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On soft capacities, quasi-stationary distributions
and the pathwise approach to metastability

A. Bianchi∗ A. Gaudillière† P. Milanesi‡

Abstract
Motivated by the study of the metastable stochastic Ising model at subcritical temperature and

in the limit of a vanishing magnetic field, we extend the notion of (κ, λ)-capacities between sets,
as well as the associated notion of soft-measures, to the case of overlapping sets. We recover their
essential properties, sometimes in a stronger form or in a simpler way, relying on weaker hypotheses.
These properties allow to write the main quantities associated with reversible metastable dynamics,
e.g. asymptotic transition and relaxation times, in terms of objects that are associated with two-
sided variational principles. We also clarify the connection with the classical “pathwise approach”
by referring to temporal means on the appropriate time scale.

MSC 2010: primary: 60J27, 60J45, 60J75; secondary: 82C20.
Keywords: Soft capacity, soft measure, quasi-stationary measure, restricted ensemble, metastabitlity,
potential theory, relaxation time.
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1 Model and main results
In the present paper we consider a general Markovian model for a metastable dynamics and we show how,
under mild hypotheses, “soft measures and capacities” associated with a covering of the configuration
space allow for a description of the metastable state provide sharp estimates of the relaxation time, fast
relaxation to local equilibria, and enable to establish the asymptotic exponential law of the transition
time to equilibrium. The ultimate goal of this paper is to provide a mathematical framework to prove a
convergence in law to an exponential distribution of the transition time to equilibrium for the metastable
kinetic Ising model at any subcritical temperature and in the limit of a vanishing magnetic field. In the
companion paper [GMV20], we establish such a convergence by working out the model-dependent part
of the proof. In addition, we present an explicit connection with the classical “pathwise approach to
metastability”, and we provide a comparison with the techniques appeared in the recent literature of
abstract metastable dynamics.

Before stating the main results, and to better illustrate the ideas leading to the present research, we
start by discussing the qualitative behavior of a concrete Markovian model. We consider a continuous
time Glauber dynamics in two-dimensional finite boxes of area diverging as 1/h2, where h � 1 is the
magnetic field, as studied in [GMV20]. By Glauber dynamics we mean a single spin flip dynamics that is
reversible with respect to the Gibbs measure of the Ising model, thus including Metropolis and heat-bath
dynamics (see [GMV20] for precise definitions). Figure 1 shows a sample of such a Metropolis dynamics
started from the “all minus configuration”, with periodic boundary conditions, and with an Hamiltonian
that is twice1 the Hamiltonian of [GMV20], up to boundary conditions.
∗Università degli Studi di Padova, Dipartimento di Matematica, Via Trieste, 63, 35121 Padova, Italy, e-mail:

bianchi@math.unipd.it
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1This is because [GMV20] sticks to the conventions of its main reference [SS98], where the authors introduced a relatively

unusual factor 1/2 in the Hamiltonian. Since Figure 1 illustrates a dynamics ran at inverse temperature β = 2/3 without
such a convention, it would correspond to a trajectory sampled at inverse temperature β′ = 4/3, i.e., to a twice smaller
temperature, with the convention of [SS98] and [GMV20].
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Figure 1: Snapshots of a kinetic Ising model at temperature T = 1.5 and under magnetic field h = 0.14
in a 256 × 256 box with periodic boundary conditions. Minus spins are yellow and plus spins are red.
We took pictures at times 471, 7482 and 13403 for the first line, at times 14674, 15194, 15432, 15892
and 16558 for the second line, and times 17328, 23645 and 40048 for the last line.

Figure 1 is the kind of picture to bear in mind when reading the present paper. Here are some of its
most relevant features.

• The last three pictures can be seen as different samples from the equilibrium Gibbs measure. Since
h > 0, it is concentrated on configurations where plus spins dominate. One has to wait for some
“transition to equilibrium” to start observing non-anomalous configurations with respect to this
equilibrium state.

• The first three pictures can be seen as different samples from a single distribution concentrated
on configurations where minus spins prevail. Notice that they represent typical configurations of a
“local equilibrium”, or metastable state, that is very different from the equilibrium stable state.

• The transition to equilibrium is triggered by the nucleation of a “supercritical droplet” (in the first
picture, see the tiny plus-phase droplet that was not large enough to trigger it). Notice that the
time needed to invade the whole box is of a smaller order than the time needed to appear —about
2000 and 15000 time units, respectively— as a fluctuation of the metastable state.

• This suggests that the time needed by the system to relax to some local equilibrium (metastable
or stable state) is short with respect to the global relaxation time. This is what we call “fast
relaxation to local equilibria”.

• This also suggests that the transition to equilibrium can be described as “both late and abrupt”,
and it is thus compatible with an asymptotic exponential law of the transition time to equilibrium.

Topping the list of questions posed when trying to build a rigorous mathematical counterpart of such
observations:

i. How can we make sense of such a notion of local or metastable equilibrium? How should it be
described?

ii. How can we define such a random transition time to equilibrium? How should its law be described?

The pathwise approach to metastability introduced in [CGOV84] and fully described in [OV05] suggests
using temporal means and stopping times to answer these questions. If

X : t ≥ 0 7−→ X(t) ∈ X

is the Markov process, the metastable character of which we want to investigate, and f : X → R is an
observable, let us denote the associated temporal mean from time t ≥ 0 and on time scale θ > 0 by

Aθ(t, f) = 1
θ

∫ t+θ

t

f(X(s)) ds. (1)
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Let µ be the equilibrium distribution of the process and, for any probability measure ν on X and any
observable f , let us denote by ν(f) the mean value of f with respect to ν. Within the pathwise approach,
answering the previous questions amounts to identifying a probability measure µ̃, a stopping time T and
a deterministic time scale θ such that, for the system started in µ̃:

• θ is small with respect to Eµ̃[T ], the mean value of T ;

• Aθ(t, f) is close to µ̃(f) for all t < T − θ and all observable f with very large probability;

• Aθ(t, f) is close to µ(f) for all observables f and all t ≥ T of the same order as Eµ̃[T ], or possibly
larger, with very large probability.

The metastable state and the transition time to equilibrium can then be defined by µ̃ and T , respectively.
The pathwise approach also focuses on establishing the convergence in law to an exponential distribution
with parameter one of the rescaled transition time T/Eµ̃[T ]. This is to account for a “both late and
abrupt” transition to equilibrium, by opposition with the behaviour of a slowly relaxing system for which
this relaxation would occur by following a gentle and constant drift2. One cannot distinguish between
these two behaviours by looking only at the time evolution of the mean value

t ≥ 0 7−→ Eµ̃
[
f(X(t))

]
, f : X −→ R,

that are associated with the natural Markovian semi-group; hence the terminology “pathwise approach”.
As far as the construction of the probability measure µ̃ and the stopping time T is concerned, the

authors of [CGOV84] suggested, by following [LP71], to use a restricted ensemble

µR = µ
(
·
∣∣ R)

and the associated exit time TX\R, for some subset R of the configuration space X that can be thought
of as a “basin of attraction” of the metastable state. In the case of the kinetic Ising model, Schonmann
and Sholsman made a detailed study in the beautiful paper [SS98] of such restricted ensemble and exit
time by defining R as the set of configurations for which the + spins can be enclosed into small enough
(subcritical) contours (see [SS98] or the companion paper [GMV20] for more details). Their results allow
to prove that the temporal means Aθ(t, f), for a suitable θ, are close to µR(f) or µ(f), but only for times
t that are very small or very large with respect to EµR [TX\R], which is strongly related with the lack of
control of the law of the transition time to equilibrium.

In [BG16] we proposed some modifications of the traditional construction of the metastable state µ̃
and the transition time to equilibrium T . We worked with quasi-stationary measures to connect the two
issues of the description of the metastable state and of the law of the transition time. This led us first
to a mathematical formalization of the phenomenon of “local thermalization” or “fast relaxation to local
equilibria”, then to concieve of the stable state as a more stable local equilibrium only. As a consequence,
we suggested to use a stopping time at which one is ensured3 to be close to this more stable equilibrium,
instead of the exit time TX\R. This eventually led us to the notion of soft measure, which is a quasi-
stationary measure (of a trace process) associated with such a stopping time rather than a plain exit
time: while quasi-stationary measures are associated with absorption as soon as a Markov process hits
some set S, which acts as an hard barrier, we consider absorption, or killing, at some rate λ in S —our
Markov process can then penetrate S, hence the terminology “soft measure”. We showed that, with a
suitable set of hypotheses in which S can be envisaged as a basin of attraction of the stable state, and for
a suitable choice of the killing parameter λ, the associated soft measure µ∗R,λS and killing time TλS (see
sections 1.1 and 2.1 for precise definitions) were natural candidates to build the metastable state µ̃ and
the transition time T . This came with an associated notion of “soft capacity” and a solution, as detailed
in [BG16] and shortly reviewed in Section 1.2 of the present paper, to difficulties encountered in proving
asymptotic exponential laws for transition times and that had also emerged in the “potential-theoretic
approach” to metastability.

2In the case of the kinetic Ising model, one can instead think of two opposite strong drifts: one towards the metastable
state and one towards the stable state. The nucleation of the supercritical droplet occurs by fluctuation against the first
drift and the system follows the second drift afterwards. This is coherent with the fast relaxation to local equilibria.

3Note that for the kinetic Ising model, despite the strong drift towards equilibrium at the appearance of the first
supercritical droplet, there is still some time to wait before the relaxation to be achieved: the pictures on the second line
of Figure 1 show atypical configurations with respect to the equilibrium measure. The exit from R does not coincide with
global thermalization.
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Unfortunately, we could not prove the convergence in law of a rescaled transition time to an ex-
ponential random variable in the aforementioned case of the kinetic Ising model within the framework
of [BG16]. The problem came from the fact that, in [BG16], we assumed that the sets R and S form
a partition of the configuration space. But as shown in [GMV20], the tools to control local relaxation
times, that is the crucial point of the model-dependent part of the study, involve some mesoscopic
and macroscopic analysis that is incompatible with such a neat separation at the microscopic level. It
turned out that removing the disjointness hypothesis of R and S from the framework of [BG16], with
the aim of improving the global proposed strategy and eventually prove an asymptotic exponential law
in [GMV20], required new ideas. This was the first motivation for writing the present paper. In doing
so, we introduced some simplifications and strengthened some estimates with respect to [BG16], and we
also provided an explicit connection with the classical pathwise approach.

At last, we have to make a final remark on the asymptotic exponential law for the kinetic Ising
model. We prove such an asymptotic result in the companion paper [GMV20], where we consider the
kinetic Ising model in a finite box of area diverging as 1/h2, in the limit of a vanishing magnetic field
h > 0. Even though the proof of such a result was missing, this was to be expected and nothing to be
surprised at. But in the case of infinite volume dynamics, as the one considered in [SS98], the situation
is more delicate, and it is not so clear whether an asymptotic exponential law for the transition time
to equilibrium is the correct conjecture for the both late and abrupt transition. Indeed, as shown by
Shonmann and Shlosman, the transition mechanism of infinite volume dynamics does not only involve
the nucleation of supercritical droplets, which should occur after an asymptotic exponential time, but
also the coalescence of such growing droplets on a time scale that is logarithmically equivalent to the
nucleation time scale. Thus, to decide whether the asymptotic exponential law still holds when the times
involved in both mechanisms are sequentially added, a precise control on the prefactors of their mean
values is needed. This underlines the relevance of the sharp estimates of spectral gap and mean transition
time (see Theorem 1 in Section 1.1) in terms of soft capacities inherited from the classical ones that were
introduced by [BEGK02], [BEGK04] and [BEGK05] in metastability studies.

