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Abstract

This paper aims at presenting sensitivity estimators of a rare event probability in the context of uncertain distribution

parameters (which are often not known precisely or poorly estimated due to limited data). Since the distribution parameters

are also affected by uncertainties, a possible solution consists in considering a second probabilistic uncertainty level. Then,

by propagating this bi-level uncertainty, the failure probability becomes a random variable and one can use the mean

estimator of the distribution of the failure probabilities (i.e. the “predictive failure probability”, PFP) as a new measure of

safety. In this paper, the use of an augmented framework (composed of both basic variables and their probability distribution

parameters) coupled with an Adaptive Importance Sampling strategy is proposed to get an efficient estimation strategy of the

PFP. Consequently, double-loop procedure is avoided and the computational cost is decreased. Thus, sensitivity estimators

of the PFP are derived with respect to some deterministic hyper-parameters parametrizing a priori modeling choice. Two

cases are treated: either the uncertain distribution parameters follow an unbounded probability law, or a bounded one. The

method efficiency is assessed on two different academic test-cases and a real space system computer code (launch vehicle

stage fallback zone estimation).

Keywords: Distribution parameter uncertainty, Rare event simulation, Adaptive importance sampling, Reliability

sensitivity analysis, Score functions

1. Introduction1

Reliability analysis and sensitivity analysis are two major steps in uncertainty quantification of complex systems. For a2

large variety of applications, assessing the reliability of complex engineering systems (such as aerospace ones) implies, first,3

to build a dedicated computer code whose aim is to mimick the behavior of the real system. This code can be high-fidelity4

and consequently, costly-to-evaluate. In uncertainty quantification, it is often considered as an input-output black-box.5

Then, one needs to track down and quantify the uncertainties affecting the basic input variables (i.e. physical variables) or6

those arising in the model itself. Finally, one can propagate these uncertainties through the simulation code and estimate,7

with some dedicated methods, a so-called failure probability associated to an unsafe and undesired state of the system8

[1]. In a context of highly safe systems (e.g., systems implying potential risks in terms of human security, environmental9

impact and/or huge financial loss), the low failure probability requires a huge computational cost to be estimated by crude10

Monte Carlo (CMC) [2] which can make these calculations intractable, especially for time-demanding simulation models.11
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For these reasons, several methods are available to handle this problem of rareness: approximation methods of the failure12

region [3], simulation methods based on Monte Carlo simulations or on quasi-random sampling [4], and, finally, surrogate-13

based methods [5].14

After the uncertainty propagation phase, it is often relevant to examinate how sensitive some output quantities are with15

respect to (w.r.t.) the variability affecting input quantities. One the one hand, one can apply sensitivity analysis of model16

output (SAMO) whose aim is to study how the model output of the computer code varies regarding the input uncertainty17

[6, 7, 8, 9, 10, 11]. On the other hand, reliability-based sensitivity analysis (RbSA) aims at quantifying the impact of the18

variability affecting any input quantity on the estimated measure of safety. In this second type of sensitivity analysis, the19

quantity of interest (QoI) is no longer the model output but a reliability measure. Differences appearing between SAMO and20

RbSA are due, not only to the different QoIs under consideration, but also to the potential numerical issues appearing in the21

rare event probability estimation procedure (definition of the limit-state function, isoprobabilistic transformation, estimation22

strategy, global estimation cost) which can make the overall numerical procedure more complicated compared to SAMO. In23

the reliability framework, several methods have been developed to quantify the sensitivity of the failure probability w.r.t.24

deterministic distribution parameters of the basic variables. On the one hand, several global sensitivity methods have been25

developed: for instance, variance-decomposition-based methods (through the use of Sobol’ indices) in [12], methods based26

on density perturbation in [13, 14] or, more recently, quantile-oriented sensitivity estimators based on constrast functions in27

[15]. On the other hand, local sensitivitymethods (often based on partial derivatives of the QoI) are also available. However,28

their formulation and implementation procedure mostly depend on the method used to estimate the failure probability.29

One can cite the so-called “sensitivity factors” [16, 17, 18] and “omission factors” [19] which can be seen as by-products30

of applying the First-Order Reliability Method (FORM). Other measures specifically dedicated for sampling-based methods31

are available: for instance, one can cite [20, 21] for Adaptive Importance Sampling (AIS), [22] for Line Sampling, [23] for32

the Method of Moments and [24] for Subset Simulations. Among these local measures for RbSA, some of them rely on the33

mathematical concept of score function (SF) [2] (also known as kernel function [25]). From a general point of view, the SF34

method relies on using the derivatives of the probability density function (pdf) in an integral equation (e.g., an expected35

value equation) and enables to estimate simultaneously (i.e. using the same samples) the performance function and all its36

derivatives w.r.t. distribution parameters. In the reliability context, this approach has been used, considering deterministic37

distribution parameters, in [20, 26, 27]. Finally, in the two papers [28, 29], the problem of estimating the sensitivities38

of a failure probability regarding deterministic distribution parameters which are bounds of truncated distributions (e.g.,39

uniform or truncated Gaussian) is described.40

To sum up, the previous methods appear to be dedicated to problems where distribution parameters (e.g., mean or41

standard deviation of a Gaussian distribution) are assumed to be deterministic (they are set to a certain value). However,42

in the case where distribution parameters are affected by uncertainties (due to lack of knowledge or because of limited43

data), one needs to consider both uncertainty sources (i.e. the one affecting the basic variables and the one affecting44

the distribution parameters) in the probability estimation, especially for “high-consequence” systems, as stressed in [30,45

