions performed by using collocatiethod (P2] and [23] for a recent extension). Exact inver-
sion of Laplace transform has been presente@#h for the problem of a spherical inclusion, considering lieptc
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non compressible viscoelastic Maxwell materials for is@n and matrix and self consistent homogenization scheme.
It may be noticed that, still in the context of non-ageing#n viscoelasticity, fraction-exponential operatorsakhi

are extensively used in rheology and linear viscoelagt{siée P5]) have been applied to Eshelby inclusion problem
and related homogenization approach, to obtain solutiongire general cases of ellipsoidal or penny-shaped cracks
in a viscoelastic matrix (se§], [17] and [27]). Such operators have the advantage to accurately fit anaitge of
behaviours and to conduce to analytical expressions ferge/lLaplace transform.

Although theoretically very useful to solve non-ageinghn viscoelastic problems thanks to the correspondence
principle, the Laplace-Carson transfornffeus from important drawbacks mainly due to the fact thatritains difi-
cult to ensure both accuracy and stability of the numericgr#hms available for inversion. Indeed the method based
on the correspondence principle first requires to calctlatesforms of some creep or relaxation functions ékdent
phases but closed-form expressions may not exist due tathelexity of the initial functions or because the latter
come from experimental points. The last step of the methedists in calculating the inverse of Laplace-Carson
transforms in order to come back to the time domain. This atest systematically needs to resort to numerical
algorithms as those described @8] which generally have to be specifically adapted to the fioncto inverse. It
proves in particular very flicult to reach a certain level of accuracy of the inverse wielducing the sensitivity
to the errors in the Laplace domain. To avoid the shortcomufghe Laplace-Carson transform, homogenization
methods staying in the time domain have recently been dedii9], [30], [16]). Among them, one may cite the
time-incremental internal variable homogenization mdthased on Green function techniques and related integral
representation presented B1], [32] and [16]. In this method, the fective behaviour as well as the evolution laws
of the averaged stresses per phase are solved incremeénttilly time domain through a timeftirential equation,
without need to analytical or numerical inverse of Lapl&agson transforms.

Regarding ageing viscoelastic composite materials, sesdts have been obtained in the case of periodic homog-
enization applied to multilayered media i3 but mean-field schemes based on Eshelby’s solution wexéonsy
restricted to particular ageing behaviours for the visasiit phases, such as the time-shift behaviour introduzed t
describe plastic materials and glassé&l([[35], [36€]). In this particular case, the correspondence principle loe
applied after the change of variable defining the equivalerg ([37], [15]). More recently, comprehensive homog-
enization methods have been uncovered. On the one handdteriental homogenization approaéld][consists
in approximating the ageing viscoelastic behaviour to a-ageing Dirichlet series on each time step. The corre-
spondence principle is then applied on each time step t@ sbk homogenization problem. The scheme designed
in [29] is also able to estimate théfective response of viscoelastic composites: it relies ervériational technique
proposed in 3§ to rigorously approximate non-uniform eigenstrains duéternal variables by piecewise uniform
eigenstrains. On the other hand] has proposed a closed-form solution to handle the caseharigal inhomo-
geneities, the ageing viscoelastic behaviours of all phaséng isotropic without any particular restriction on the
bulk and shear relaxation functions. The Volterra operaiat its inverse appear in this solution. Using the propertie
of the Volterra operator, the viscoelastic Eshelby indagproblem has been solved for ellipsoidal inclusio8is [
providing that the ageing viscoelastic material featurésa-independent Poisson ratio in a sense define@% [
Nevertheless, the viscoelastic Eshelby inclusion prolftarallipsoidal inclusions and an ageing viscoelastic make
featuring a time-dependent Poisson ratio could only bessbihy mean of approximations3(J], [40]) and an universal
closed-form solution to the viscoelastic Eshelby inclagimoblem was yet to be found. All the references listed in
the present paragraph share a common feature: the straimes iEshelby inclusion, or in the inhomogeneity, remain
uniform at all times, as for the solutions to the elastic drerton-ageing viscoelastic Eshelby inclusion problems.

In the present article, after presenting the hypothesdseoétieing linear viscoelastic inclusion problem, a com-
prehensive closed-form solution is disclosed. Then, ips&ssion in the case of an isotropic infinite medium is derive
and successfully compared to existing results in particitaations. In the last section, théieient numerical pro-
cedure designed irtfl], [7] and [8] is applied for further verifications.



2. The problem of an ellipsoidal inclusion of arbitrary shape in an ageing linear viscoelastic medium

2.1. The ageing linear viscoelastic behaviour

As in [1], the studied domain is the whole three-dimensional spackttae hypothesis of small perturbation is
adopted. The dierence with {] relies on the fact that the constitutive law of the mateisabf the ageing linear
viscoelastic type. This means that the strain and stresoteristories, respectively(t) ando(t), are related by
means of a Stieltjes integral 2]

t t
g(t) = f L(t,t): do(t) = f L(tt):o(t)dt Q)
t'=—00 t'=—0c0
wherell is the creep compliance tensor of the fourth order. In theegrageing framework, it depends on two
independant time variables and is such th@ft’) = 0 if t < t’ due to the causality principle. The non-ageing case
corresponds to a dependencd ahdt’ only through their dierence —t’. The resolution of the Eshelby problem in
the latter case is already available thanks to the correfgrare principle and the resolution of the associated elasti
problem in the Laplace-Carson domain (see referencesotinttion). The present paper deals with the more general
ageing case.

The linear relationshipl), more simply denoted by = L o ([71, [8]), generalizes to the tensorial framework
the so-called Volterra operatos™[ 43] between scalar functions

Y=FoXe Y(t) = f t F(t,t) dX(t) )

tV=—c0

When explicit references to the time variables are neededddty, (1) can also be writteN(t) = F(t, o) o X(e) where

¢” represents the dummy variable involved in the Volterragmation. When a second dummy variable is needed in
any expression in the following, the symbad™will be used.