The paper is organized as follows. In Section 1.1 we present our main result, in Section 1.2 we discuss
the relations with the more recent literature on abstract metastable dynamics, in Section 2 we collect
all the material that can be directly imported from [BG16] and we simplify some of its proofs, and in
sections 3, 4 and 5 we give the proofs of our main theorems.

1.1 Local and global thermalizations
Let X be an irreducible continuous time Markov process on a finite configuration space

X = R∪ S

with R and S possibly overlapping and with generator L defined by

(Lf)(x) =
∑
y 6=x

w(x, y)[f(y)− f(x)], x ∈ X , f : X → R. (2)

We assume X to be reversible with respect to a probability measure µ and we denote by D the Dirichlet
form associating with any observable f : X → R

D(f) = 1
2
∑
x,y∈X

µ(x)w(x, y)
[
f(x)− f(y)

]2
.

We call 1/γ the relaxation time of the dynamics, so that γ is the spectral gap

γ = min
f∈`2(µ),

Varµ(f)6=0

D(f)
Varµ(f) . (3)

With any Y ⊂ X we associate the restricted dynamics XY in Y with generator defined by

(LYf)(x) =
∑

y∈Y\{x}

w(x, y)[f(y)− f(x)], x ∈ Y, f : Y → R, (4)

which is reversible with respect to the restricted ensemble

µY = µ
(
·
∣∣ Y).
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If XY is also an irreducible process we denote by γY its spectral gap. The associated exit rate (see
Section 2 for an explanation of the terminology) is

φ∗Y = min
f 6=0,

f |X\Y=0

D(f)
Eµ[f2] .

Let σλ be an exponential random variable of parameter λ, independent of X, and `S(t) denote the local
time of X in S, that is

`S(t) =
∫ t

0
1{X(s)∈S} ds .

We then define TλS as the first time t ≥ 0 such that `S(t) reaches σλ:

TλS = min
{
t ≥ 0 : `S(t) ≥ σλ

}
.

In other words, TλS is the absorption time of the process X killed at rate λS with

λS(x) = λ1{x∈S}, x ∈ X . (5)

We define analogously TκR , which is associated with the killing rate κR, from an exponential random
variable σκ of parameter κ, independent of X and σλ, and by using `R, the local time in R. With

V λκ (x) = Px (TκR < TλS ) , x ∈ X ,

the associated soft capacity, or (κ, λ)-capacity is

Cλκ (R,S) = D
(
V λκ
)

+ κµ(R)EµR
[(
V λκ − 1

)2]+ λµ(S)EµS
[(
V λκ − 0

)2]
.

We assume to be in some asymptotic regime, meaning that the dynamics depends on some parameters,
as temperature, volume or magnetic field going to some finite or infinite limit, and we will write f � g
and f ∼ g whenever 0 ≤ f ≤ g and the ratio f/g goes to zero and one, respectively, in the considered
asymptotic regime. To state the first main result of this paper we introduce

Hypotheses (H): We assume R and S to be such that

1. the associated restricted processes XR, XR\S , XS and XS\R are all irreducible;

2. φ∗R\S � γR and φ∗S\R � γS ;

3. µ(S) ≥ µ(R) and φ∗R\S � γS .

Since exit rates φ∗Y are associated with some mean exit time from Y (see Section 2.1), such hypotheses
amount in particular to say that “local relaxation times” 1/γY are small with respect to these mean exit
times. To check (H) we need upper bounds on exit rates and lower bounds on spectral gaps. While
the former are usually quite easy to get, since exit times are given by an infimum in some variational
principle, getting the latter is the core of the difficulty. This is the crux of the companion paper [GMV20].
However, if the hypothesis set (H) is in force, even from a rough control of local relaxation times we can
get sharp estimates of the global one:

Theorem 1. Assuming hypotheses (H) and choosing κ and λ such that

φ∗R\S � κ� γR and φ∗R\S ∨ φ
∗
S\R � λ� γS ,

it holds
1
γ
∼ µ(R)µ(S)
Cλκ (R,S) and EµR

[
TλS

]
∼ µ(R)
Cλκ (R,S) .
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Comments:

i. This gives a way to compute the precise asymptotic value of the relaxation time 1/γ. As soon as
κ and λ are chosen in the right window, the spectral gap γ scales, up to the multiplicative term
µ(R)µ(S), like the soft capacity Cλκ (R,S) that satisfies a two-sided variational principle. As we
will see in Section 2, any test function and flow will give upper and lower bound for Cλκ (R,S).
These are then translated in upper and lower bounds for γ.

ii. We already mentioned that the main difficulty in proving the validity of the hypothesis set (H)
usually lies in bounding γR and γS from below. It is often the case that, once such lower bounds
are established, there is a natural way to build a suitable flow to get useful lower bounds of the
soft capacity: see [BG16] and [GMV20].

iii. We will see with the next theorem that TλS can be identified, under slightly stronger hypotheses,
as a transition time to equilibrium if µ(R) � µ(S), or to a more stable local equilibrium in the
general case µ(R) ≤ µ(S). Theorem 1 says in particular that, when starting from the restricted
ensemble µR, its expected value and the relaxation time have the same asymptotic behaviour up
to the multiplicative factor 1/µ(S), which lies between 1 and 2 in the latter case and goes to 1 in
the former one. To prove this result we will focus on the local time in R up to transition

TRλS = `R
(
TλS

)
and its expected value

1
φ∗R,λS

= Eµ∗R,λS

[
TRλS

]
for the dynamics started from the soft measure µ∗R,λS defined in Section 2.1. For λ ranging from 0
to +∞ the soft measure family provides a continuous interpolation from the restricted ensemble
µR to the quasi-stationary distribution µ∗R\S associated with the process immediately killed when
hitting S. We will see in Section 2 that hypotheses (H) implies that our soft measures are all close
together, each of them providing a metastable state model. And we will prove that

EµR
[
TλS

]
∼ 1
φ∗R,λS

for any λ in the allowed window of Theorem 1.

iv. The proof of Theorem 1 is deferred to Section 3. In this section we will give explicit upper and
lower bounds for φ∗R,λS and γ that will bound explicitly the multiplicative corrections with respect
to the asymptotic values.

v. About these upper and lower bounds, the latter are the most relevant. Both the exit rate φ∗R,λS
and the spectral gap γ are indeed infima given by some variational principles, so that upper bound
are simpler to get. In particular, the lower bound given in Section 3 on γ is a Poincaré inequality
that can be generalized to the case of more than one metastable state (cf. Proposition 3.1). The
upper bounds indicate however that our lower bounds catch the right orders.

vi. The windows given in Theorem 1 for κ and λ can in principle be enlarged for the conclusion to
hold. For example, as far as the lower bound on κ is concerned, the explicit upper and lower bound
of Section 3 will scale like the given asymptotic values for φ∗R,λS/κ � 1. We will see in Section 2
that κ� φ∗R\S is only a sufficient condition for having φ∗R,λS/κ� 1. Our hypotheses (H) can be
relaxed in the same way for the conclusion to hold.

vii. When going from the case R ∩ S = ∅ of [BG16] to the case R ∩ S 6= ∅ of the present paper, some
of the arguments of [BG16] are immediately generalized, while others require more work. The new
arguments of Section 3 not only allow for weaker hypotheses, they also lead to a better upper
bound for φ∗R,λS , already in the special case S = X \ R.
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To connect hypotheses (H) with the pathwise approach framework, we set T0 = 0, T1 = TλS , we
denote by T2 the absorption time associated with the killing rate κR after T1, that is

T2 = T1 + TκR ◦ΘT1

—where Θt is the usual shift operator, such that, for all s ≥ 0, (Θt(X))(s) = X(t+ s)— and we set for
all i ≥ 0,

T2i+1 = T2i + TλS ◦ΘT2i ,

T2i+2 = T2i+1 + TκR ◦ΘT2i+1 ,

using at each step independent copies of the exponential variables σκ and σλ. Since we will work with
mixing times rather than relaxation times associated with restricted processes, we introduce

χR = max
x∈R

1
µR(x) , χS = max

x∈S

1
µS(x) , (6)

and a strengthened hypothesis set.

Hypotheses (H ′): Hypotheses (H) hold together with (lnχS)/γS � 1/φ∗R\S and (lnχR)/γR � 1/φ∗R\S .

Recalling Equation (1) it holds:

Theorem 2. Assuming hypotheses (H’) and choosing κ and λ such that

φ∗R\S � κ� γR/ lnχR and φ∗R\S � λ� γS/ lnχS ,

there is a positive θ � 1/φ∗R,λS such that, for all δ > 0, for all n > 0 and for all observable f : X → R,

PµR

 ∀i < n, T2i+1 > T2i + θ, T2i+2 > T2i+1 + θ,

∀t ∈ [T2i, T2i+1 − θ[, ∀t′ ∈ [T2i+1, T2i+2 − θ[,
|Aθ(t, f)− µR(f)| ≤ δ, |Aθ(t′, f)− µS(f)| ≤ δ

 ∼ 1.

Comments:

i. We will give the proof of this theorem in Section 5. We will make explicit a possible choice for θ
and we will give explicit estimates of such a probability.

ii. Let us consider the empirical distribution process defined by

Aθ(t) = 1
θ

∫ t+θ

t

δX(s) ds, t ≥ 0 .

If one is interested in convergence of Aθ, one can consider (as in [OV05], Chapter 4) a slight
modification of the process Aθ(t). With the above notation, let us consider the modification

Ãθ(t) =
{
Ãθ(Tk − θ) if t ∈ [Tk − θ, Tk[ for some k,
Aθ(t) otherwise. .

Then Theorem 2, together with a convergence in law of the rescaled Tk, provides the key tool to
prove convergence in Skorokhod topology of Ãθ.

iii. In the case µ(R)� µ(S), we will have (recall Theorem 1 and its associated third comment)

1
γ
∼ EµR

[
TλS

]
∼ 1
φ∗R,λS

� 1
φ∗S,κR

∼ EµS
[
TκR

]
with φ∗S,κR symmetrically defined with respect to φ∗R,λS . The rescaled process on time unit 1/φ∗R,λS
reaches equilibrium after time φ∗R,λST1 of order 1, this equilibrium can be described by µS , and
there is no oscillation on this time scale between the two states µR and µS . Our system will go
back to µR only after a much longer time of order 1/φ∗S,κR .
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As far as we are concerned with the asymptotic exponential law of TλS and TκR , when starting from
µR and µS , respectively, we can adapt and even simplify the arguments of [BG16]. This is a simple
consequence of the following facts, that are the contents of Lemma 2.1, Lemma 2.3 and Proposition 2.6.
(See also Proposition 2.7 for a quantitative statement.)

i. TRλS = `R
(
TλS

)
is an exact exponential random variable, of rate φ∗R,λS , when starting from µ∗R,λS .