31, 32]. Bayesian framework has been used and recommended in [33, 34, 35] for assessing reliability under distribution46

parameter uncertainty. The effect of parameter uncertainty in reliability assessment has also been studied within some47

extra-probabilistic frameworks, also known as “imprecise probabilities” [36, 37]. Several papers [38, 39, 40, 41, 42] propose48

notional examples illustrating and comparing the use of several different frameworks (probabilistic and extra-probabilistic49

such as evidence theory and possibility theory) in the characterization of epistemic uncertainty affecting distributions of50

input aleatory uncertainty.. Among these contributions, one can cite for instance [43] in which reliability assessment under51
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interval-based analysis of distribution parameters is treated, [44] in which the propagation of parameter uncertainty through52

probability-boxes is achieved, [45] for the derivation of probability bounds and [46] for integrating either probabilistic and53

non-probabilistic variables in an hybrid framework. If the topic of reliability under parameter uncertainty is now studied54

with probabilistic and non-probabilistic approaches, it appears that the works can hardly be compared and contrasted55

because of two main characteristics: first, the initial assumptions are different and the information sources for modeling56

input uncertainties are treated in different ways; second, the output QoI of the reliability analysis is also very different57

quantitatively (single vs. multiple measures of safety) and qualitatively (point measure, bounds, full distributions, truncated58

distributions, etc.). Consequently, in this work, the Bayesian view is adopted [35] and the following measure of safety59

incorporating this bi-level uncertainty can be considered: the predictive failure probability, as described in [47]. Thus,60

dedicated RbSA methods have to be developed to examinate sensitivities of this measure of safety w.r.t. the deterministic61

distribution hyper-parameters which parametrize the a priori distribution on the parameters of the basic variables. In this62

paper, local sensitivity estimators of the predictive failure probability w.r.t. these hyper-parameters are derived. In a context63

of low failure probability estimation, since the calculations are performed in the joint space of stochastic basic variables64

and stochastic distribution parameters (i.e. the “augmented space”), an augmented formulation of Adaptive Importance65

Sampling can be used so as to estimate jointly the predictive failure probability and the sensitivities at a reduced cost66

compared to CMC.67

This paper is organized as follows. Section 2 adresses the problem of reliability assessment under distribution parameter68

uncertainty and aims at introducing the formal concepts and notations. Section 3 describes both the derived sensitivity69

estimators and their implementation within an augmented Adaptive Importance Sampling strategy. Section 4 illustrates the70

benefits of such a methodology on different test-cases (two academic test-cases and one black-box computer code issued71

from aerospace research) and a synthesis gathering the key aspects and issues of the proposed approach is provided at the72

end of this section. Finally, a conclusion gathering the most important outcomes of this paper is given in Section 5.73

2. Reliability assessment under probability distribution law parameter uncertainty via an augmented sampling74

2.1. Usual formulation of a time-invariant reliability problem75

Let us consider a complex system represented by a static input-output black-box simulationmodelM(·)whose numerical76

evaluation can be achieved pointwise. Thus, it can be seen as a real-valued function defined on DX ⊆ Rd such that M :77

DX→ R. In this paper, for the sake of simplicity, the model output is assumed to be reduced to a scalar y =M(x) ∈DY ⊆ R.78

Moreover, the model is assumed to be deterministic. Assessing reliability to such a system traditionally relies on setting a79

probabilistic framework in which one assumes that the input basic variables (i.e. variables that are directly observable or80

which can be directly linked to empirical data [33]) can be modeled by a set of random variables X1,X2, . . . ,Xd , where d81

is the input dimension. Under a perfect state of knowledge about the distribution family and the distribution parameters,82

and provided a perfect knowledge about the dependence between input variables (which can be set up through the copula83

framework [48]), a parametrized probabilistic model can be assumed for the d-dimensional random input vector X through84

the cumulative distribution function (cdf) FX(·) and corresponding joint pdf fX(·). By propagating the uncertainties through85

the model via the equation Y =M(X), the ouput is also a random variable which can be characterized by the distribution86

FY (·). For reliability assessment, the behavior of the system can be characterized by a so-called limit-state function (lsf) (note87

that the common “limit-state” analysis performed in reliability is also known as “margin analysis” in nuclear engineering88

[42]) g :DX→ R. A common formulation for the lsf can be g(X)
def

= yth−Y = yth−M(X)with yth ∈ R a given scalar threshold89
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beyond which the system falls into a failure state. The aim of g(·) is to split the space of realizations of the random vector X90

into a failure domain Fx = {x ∈ DX : g(x) ≤ 0} and a safe domain Sx = {x ∈ DX : g(x) > 0}. Hence, the failure probability91

pf is given by:92

pf = P [g(X)≤ 0] =

∫

Fx

fX(x)dx=

∫

DX

1Fx
(x) fX(x)dx= E fX

�
1Fx
(X)
�

(1)

where dx = dx1 . . . dxd and 1Fx
(·), the indicator function of the failure domain, is defined by: 1Fx

(x) = 1 if x ∈ Fx93

and 1Fx
(x) = 0 otherwise. Estimating this probability can be achieved by a large variety of methods [3]. Among these94

techniques, some require to reformulate the reliability problem in the standard normal space where all the basic variables95

are independent and standard-Gaussian distributed (e.g., FORM, SORM, Line Sampling or Subset Simulations in the original96

version by [49]). This reformulation is achieved by means of a transformation which can be, in general, either the Nataf97

one [50] or the Rosenblatt one [51], depending on the available probabilistic information (i.e. marginals and potentially98

the copula) [48].99

2.2. Bayesian framework for reliability assessment under parameter uncertainty100

Among information available to construct a parametrized probabilistic model for the input basic variables, one often has101

only access to limited data, possibly unadapted literature-based recommendations and finally subjective expert opinions102