Adopting the convention of summation of repeated indicEswtites in components

8=|]_?0"‘;>8ij=Lijk|OO'k| (3)

Note thatl obviously verifies the minor symmetri€gq = Lijk = Lij-

Similarly a Volterra operator can be built between a secorter kerneK(t, t') and a time-dependent vectaft)

t
T=KueTt)= f K(t,t") - du(t’) 4
t'=—00
It is worth recalling that time discontinuities are allowiadall the functions involved in the previous relationships
and time derivatives must be considered in the frameworkeftieory of distributions as introduced B\ (see also

[43]).

The scalar \Volterra kernel,t’) — H(t — t’) where H is the Heaviside functidroperates as an identity i), For
the sake of commodity, H shall also denote this function af time variables in the following, i.e. HX = X. As a
consequence, the identities 4) @nd @) are respectively Hand HL, wherel is the fourth-order identity tensor acting
over symmetric second-order tensdkg( = (didj + diudjk)/2) andl is the second-order identity tensdkj(= 6i;)
with &;j denoting the Kronecker symbal

HM =1ift>0and Hf) =0ift<0
25ij =1ifi = jandsij = 0if i #



The operations between a function of two time variables atfidnation of a single time variable can easily
be extended to associative, distributive with respect éoatidition, but non-commutative operations between two
functions of two time variables, either in scalar or tenzlocase. As stated ir8B], the commutativity between two
scalar functions of two time variables holds only for noreiag kernels. A fourth-order tensorial example writes

t

(A B)(L,t) = A(t,e) : B(e,t') = f

T=—00

A, 7) : Zij(‘r, t)dr (5)

The definition of the inverse of a (scalar or tensorial) keiméhe sense of Volterra follows immediately. To avoid
any confusion with the classical inversion, the notationt” for the inverse of the (scalar or tensorial) kerfiels
adopted. For instance, the inverse of the creep compliancelled the relaxation tensor and denotedtby L1,

satisfiesC © L = I ° C = HI.

2.2. The Eshelby inclusion problem
Let & denote an ellipsoid ifR? defined by three radjii, p» andps (alternatively denoted bg, b, andc when

useful for readability enhancement of formulagppendix Q and an associated orthonormal frareg €, €3) such
that the equation of writes

[A™-x||<1 with A=pie@er+pe®e+pses®e; (6)

A time-dependent polarization fielo(x, t) = p(t)ye(X) is then introduced, wherngs is the characteristic function
of & 3. In other words p(x, t) is uniform within& and0 outside&. The whole space is occupied by a uniform ageing
linear viscoelastic material of relaxation tengbso that the constitutive law is expressed as

a(x,t) = C(t, 8) © &(x, ®) + p(thys(X) (7)

In absence of any body force, the momentum balance appliéd,toe. div o = 0 involves the terndiv (pys).
Recalling thatp does not depend on the positinrand thatgrad ys = —ndys wheredys is the surface Dirac distribu-
tion ([44], [49)) supported by the boundary of the ellipsdidandn is its unit outward normal vector, it comes that
div (pre) = p-gradxg = —p- Noge.

The displacement field(x, t) solution to the ageing linear viscoelastic inclusion peot must finally satisfy the
following equations

div (C(t. ») * gradu(x, )) - p(t) - n(x) da5(x) = O (8a)
H)!lilm u(x,t) =0 (8b)

which is rigorously the same as in the elastic case providathe double contracted product ”:” be replaced by the
tensorial Volterra operator.™.

3. Resolution and construction of ageing viscoelastic Hilnd Eshelby tensors

3.1. Elementary problems and Green tensor

This section aims at deriving the complete solution of thebfgm 8a)-(8b) thanks to a methodology adapted
from the elastic case presented #6] or [47]. For this purpose, it is useful to take advantage of thedliite of
the problem and introduce the second-order ageing visstiel@reen tensas(x, t, t') associated to these equations:
G(x,t,1t") - Pis the displacement field at timesatisfying 8b) and resulting from the application of a point force step
P concentrated at the origin and occurind’atvhich means

div (C(t.») © grad (G(x, s, ') - P)) + H(t — t)(x)P = 0 9)

3xs(X) = 1if x € & and 0 otherwise



wheregs stands here for the three-dimensional Dirac distributisspaiated with the origin 44], [45]). It is worth
precising again thatt is arbitrarily chosen as the starting time of the loading Hrelequation 9) finally depends
on x andt as well ast’”. Moreover, due to the fact that the problem is posed in anitafolomain, any translation
of the loading, i.e. H(- t")é(x — x’)P, results in the same translation in the first argument of thetien G, i.e.
G(x — X', t,t) - P, which justifies the location of the elementary loading &t dhigin. In contrast, if the domain was
bounded, it would have been necessary to consider unitrigadit any poink’ and introduce this additional variable
to the Green function.

After eliminatingP, (9) writes in components

Ciji (t, ®) 0 Ginji (X, o, 1) + H(t — t')5ind(X) = O (10)
where indices following the comma é&ndl) represent derivatives with respect to the correspondingoonents ok

(x; andxy).

Two equivalent strategies can then be adoped to s@l)e ¢ne based on Fourier transforms as4dmi[and another
one, inspired by46] and followed in the sequel, based on the plane-wave exparfseeAppendix A for a brief
proof)

1 4
509 = -5 \|§||=16 (£ %) dS; (11)

Note thats in the left hand side is the three-dimensional Dirac distidn wherasy” in the right hand side corre-
sponds to the second derivative of the scalar Dirac digtabi{[44], [45]).