This is the reason to work with such quasi-stationary distributions.

ii. Since `S\R
(
TλS

)
is dominated by the exponential random variable σλ, taking λ in the right window

and passing to the expected value, it holds that

1
λ
� 1

φ∗R\S
≤ 1
φ∗R,λS

.

Hence, since TλS = `R
(
TλS

)
+ `S\R

(
TλS

)
, and together with point i., we deduce the asymptotic

law of TλS when starting from µ∗R,λS .

iii. The restricted ensemble µR and the soft measure µ∗R,λS are close in total variation distance.

Our last main result is a “local thermalization property” which implies the existence of an asymptotic
exponential law for stopping times TλS or TκR , independently of the choice of the initial distribution.
As in [BG16] we can use TλS and TκR to build a stopping time T ∗ of order 1/(κ ∧ λ) at most and such
that the law of X(T ∗) is close to µ∗R,λS or µ∗S,κR by conditioning on two complementary events. Since
we are here mainly interested in convergence in law of the transitions times, closeness in total variation
distance will be enough. We can then build T ∗ in a simpler way, and with weaker hypotheses, than in
[BG16].

We recall that the previously mentioned and symmetric exit rates φ∗R,λS and φ∗S,κR are precisely
defined in Section 2.1. Their asymptotic behaviour is precisely controlled in terms of soft capacities by
Theorem 5 in Section 3.2.

Theorem 3. Assuming hypotheses (H’) and choosing κ and λ such that

φ∗R\S � κ� γR/ lnχR and φ∗R\S � λ� γS/ lnχS ,

there are three stopping times T ∗R, T ∗S and T ∗ = T ∗R ∧ T ∗S such that, whatever the starting distribution
of X:

i. the expected value of T ∗ is smaller than or equal to 2/(κ ∧ λ);

ii. with π∗R and π∗S the laws of X(T ∗) conditioned to {T ∗ = T ∗R} and {T ∗ = T ∗S}, respectively, it holds

dTV
(
µR, π

∗
R
)
≤ 3κ
γR

(
1 +

[
ln
γR
√
χR

2κ

]
+

)
� 1,

and

dTV
(
µS , π

∗
S
)
≤ 3λ
γS

(
1 +

[
ln
γS
√
χS

2λ

]
+

)
� 1;

iii. conditionally to {T ∗ = T ∗R} or {T ∗ = T ∗S}, the random variable φ∗R,λSTλS ◦ΘT∗ or φ∗S,κRTκR ◦ΘT∗ ,
respectively, converge in law to an exponential variable or parameter 1;

iv. it holds
Pν (T ∗ = T ∗R = TκR < TλS ) ≥ 1− 3Pν (TλS < TκR)

and
Pν (T ∗ = T ∗S = TκS < TλR) ≥ 1− 3Pν (TλR < TκS ) ,

so that these probabilities converge to 1 when Pν(TλS < TκR) � 1 and Pν(TκR < TλS ) � 1,
respectively.
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Comments:

i. We will give the proof of this theorem in Section 4, together with the explicit construction of T ∗
and explicit estimates on all error terms.

ii. This theorem implies an asymptotic exponential law for the rescaled time φ∗R,λSTλS when X starts
from any measure ν such that Pν(TλS < TκR) � 1. We will give a direct proof of this fact in
Section 2 (see Proposition 2.8). One of the reasons why we needed stronger hypotheses in [BG16]
was that we were also interested there in events like Pν(TλS > t) for times t that were large with
respect to 1/γR but of a smaller order than 1/φ∗R,λS .

iii. Theorem 3 implies an analogue of Theorem 2 where T0 is replaced by T ∗, T1 by T ∗ + TλS ◦ ΘT∗

and PµR by Px
(
·
∣∣ T ∗ = T ∗R

)
, for any x in X .

1.2 The entropy issue
The problem of describing metastable states goes back to [Max75]. But we will limit our discussion of
the related literature to the last five decades by starting from [LP71]. Since such a review, albeit already
biased, was developed and detailed in [BG16], we tried to make it short in the present paper.

After the introduction in [LP71] of restricted ensembles for describing metastable states, the pathwise
approach introduced in [CGOV84] was mainly built on [FW84] and its large deviations techniques. It
entangled the first two main questions —that of describing the metastable state and that of characterizing
the transition time to equilibrium— with a third one, that of giving a detailed picture of the typical
paths followed along the transition4. One of the main difficulties faced when dealing with each particular
model was to give upper bounds for the expected value of the transition time to equilibrium. In the case
of “very low temperature” dynamics or “rare transition limits”, this question is related with that of giving
a detailed description of the “(virtual) energy landscape”. Both reversible and non-reversible dynamics
were considered within the pathwise approach, we refer to [OV05] for a full picture and to [CNS15] for
what we believe to be the most detailed and general account, along Freidlin and Wentzell’s line, on this
main difficulty (disentangled from the third question) in the case of very low temperature systems.

Potential-theoretic tools introduced by [BEGK02], [BEGK04] and [BEGK05] in metastability studies
brought in particular two major improvements:

• they related the estimation of mean transition times with capacity estimates for which variational
principles were available, without reference to any energy landscape;

• the upper and lower bounds obtained from these variational principles, led in many cases to sharp
estimates of mean transition times.

Basic hypotheses expressed in terms of mean hitting times and capacities allowed for asymptotic expo-
nential laws for transition times between local equilibria. We refer to [BdH15] for a full account on these
techniques, initially restricted to the reversible case. These potential-theoretic tools were incorporated
in [BL10] and [BL11], where the authors proposed to deal with metastable dynamics by proving, using
martingale equations, a convergence in law to a Markovian dynamics in Skorohod topology of the label
evolution associated with a trace process. From [GL11] and [Lan14] to [LMS19], this was extended to
non-reversible dynamics.

When we wrote the first version of [BG16], the vast majority of metastability studies were restricted
either to very low temperature dynamics, or to Markovian models that could be naturally mapped to
dynamics with very low entropy metastable states, such as distributions that are concentrated around a
single point of the configuration space. There were two kinds of difficulties when dealing with metastable
states for which entropy really matters: local relaxation was difficult to prove and there was no clear
road map to follow. This was the case for the kinetic Ising model at fixed subcritical temperature,
that is the entropy issue. As far as the general theory was concerned, when looking for example at
potential-theoretic tools that linked the estimation of mean transition times to capacities (for which
variational formulas were available) one came across two difficulties among others: the formula used
harmonic measures that were not naturally linked with metastable states, and it required estimates for
a mean electrostatic potential that did not satisfy any variational formula. It seemed also that one

4In the case of our kinetic Ising model this amounts to describing the shape of subcritical, critical and subcritical
droplets. The techniques presented in [GMV20] allow for proving that the critical droplet is Wulff-shaped and this question
is still largely open for subcritical and supercritical droplets.
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could get asymptotic exponential laws only if one was able to solve these difficulties. By introducing
soft measures and capacities, we reduced in [BG16] these difficulties of the general theory to a single
model-dependant issue: getting (rough) upper bounds for the relaxation times of restricted dynamics.
Theorem 1 of the present paper indeed provides an asymptotic formula for the mean transition time
started in the metastable state, and not from a harmonic measure5, that does not require any estimate
on the mean potential µ(V λκ ). We transposed the difficulties of the general theory to that of checking
in each particular model the hypotheses (H) or (H ′), namely to getting upper bounds for relaxation
times of restricted dynamics. Such solutions were immediately adapted to the framework of the “mar-
tingale approach to metastability” [BL15]. Armendáriz, Grosskinsky and Loulakis could then study the
metastable condensing zero-range process in the thermodynamic limit [AGL17].

We already mentioned that we could not directly apply the results of [BG16] to deal with the kinetic
Ising model: [BG16] requires R and S to form a partition of the configuration space, but the mesoscopic
and macroscopic analysis we make in [GMV20] to control the relaxation times of the restricted dynamics
does not allow for such a neat separation at the microscopic level. In the martingale approach framework,
local equilibria are however associated with usually far apart subsets Ri of the configuration space. This
space is written as a disjoint union

X = N ∪
⋃
i∈I
Ri,

where N is a subset of X in which the system is expected to spend a negligible time on the time scale
that allows for the transition to equilibrium. With such a framework, we might still be able to bound
the relaxation times on the restricted dynamics in Ri (say taking R0 ⊂ R and R1 ⊂ S, with R and S
defined in [GMV20]) and we could avoid the issue of configurations which in [GMV20] belong to both
R and S: such critical configurations would have been in N . But this would have only displaced some
difficulties. As previously mentioned, one of the main issues is that of getting upper bounds for the
mean transition time. This is turned by Theorem 1, and in the martingale approach, into a problem of
lower bounds for a (soft) capacity. Even though associated with a variational principle, this is often one
of the most delicate point. As mentioned in the second comment of Theorem 1, such lower bounds are
however obtained simply, in [GMV20], from the control of the local relaxation times. In getting such
lower bounds for the soft capacities, we do use the fact that R and S are “neighbouring” sets (even
overlapping in this case). Using overlapping R and S, instead of far apart Ri together with a negligible
set N can be a matter of taste. But there is an issue when estimating the relevant capacities.

It is worth noting at this point that in going from restricted ensemble to soft measures, we start
changing our representation for the metastable set, by considering overlapping R and S we stop con-
sidering only local equilibria with disjoint support, and our soft capacities, that could be considered
as our main objects, now only depend on some killing rates like λS and not λ and S separately. We
could actually consider capacities associated with full support killing rates, and much more general local
equilibria. Similar ideas have been considered in [ACGM] with concrete applications [ACGM20] in a
quite different field.

As far as the exponential law in itself is concerned [FMNS15], [BG16] and [FMN+16] contain similar
detailed and quantitative results, obtained with rather similar techniques. The first paper is limited to
low entropy metastable states and uses recurrence to an associated reference configuration, the second
paper explains how this recurrence property can be replaced by a fast relaxation hypothesis to a quasi-
stationary measure and such is the approach of the third paper. By contrast we only focus in the present
paper on convergence in law results, which are still quantitative but less precise and associated with
simpler constructions. But as in [BG16] we also study, on the one hand, the convergence to a stable
equilibrium and not only the exit time of a domain, which is the main object of interest in [FMNS15]
and [FMN+16], and we are interested, on the other hand, in getting sharp bounds for mean transition
times by relying on capacity estimates: this is where our reversibility hypothesis matters, while [FMNS15]
and [FMN+16] do not assume reversibility.

We close this discussion on the recent literature of abstract metastable dynamics by listing, in order
of importance, the improvement of the present paper with respect to [BG16]:

• By relaxing the previous hypothesisR∩S = ∅, we provided a framework to prove, in the companion
paper [GMV20], the asymptotic exponential law of the two-dimensional kinetic Ising model, at any
subcritical temperature and in the limit of vanishing magnetic field;

5This is however an asymptotic formula and there is no equality.
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• we made explicit the connection with the classical pathwise approach by referring to temporal
means and identifying explicitly an associated time scale θ;

• we simplified the construction of the short time scale stopping time T ∗ at which the system is
distributed “as µR or µS” independently of the starting measure;

• we simplified the proof of the asymptotic exponential law;

• we obtained a sharper quantitative control of the mean transition time to equilibrium.