[52]. Thus, an imperfect state of knowledge [53, 54] may lead to a misestimation of the failure probability and lead103

to dramatic consequences in terms of risk mitigation. Statistical uncertainty arises in the estimation procedure of the104

probability distribution parameters when one can only deal with unsufficient measures or data. In some cases, it may105

also happen that neither data nor expert judgment are available, which imposes to the engineer yet to make a choice for106

the values of parameters. This is often encountered in the field of complex systems for which data acquisition is difficult.107

To take distribution parameter uncertainty into account in the reliability assessment, the previous framework set up in108

subsection 2.1 needs to be reinterpreted.109

In this paper, two levels of uncertainty are considered: the first one represents the variability in the basic input variables

and thus affects the input random vector X when the second one represents the lack of knowledge affecting the distribution

parameters Θ. To do so, we consider the following Bayesian hierarchical model [55]:

X∼ fX|Θ(x|θ) :DX ⊆ Rd → R+ (first layer) (2a)

Θ ∼ fΘ|ξ(θ|ξ) :DΘ ⊆ Rk→ R+ (second layer) (2b)

ξ= (ξ1,ξ2, . . . ,ξq)
⊤ ∈Dξ ⊆ Rq (third layer). (2c)

In this hierarchical representation, one can distinguish three layers of inputs:110

• the first layer is constituted by the random vector X gathering the stochastic basic variables. Based on prior knowledge,111

a probability distribution can be assumed through the choice of a parametric model. This random vector can be112

possibly of great dimension and may involve a complex dependence structure [48];113

• the second layer is constituted by uncertain and deterministic (i.e. supposed to be known accurately enough) distri-114

bution parameters. Adding such a layer is coherent with the Bayesian point of view of modeling either “uncertain” (in115

the sense of stochastic) or “unknown but fixed” parameters [55]. If one can theoretically consider a possible depen-116

dence structure for the vector Θ, it is often, from a pragmatic point of view (if we do not care about the deterministic117
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parameters in it), of rather small dimension compared to the basic random vector and structured such that quadrature118

schemes or quasi-random sampling can be easily used to sample over the space DΘ [47]. Other techniques, such as119

the association of a rank correlation procedure developed in [56] and quasi-random sampling have been successfully120

used in literature [57]. In the present paper, the prior distribution is mostly assumed to be derived from expert judg-121

ment or from a limited set of data. Thus, despite the fact that Bayes’ theorem is not used as an updating procedure122

(but could be, if more data or a better characterization was available), one can consider that this prior distribution123

characterizes epistemic uncertainty affecting the distribution parameters. As a remark, no deep investigation about124

the type of prior distributions (neither in terms of the choice of a parametric family, nor in terms of informativeness125

of the prior) is claimed in this study. This topic is beyond the scope of the paper and the interested reader is invited126

to refer to [55] and [58] for any further information;127

• the third layer is composed of deterministic hyper-parameters gathered in ξ (which can be some moments or bounds)128

of prior distributions of stochastic parameters.129

Following the paradigm proposed in [33], the distinction between aleatory and epistemic uncertainties in a given set of130

modeling, is achieved here by considering that the probabilistic modeling of X could represent aleatory uncertainty whereas131

the probabilistic prior modeling of Θ could represent epistemic uncertainty. As an example, let us consider a problem132

involving some aleatory uncertainty defined as a single random variable X following a normal distribution fX |Θ (first layer).133

One of the distribution parameters (e.g., the mean value denoted byΘ) can also be affected by epistemic uncertainty (second134

layer). Thus one can add a probability distribution fΘ|ξ on Θ indexed by its own distribution hyper-parameters ξ (third135

layer).136

Under this bi-level uncertainty (because of the first two layers), the failure probability pf as written in Eq. (1) only137

represents a realization of the random variable Pf for a given realization θ of the distribution parameters. One can express138

this conditional failure probability Pf(θ) such that:139

Pf(θ) = P [g(X)≤ 0 | Θ = θ] =
∫

DX

1Fx
(x) fX|Θ(x|θ)dx= E fX|Θ

�
1Fx
(X) | Θ = θ
�
. (3)

Then, considering the mathematical expectation of the previous random variable w.r.t. the prior density fΘ|ξ allows to get140

the so-called “predictive failure probability” ePf, as introduced in [54], which is a measure of reliability taking into account141

the effect of the lack of knowledge about distribution parameters:142

ePf(ξ)
def

= E fΘ|ξ
[Pf(Θ)] = E fΘ|ξ

�
E fX|Θ

�
1Fx
(X) | Θ = θ
��
=

∫

DΘ

Pf(θ) fΘ|ξ(θ|ξ)dθ. (4)

This predictive failure probability is thus the mean of all the conditional failure probabilities over the prior distribution on143

uncertain parameters. This quantity can be estimated by two different approaches [47]. This indicator allows to have a144

single aggregated measure of uncertainty gathered in both Θ and X. Following the discussion in [47], to have disagreggated145

effects, one should reconstruct the full distribution of Pf(θ) and use a more conservative measure (e.g., a quantile) than146

the mean estimator. Other formalisms (e.g., p-boxes, p-bounds) could provide such an information [44]. However, the147

estimation of such indicators is not the scope of this paper.148
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2.3. Nested vs. augmented approaches for estimating the predictive failure probability149