Considering {1) as a linear decomposition, it becomes interesting to fiegthutions? (x, t, t’) of the following
equations parametrized by the unit vecor

Cija(t, #) © Gl (. 0,¥) + H(t = 1)6106" (£ - ) = O (12)
such that the relationship betwe@randG¢ stems from the superposition principle

1
No— __— £ ’ 1
G tt) =~z H&l:le (x.t,t') dS; (13)

The solution to {2) can easily be built by analogy with the elastic case

—1°
G L) =—5(£-X)(£-C- &) (L.t) = -5(¢ - ) NE(LY) (14)

where the viscoelastic counterpart of the elastic acotestisor is identified in¥4) by Ké(t,t') = & - C(t,t') - £ and
_1° -1°

its inverse (in the sense of Volterra) By (t,t') = K¢ ! tt) = (f- C- .f) (t,t"). Both are second-order \olterra

kernels. In order to verify tha®® given by (14) satisfies {2), the derivatives of its components are calculated

Ghn (X LY) = =£6 67 (€ - X NE(L.Y) (15)
which successively implies
Cij(t.#) 0 Gh (6. &.t) = —(£& Cija(t, #) &) o Ni (o,1)6"(€ - X) (16)
= —KE(t,e) 0 NE (o,1) 6" (£ X) 17
= —Ht-t)6ind" (& x) (18)

The definition of the inverse in the sense of Voltekta= K™ in (17) leads to 18) which is indeed identical to
(12).



The determination o6 is finally completed by introducindlé) in (13)

G(x,t,t'):i f 8(£ - x) Né(t,t') dS
lgll=1

8r2

(19)

It should also be noticed that$) allows to verify that limy—.. G(x,t,t") = 0 sinced(& - X) = 6(¢ - €)/ x|l where

e=x/|Ix|l.

3.2. Solution to the Eshelby inclusion problem

The solution to 8a)-(8b) is obtained by remarking that the loadirg(t) - n(x)dss(X) can be viewed as a su-

u(x,t) = - G(x — X, t,e) ° p(e) - N(X) dSy

X' €dE

Note that 8b) is satisfied thanks to the behaviour at infinity of the Greemkl.

Using (19), (20) becomes

__i . - X £(t. @) < Do) - / '
w00 =gz [ [ o )Nk Bl o) aScas,

Equivalently, 1) yields in components

s = _i . -x f ] / » O [
w000 =gz [ [ € DN ) a8 pace

Applying Fubini’s theorem and Stokes’ theorem to the ingé¢grerd& leads to
1
U0 = g2 f f 8'(§ - (x = X) Ni(t, 0)¢i A dS: o pua(e)
7= J)lglI=1 Jxes
Finally the strain tensor is given by a relationship anaiggio the elastic case

&(,1) = —P(x,t,#) © p(e)

in which the fourth-order Volterra kerng{(x, t, t") writes

POX.LY) = ——— f f §7(& - (X = X)) T(£,4, 1) Ay dS,
872 Jigi=1 Jxee

with

FELY) = €O NELY) S =8 (6-C-8) (1) ¢

perposition of translated elementary Dirac contributioBensequently the displacement field writes (omitting time
dependences)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

where the notatioé denotes a tensor product with symmetrization over the twaceadt indices (here, on the one
hand the two first and on the other hand the two last indicégé€tt, t')).

The end of the reasoning relies on the observation that therdkence of on x in (25) does not dier from that

of the elastic case. In particular, the integrations arghfied thanks to the following change of variables

-1
X/ZA')/ and fzu

la~-]

(27)



implying (seeAppendix Bfor a proof of the second equation)

-1
dQ, = detAdQ, and ;= % ds; (28)
1A~ 4]
and consequently
dQ, ds,
de/ dS§ = m (29)
1y

Introducing @7) and @9) in (25), P(x,t,t") becomes

N Al ] ,,[s“-(Al-x—y’)) day ds,
P(x.t,t) = —=— M= bt 0 %
Bt =gz fmll [IIAl-s“lI fwwsl I At g >

Observing thaf” (26) is positively homogeneous of degree 0 and #t4/1) = 136”(2) for 2 > 0 (obtained by
differentiating twice(z/ ) = 16(2)), P (30) is finally simplified

1

|P(X, t, t,) = _Q

f F(A™- £ t,t) §"(¢- (A x—y)) dQy dS; (31)
lIg1=1 lly'lI<1

The integration over the unit ball with respect to the vagab is then performed by means of cylindrical coordi-
nates , 0, z) around the axis directed lf(i.e. z= ¢ - y’), which means @y = r dr dd dz with 6 varying from 0O to

2n, zfrom -1 to 1 and from 0 to V1 — Z2 for eachz. Hence 81) becomes

1
1-A§" (& A x-2) dzdS, (32)
1

T 7

1
P(x,t,t) = —— f F(At.2,t,t)
81 Jig=1

which can also write by application of the derivative ruléslistributions (4], [45])

1
P(x,t,t') = 1 f F(A™-tt) f §(¢- At x - 2) dzdS, (33)
4 Jigi=1 21
This expression still depends on Nevertheless, similarly to the elastic casex tbelongs to the ellipsoid of
equation 6), the scalag - A™! - x belongs to the intervaH1, 1] and the integral oz is 1 whatever the positior
within &. An important consequence is that the well known result dfoumity of & ando- within & in the elastic case
still holds in the ageing linear viscoelastic framework

Vxe& s(xt)=—Pte): ple) , o(xt)=—-C(te)" Ple,*): p(*) (34)

The strain tensog is uniform within & but depends ohand the polarization tensér extending to ageing vis-
coelasticity the elastic Hill polarization tensor (butiagthere as a Volterra kernel or in other words a function af tw
time variables) writes

Pt,t) = 1 f (A £ t,t)dS; (35)
Igli=1

4

or alternatively thanks tad2@), (27) and B.4)

P(t,t) =

S -1° S
detAf £o|(s-C-¢) (t,t>]®§dsf )
Ig1I=1

4n IA- &7
This general result recalls thatdepends only on the shape and orientation of the ellipsaicbarthe relaxation

C of the reference medium. Itis valid for any ellipsoid (eveithvthree diterent radii) and possibly for an anisotropic
tensorC. Nevertheless, as in elasticity, only few cases can leadatytical expressions df. In sectiord, that of an

7



isotropic relaxation tensd is considered and a complete analytical expressidhisfderived.