2 Basic definitions and properties
2.1 Soft measures and killed process
Let X be an irreducible Markov process, with generator L as in Equation (2). We assume X to be
reversible with respect to a probability measure µ. For R and S such that X = R∪S, and for any given
finite λ ≥ 0 we build in this section the soft measure µ∗R,λS from the trace X∗R,λS on R of the process X
killed at rate λS(x) in each x in X . To facilitate the reading, we use the upper index ∗ to denote objects
associated with killed processes.

Formally, let TR be the hitting time of R, and TλS be the absorption time of X killed at rate λS
defined in Equation (5). Equivalently6, we can associate any x ∈ X with an independent Poisson process
of rate λS(x), and define TλS as the first arrival time t of the Poisson process associated with x = X(t).
The trace process X∗R,λS is then the Markov process on R that, on one hand, is killed in x in R at rate

e∗R,λS (x) = λS(x) +
∑
z 6=x

w(x, z)Pz (TR > TλS ) = λS(x) +
∑
z 6∈R

w(x, z)Pz (TR > TλS ) , (7)

where the second term accounts for the rate with which X escapes from R and is killed before returning
in it, and that, on the other hand, jumps from x to a distinct y ∈ R at rate

wR,λS (x, y) =
∑
z 6=x

w(x, z)Pz (X(TR) = y, TR < TλS ) = w(x, y) +
∑
z 6∈R

w(x, z)Pz (X(TR) = y, TR < TλS ) .

(8)
It is associated with the sub-Markovian generator L∗R,λS that acts on functions f : R → R according to(

L∗R,λSf
)

(x) = −e∗R,λS (x)f(x) +
∑

y∈R\{x}

wR,λS (x, y)
(
f(y)− f(x)

)
, x ∈ R. (9)

Notice that the irreducibility hypothesis (cf. (H)) on XR, having generator given by Equation (4),
implies the irreducibility of X∗R,λS associated with Equation (9). Then, by Perron-Frobenius Theorem,
L∗R,λS has only negative eigenvalues and the smallest eigenvalue φ∗R,λS > 0 of −L∗R,λS is non-degenerate
and associated with a left eigenvector µ∗R,λS which is a probability on R. We call it the soft measure
associated with the killing rate λS and it is a special kind of quasi-stationary measure. We denote by
`R the local time in R:

`R(t) =
∫ t

0
1{X(u)∈R} du, t ≥ 0.

It is a non-decreasing continuous function of the time t and we call `−1
R its right-continuous inverse:

`−1
R (s) = inf {t ≥ 0 : `R(t) > s} , s ≥ 0.

We then have X∗R,λS (s) = X ◦ `−1
R (s) for all s < TRλS = `R

(
TλS

)
and the following lemma.

Lemma 2.1. For all s ≥ 0 and all x and y in R it holds

Pµ∗R,λS

(
X ◦ `−1

R (s) = x
∣∣ TRλS > s

)
= µ∗R,λS (x),

lim
s→∞

Px
(
X ◦ `−1

R (s) = y
∣∣ TRλS > s

)
= µ∗R,λS (y),

6This is an alternative construction that does not use the exponential variable σλ of Section 1.1 and allows for less
homogeneous killing rates.
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and
Pµ∗R,λS

(
TRλS > s

)
= e−sφ

∗
R,λS .

The exit rate is also given by
φ∗R,λS = µ∗R,λS

(
e∗R,λS

)
.

These formulas are consequences of the fact that, for all s ≥ 0, every function f and every probability
ν on R,

Eν

[
f
(
X∗R,λS (s)

)
1{

TR
λS
>s
}] = ν

(
esL

∗
R,λS f

)
.

We refer to Lemma 2.12 in [BG16] for more details.
As in [BG16] (Lemma 2.13) and assuming hypotheses (H), when λ goes from 0 to +∞ we get a

continuous interpolation between the restricted ensemble µR and the quasi-stationary measure µ∗R\S .
Indeed, when λ = 0 our soft measure µ∗R,λS is nothing but the invariant measure of the trace process
on R, which coincides with µ(·|R) as a consequence of our reversibility hypothesis. And, if λ = +∞ we
are led to define X∗R,λS as X∗R\S , obtained from X by killing it instantaneously in S. This process is
associated with the sub-Markovian generator L∗R\S defined by(

L∗R\Sf
)

(x) = −e∗R\S(x)f(x) +
∑

y∈R\S,
y 6=x

w(x, y)(f(y)− f(x)), f : R\S → R, x ∈ R,

with, for all x in R\S,
e∗R\S(x) =

∑
z∈S

w(x, z). (10)

Since X∗R\S is assumed to be irreducible, the quasi-stationary measure µ∗R\S is unambiguously defined.
Contrarily to X∗R\S , which cannot penetrate S, µ∗R,λS and X∗R,λS are associated with a process which can
visit the killing zone S. As mentioned earlier, this is the explanation for the terminology soft measure.

We denote by ‖·‖ and 〈·, ·〉 the standard norm and scalar product in `2(µ). For any A ⊂ X we denote
by µA the conditional probability measure µA = µ(·|A), and by ‖ · ‖A and 〈·, ·〉A the standard norm and
scalar product in `2(µA). We also denote by e∗A, as in Equation (10), the escape rate

e∗A(x) =
∑
z 6∈A

w(x, z)

for x in A.

Proposition 2.2. When λ grows to +∞,

φ∗R,λS = min
f :R→R
f 6=0

〈f,−L∗R,λSf〉R
‖f‖2R

= min
f>0

〈f,−L∗R,λSf〉R
‖f‖2R

(11)

continuously grows to φ∗R\S . In particular, for all λ ≥ 0, it holds

φ∗R,λS ≤ φ
∗
R\S = min

f :R\S→R
f 6=0

〈f,−L∗R\Sf〉R\S
‖f‖2R\S

. (12)

Proof: The first equality in Equation (11) comes from the fact that L∗R,λS is a self-adjoint operator. The
last equality in Equation (11) is a consequence of Perron-Frobenius Theorem. Continuity follows from
Lemma 2.1 and continuity properties of µ∗R,λS and e∗R,λS . Finally, for any positive function f on R it
holds

〈f,−L∗R,λSf〉R = −
∑
x∈R

∑
y∈R\{x}

µR(x)f(x)wR,λS (x, y)f(y)

+
∑
x∈R

µR(x)

e∗R,λS (x) +
∑

y∈R\{x}

wR,λS (x, y)

 f2(x).
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The first term, minus sign included, which accounts for the cross product, is clearly increasing in λ,
since wR,λS (x, y) decreases with λ and f is positive. As far as the second term is concerned, using the
definitions (7) and 8, we compute

e∗R,λS (x) +
∑

y∈R\{x}

wR,λS (x, y) = λS(x) +
∑
z 6∈R

w(x, z)Pz (TR > TλS )

+
∑

y∈R\{x}

w(x, y) +
∑

y∈R\{x}

∑
z 6∈R

w(x, z)Pz (X(TR) = y, TR < TλS )

= λS(x) +
∑
z 6∈R

w(x, z)Pz (TR > TλS ) +
∑

y∈R\{x}

w(x, y)

+
∑
z 6∈R

w(x, z)
(

1− Pz (TR > TλS )− Pz (X(TR) = x, TR < TλS )
)

= λS(x) + w(x)−
∑
z 6∈R

w(x, z)Pz (X(TR) = x, TR < TλS ) , .

where in the last line we set w(x) =
∑
z 6=x w(x, z). The whole coefficient is then increasing in λ and the

monotonicity of φ∗R,λS follows.
Using simple test functions in such variational principles we get the following upper bounds on φ∗R,λS .

Lemma 2.3. It holds, for all λ ≥ 0,

φ∗R,λS ≤ φ
∗
R\S ≤ µR\S

(
e∗R\S

)
, (13)

φ∗R,λS ≤ λµR(R∩ S) + µR
(
e∗R
)
, (14)

EµR
[
TRλS

]
≤ 1
φ∗R,λS

. (15)

Proof: Formula (13) is obtained from Formula (12) with the constant function equal to 1 on R\S used
as a test function. We use the constant function 1R equal to 1 on R in Equation (11) and we bound by 1
the last probability appearing in Equation (7) to get Inequality (14). Finally, to get Inequality (15), we
observe that 1/φ∗R,λS is the largest eigenvalue of the Green kernel GRλS =

(
−LR,λS

)−1, so that, writing
`y for the local time in y,

1
φ∗R,λS

= max
‖f‖R=1

〈f,GRλSf〉R ≥ 〈1R,G
R
λS1R〉R =

∑
x,y∈R

µR(x)Ex
[
`y
(
TλS

)]
= EµR

[
`R
(
TλS

)]
.

Remark: While φ∗R,λS and φ∗R\S are the means of escape rates according to quasi-stationary measures
that can be difficult to compute, the upper bounds given in (13) and (14) refer only to the reversible
measure µ.

2.2 Restricted dynamics
For any finite λ ≥ 0, the restricted dynamics XR,λS is obtained from X∗R,λS or X by removing all killing
moves or killing excursions outside R. It is associated with the generator LR,λS that acts on functions
f : R → R according to

(LR,λSf) (x) =
∑

y∈R\{x}

wR,λS (x, y)(f(y)− f(x)), x ∈ R,

with wR,λS (x, y) defined by Equation (8) for distinct x and y in R. In particular this process in reversible
with respect to the restricted measure µR and it inherits irreducibility from the restricted process XR.
We call γR,λS its spectral gap

γR,λS = min
f :R→R,

VarµR (f) 6=0

DR,λS (f)
VarµR (f) , (16)
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with DR,λS the Dirichlet form defined by

DR,λS (f) = 〈f,−LR,λSf〉R = 1
2
∑
x,y∈R
x6=y

cR,λS (x, y) [f(y)− f(x)]2 , f : R → R,

where the conductances cR,λS (x, y) are given by

cR,λS (x, y) = µR(x)wR,λS (x, y) = µR(y)wR,λS (y, x).

For λ = +∞ we define XR,λS as the limiting process XR, rather than by removing all killing moves
from the limiting killed process X∗R\S . In this case we will also write DR and cR in place of DR,λS and
cR,λS . From Equation (16) as well as the continuity and monotonicity in λ of the conductances cR,λS ,
which is inherited from that of the rates wR,λS (x, y), we get

Proposition 2.4. When λ goes to +∞, γR,λS continuously decreases to γR. In particular, it holds

γR,λS ≥ γR

for all λ ≥ 0.

We have from propositions 2.2 and 2.4 that the ratio

ε∗R,λS = 1/γR,λS
1/φ∗R,λS

=
φ∗R,λS
γR,λS

is decreasing in λ. When λ = +∞ we will also write

ε∗R,S =
φ∗R\S

γR
(17)

in place of ε∗R,λS and we get, for all λ ≥ 0,

ε∗R,λS ≤ ε
∗
R,S . (18)

Hence ε∗R,λS tends to be negligible under hypotheses (H).
In this case all our soft measures are close together. Let us introduce some more notation to make

this precise. We denote by h∗R,λS the density of µ∗R,λS with respect to µR, i.e.,

h∗R,λS (x) =
µ∗R,λS (x)
µR(x) , x ∈ R.

In the special case λ = +∞ we write h∗R\S for h∗R,λS :

h∗R\S : x ∈ R 7→
µ∗R\S(x)
µR(x) ,

which is supported on R\S. In particular, for any finite λ, we get

φ∗R,λS =
〈h∗R,λS ,−L

∗
R,λSh

∗
R,λS 〉R∥∥∥h∗R,λS∥∥∥2

R

,

and

φ∗R\S =
〈h∗R\S ,−L

∗
R\Sh

∗
R\S〉R∥∥∥h∗R\S∥∥∥2

R

.