On the one hand, the double expectation in Eq. (4) can be estimated via a double-loop estimation procedure over both150

integration domains. This strategy is called here “nested reliability approach” (NRA). The outer sampling loop over DΘ151

can be achieved, depending on the structure of the vector Θ, either by deterministic sampling methods such as quadrature152

schemes [59], or by CMC or any other advanced methods for design of experiments (DOE) [60]. For the inner loop (i.e.153

the nested loop), the conditional failure probability can be estimated by any approximation or simulation method such as154

those cited in subsection 2.1. Various applications of NRA for rare event probability estimation and safety assessment under155

parameter uncertainty can be found in [32, 61, 62].156

On the other hand, a different strategy can be adopted by considering an “augmented” random vector Z
def

= (X,Θ)⊤157

defined on DZ =DX ×DΘ (where × is the Cartesian product) with joint pdf fZ|ξ(z|ξ)
def

= f(X,Θ)|ξ(x,θ|ξ) = fX|Θ(x|θ) fΘ|ξ(θ|ξ)158

such that the expression in Eq. (4) can be rewritten as follows:159

ePf(ξ) =
∫

DΘ

∫

DX

1Fx
(x) fX|Θ(x|θ) fΘ|ξ(θ|ξ)dxdθ =

∫

DZ

1Fz
(z) fZ|ξ(z|ξ)dz= E fZ|ξ

�
1Fz
(Z)|ξ
�

(5)

where Fz = {z ∈DZ : g(z)≤ 0}. This augmented formulation numerically implies to estimate the expected value in Eq (5).160

This is called here the “augmented reliability approach” (ARA) or in a wider Bayesian context the “predictive approach”161

since it relies on the use of predictive distributions [63, 64]. From a practical point of view, this approach has been used in162

the context of FORM analysis in [65, 66].163

Recently, in [47], a numerical comparison between NRA and ARA has been achieved and the coupling between both164

approaches and advanced simulation-based method such as the Subset Simulations has been investigated. Possibilities165

offered by ARA in terms of simulation cost reduction, estimation accuracy and robustness w.r.t. several numerical challenges166

concerning real aerospace test-cases have been illustrated in this work. The interested reader may refer to [47] and [35]167

for any further details.168

Among technical steps involved in ARA, the transformation between the physical space and the standard normal space169

is an issue that needs to be adressed by adapting the traditional Rosenblatt transformation to an “augmented” version170

of it, i.e. by applying the transformation on the vector Z. One needs to apply first the transformation to the stochastic171

distribution parameters and then to the stochastic basic variables, conditioned by the distribution parameters [47]. In the172

following sections, the use of the prefix “ARA” in front of any name implies that the sampling strategy is set in the augmented173

framework.174

3. Sensitivity analysis of predictive failure probability with respect to distribution hyper-parameters175

The use of local sensitivities in this study is motivated mainly by two reasons. The first one corresponds to the way the176

problem is set as explained above (i.e. one wants to measure the sensitivity w.r.t. a local choice of ξ). Finally, the second177

reason, which is a key constraint in this work, remains the limited allowable extra simulation budget one can afford to get178

sensitivities while the rare event probability estimation can be very expensive too (without any consideration here of any179

use of a metamodel).180
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3.1. Derivation of sensitivity estimators in the augmented framework181

The gradient of the predictive failure probability ePf w.r.t. the vector of the hyper-parameters ξ is defined as follows:182

∇ePf(ξ) =
�
∂ ePf(ξ)
∂ ξ j

, j = 1, . . . ,q

�⊤
. (6)

Depending on the nature of the hyper-parameter ξ j , two cases are considered:183

• Case #1: ξ j is an hyper-parameter of a prior distribution with an unbounded support;184

• Case #2: ξ j is an hyper-parameter of a prior distribution with a bounded/truncated support.185

3.1.1. Derivations for Case #1186

The partial derivative of the predictive failure probability w.r.t. the j-th component of ξ is given by:187

∂ ePf(ξ)
∂ ξ j

=
∂

∂ ξ j

�∫

DΘ

Pf(θ) fΘ|ξ(θ|ξ)dθ
�
=

∫

DΘ

Pf(θ)
∂ fΘ|ξ(θ|ξ)
∂ ξ j

dθ. (7)

Note that, in the previous derivations, the differential and integral operators are switched due to Lebesgue’s dominated

convergence theorem [67]. Following the idea given in [68], one can use the so-called importance sampling trick so as to

get an expectation w.r.t. the same probability measure as the one used for the failure probability estimation. It thus comes:

∂ ePf(ξ)
∂ ξ j

=

∫

DΘ

Pf(θ)

∂
∂ ξ j

fΘ|ξ(θ|ξ)
fΘ|ξ(θ|ξ)

fΘ|ξ(θ|ξ)dθ (8a)

=

∫

DΘ

�∫

DX

1Fx
(x) fX|Θ(x|θ)dx

�
∂ ln fΘ|ξ(θ|ξ)

∂ ξ j

fΘ|ξ(θ|ξ)dθ (8b)

=

∫

DΘ

�∫

DX

1Fx
(x) s j(θ,ξ) fX|Θ(x|θ)dx

�
fΘ|ξ(θ|ξ)dθ (8c)

= E fZ|ξ

�
1Fz
(Z) s j(Θ,ξ)
�

(8d)

where s j(θ,ξ)
def

=
∂ ln fΘ|ξ(θ|ξ)

∂ ξ j
is called the “score function” (SF). As recalled in Introduction, the SF approach has been widely188

used in the RbSA literature under single-level uncertainty [20, 26, 27, 28, 29]. It is used here, in the context of bi-level189

uncertainty, for three main reasons: first, it enables to provide the targeted local sensitivity in Eq. (7) as a simple derivation190