By analogy with the elastic case, the ageing viscoelastielby tensor is defined by = P : C. Itis useful to
relate the uniform strain tensor history within the elligssubjected to a uniform eigenstrain histeryt)

VXe& &X.1)=5(te): & (e) = P(t,e) . Cle, %) £ (%) (37)

obtained thanks to the previous reasoning by introduciagtiarization tensop = —C fetin (34).

3.3. Extension to the inhomogeneity problem

The resolution of the inhomogeneity problem may also beiiedy that of the elastic case combined with the
previous result as irg]. Indeed, instead of3p) let us consider now that the infinite domain is subjected enaote
boundary condition of the type

ux,t) ~ E@)-x (38)

lIxl|—eo
whereE(t) is a given history of the macroscopic strain tensor. Thaxaion tensor outside the ellipsaitis still
C but the material withir€ is now characterized by affrent relaxation tensor denoted 6. No polarization is
considered here but the strain history solutigt) within & of the present problem can be built by considering the
superposition in an infinite uniform medium of the uniformgerE(t) and the response to a fictitious polarization of
the form C® - C) ! & within & assuming by anticipation thaft) remains uniform withir€. Therefore, omitting the
time variables for the sake of conciseness, it comes that

Vxe& e=E-P:(C°-C)e (39)
and eventually
o o -r
¥xe& e&=A:E with A:(HH+[P:(CS—C)) (40)

whereA, which depends on two time variables, is the ageing visstielaounterpart of the concentration tensor pre-
vailing in the elastic frameworkdl]. The uniformity of& within & is then also ensured in the ageing viscoelastic
framework:e within & only depends on time.

It is worth emphasizing again the fact that the resdl) (is valid whatever the shape and orientation of the
ellipsoid and whatever the anisotropy of the matrix and mbgeneity behaviours. Nevertheless the case of an
anisotropic matrix behaviour may prevent from determinin¢36) in a simple form. On the contrary, when the
matrix is isotropic, the determination Bfis easy to obtain as shown in the next section, allowing thercélculation
of the concentration tenso4@) even ifC€ is anisotropic (see sectidhl for practical calculations).

4. Analytical expression of the viscoelastic Hill tensor aciated to an isotropic infinite medium

The isotropy of the reference medium means that the tensoeké(t, t’) can be decomposed by means of a bulk
relaxation kernek(t, t’) and a shear ongt, t')

C(t,t') = 3Kk(t, ') J + 2pu(t, t') K (41)
whereJ = (1® 1)/3 andK = [ — J denote the orthogonal projectors onto the spaces of regplgcspherical and

deviatoric symmetric second-order tensors. Introdudiegconjugated orthogonal project@r® & and1l — ¢ ® £ for
any unit vectog, the following relationships

1 2 1
§-J-6=360F and £-K-£=fef+ S(1-£96) (42)

8



allow to write the isotropic acoustic tensor and its invensthe form
£ 4
KE=1k+gu|g@f+ul-£ef) (43)

NE= KEY =3@Bk+4p) Yeoe+ut(l-¢08) (44)

whereK¢, N¢, k andu implicitly depend on two time variables not recalled henedonciseness.

Introducing @4) in (36) yields

P=3@k+4u) ' Q+y Y (R-Q (45)
whereP depends on two time variables through the kerkeladu and® andR are constant tensors defined by
detA ®ERE®
@ = A f EOEDEDE 4o, (46)
T Jigi=r NIA- €l
1 ] Al.g
= — E®EREREAS, with ¢ = —— (47)
4 Jigi=1 |-
and
detA 218
_ de f £019¢ 4, (48)
4 Jig=r 1A - €|
£818¢ds, with e= A% (49)
= a4 ¢ T
4 Jig=1 A -]

Remarkably the tensorg andR depend only on the shape and orientation of the ellipsoidutin A and not
on the material properties. They are consequently rigdyadentical as those that can be used to express the Hill
polarization tensor in the elastic framework. In the latt@se, replacing the relaxation functidnandu by bulk and
shear moduli and the inverse in the sense of Volterra by sirsqalar inverse4f) also provides the expressionBf
in the elastic case. For practical implementation, the acomepts of andR are explicited irAppendix C

In the case of a spherical inclusion, the tengpendR are simply derived by projection of the integrands47)(
and @9) ontoJ andK [49]

1 2 1 1
= - —|K [R:—']:— |K
Q 3JJ+15 and 3 3(JJ+ ) (50)

It follows from (45) and @1) that the viscoelastic Hill and Eshelby tensors associtieal spherical inclusion
respectively write

P=@Bk+4u)" O(HJ+ g(k+2,u)o;[loﬂ<) (51)

and
o . 2
S=P:C=3@Bk+4u)? o(kJ]+§(k+ 2,u)[|<) (52)

5. Consistency with known results

5.1. The elastic and non-ageing viscoelastic cases

All the previous results obtained in the very general framgvof ageing linear viscoelastic behaviour and ellip-
soidal inclusion are consistent with their well establgslseunterparts in elasticity or non-ageing viscoelasticit



The consistency with the elastic behaviour is easily vetifimdeed, this behaviour corresponds to a relaxation
tensor of the fornC(t, ') = H(t,t")C° whereC? is the elastic stfness tensor. As a consequen&s) pecomes

N npowi o GEtA [ £8(E-C0 9 log
P(t.t) = H(t— ) PO with P° = — " TN ds; (53)

whereP? is the well known elastic Hill tenso#f7]. The other relationships{), (40) or (45) give the corresponding
elastic expressions by replacing the inverses and thertensatractions in the sense of Volterra by classical inv&rse
and tensor contractions and by multiplying the resultingflo-order tensors by H.