Since L∗R\S acts on functions of R\S, to make sense of L∗R\Sh∗R\S we used in the previous equation

Convention 2.5. Any function f on A ⊂ X is identified with the function on its support B ⊂ A. In
particular it also identified, for any C ⊃ B, with the function g on C that coincides with f on B and has
zero value in C\B.
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We can now compare our soft measures in `2(µR) and `1(µR) norms.

Proposition 2.6. For all λ ∈ [0,+∞], if ε∗R,λS < 1, then

VarµR
(
h∗R,λS

)
= ‖h∗R,λS − 1R‖

2
R ≤

ε∗R,λS
1− ε∗R,λS

.

In particular, with dTV the total variation distance,

dTV
(
µ∗R,λS , µR

)
≤ 1

2

√
ε∗R,λS

1− ε∗R,λS
. (19)

Proof: Using h∗R,λS as a test function in the variational principle given by Equation (16), we get, for any
finite λ,

VarµR
(
h∗R,λS

)
≤ 1
γR,λS

DR,λS
(
h∗R,λS

)
= 1
γR,λS

〈h∗R,λS ,−LR,λSh
∗
R,λS 〉R

= 1
γR,λS

(
〈h∗R,λS ,−L

∗
R,λSh

∗
R,λS 〉R −

∑
x∈R

µR(x)e∗R(x)h∗
2

R,λS (x)
)

≤ 1
γR,λS

φ∗R,λSµR

(
h∗

2

R,λS

)
=
φ∗R,λS
γR,λS

(
1 + VarµR

(
h∗R,λS

))
.

In the limiting case λ = +∞ we obtain a similar estimate:

VarµR
(
h∗R\S

)
≤ 1
γR
DR
(
h∗R\S

)

= 1
γR

1
2

∑
x,y∈R\S

cR(x, y)
[
h∗R\S(x)− h∗R\S(y)

]2 +
∑

x∈R\S
y∈S∩R

cR(x, y)
[
h∗R\S(x)

]2


≤ 1
γR

( ∑
x∈R\S

µR(x)h∗R\S(x)
∑

y∈R\S

w(x, y)
[
h∗R\S(x)− h∗R\S(y)

]
+

∑
x∈R\S

µR(x)
∑
y∈S

w(x, y)
[
h∗R\S(x)

]2)

= 1
γR
〈h∗R\S ,−L

∗
R\Sh

∗
R\S〉R

= 1
γR

φ∗R\SµR

(
h∗

2

R\S

)
=
φ∗R\S

γR

(
1 + VarµR

(
h∗R\S

))
.

Rearranging the terms, we get the desired inequality. Equation (19) follows then by Jensen inequality.
As a consequence, as soon as λ � φ∗R,λS , for example by setting λ � φ∗R\S (in virtue of (13)), we

obtain an asymptotic exponential law for TλS when starting from µ∗R,λS or µR. If ε∗R,λS � 1, then the
random time φ∗R,λSTλS converges in law to an exponential variable or parameter 1.

Proposition 2.7. For all λ ≥ φ∗R\S , or any λ such that λ ≥ φ∗R,λS , it holds

e−t ≤ Pµ∗R,λS

(
TλS >

t

φ∗R,λS

)
≤ e−t

{
exp

(√
φ∗R,λS/λ

)
+ exp

(
t−
√
λ/φ∗R,λS

)}
as soon as

√
φ∗R,λS/λ ≤ t, and, if ε

∗
R,λS < 1,

∣∣∣∣∣PµR
(
TλS >

t

φ∗R,λS

)
− Pµ∗R,λS

(
TλS >

t

φ∗R,λS

)∣∣∣∣∣ ≤ 1
2

√
ε∗R,λS

1− ε∗R,λS
.

15



Remark: As in [BG16] we write into brace parenthesis quantities that go to one under suitable hy-
potheses.
Proof of the proposition: The first inequality is a consequence of the fact that TλS ≥ TRλS and that,
starting from µ∗R,λS , the latter is an exponential variable of parameter φ∗R,λS . As far as the second one
is concerned, it holds, with `S the local time in S,

TλS ≤ TRλS + `S
(
TλS

)
so that, for any 0 ≤ β ≤ 1,

Pµ∗R,λS

(
TλS >

t

φ∗R,λS

)
≤ Pµ∗R,λS

(
TRλS >

(1− β)t
φ∗R,λS

)
+ Pµ∗R,λS

(
`S
(
TλS

)
>

βt

φ∗R,λS

)
= e−(1−β)t + e−λβt/φ

∗
R,λS .

Choosing

β = 1
t

√
φ∗R,λS
λ
≤ 1,

this gives the desired result. Finally, by considering an optimal coupling between two random variables
X(0) and X ′(0) of law µR and µ∗R,λS , such that X(0) 6= X ′(0) with probability (recall Proposition 2.6)

dTV
(
µR, µ

∗
R,λS

)
≤ 1

2

√
ε∗R,λS

1− ε∗R,λS

it holds

PµR
(
φ∗R,λSTλS > t

)
≤ 1

2

√
ε∗R,λS

1− ε∗R,λS
+ Pµ∗R,λS

(
φ∗R,λSTλS > t

)
and

Pµ∗R,λS

(
φ∗R,λSTλS > t

)
≤ 1

2

√
ε∗R,λS

1− ε∗R,λS
+ PµR

(
φ∗R,λSTλS > t

)
.

It follows that we also have an asymptotic exponential law for TλS when starting from any probability
measure ν such that the total variation distance between µR and ν goes to zero. An example of such
a distribution ν is given by the law of X(TκR) if κ � γR/ lnχR (recall Equation (6)). Hence, if a
probability measure π is such that Pπ(TκR > TλS )� 1, then TλS has an asymptotic exponential law of
parameter φ∗R,λS .

Proposition 2.8. For all x ∈ X and all κ > 0 it holds

dTV
(
µR,Px (X(TκR) = ·)

)
≤ κ

γR

(
1 +

[
ln
γR
√
χR

2κ

]
+

)
. (20)

Also, for any probability π on X , by setting

δ = Pπ (TλS < TκR)

and

η = δ + κ

γR

(
1 +

[
ln
γR
√
χR

2κ

]
+

)
+ 1

2

√
ε∗R,λS

1− ε∗R,λS
,

it holds, for all λ ≥ φ∗R\S , or any λ ≥ φ∗R,λS ,

e−t
{

1− ηet
}
≤ Pπ

(
TλS >

t

φ∗R,λS

)
≤ e−t

{
exp

(
2
√
φ∗R,λS
κ ∧ λ

)
+
[
η + 2 exp

(
−
√
κ ∧ λ
φ∗R,λS

)]
et

}
.
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Proof: Let us denote by XR the trace of X on R. Note that we already gave to this process an heavier
notation:

XR = XR,0S .

Since X(TκR) ∈ R, the law of X(TκR) is that of XR(TRκR) with

TRκR = `R
(
TκR

)
.

Since the relaxation time of XR is smaller than or equal to that of XR (recall Proposition 2.4), by using
reversibility to estimate the `2(µR) distance between (the densities with respect to µR of) the law of
XR(s) and µR, then Jensen inequality to compare the `1 and `2 distances, we have

dTV

(
Px

(
XR(s) = ·

)
, µR

)
≤
√
χR

2 e−γRs.

Since TRκR is an exponential variable of parameter κ, it then holds, for all non-negative s,

dTV

(
Px

(
X(TκR) = ·

)
, µR

)
≤ κs+

√
χR

2 e−γRs.

Optimizing in s ≥ 0, we get (20).
Next, denoting by ν the law of X(TκR) with starting distribution π, it holds, for all t ≥ 0,

Pν

(
TλS >

t

φ∗R,λS

)
≤ Pπ (TλS < TκR) + Pπ

(
TλS >

t

φ∗R,λS

)
.

By using Proposition 2.7 it follows that

Pπ

(
TλS >

t

φ∗R,λS

)
≥ e−t − 1

2

√
ε∗R,λS

1− ε∗R,λS
− κ

γR

(
1 +

[
ln
γR
√
χR

2κ

]
+

)
− δ.

Finally, for all θ > 0, we get

Pπ

(
TλS >

t

φ∗R,λS

)
≤ Pπ (TλS < TκR) + Pπ (TλS ∧ TκR > θ) + Pν

(
TλS >

t

φ∗R,λS
− θ

)
.

By using Proposition 2.7 and the fact that TκR∧TλS is dominated by an exponential variable of parameter
κ ∧ λ we get

Pπ

(
TλS >

t

φ∗R,λS

)
≤ δ + e−(κ∧λ)θ + 1

2

√
ε∗R,λS

1− ε∗R,λS
+ κ

γR

(
1 +

[
ln
γR
√
χR

2κ

]
+

)
+ exp

[
−
√
λ/φ∗R,λS

]
+ e−t exp

[
φ∗R,λSθ +

√
φ∗R,λS/λ

]
,

which gives our last desired inequality by choosing θ = (φ∗R,λS (κ ∧ λ))−1/2.

2.3 Soft capacities
To define our soft capacities we extend the conductance network (X , c), with conductances

c(x, y) = c(y, x) = µ(x)w(x, y), x, y ∈ X , x 6= y,

which is associated with the process X, into a larger network (X̃ , c̃) by attaching dangling edges (r, r̄)
and (s, s̆) to each r ∈ R and s ∈ S. Given κ and λ we set to

c̃(r, r̄) = κµ(r) and c̃(s, s̆) = λµ(s)

the conductances of these new edges. We call R̄ and S̆ the collections of these extra nodes:

R̄ =
{
r̄ : r ∈ R

}
, S̆ =

{
s̆ : s ∈ S

}
.
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For any positive k̃ and λ̃, by extending the probability measure µ defined on X into a measure µ̃ defined
on

X̃ = X ∪ R̄ ∪ S̆
by

µ̃(x̃) =


µ(x) if x̃ = x for some x ∈ X ,
κµ(r)/κ̃ if x̃ = r̄ for some r ∈ R̄,
λµ(s)/λ̃ if x̃ = s̆ for some s ∈ S̆,

the extended network (X̃, c̃) is then associated with the process X̃ with rates w̃(x̃, ỹ) given, for distinct
x̃ and ỹ in X̃ , by

w̃(x̃, ỹ) =



w(x, y) if x̃ = x and ỹ = y for some x and y in X ,
κ if x̃ = r and ỹ = r̄ for some r in R,
κ̃ if x̃ = r̄ and ỹ = r for some r in R,
λ if x̃ = s and ỹ = s̆ for some s in S,
λ̃ if x̃ = s̆ and ỹ = s for some s in S,
0 otherwise,

and which is reversible with respect to µ̃. (Note that µ̃ is not a probability measure.)
Our soft capacities are then the (κ, λ)-capacities of [BG16].