(assuming rather simple cases for prior distribution); then, it fits naturally to an importance-sampling-based estimation191

framework; and finally, it provides an efficient sampling-based estimator which allows to avoid finite difference schemes.192

One should notice that, to avoid any confusion, in the above equations and in the rest of the paper, the vector Θ is explicitely193

written instead of Z= (X,Θ)⊤ since the dependence w.r.t. ξ is through Θ. An example of a SF associated to an unbounded194

normal prior for an uncertain distribution parameter Θ j is given in Table 1. Then, considering a sample {Z(i)}N
i=1

of N195

independent and identically distributed (i.i.d.) copies of the augmented vector Z, one can derive the following Monte Carlo196

estimator:197

∂ ePf(ξ)
∂ ξ j

≈
MC

1

N

N∑

i=1

1Fz
(Z(i)) s j(Θ

(i),ξ). (9)

As a remark, if the probability is estimated with ARA, its gradient in Eq. (9) may be estimated at a reduced cost. However,198

due to central limit theorem, one can show that the predictive failure probability and its sensitivities may have different199

convergence rates. Thus, the variance associated to the two asymptotic distributions will necessarily differ.200
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Table 1: Score functions for normal (Case #1) and uniform (Case #2) prior distributions on an uncertain parameter Θ j .

Distribution pdf fΘ j |ξ(θ j |ξ1,ξ2) Hyper-parameters Score function s1(θ j ,ξ1) Score function s2(θ j ,ξ2)

Normal (Case #1) 1

ξ2
p
2π

exp
h
− 1

2

�
θ j−ξ1
ξ2

�2i
ξ1 = µΘ j

, ξ2 = σΘ j

1
ξ2

�
θ j−ξ1
ξ2

�
1
ξ2

h�
θ j−ξ1
ξ2

�2
− 1
i

Uniform (Case #2) 1
ξ2−ξ1 [ξ1,ξ2]

1
ξ2−ξ1 − 1

ξ2−ξ1

201

3.1.2. Derivations for Case #2202

Here, at least, one of the basic variables X j follows a parametrized distribution whose one parameter Θ j follows a

bounded or truncated distribution denoted by fΘ j |ξ(θ j |ξ), with ξ = (ξ1,ξ2, . . . ,ξq)
⊤ the vector of the hyper-parameters.

Here, ξ j ∈ ξ could be either a bound or a moment. In the next derivations, one considers that the distribution parameters

Θi , i = 1, . . . , k are independent, which leads to fΘ|ξ(θ|ξ) =
∏k

i=1
fΘi |ξ(θi |ξ). Before deriving the sensitivities, one should

notice that, in this case, the support DΘ is a function of ξ j as the support of Θ j is either bounded or truncated (note that,

without any loss of generality, the bounds are denoted by a(ξ j) and b(ξ j) in Eq. (10b)). In the following, the notation Θ− j

(respectively θ− j) denotes the vector without the j-th componentΘ j (repectively θ j) which depends on the hyper-parameter

ξ j . Thus, the derivations start as follows:

∂ ePf(ξ)
∂ ξ j

=
∂

∂ ξ j

�∫

DΘ(ξ j)

Pf(θ) fΘ|ξ(θ|ξ)dθ
�

(10a)

=
∂

∂ ξ j

�∫

Rk−1

∫ b(ξ j)

a(ξ j)

Pf(θ) fΘ j |ξ(θ j |ξ) fΘ− j |ξ(θ
− j |ξ)dθ jdθ

− j

�
(10b)

=

∫

Rk−1

∂

∂ ξ j

�∫ b(ξ j)

a(ξ j)

Pf(θ) fΘ j |ξ(θ j |ξ)dθ j

�
fΘ− j |ξ(θ

− j |ξ)dθ− j (10c)

=

∫

Rk−1

∂

∂ ξ j

�
I
!
Pf(θ),ξ
��

fΘ− j |ξ(θ
− j |ξ)dθ− j (10d)

where I
!
Pf(θ),ξ
�
is an integral whose bounds (denoted by a and b) depend on the parameter ξ j . Indeed, using the Leibniz

integral rule for differentiation of a definite integral whose limits are functions of the differential variables, one gets:

∂

∂ ξ j

�
I
!
Pf(θ),ξ
��
=
∂

∂ ξ j

�∫ b(ξ j)

a(ξ j)

Pf(θ) fΘ j |ξ(θ j |ξ)dθ j

�
(11a)

=

∫ b(ξ j)

a(ξ j)

Pf(θ)
∂ fΘ j |ξ(θ j |ξ)

∂ ξ j

dθ j

+ Pf
!
θ
− j ,θ j = b(ξ j)
�

fΘ j |ξ(b(ξ j)|ξ)
∂ b(ξ j)

∂ ξ j

− Pf
!
θ
− j ,θ j = a(ξ j)
�

fΘ j |ξ(a(ξ j)|ξ)
∂ a(ξ j)

∂ ξ j

(11b)

where Pf
!
θ
− j ,θ j = •(ξ j)
�
represents the failure probability estimated with θ j fixed to one of the integration bounds (i.e.203

•(ξ j) = a(ξ j) or b(ξ j)).204

To illustrate the previous reasoning, one can apply these derivations to a test-case involving a distribution parameter Θ j

following a continuous uniform distribution such that Θ j ∼ U([a, b]). In this example, ξ j can be either a bound (a or b) or

8



even a moment (e.g., µΘ j
= a+b

2 or σΘ j
= b−ap

12
). Let us first assume that ξ j = a:

∂

∂ a

�
I
!
Pf(θ),ξ
��
=

∫ b

a

Pf(θ)
∂ fΘ j |ξ(θ j |ξ)

∂ a
dθ j + 0− Pf(θ

− j ,θ j = a) fΘ j |ξ(a|ξ)× 1 (12a)

=

∫ b

a

Pf(θ)
∂ fΘ j |ξ(θ j |ξ)

∂ a
dθ j −

1

b− a
Pf(θ

− j ,θ j = a). (12b)

Hence, using the same trick as in paragraph 3.1.1, one gets:

∂ ePf(ξ)
∂ a

=

∫

Rk

Pf(θ)

∂
∂ a fΘ j |ξ(θ j |ξ)
fΘ j |ξ(θ j |ξ)

fΘ j |ξ(θ j |ξ) fΘ− j |ξ(θ
− j |ξ)dθ jdθ

− j

− 1

b− a

∫

Rk−1
Pf(θ

− j ,θ j = a) fΘ− j |ξ(θ
− j |ξ)dθ− j (13a)

=

∫

Rk

�∫

Rd

1Fx
(x) fX|Θ(x|θ)dx

�
∂ ln fΘ j |ξ(θ j |ξ)

∂ a
fΘ|ξ(θ|ξ)dθ

− 1

b− a

∫

Rk−1

�∫

Rd

1Fx
(x) fX|Θ(x|θ− j ,θ j = a)dx

�
fΘ− j |ξ(θ

− j |ξ)dθ− j (13b)

=

∫

Rk

�∫

Rd

1Fx
(x) s j(θ j , a) fX|Θ(x|θ)dx

�
fΘ|ξ(θ|ξ)dθ

− 1

b− a

∫

Rk−1

�∫

Rd

1Fx
(x) fX|Θ(x|θ− j ,θ j = a)dx

�
fΘ− j |ξ(θ

− j |ξ)dθ− j (13c)

= E fZ|ξ

�
1Fz
(Z) s j(Θ j ,ξ)
�
− 1

b− a
E fZ|Θ j=a,ξ

�
1Fz
(Z− j)|Θ j = a
�

(13d)

where Z− j stands for (X,Θ− j)⊤, which means that the integration is achieved over a (naug−1)-dimensional hypersurface with

naug = k× d. Using formulas given in Table 1 and the linearity of expectation, one obtains the following two sensitivities:

∂ ePf(ξ)
∂ a

=
1

b− a

h
E fZ|ξ

�
1Fz
(Z)
�
−E fZ|Θ j=a,ξ

�
1Fz
(Z− j)|Θ j = a
�i
=

1

b− a

�
ePf(ξ)− Pa

f,aux

�
; (14a)

∂ ePf(ξ)
∂ b

= − 1

b− a

h
E fZ|ξ

�
1Fz
(Z)
�
−E fZ|Θ j=b,ξ

�
1Fz
(Z− j)|Θ j = b
�i
=

1

b− a

�
P b
f,aux
− ePf(ξ)
�
. (14b)

where Pa
f,aux

and P b
f,aux

are two “auxiliary” failure probabilities which have to be estimated over the (naug − 1)-dimensional

hypersurface. These derivations are consistent with those provided in [28] and [29] in the context of RbSA under single-level

uncertainty (i.e. deterministic distribution parameters and traditional failure probability as a QoI). As for the interpretation,

the sensitivity estimators obtained in Eqs. (14a) and (14b) are close to those derived in [28] and similarly involve flux

integrals, here Pa
f,aux

and P b
f,aux

, over a (naug − 1)-dimensional space. As a final remark, one should highlight the fact that

for uniform prior distributions, one can calculate the sensitivities of the predictive failure probability w.r.t. the moments

µΘ j
= a+b

2 or σΘ j
= b−ap

12
by combining the previous sensitivities w.r.t. the bounds such that:

∂ ePf(ξ)
∂ µΘ j

=
∂ ePf(ξ)
∂ a

∂ a(µΘ j
)

∂ µΘ j

+
∂ ePf(ξ)
∂ b

∂ b(µΘ j
)

∂ µΘ j

= 2

�
∂ ePf(ξ)
∂ a

+
∂ ePf(ξ)
∂ b

�
; (15a)

∂ ePf(ξ)
∂ σΘ j

=
∂ ePf(ξ)
∂ a

∂ a(σΘ j
)

∂ σΘ j

+
∂ ePf(ξ)
∂ b

∂ b(σΘ j
)

∂ σΘ j

=
p
12

�
∂ ePf(ξ)
∂ b
−
∂ ePf(ξ)
∂ a

�
. (15b)

As a remark, one could notice that for Case #2, the computational cost (i.e. estimating two probabilities) is similar to205

the one required by applying a finite difference method (FDM). However, using FDM can be difficult for several reasons:206

9



firstly, FDM is an approximation method to compute the gradient; secondly, the type of finite difference scheme (forward,207

backward or centered) may influence the results; thirdly, choosing an optimal perturbation step can be problematic. The208

proposed method allows to overcome these difficulties by providing (assuming the SF is available for the prior distribution)209

an exact formulation to get the gradient of the predictive failure probability and estimate it independently of any choice for210

perturbation step.211

Up to now, the previous framework allows to estimate jointly, within the same sampling phase and with limited ex-212

tra computational effort, a predictive failure probability and its derivatives w.r.t. a priori deterministic hyper-parameters.213