The non-ageing viscoelastic case is almost as simple asasticeone. As already mentioned in introduction, the
correspondence principle can be applied to the set of emsatharacterizing the inclusion problem and the resalutio
in Laplace Transform Domain relies on the results alrea@jl@vle in the elastic domain. But the objective here is to
verify that the solution previously obtained by considgringeneral ageing behaviour is consistent with the paaticul
non-ageing one. This verification is in fact straightfordiday taking advantage of the properties of the Laplace-
Carson transform (LCTYZ2). Indeed the LCT of a Volterra product with a non-ageing leérne. depending on the
pair (¢, t’) only through the dference — t’, becomes the corresponding product between the LCT of eactst In
addition the LCT of identities and inverses in the sense dtevka are the corresponding (tensor or scalar) identities
and inverses in the usual sense applied in the Laplace Bram&omain. Hence, as expected, all the classical elastic
results, in particular the expressions of the Hill and Bsp&tnsors and those of the concentration rules, are rettiev
in the Laplace domain by applying the LCT to all the previoggagions of this article.

5.2. The ageing linear viscoelastic spherical inhomoggneith isotropic phases

This particular case has been solved Thiising a direct displacement approach which eventuallyiges an
explicit expression of the concentration tensor relathrgdtrain tensor history within the sphere to the remotérstra
history. It is shown here that this tensor is exactly regkiy @0) thanks to $1) as a function of the relaxation bulk
and shear moduli of the matrik @ndy) and those of the spherical inhomogeneky &ndy€)

AL Y) = ANt Y) I + AR ) K (54)

with
A = 3K +4ap) o @Bk+4p) (55)
A = 5(9k+8u+6(k+2m)ou o) o(Bk+4u) (56)

On the one hand the expressionA¥ obtained in 7] is strictly identical to 65) but on the other hand the ex-
pression ofAX provided in [7] requires some algebraic manipulations developefiipendix Dto lead to the more
condensed relationship ).

Note that the well known elastic expressions recalledjrafe immediately retrieved by replacing the relaxation
functions in 65) and 66) by the elastic bulk and shear moduli and the Volterra prisland inverses by usual prod-
ucts and inverses within the set of real numbers.

It is worth emphasizing here that the scope4)(is much wider in terms of inhomogeneity shape and behaviour
since it can easily be applied to an anisotropic ellipsaitladmogeneity.

5.3. The case of a time-independent Poisson ratio

In [8], the ageing viscoelastic Eshelby inclusion problem isasdifor materials featuring a relaxation ten§oof
the form described by30]

C(t,t) = f(t,1)C° (57)
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wheref(t, t") is a scalar function such th&0, 0) = 1 andC? is the instantaneous ftiess tensor at time= 0. When
CP is isotropic, the relationshigbf) implies thatu(t, t')/k(t, t) does not depend o, '), which means a constant
viscoelastic Poisson ratio. Nevertheless, the followimigatusion remains valid i€° is anisotropic.

On the one hand, for such a material, it is showr8Jtliat the ageing viscoelastic Eshelby tenSas
S(t,t') = H(t - t)S° (58)
whereSP is the elastic Eshelby tensor associate@t@nd an ellipsoid of the same shape.

On the other hand, introducing?) in the comprehensive expressi@®) yields a polarization tensor of the form
f~1'P° where the constant tensBP writes as in $3). Applying then the formula37) providing$S with (57) finally
leads to the same expression a8)(

6. Practical implementation and validation

6.1. Numerical procedure to evaluate Volterra operators

The expressions of the Hill, Eshelby and strain concemtnadgnsors established in this paper involve the Volterra
operator and its inverse. In most practical cases, analyi@luation is not tractable. Nevertheless, taking athgmn
of the algorithm proposed ir]l], it is possible to numerically evaluate the \olterra operand its inverse. This
approach, successfully used iff pn the concentration problem on a spherical inhomogeyisibyriefly recalled here
for scalar functions.

Considering that the value of all the involved functions afregle time variable is zero befotgand that the time
interval of interest istp, t], a time samplingy < t; < ... < t, is introduced and the time integral appearing in the
Volterra operator?) is discretized using the trapezoidal rule

v - zilF(ti,tj)+F(ti,tj_1)(Xj

> ~Xj.1) (V0<i<n)

j=0
F(t.,t)+ F(ti i)y i F(t,tji1) - F(t.,tHl)

j=0

X (59)

in which the conventions; = tg, X; = X(t;), Y; = Y(t) for 0< i < nandX_; = 0 have been adopted.

Thus, it follows that the function of two fferent timed=(t,t’) playing the role of a Volterra kernel ir2) is now
transformed into a lower triangular matri& ] of rankn+ 1 relating the vectorY] = [Yo, ..., Ya] to [X] = [Xo, . . ., Xn]
0 if j>i
[YI = [FIIX] with Fij =1 (F(t.t)+ F(t.t0))/2  if j=i (60)
(Ftti.ti-0) - F(tuti)/2 if j <
still with the conventiont_; = to.