Definition 2.9. The (κ, λ)-capacity Cλκ (R,S) is the capacity between the sets R̄ and S̆ in the network(
X̃ , c̃

)
. According to Dirichlet principle, it is given by

Cλκ (R,S) = min

1
2
∑
x̃,ỹ∈X̃

c̃
(
x̃, ỹ
)(
f̃(x̃)− f̃(ỹ)

)2
: f̃ |R̄ = 1, f̃ |S̆ = 0


= min
f :X→R

{
D(f) + κ

∑
r∈R

µ(r)
(
f(r)− 1

)2 + λ
∑
s∈S

µ(s)
(
f(s)− 0

)2}
= min
f :X→R

{
D(f) + κµ(R)EµR

[(
f|R − 1

)2]+ λµ(S)EµS
[(
f|S − 0

)2]}
. (21)

Remarks:

i. Since this definition depends on the conductances only, while it is naturally associated with the
Markov process X̃, it does not depends on the choice of κ̃ and λ̃. Cλκ (R,S) depends on two
parameters only, κ and λ, in which it is increasing.

ii. Our soft capacities satisfy a two-sided variational principle. On one side they are given by Defi-
nition 2.9 as the infimum of some functional, and any test function will provide an upper bound.
On the other side they are, by Thomson principle, the supremum of another functional on unitary
flows from R̄ to S̆, which are antisymmetric functions of oriented edges with null divergence in X
and total divergence in R̄ and S̆ equal to 1 and -1 respectively, i.e., on antisymmetric functions
ψ̃ : X̃ × X̃ → R such that ψ̃(x̃, ỹ) = 0 as soon as c̃(x̃, ỹ) = 0 and

divxψ̃ =
∑
x̃∈X̃

ψ̃(x, x̃) = 0, x ∈ X ,

while ∑
r∈R

divr̄ψ̃ =
∑
r∈R

ψ̃
(
r̄, r
)

= 1 = −
∑
s∈S

divs̆ψ̃ =
∑
s∈S

ψ̃(s, s̆).

With
D̃
(
ψ̃
)

= 1
2
∑
x̃,ỹ∈X̃

ψ̃(x̃, ỹ)2

c̃(x̃, ỹ)

the energy dissipated in
(
X̃ , c̃

)
by the flow ψ̃ and with Ψ̃1

(
R̄, S̆

)
the set of unitary flows from R̄

to S̆, we get
Cλκ (R,S) = max

ψ̃∈Ψ̃1(R̄,S̆)
D̃
(
ψ̃
)−1

. (22)

Any test flow provides then a lower bound on Cλκ (R,S).
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iii. By referring to X̃, the stopping time TλS can also be defined as the hitting time of S̆. By defining
TκR in a symmetric way, the minimum in (21) is realized by the equilibrium potential V λκ given by

V λκ (x) = Px (TκR < TλS ) , x ∈ X ,

whereas the maximum in (22) is realized by the associated normalized current.

As an application of Dirichlet principle we obtain an upper bound on our soft capacities, or of the
asymptotic given for the spectral γ in Theorem 1. Let us define

φλκ = Cλκ (R,S)
µ(R)µ(S)

and recall Equation (17).

Lemma 2.10. If µ(S) ≥ µ(R) and ε∗R,S ≤ 1, then, for all κ ≥ 0, it holds

φλκ ≤ µ(S)−1φ∗R\S

{
1 + κ/γR
1− ε∗R,S

}
and µ(S)−1 ≤ 2. (23)

In particular, under the hypotheses of Theorem 1 it holds φλκ = O
(
φ∗R\S

)
.

Proof: By taking h∗R\S as test function in Equation (21), and following Convention 2.5, we get

Cλκ (R,S) ≤ D
(
h∗R\S

)
+ κµ(R)VarµR

(
h∗R\S

)
.

The second term is straightforwardly bounded by using Proposition 2.6 which reads

κµ(R)VarµR
(
h∗R\S

)
≤ µ(R)φ∗R\S

κ/γR
1− ε∗R,S

.

As far as the first term is concerned we write

D
(
h∗R\S

)
= 1

2
∑

x,y∈R\S

c(x, y)
[
h∗R\S(x)− h∗R\S(y)

]2 +
∑

x∈R\S,
y∈S

c(x, y)h∗
2

R\S(x)

= µ(R)〈h∗R\S ,−L∗R\Sh∗R\S〉R = µ(R)φ∗R\S
∥∥h∗R\S∥∥2

R = µ(R)φ∗R\S
(

1 + VarµR
(
h∗R\S

))
≤ µ(R)φ∗R\S

(
1 +

ε∗R,S
1− ε∗R,S

)
= µ(R)φ∗R\S

1
1− ε∗R,S

,

where the inequality is again an application Proposition 2.6. Observing that X = R∪S and µ(S) ≥ µ(R)
imply µ(S) ≥ 1/2, this leads to (23). The last comment is only based on the fact that hypotheses (H)
include ε∗R,S � 1 and κ� γR is assumed in Theorem 1.

Remark 2.11. All the estimates of Section 2 are “symmetric” in R and S. This means that the same
results hold when the role of R and S are exchanged as well as those of κ and λ.

We note however that there is an asymmetry in hypotheses (H). It will start to play a role in the next
section.

3 Proof of Theorem 1
3.1 Spectral gap estimates
The statement contained in Theorem 1 concerning the spectral gap γ is a consequence of the quantitative
Theorem 4 together with Lemma 2.10, estimates (13) and (18) as well as Remark 2.11. Note also that
hypotheses (H) include φ∗R\S � γS . This is where the asymmetry of (H) matters.
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Theorem 4. The spectral gap γ satisfies

γ ≥ φλκ
{

1 + κ+ φλκ (1 + µ (R∩ S))
γR

+ λ+ φλκ (1 + µ (R∩ S))
γS

}−1

. (24)

In addition, when ε∗R,λS and ε∗S,κR are smaller than 1, we obtain the converse inequality

γ ≤ φλκ

{
1−

φ∗R,λS
κ
−
φ∗S,κR
λ
− 1

2

√
ε∗R,λS

1− ε∗R,λS
− 1

2

√
ε∗S,κR

1− ε∗S,κR

}−2

(25)

as soon as the braced sum is positive.

Proof of the lower bound: We recall that γ satisfies the variational principle

γ := min
f :X→R,

Varµ(f) 6=0

D(f)
Varµ(f) , (26)

We look for a Poincaré inequality, i.e. an inequality of the form

∀f ∈ `2(µ), Varµ(f) ≤ kD (f) ,

which is equivalent, by mean of Equation (26), to a lower bound on the spectral gap. Let Z,Z ′ two i.i.d.
random variables with same law µ. The variance of f can be written as

Varµ(f) = Eµ
[
f2]− E2

µ [f ] = 1
2E
[
(f(Z)− f(Z ′))2

]
. (27)

From the r.h.s. of (27) we get

Varµ(f) ≤ 1
2E
[
(f(Z)− f(Z ′))2

1{Z,Z′∈R}

]
+ 1

2E
[
(f(Z)− f(Z ′))2

1{Z,Z′∈S}

]
+ E

[
(f(Z)− f(Z ′))2

1{Z∈R,Z′∈S}

]
= µ2(R)VarµR

(
f|R
)

+ µ2(S)VarµS
(
f|S
)

+ µ(R)µ(S)
(
EµR

[
f2
|R

]
+ EµS

[
f2
|S

]
− 2EµR

[
f|R
]
EµS

[
f|S
])

= µ(R)
(
µ(R) + µ(S)

)
VarµR

(
f|R
)

+ µ(S)
(
µ(R) + µ(S)

)
VarµS

(
f|S
)

+ µ(R)µ(S)
(
E2
µR

[
f|R
]

+ E2
µS

[
f|S
]
− 2EµR

[
f|R
]
EµS

[
f|S
])

= µ(R)
(
µ(R) + µ(S)

)
VarµR

(
f|R
)

+ µ(S)
(
µ(R) + µ(S)

)
VarµS

(
f|S
)

+ µ(R)µ(S)
(
EµR

[
f|R
]
− EµS

[
f|S
])2

. (28)

As a test function in Dirichlet principle (21) we pick

f̃ =
f − EµS

[
f|S
]

EµR
[
f|R
]
− EµS

[
f|S
] , (29)

which is such that EµR
[
f̃|R
]

= 1 and EµS
[
f̃|S
]

= 0. By plugging (29) in (21) we get

Cλκ (R,S) ≤ D(f̃) + κµ(R)VarµR
(
f̃|R
)

+ λµ(S)VarµS
(
f̃|S
)

=
(
EµR

[
f|R
]
− EµS

[
f|S
])−2(

D(f) + κµ(R)VarµR
(
f|R
)

+ λµ(S)VarµS
(
f|S
))

which actually is an upper bound on
(
EµR

[
f|R
]
− EµS

[
f|S
])2. Bounding from above the last term in

(28) we then get

Varµ(f) ≤ µ(R)
(
µ(R) + µ(S)

)
VarµR

(
f|R
)

+ µ(S)
(
µ(R) + µ(S)

)
VarµS

(
f|S
)
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+ µ(R)µ(S)
Cλκ (R,S)

(
D(f) + κµ(R)VarµR(f|R) + λµ(S)VarµS

(
f|S
))

= D(f)
φλκ

+ µ(R)VarµR(f|R)
(
κ

φλκ
+ (1 + µ (R∩ S))

)

+ µ(S)VarµS (f|S)
(
λ

φλκ
+ (1 + µ (R∩ S))

)

≤ D(f)
φλκ

+
µ(R)DR(f|R)

γR

(
κ

φλκ
+ (1 + µ (R∩ S))

)
+
µ(S)DS(f|S)

γS

(
λ

φλκ
+ (1 + µ (R∩ S))

)
≤ D(f)

φλκ
+ D(f)

γR

(
κ

φλκ
+ (1 + µ (R∩ S))

)
+ D(f)

γS

(
λ

φλκ
+ (1 + µ (R∩ S))

)
where, in the second inequality, the variational characterization of spectral gaps γR and γS given by
Equation (3) has been used, whereas in the third one we exploited the following fact:

D(f) ≥ µ(R)DR(f|R), D(f) ≥ µ(S)DS(f|S).

Factorising D(f)/φλκ we get the Poincaré inequality

Varµ(f) ≤ D(f)
φλκ

(
1 + κ+ φλκ (1 + µ (R∩ S))

γR
+ λ+ φλκ (1 + µ (R∩ S))

γS

)
.

Before giving the proof of the upper bound, we observe that the proof of this Poincaré inequality
carries over to the case of any finite covering of irreducible sets X = ∪i<mRi.

Proposition 3.1. If R0, R1, . . . , Rm−1 are subsets of X such that XRi is irreducible for each i < m,
and κ0, κ1, . . . , κm−1 are any positive numbers then, with

φji = φij = C
κj
κi (Ri,Rj)
µ(Ri)µ(Rj)

, i 6= j, i, j < m,

1
φ

= 1
2
∑
i,j:i6=j

1
φji

and, for each i < m,
1
φi

=
∑
j 6=i

1
φji
≤ 1
φ
,

it holds

γ ≥ φ

1 +
∑
i<m

φ

γi

κi
φi

+
∑
j<m

µ(Rj)


−1

≥ φ

{
1 +

∑
i<m

κi + φ
∑
j<m µ(Rj)
γi

}−1

.