However, even with the ARA strategy, ARA/CMC is not able to handle rare event probability estimation regarding real214

engineering system safety assessment. The idea of the next subsection is to propose a dedicated numerical methodology215

combining efficient sampling strategy in the augmented space and the above sensitivity estimators.216

3.2. Proposed methodology (ARA/AIS) for reliability-based sensitivity analysis in a context of rare event probability estimation217

Estimating a rare event probability with CMC can be cumbersome and can even become intractable for costly-to-evaluate218

computer codes. Importance Sampling (IS) is now a well-known variance-reduction technique [2]. The idea is to use a219

so-called “auxiliary density” h(·) to generate samples such that, if this density is the optimal one, one gets a zero variance of220

the IS estimator of the rare event probability. To introduce it, one can start from the observation that the following equality221

holds:222 ∫

DZ

1Fz
(z) fZ|ξ(z|ξ)dz=

∫

DZ

1Fz
(z)

fZ|ξ(z|ξ)
h(z)

h(z)dz=

∫

DZ

1Fz
(z)w(z)h(z)dz (16)

where w(z)
def

=
fZ|ξ(z|ξ)
h(z)

is called the likelihood ratio [2]. This weight is introduced in the probability estimator and takes

into account the change in the pdf to generate samples. Thus, considering {Z(i)}N
i=1

as an i.i.d. sample drawn according to

fZ|ξ(z|ξ), the IS estimators for both the probability and its sensitivities can be derived such that:

ePf(ξ)≈
IS

1

N

N∑

i=1

1Fz
(Z(i)) w(Z(i)) (17a)

∂ ePf(ξ)
∂ ξ j

≈
IS

1

N

N∑

i=1

1Fz
(Z(i)) w(Z(i)) s j(Θ

(i),ξ). (17b)

The estimator eP
∧

f of ePf given in the right hand side in Eq. (17a) is unbiased (i.e. Eh

h
eP
∧

f

i
= ePf) and its variance V

h
eP
∧

f

i
reduces223

to zero as the density h(·) equals the optimal auxiliary density h∗(·) which is given by:224

h∗(z) =
1Fz
(z) fZ|ξ(z|ξ)
ePf

. (18)

Since this quantity depends on the predictive probability ePf one would like to estimate, this intricate problem can be solved225

by using Adaptive Importance Sampling (AIS) techniques [69]. These techniques aim at, using different adaptive strategies,226

to sequentially approximate the optimal auxiliary density.227

In this paper, we propose to adapt two existing AIS techniques, namely the Nonparametric Adaptive Importance Sampling228

(NAIS) [70] and the Adaptive Importance Sampling by Cross-Entropy (AIS-CE) [71] to estimate, within the augmented229

framework, both the predictive failure probability and its sensitivities w.r.t. deterministic hyper-parameters at a reduced230

cost compared to CMC. Thus, one presents in this paper two different methods which are called respectively “ARA/NAIS”231

and “ARA/AIS-CE”. Two generic algorithms are given in Algorithm 1 (for ARA/NAIS) and Algorithm 2 (for ARA/AIS-CE).232
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Since these algorithms are already existing but adapted to the augmented framework, a complete description of the details233

is not given in this paper for the sake of conciseness. The interested reader can refer to [1] for any further detail about234

practical implementation of the original version of these AIS algorithms. However, one should insist on the fact that these235

two rare event estimation algorithms rely on some assumptions and imply some parameters (e.g., the choice of a given236

kernel K(·) for ARA/NAIS, the choice of an initial parametric family for the auxiliary pdf hλ(·) with λ ∈ Λ for ARA/AIS-237

CE, the choice of the ρ-quantiles for both methods) whose tuning and performance optimization is not treated in the core238

discussion of the present paper (interested reader may refer to [1] for more information about it). Note that the algorithms’239

parameters used in this paper are given as footnotes of, respectively Algorithms 1 and 2 .240

The global methodology is able to handle both Case #1 and Case #2 as detailed in subsection 3.1. However, in Case #2,241

estimating the predictive failure probability is not enough to get the sensitivities w.r.t. the bounds. An estimation of the242

auxiliary failure probability, as shown in Eqs. (14a) and (14b) for the uniform case, is required. To do so, one needs to243

apply a second time the ARA/AIS algorithm (with either NAIS or AIS-CE as the core algorithm) to estimate this quantity244

and allow an accurate estimation of the sensitivity.245

As an illustration of the ARA/AIS sampling strategy, one can consider a simple test case involving two basic random246

variables, similar to a so-called “Resistance – Sollicitation” problem (similar to the one presented further in numerical247

applications in subsection 4.2). Assuming these variables are Gaussian, one can imagine that, due to limited data, their248

distribution parameters are affected by epistemic uncertainty: for instance, the standard deviation of the resistance variable249

and the mean value of the sollicitation one are not perfectly known. Some prior distributions are considered to model the a250

priori knowledge about these parameters. The propagation of this bi-level uncertainty (to get an estimate of the predictive251

failure probability and its sensitivities) using the ARA/AIS strategy is presented only with the ARA/NAIS method in Figure 1252

for the sake of conciseness.253

In Figure 1a, one can see two sets of N = 103 realizations in the original space (denoted as “X-space”) of the vector254