As already presented i8], the previous methodology can be extended to tensor fumeiin order to build the
numerical counterparts to expressions such3as(4) or even 80) especially in the case of geometrical or physical
anisotropy of the inhomogeneity. Indeed the expressib8sdare also valid for tensor variablés Y andF provided
that the scalar multiplications be replaced by adequatsotetontractions. In addition, tensor contractions can be
seen as matrix-vector multiplications involving compotsen a particular vector frame. It is worth recalling here
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that the Voigt or the Kelvin-Mandel notations allow to regeat strain or stress tensors as vectors of 6 components
depending on time and to represent the relaxation, creepesr @ncentration tensor kernels as 6 matrices of
functions of two time variables. As a consequence and takittggaccount the matrix or vector representations of
tensors in a given frame, the matrix-vector prodié€) temains also valid but should be considered in the sense of a
block matrix operation since th& component of X] (resp. [Y]) contains itself a vector oX (resp.Y) at timet; and
each component of the matrik] represents a block matrix computed with the relationsté@sapplied on the tensor
kernelF. For example,J) becomes a matrix-vector product in a space of dimensinr-@() in which the matrix is
lower triangular and containg ¢ 1) x (n + 1) blocks of 6x 6 submatrices. Alternatively the block matrix operations
can also be built by means of ax66 matrix of (1 + 1) x (n + 1) block matrices if the components corresponding to
space and time are reordered. The inverse of a tensor kartied sense of Volterra simply becomes a matrix inverse
in this numerical procedure.

Thus, practical implementation of the results derived ia ffaper is straightforward and only requires
¢ to time-discretize relaxation functions into matricesngsi0),

¢ to implement expressions of the Hill and concentrationdengeplacing the \olterra operator and its inverse
by matrix multiplication and inversion, using any softwaackage implementing numerical matrix algebra.

6.2. Validation of the strain concentration tensor withgest to FEM computations

Apart form the well known elastic or non ageing cases (se&id), and the spherical inhomogeneity with ageing
case (sectiob.2), reference results in more general situations can beraddaiesorting to numerical computations.

The concentration problem is solved here in ageing linescoglasticity, for an oblate spheroid of agisand
aspect ratio 0.2, using the Code_Astef[finite element code. A spheroid of radii= b = 5,¢c = 1 is embedded
into a boxQ which half lengthes argq times the spheroid radii. Uniform strain type boundary d¢tos following
a macroscopic strain step are imposed, and the evolutidmecditerage strain in the inhomogeneity is sought. The
six independent components of the concentration tensoolateened by considering six elementary orientations of
the macroscopic strain. Taking advantage of the axisynicme#ature of the geometry, some computations can be
performed in 2D axisymmetric conditions. Besides, takidgeamtage of the three symmetry planes, only one eight of
the domain needs to be meshed (one half in the 2D axisymneese). Thus, 2D and 3D quadratic meshes have been
prepared, using the Salon&]] platform, ensuring similar element sizes in critical zerd the computation domain
as detailed hereafter. The numerical paramet@esting accuracy are the relative sjgge of the computing domain
(which is not infinite, in contrary to the Eshelby problenmdamesh refinement.

A preliminary convergence analysis is performed, congiggisee details in tablg)
e three relative domain sizegp = 10, 20 and 40,

o three sets of meshes: coarse, medium and fine. The meshefiimed around the inhomogeneity and especially
around the highest curvature zone of the interface (figure

This analysis is restricted to elastic behaviours (sedielelaracteristics of inhomogeneity and matrix in taBje

to use the classical Eshelby result as a reference. Théveekatrors on components 1133 and 3333 of the strain
concentration tensor are plotted on fig@reThe relative domain sizg, is found to have a much larger influence on
accuracy than mesh refinement. Similar trends are foundeoottrer components of the strain concentration tensor.
Thus, the ageing linear viscoelastic numerical computatisubsequently used as references, are performed on the
largest domainy, = 40) and with the medium mesh, as a compromise to keep congtiries reasonable.

As it is the only ageing linear viscoelastic behaviour afali¢ in Code_Aster, the Granger mode?][is adopted
for both matrix and inhomogeneity. A constant Poisson rigtessumed:

Lt ) = Le(t, V) [(1 - 2v)J + (1 + »)K] (61)
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xa =10 xo =20 xa =40
2D axi 3D 2D axi 3D 2D axi 3D

mesh nod. el. nod. el. | nod. el. nod. el. | nod. el. nod. el.

coarse 474 213 | 16962 11094 462 207 | 10236 6492 418 185| 6753 4145

medium 976 453 | 36537 24452 924 427 | 23283 15205| 891 410 | 18582 12044

fine 3802 1835| 161373 112311 3533 1700| 113106 77959| 3401 1632| 91576 62695

Table 1: Number of nodes and elements in the considered afimdreshes.

— \
\%%\“”“\@%@«\
:

\, \/\/\/\/\/\/
\ A7

Figure 1: 2D axisymmetric (left) and 3D (right) medium meskar y, = 10: global view (top) and detailed view on inhomogeneitytitm).

The uniaxial compliance is here defined with two Kelvin clsagind an arbitrary ageing functidg(t’):
1 2 =t ¢ \2
Lett) = = + ) ) (1 - e*r—i) with  fa(t) = e (5) (62)
i=1

Arbitrary material parameters are chosen with the inhomei stifer than the matrix (see tab®. Bulk and
shear compliance functions of both matrix and inhomoggméiases are plotted in figuBe

v E S S T1 T2 Ta

matrix 025 1| 2 3 2 10 30

inhomogeneity| 0.15 10| 05 0.7 0.1 7 15

Table 2: Material properties of matrix and inhomogeneitag#s (arbitrary units).