Proof of the upper bound in Theorem 4: We want to exploit the variational principle (26), so we look for
an upper bound on D(f) and a lower bound on Varµ(f) for a suitable function f . From (27) we get

Varµ(f) ≥ 1
2E
[(
f(Z)− f(Z ′)

)2 (
1{Z∈R,Z′∈S} + 1{Z∈S,Z′∈R} − 1{Z,Z′∈R∩S}

)]
= E

[(
f(Z)− f(Z ′)

)2
1{Z∈R,Z′∈S}

]
− 1

2E
[(
f(Z)− f(Z ′)

)2
1{Z,Z′∈R∩S}

]
= µ(R)µ(S)

(
EµR

[
f2
|R

]
+ EµS

[
f2
|S

])
− 2µ(R)µ(S)EµR

[
f|R
]
EµS

[
f|S
]

− µ2(R∩ S)VarµR∩S
(
f|R∩S

)
= µ(R)µ(S)

(
VarµR

(
f|R
)

+ E2
µR

[
f|R
])

+ µ(R)µ(S)
(
VarµS

(
f|S
)

+ E2
µS

[
f|S
])

− 2µ(R)µ(S)EµR
[
f|R
]
EµS

[
f|S
]
− µ2(R∩ S)VarµR∩S

(
f|R∩S

)
= µ(R)µ(S)

(
VarµR

(
f|R
)

+ VarµS
(
f|S
))
− µ2(R∩ S)VarµR∩S

(
f|R∩S

)
(30)
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+ µ(R)µ(S)
(
EµR

[
f|R
]
− EµS

[
f|S
])2

To get a suitable lower bound of (30), we write

µ2(R∩ S)VarµR∩S
(
f|R∩S

)
= 1

2E
[(
f(Z)− f(Z ′)

)2
1{Z,Z′∈R∩S}

]
≤ 1

2E
[(
f(Z)− f(Z ′)

)2
1{Z,Z′∈R}

]
= µ2(R)VarµR

(
f|R
)
≤ µ(R)µ(S)VarµR

(
f|R
)
, (31)

assuming, without loss of generality, µ(R) ≤ µ(S). Then, by using (31) to bound the second term in
(30), dropping one term and taking as test function the equilibrium potential V λκ , we get

Varµ
(
V λκ
)
≥ µ(R)µ(S)

(
EµR

[
V λκ |R

]
− EµS

[
V λκ |S

])2
. (32)

Next, we have the two following simples lemmas.

Lemma 3.2. If ε∗R,λS < 1, then

EµR
[
V λκ |R

]
≥ 1−

φ∗R,λS
κ
− 1

2

√
ε∗R,λS

1− ε∗R,λS
.

Proof: Denoting by σκ an exponential time of rate κ that is independent of X, it holds

EµR
[
V λκ |R

]
= PµR (TκR < TλS ) = PµR (`R (TκR) < `R (TλS )) = PµR

(
σκ < TRλS

)
.

Let Popt be an optimal coupling at time t = 0 betweenXµR andXµ∗R,λS that start with initial distribution
µR and µ∗R,λS and evolve jointly if they have the same starting configuration. By the union bound,
Proposition (2.6) and the convexity of x 7→ 1

1+x we get

PµR
(
σκ < TRλS

)
≥ Pµ∗R,λ

(
σκ < TRλS

)
− Popt

(
XµR(0) 6= Xµ∗R,λS (0)

)
≥ κ

κ+ φ∗R,λS
− 1

2

√
ε∗R,λS

1− ε∗R,λS
≥ 1−

φ∗R,λS
κ
− 1

2

√
ε∗R,λS

1− ε∗R,λS

Lemma 3.3. If ε∗S,κR < 1, then

EµS
[
V λκ |S

]
≤ 1

2

√
ε∗S,κR

1− ε∗S,κR
+
φ∗S,κR
λ

.

The proof of this lemma is similar to that of the previous one and we omit it. By plugging the two
bounds provided by Lemma 3.2 and Lemma 3.3 into (32) we obtain

Varµ
(
V λκ
)
≥ µ(R)µ(S)

{
1−

φ∗R,λS
κ
−
φ∗S,κR
λ
− 1

2

√
ε∗R,λS

1− ε∗R,λS
− 1

2

√
ε∗S,κR

1− ε∗S,κR

}2

(33)

as soon as the braced quantity is positive. The upper bound on D(V λκ ) is straightforward: since the
functional associated with the Dirichlet principle, which reaches its minimum Cλκ (R,S) in V λκ , is larger
than D, we get

D
(
V λκ
)
≤ Cλκ (R,S) . (34)

Inequality (25) follows from Equation (26) together with (33) and (34).
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3.2 Exit rate estimates
The prove the last part of Theorem 1 we first give sharp upper and lower bounds for φ∗R,λS . These are
sharp bounds in the sense that they have the same asymptotic behaviour as soon as κ and λ are chosen
in the right window.

Theorem 5. The exit rate φ∗R,λS satisfies

φ∗R,λS ≥
Cλκ (R,S)
µ(R)

{
1− 2µ(S)−1φ∗R,λS/λ(

1− φ∗R,λS/λ
)2

}{
1 + κ+ φλκ (1 + µ (R∩ S))

γR
+ λ+ φλκ (1 + µ (R∩ S))

γS

}−1

.

In addition, when ε∗R,λS < 1, we get the converse inequality

φ∗R,λS ≤
Cλκ (R,S)
µ(R)

{
1 +

φ∗R,λS
λ

}{
1−

φ∗R,λS
κ
− 1

2

√
ε∗R,λS

1− ε∗R,λS

}−2

as soon as the last braced sum is positive.

Proof of the lower bound: We consider the process X̃ introduced in Section 2.3 in the limiting case
κ̃ = +∞. In this case X̃ can be redefined as X̃ = X ∪ S̆ and we call L̃ the generator of this process
X̃ on X̃ . According with the notation of Section 2.1, we denote by φ̃∗X ,λS and µ̃∗X ,λS respectively
the smallest eigenvalue and the corresponding normalized left eigenvector (i.e., the quasi-stationary
distribution associated with X and λS) of −L̃∗X ,λS , which is defined by(

L̃∗X ,λSf
)
(x) = −λS(x)f(x) +

∑
y∈X

w(x, y)[f(y)− f(x)], f : X → R, x ∈ X .

For any probability ν on X , φ̃∗X ,λS is the decay rate of the survival probability Pν
(
TλS > t

)
:

lim
t→∞

−1
t

lnPν (TλS > t) = φ̃∗X ,λS .

Since
Pµ∗R,λS

(TλS > t) ≥ Pµ∗R,λS
(
`R(TλS ) > t

)
= Pµ∗R,λS

(
TRλS > t

)
= e−tφ

∗
R,λS ,

it follows that
φ∗R,λS ≥ φ̃

∗
X ,λS . (35)

To give a lower bound on φ̃∗X ,λS , we use its variational representation

φ̃∗X ,λS = min
f :X→R

〈
f,−L̃∗X ,λSf

〉
‖f‖2

= min
f :X→R

D(f) + ‖
√
λSf‖2

‖f‖2
. (36)

Indeed, for any f : X → R,〈
f,−L̃∗X ,λSf

〉
= 1

2
∑
x,y∈X

µ(x)w(x, y)
[
f(x)− f(y)

]2 +
∑
x∈X

µ(x)λS(x)f2(x).

Since the minimum is reached in

h̃∗X ,λS : x ∈ X 7→ µ̃∗X ,λS (x)/µ(x).

it holds

φ̃∗X ,λS ≥
D
(
h̃∗X ,λS

)∥∥h̃∗X ,λS∥∥2 =
∥∥h̃∗X ,λS∥∥2 − 1∥∥h̃∗X ,λS∥∥2

D
(
h̃∗X ,λS

)
Varµ

(
h̃∗X ,λS

) ≥ (1− 1∥∥h̃∗X ,λS∥∥2

)
γ. (37)

Theorem 4 provides a lower bound on γ and it remains to give a lower bound on ‖h̃∗X ,λS‖. To estimate
this norm we restrict the sum to X\S and we use Jensen’s inequality:

∥∥h̃∗X ,λS∥∥2 ≥ µ(X\S)
∑

x∈X\S

µX\S(x)
(
µ̃∗X ,λS (x)
µ(x)

)2
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≥ µ(X\S)

 ∑
x∈X\S

µX\S(x)
µ̃∗X ,λS (x)
µ(x)

2

=
(
µ̃∗X ,λS (X\S)

)2
µ(X\S) . (38)

Now, the last identity of Lemma 2.1 reads in this case φ̃∗X ,λS = λµ̃∗X ,λS (S). Therefore, using Inequal-
ity (35) again,

µ̃∗X ,λS (X\S) = 1−
φ̃∗X ,λS
λ
≥ 1−

φ∗R,λS
λ

. (39)

It follows from (38) and (39) that

1− 1∥∥h̃∗X ,λS∥∥2 ≥ 1− 1− µ(S)(
1− φ∗R,λS/λ

)2 =
µ(S)− 2φ∗R,λS/λ+

(
φ∗R,λS/λ

)2(
1− φ∗R,λS/λ

)2
≥ µ(S)

1− 2µ(S)−1φ∗R,λS/λ(
1− φ∗R,λS/λ

)2 . (40)

Finally from (35), (37) and (40) together with (24) we get the desired result.
Proof of the upper bound: The proof is made of two steps: first we estimate φ̃∗X ,λS via a variational
principle, then we look for an upper bound of φ∗R,λS in terms of φ̃∗X ,λS . By taking as test function in
(36) the equilibrium potential V λκ we get

φ̃∗X ,λS ≤
D
(
V λκ
)

+
∥∥√λSV λκ ∥∥2∥∥V λκ ∥∥2 ≤ Cλκ (R,S)∥∥V λκ ∥∥2 . (41)

The denominator in (41) is lower bounded by

∥∥V λκ ∥∥2 ≥ µ (R)
∑
x∈R

µR(x)V λκ (x)2 ≥ µ (R)µR
(
V λκ |R

)2 ≥ µ (R)
{

1−
φ∗R,λS
κ
− 1

2

√
ε∗R,λS

1− ε∗R,λS

}2

, (42)

where we used Jensen inequality, Lemma 3.2 and the assumption that the braced sum was positive.
To bound φ∗R,λS with φ̃∗X ,λS , we write, for any 0 ≤ β ≤ 1 and denoting again by σλ an exponential

time of rate λ that is independent of X,

Pµ∗R,λS

(
TλS > t

)
≤ Pµ∗R,λ

(
TRλS + σλ > βt+ (1− β)t

)
≤ Pµ∗R,λ

(
TRλS > βt

)
+ Pµ∗R,λ

(
σλ > (1− β)t

)
= exp

(
−φ∗R,λSβt

)
+ exp

(
−λ(1− β)t

)
.

Recall that φ̃∗X ,λS is the decay rate of the survival probability Pµ∗R,λS
(
TλS > t

)
. If we choose β such

that φ∗R,λSβ ≤ λ(1− β), then φ∗R,λSβ is the decay rate of the right-hand side in the previous inequality
and we can conclude φ̃∗X ,λS ≥ βφ

∗
R,λS . We then choose β = λ/(φ∗R,λS + λ), which gives us

φ∗R,λS ≤
φ̃∗X ,λS
β

= φ̃∗X ,λS

(
1 +

φ∗R,λS
λ

)
. (43)

The thesis follows from (43), (41) and (42).
By Lemma 2.10, estimates (13) and (18) as well as Remark 2.11, we only have to prove that

φ∗R,λSEµR
[
TλS

]
goes to one to conclude the proof of Theorem 1. Since

EµR
[
TλS

]
= EµR

[
`R(TλS ) + `S\R(TλS )

]
≤ EµR

[
`R(TλS )

]
+ EµR

[
`S(TλS )

]
= EµR

[
TRλS

]
+ 1
λ
,

we get

φ∗R,λSEµR
[
TλS

]
≤ 1 +

φ∗R,λS
λ

from estimate (15). This upper bound goes to one, as a consequence of estimate (13).
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To get a lower bound, we write

φ∗R,λSEµR
[
TλS

]
=
∫ +∞

0
PµR

(
φ∗R,λSTλS > t

)
dt

and recall Proposition 2.7: the integrand goes to e−t. Fatou’s lemma gives the desired lower bound and
this concludes the proof.

4 Proof of Theorem 3
We will use the stopping time

τ = TκR ∧ TλS
to build T ∗. The laws of X(TκR) and X(TλS ) are indeed close to µR and µS . But conditioning on
{τ = TκR} or {τ = TλS} introduces correlations that can make the law of X(τ) in general delicate to
control. The law of X(TκR) can be written as a convex combination of those of X(τ) conditioned on
{τ = TκR} and X(TκR) conditioned on {TκR>TλS }: it holds, for all x in X , and with

α(x) = Px (TκR < TλS ) ,

Px (X(TκR) = ·) = α(x)Px
(
X(τ) = ·

∣∣ τ = TκR
)

+ (1− α(x))Px
(
X(TκR) = ·

∣∣ TκR > TλS
)
.

By Proposition 2.8 the first and last of these three distributions are close to µR for a small enough
κ. We can then estimate the total variation distance between µR and the law of X(τ) conditioned on
{τ = TκR}:

dTV

(
µR,Px

(
X(τ) = ·

∣∣ τ = TκR
))
≤ 2− α(x)

α(x)
κ

γR

(
1 +

[
ln
γR
√
χR

2κ

]
+

)
,

so that, if α(x) ≥ 1/2,

dTV

(
µR,Px

(
X(τ) = ·

∣∣ τ = TκR
))
≤ 3κ
γR

(
1 +

[
ln
γR
√
χR

2κ

]
+

)
.

This suggests the following construction. We set τ0 = 0 and, for all i ≥ 0, we define

τ i+1
R = τ i + TκR ◦Θτ i , τ i+1

S = τ i + TλS ◦Θτ i , τ i+1 = τ iR ∧ τ iS .

We call I the first index i > 0 such that either

τ i = τ iR and α(X(τ i−1)) ≥ 1
2

or
τ i = τ iS and α(X(τ i−1)) ≤ 1

2 .

We finally define
T ∗R = τ IR, T ∗S = τ IS , T ∗ = T ∗R ∧ T ∗S .

The random variable I is stochastically dominated by a geometric random variable of mean 2, each
random variable (τ i− τ i−1) is stochastically dominated by an exponential random variable of rate κ∧ λ
and it holds

T ∗ =
∑
i>0

(τ i − τ i−1)1{I≥i},

so that, observing that for (τ i − τ i−1) and {I ≥ i} are independent for all i > 0,

Ex [T ∗] ≤ 2
κ ∧ λ

,

for all x in X . By construction it holds

dTV

(
µR,Px

(
X(τ) = ·

∣∣ T ∗ = T ∗R
))
≤ 3κ
γR

(
1 +

[
ln
γR
√
χR

2κ

]
+

)
.

25



With

η = 3κ
γR

(
1 +

[
ln
γR
√
χR

2κ

]
+

)
+ 1

2

√
ε∗R,λS

1− ε∗R,λS
,

the triangular inequality gives

dTV

(
µ∗R,λS ,Px

(
X(T ∗) = ·

∣∣ T ∗ = T ∗R
))
≤ η .

Using Proposition 2.7, for all λ ≥ φ∗R\S , or any λ ≥ φ∗R,λS , we get

Px

(
TλS ◦ΘT∗ >

t

φ∗R,λS

∣∣∣∣ T ∗ = T ∗R

)
≥ e−t

{
1− ηet

}
and

Px

(
TλS ◦ΘT∗ >

t

φ∗R,λS

∣∣∣∣ T ∗ = T ∗R

)
≤ e−t

{
exp

(√
φ∗R,λS
λ

)
+
[
η + exp

(
−
√

λ

φ∗R,λS

)]
et

}
.

Finally, if
δ = Pν (TλS < TκR) ,

then, by definition of α,

1
2 Pν

(
α(X(0)) ≤ 1

2

)
≤ Pν

(
TλS < TκR

∣∣∣ α(X(0)) ≤ 1
2

)
Pν

(
α(X(0)) ≤ 1

2

)
≤ δ

and

Pν (T ∗ = T ∗R = TκR < TλS ) ≥ 1− Pν
(
α(X(0)) ≤ 1

2 or TλS < TκR

)
≥ 1− (2δ + δ) = 1− 3δ.

Since the symmetrical statements hold when exchanging the roles of R and S as well as those of κ and
λ, this concludes the proof.

5 Proof of Theorem 2
By Proposition 2.8 and Remark 2.11, the law of X(T1) = X(TλS ) is close to µS , as the law of X(T2) is
close to µR. Hence, it will be sufficient to find θ such that our time averages on time scale θ are close to
the expected values computed with µR before T1. Theorem 2 follows then from the quantitative

Proposition 5.1. If ε∗R,λS < 1 and η < 1 is such that

η3 ≥
φ∗R,λS
λ

and η4 ≥
√
ε∗R,λS , (44)

then, setting

θ = 1
η2

(
1
λ
∨
√
ε∗R,λS

ηφ∗R,λS

)
≤ η

φ∗R,λS
,

it holds

PµR

(
θ < T1, sup

t<T1−θ
|Aθ(t, f)− µR(f)| ≤ 4η‖f‖∞

)
≥

{
1− 4η −

√
ε∗R,λS

1− ε∗R,λS

}
(45)

for all f : X → R.

Proof: We can assume, without loss of generality, that |f | is bounded by 1 and we will consider four
events, each of them with a small probability, such that when none of them occurs T1 > θ and our time
averages are indeed close to µR(f). The first of these events is A = {TRλS ≤ θ}. When its complementary
occurs {θ < T1} is implied. By Proposition 2.6, it holds

PµR(A) ≤ PµR
(
TRλS ≤ θ

)
≤ 1

2

√
ε∗R,λS

1− ε∗R,λS
+ 1− e−φ

∗
R,λS

θ ≤ 1
2

√
ε∗R,λS

1− ε∗R,λS
+ φ∗R,λSθ. (46)
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Our next event is B = {`S(T1) > θ′} with

θ′ = ηθ

being a small fraction of θ. When its complementary occurs the excursions of X in R\S up to T1, which
cannot be longer than `S(T1), will have a negligible contribution to time averages on time scale θ. Since
`S(T1) is an exponential variable of rate λ, it holds

PµR(B) = PµR (`S(T1) > θ′) = e−λθ
′
. (47)

To control the supremum appearing in (45), we will divide the local time interval [0, TRλS ] into intervals
of length θ′, or smaller as far as the last one is concerned. For k1 a parameter that we will fix later,
our third event is C = {TRλS > k1θ

′}. When its complementary occurs it is sufficient to control the time
averages on time scale θ′ for at most k1 intervals of this length to estimate time averages on time scale
θ. By Proposition 2.6, it holds

PµR(C) = PµR
(
TRλS > k1θ

′) ≤ 1
2

√
ε∗R,λS

1− ε∗R,λS
+ e−φ

∗
R,λS

k1θ
′
. (48)

Our last event, which we will call D, is that there is a local time interval [kθ′, (k + 1)θ′] with k < k1
for which the time average associated with the trace XR = XR,0S of X on R,

ARθ′(kθ′) = 1
θ′

∫ (k+1)θ′

kθ′
f(XR(s)) ds,

differs from µR(f) of more the η. Any time interval [t, t+θ] with t+θ < T1 can be associated “by removal
of the excursions outside R” with a local time interval [`R(t), `R(t+ θ)], which, in turn, can be divided
into at most θ/θ′ fully covered and two partially covered local time intervals of the form [kθ′, (k + 1)θ′].
Hence, if none of our last three events B–D occurs, then, for each t < T1 − θ and using |f | ≤ 1, it holds∣∣∣Aθ(t, f)− µR(f)

∣∣∣ ≤ θ′ + θ
θ′ θ
′η + 2θ′

θ
= 4η.

As far as the probability of D is concerned, since XR starts from equilibrium, the expected value of
ARθ′(kθ′) is equal to µR(f) and we can make an exact computation of its variance by writing the decom-
position f in the eigenfunctions basis associated with the generator of XR = XR,0S . By Proposition 2.4
its spectral gap, which is associated with a zero value of λ, is larger than γR,λS and we get the upper
bound

EµR

[(
ARθ′(kθ′)− µR(f)

)2
]
≤ 2VarµR(f)

γR,λSθ
′ ≤

2
γR,λSθ

′ .

We then get
PµR(D) ≤ 2k1

γR,λSθ
′η2 . (49)

For (48) and (49) to be useful we need to choose k1 in such a way that, for η � 1,

k1 �
1

φ∗R,λSθ
′ and k1 � γR,λSθ

′η2,

which is possible if
θ′2 � 1

η2γR,λSφ
∗
R,λS

. (50)

We will choose θ′ and η to ensure this condition and we will set

k1 =
√

1
φ∗R,λSθ

′ γR,λSθ
′η2 = η√

ε∗R,λS
. (51)

For (46) and (47) to be useful we need to choose θ′ in such a way that, for η � 1, (recall that
θ = θ′/η)

θ′ � 1
λ

and θ′ � η

φ∗R,λS
.
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Once combined with (50), this reads

1
λ
∨
√
ε∗R,λS

ηφ∗R,λS
� θ′ � η

φ∗R,λS
. (52)

We choose

θ′ = 1
η

(
1
λ
∨
√
ε∗R,λS

ηφ∗R,λS

)
to satisfy the first inequality in (52); Condition (44) will ensure the last one.

Estimates (46)–(49) give then, recalling (51) and using (44),

PµR

(
T1 ≤ θ or ∃t < T1 − θ,

∣∣∣Aθ(t, f)− µR(f)
∣∣∣ > 4η

)
≤ 1

2

√
ε∗R,λS

1− ε∗R,λS
+
φ∗R,λS
η2

(
1
λ
∨
√
ε∗R,λS

ηφ∗R,λS

)
+ exp

{
−λ
η

(
1
λ
∨
√
ε∗R,λS

ηφ∗R,λS

)}

+ 1
2

√
ε∗R,λS

1− ε∗R,λS
+ exp

{
−φ∗R,λS

η/
√
ε∗R,λS
η

(
1
λ
∨
√
ε∗R,λS

ηφ∗R,λS

)}
+

2η/
√
ε∗R,λS

γR,λS
1
η

(
1
λ ∨
√
ε∗R,λS

ηφ∗R,λS

)
η2

≤

√
ε∗R,λS

1− ε∗R,λS
+ η + 2e−1/η + 2η ≤

√
ε∗R,λS

1− ε∗R,λS
+ 4η.
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