The six independent components of the strain concentrégimsor are plotted in figuresand5. The latter are
functions of €, t") and correspond to the uniform strain arising in the inhoemaity at for a unit strain step occurring
att’ at the domain boundary. The semi-analytical result put idence in this paper agrees very well with reference
FEM computations for all the six components and is able tdurall the details of non-monotonic evolutions.

Regarding convergence analysis of FEM results, trenddasiioi the elastic case are found:
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10t 10t
S S
g 102 - 1 o 107 ¢ 1
Qo e [}
= =
E —_— 3
g e
3 ~ xa =10 3
10° Yo = 20 R 10° R
— X = 40 \
510° 10 210* 510 10° 5100 10 210* 510 10°
guadratic elements in 3D mesh guadratic elements in 3D mesh

Figure 2: Relative error on selected components of thenst@ncentration tensor, with elastic behaviours, betweek Eomputations and the
analytical reference result from Eshelby, using 8atent mesh refinements and &eient domain sizes.

e the relative domain sizgo has a large impact on accuracy (see details in the right pdigures4 and5),
especially on components 1122, 1133 and 3311,

e the mesh refinement has a much lesser impact on accuracye@gusuggesting that ageing linear viscoelastic
computations on the fine mesh would not provide significaptronements.

6.3. Performance of the present numerical method based adrgture in time domain compared to the correspon-
dence principle in the non-ageing case

In order to assess the performance of the numerical proedzhged on the trapezoidal ruld 1], [7]) presented
in this paper to calculate the viscoelastic concentratmisdr of the Eshelby problem, a comparison with an alterna-
tive technique based on the correspondence principle écapCarson) is proposed for the non-ageing case. To this
aim, the hypotheses of the concentration problem presémted previous section devoted to FEM computations are
considered again except that the ageing function62pdre replaced by 1.

On the one hand, the Laplace-Carson transforms of the etamydmehaviours modelled as Kelvin chains have
very simple analytical forms. The concentration problerodmes elastic in the Laplace domain and the application
of the Gaver-Stehfest algorithm (sé&]) allows to come back to the time domain and to express thndependent
components of the concentration tensor at any timi. denotes the number of times at which the latter is calcujated
it comes that the complexity of this technique&léN) since the number of calls of the elastic problem with thedsav
Stehfest algorithm at each time is limited.

On the other hand, the procedure developped in the prespat pows to compute the whole history (with re-
spect to the chosen discrete set of times) of the concesrirnsor in only one calculation. As shown in the paper
the latter requires to inverse lower triangular block neatsiof rank 6l which is the most time consuming step of the
procedure. It follows that the expected complexity is at Ig#I?).

Both techniques have been implemented in Python 2.7 codépenfiormed on only one core of an Intel i7-
3840QM CPU @ 2.80GHz with 8Gb of RAM. The Gaver-Stehfest algm has been used with paramelér= 8
(summation on B = 16, see $3J)). It must be precised that both methods perfectly coinc&len for the lowest
number of timesN = 150 betweern = 0 andt = 10). The evolutions of the concentration tensor are notgntes!
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matrix inhomogeneity

I—k,,u (t, t/)
Ly t,t)

Figure 3: Bulk (plain lines) and shear (dashed lines) coamgie functions of matrix and inhomogeneity phasest’fer0, 10, 20, 30, 40, 50.

because they are identical to the ones appearing in righteiguand5. The computing time is plotted against the
size of time sampling in figur@. The results are consistent with the expected complexétreked in the previous
paragraphs. In particular, it appears that the method bms#ue use of the correspondence principle is méieient.
Nevertheless, this method is designed only for non-agesh@iours whereas the approach proposed in this paper is
more general since it can address the ageing case. Morasvegalled in introduction, it should be kept in mind that
the algorithms allowing to calculate the inverse of the aapltransform dter from several shortcomings and should
be carefully adapted to the function to inverse.

7. Concluding remarks

In this paper, the complete solution to the Eshelby problémnoellipsoidal inclusion submitted to a uniform
polarization history and embedded in an infinite matrix hasrbderived in the general framework of ageing linear
viscoelasticity. In particular it has been proven that tingis state and subsequently the stress state are unifahimwi
the ellipsoid and depend only on time. The structure of thetiem is similar to that of the elastic case provided that
tensor contractions be replaced by Volterra products: tfaénstensor is related to the polarization tensor thanks to
a polarization fourth-order Volterra kernel generalizthg elastic Hill polarization tensor. Furthermore, thidgoo
ization kernel writes as an integral over the unit sphere foingtion depending on the shape of the ellipsoid and of
the viscoelastic counterpart of the elastic acoustic teakthe matrix. In addition, generalizations to ageing éne
viscoelasticity of the Eshelby tensor and of the conceinmaensor in the case of an ellipsoidal inhomogeneity are
provided. Complete analytical expressions of the Hill paktion kernel are determined in the case of an isotropic
matrix. The theoretical calculations of the paper are ttngared to several published results in order to verifyrthei
consistency in particular cases (elasticity, non-ageiagoelasticity, spherical inclusion). Finally, after aiexg an
efficient numerical procedure to evaluate Volterra operasmhitions in the case of an ageing spheroidal inhomo-
geneity in an ageing matrix are very satisfactorily comgdedfinite element simulations.

The generalization of Eshelby’s results to ageing lineacaglasticity as presented in this paper combined with
the numerical procedure to evaluate \Volterra operatora®penew way to tackle upscaling problems of random
media made up with general ageing linear viscoelastic d¢apsts of anisotropic shape. Indeed it becomes rather
straightforward to implement classical schemes such adtineTanaka (for an isotropic matrix) or the self-considte
ones (by means of an iterative fixed-point procedure for aras@opically isotropic material so as to keep an isotropic
fictitious matrix at each iteration) in order to estimate thacroscopic properties of heterogeneous materials with
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ageing linear viscoelastic random microstructure. As ndlastic framework, the particular case of cracks deserves
a special attention: it is currently under investigatiod &nthe topic of a paper in preparation.
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Appendix A. Proof of the plane-wave expansioni1)
The starting point of the proof is the relationship

1 1

obtained by introducing spherical coordinatésg) of £ such thatz = ¢ - x = ||x||cosd. The change of variable
(@, ¢) - (z ¢) allows to write the right hand side ofA(1) under the form

1 21 dtp ] 5(2)
2r lill= 16@: X) 93¢ _f fz Il IIXII (A-2)

which leads to the relationshig\(1) thanks to the property of the Dirac distributiég[44], [45]).

Finally taking the Laplacian with respect to the variakléo each side ofA.1) and recalling thaf¢|| = 1 and
A (1/]Ix]l) = —4n6 (three-dimensional Poisson formuléd]), the relationship11) is retrieved.

Appendix B. Change of variable over the unit sphere

This appendix aims at studying the change of variable freitiit sphere to itself — ¢ = A™-¢/||A™ - ¢]| with
A a symmetric second-order tensor and more specifically afmydhe relationshipd8) between the infinitesimal
surface elementsS} and &5,.

By differentation, the infinitesimal vectors are related by

-1

d§=(1—§®§)'m' dg

(B.1)

This corresponds to the application of a transformatiodigrt A=/ || A™ - || followed by an orthogonal projec-
tion onto the plane of normgl The infinitesimal surface elements are then related by

detA™?
Se= —— £ A-{dS, (B.2)
(TS|

The definition of the unit vectogand{ implies

g 1
a7l lla 4]
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which ends the proof by insertin®(3) in (B.2). It is worth precising that the following relationshipseaimilarly

obtained
A& detA

- 2% and __detA
e T

It may be noticed that this change of variable has been ceregidn §7] and the relationship between surface
elements has been obtained by a reasoning on componen(46se@), (17.09) and (17.10) idT]).

ds; (B.4)

Appendix C. TensorsQ and R and Newtonian potential

The dependence d@f andR on A implies that those tensors are orthotropic in the frameet, e3) defining the
ellipsoid ©). The non-zero components@fandR in this frame are given by (the summation over repeated axiic
notapplied in what follows)

li — P2l .
Qi = 3 —pi) 2pl ) Vie{l,23) (C.1)
-ty Ni-pfhy
Qijj = Qyij = Qi = - ;' L = 2' L Vizje(L23) (C.2)
and

Ri = i Vie{l1,273} (C.3)

li +1; L
Rijij =Rijji = Z ! Vi#|je{l,23} (C4)

The codficientsl; andl;; used in C.1), (C.2), (C.3) and (C.4) are adapted from those provided B4 and [1]
(i.e. differ by a factor of 4/3 for I;; with i # j and by 4 for the others). Assuming that > p> > p3 without loss
of generality and renaming, = a, p2 = b andps = ¢ when useful for a better readability of the following forrag|
different cases are considered

eifa>b>c

abc
| - 7—"_8 C5
! (az—bZ)«/m( ) (€5
abc b Va2 - ¢?
s = (bz—cz)«/m( ac _8] o
b = 1-1;-1I3 (C.7)
lj = '2"_“2 Vi#je(1,23) (C.8)
Pi _pj
1(1 .
i = é[E—Zhj] Vie(1,2,3) (C.9)
i j#i

whereF = F (0, ) and& = &(0, k) are respectively the elliptic integrals of the first andsetkinds of ampli-

tude and parameter
]2 [a2 - b?
0 = arcsin4/1 - 2 N ES 72 (C.10)
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e if a> b = c(prolate spheroid)

e if a=b > c(oblate spheroid)

e if a=b=c(sphere)

22 Va2 — ¢2 — ¢ arccoshg/c)

Vie(2,3)

1 .
(g_l\?»l) VI,]E{Z,S}

c a? arccos¢/a) — ¢ Va2 — 2
2(a2 - c?)*?
1-214
I3 -1
pf - C?
1
4

Vie(l2)
1 ..
(? - |31) VI,] 6{1,2}

1
(-2

Wl

1
3

1 o
g V|,J€{1,2,3}

Appendix D. Proof of equality between 66) and the expression ofAK provided in [7]

The expression oA provided in [7] writes with the notations of the present paper

A =H+2(2H+3D)o (2,1‘8 0(2H+3D) + o (6H - D))"1° o (u —u®)

with

Replacing

and

in (D.1) yields

with

2 »
= 3k+pm) "t op

2H+3D = 2(k+ 1) ¥ o (K + 2u)

6H-D = %(k+,u)*l° o (9K + 8u)

AS = H + 6(6u° + M)

—-1°

o (i~ )

M = o (k+ )™ o (9k+8u) o (k+20)™" o (k+4)
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The terms appearing iM in (D.6) do not commute bu advantageously rewrites with respecpte k o =’
M=@+H) ™Y o@+8H)o(@+2H Y o(p+H)ou (D.7)

Considering now that, H, linear combinations of the latter as well as their inesrsommute,[.7) becomes
M=(p+2H) " o(9 +8H)ou=po(K+2u)" o(9K+8u) (D.8)

The last expression dfl in (D.8) is then used in@.5) to end the proof

A = H+6(61° +po (k+20) " 0 (9k+81) " o (u— 1) (D.9)

= H+ 6(9k +8u+6K+2u)outo ,us)_lo o(k+2u) o™ o(u—pu) (D.10)

= 5(9k+8u+6(+2p)ou ™ o) o (3k+4p) (D.11)
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