Θ = (Θ1,Θ2)
⊤. The first set of samples corresponds to the first iteration of the ARA/NAIS algorithm. The second set255

corresponds to the final iteration of the algorithm. By comparing them, one can notice the modification between the initial256

sampling density and the final one. Such a modification is also noticeable in Figure 1b which represents the same samples257

in the standard normal space (denoted as “U-space”). One can see the shrinkage of the initial standard normal density to258

the optimal one. Based on these realizations, one can observe the corresponding realizations of the basic variables gathered259

in X. Figure 1c and Figure 1d shows the corresponding samples plotted respectively in X-space and in U-space. Again, from260

the first iteration to the final one, convergence of the density towards the optimal one is noticeable. One can also highlight261

that considering a second level of uncertainty does affect the realizations of the basic variables by changing the shape of262

the distribution of X.263

In the following section, the numerical efficiency of the ARA/AIS method is demonstrated on two academic test-cases264

and on a real aerospace test-case.265

4. Application examples266

The following numerical applications have been implemented in Matlab® and performed using a rare event simulation267

toolbox developed at ONERA – The French Aerospace Lab.268
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Figure 1: Illustration of the ARA/NAIS method on a Resistance – Sollicitation test-case (similar to the one described in Example #1 (cf. 4.2)). In this

example, two different sets of samples, drawn at iterations #1 and #4 of the ARA/NAIS method (Algorithm 1) are presented. One can see the evolution

of the samples reflecting the adaptive evolution of the augmented sampling density towards a near optimal one.

4.1. Methodology and comparison metrics269

The overall methodology developed in this paper, as summed up in Table 2, relies on four blocks detailed below:270

• firstly, the ARA/AIS method has been implemented and tested on three different test-cases (two academic and one271

industrial) of increasing difficulty (see the first column and the footnotes below Table 2 for the specifications of each272

test-case);273

• secondly, reference results for the estimation of the predictive failure probability and its sensitivities are obtained274

using a CMC with large sample size performed by ARA (see the second column denoted ARA/CMC, see [47] for275

details about the coupling between ARA and sampling methods);276

• thirdly, as shown in the third column of Table 2, the two different methods, namely ARA/AIS-CE and ARA/NAIS are277

applied on the three test-cases for the sake of comparison, but also to illustrate the modular aspect of the methodology278

(the black squares � stand for the performed calculations). Finally, after validation of the method, the impact of the279

increasing rareness of the failure event (regarding a limited simulation budget available) is studied as an extension280

of the last two test-cases (see the four black starsÆ). This last extension is called “rare event context” in the rest of281

the paper. One should notice that, for these specific cases, the reference calculation by ARA/CMC is considered as282

computationally “intractable” (see the corresponding crosses ×).283
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Algorithm 1 – Generic algorithm for ARA/AIS

(with an ARA/NAIS plug-in box in this example).

Start

Define: pdf fZ|ξ, budget N , model M(·), threshold yth,

quantile ρ ∈ [0,1] a, kernel K(·) b

Set: k = 1 and h0 = fZ|ξ

Generate: i.i.d. samples z
(i)

1 of {Z(i)1 }Ni=1 ∼ h0

Evaluate: Y
(1)

1 =M(z
(1)

1 ), . . . ,Y
(N)

1 =M(z
(N)

1 )

Compute: empirical ρ-quantile γ1 of the samples {Y (i)1 }Ni=1
While γk < yth do

Estimate: lk =
1
kN

∑k
j=1

∑N
i=1
1{M(z

(i)

j
)≥γk}(Z

(i)

j
)

fZ|ξ(Z
(i)

j
)

h j−1(Z
(i)

j
)

and set w j(Z
(i)

j
) = 1{M(z

(i)

j
)≥γk}(Z

(i)

j
)

fZ|ξ(Z
(i)

j
)

h j−1(Z
(i)

j
)

Update c:

hk+1(z) =
1

kN lk det(B
1/2

k
)

∑k
j=1

∑N
i=1

w j(Z
(i)

j
)K
�
B
1/2

k
(z− Z

(i)

j
)
�

Set: k = k+ 1

Generate: i.i.d. samples z
(i)

k
of {Z(i)

k
}N
i=1
∼ hk

Evaluate: Y
(1)

k
=M(z

(1)

k
), . . . ,Y

(N)

k
=M(z

(N)

k
)

Compute:

empirical ρ-quantile γk of the samples {Y (i)
k
}N
i=1

Estimate:

eP
∧

f =
1
N

∑N
i=1
1{M(z

(i)

k
)>yth}(Z

(i)

k
)

fZ|ξ(Z
(i)

k
)

hk(Z
(i)

k
)

∂ ePf
∧

/∂ ξ j =
1
N

∑N
i=1
1{M(z

(i)

k
)>yth}(Z

(i)

k
)

fZ|ξ(Z
(i)

k
)

hk(Z
(i)

k
)

s j(Θ
(i)

k
,ξ)

End

aIn this paper: ρ = 0.9.
bIn this paper: the Gaussian kernel is used.
cBk is a symmetric positive definite bandwidthmatrix optimized with asymptotic

integrated square error (AMISE) criterion, see [1].

Table 2: Overall methodology.

Test-case Reference ARA/AIS

ARA/CMC ARA/AIS-CE ARA/NAIS

Example #1: Resistance – Sollicitation a (cf. 4.2) � � �

Example #2: Nonlinear oscillator b (cf. 4.3) � × � Æ � Æ

Example #3: Launch vehicle fallback zone estimation c (cf. 4.4) � × � Æ � Æ

a2 basic variables, 2 uncertain parameters (1 unbounded & 1 bounded), g(·) linear.
b8 basic variables, 2 uncertain parameters (1 unbounded & 1 bounded), g(·) nonlinear.
c6 basic variables, 2 uncertain parameters (2 unbounded), g(·) nonlinear.

284

Finally, for a comparison in terms of numerical efficiency of the method w.r.t. CMC estimation, the following standard285

coefficient νARA/AIS is used:286

νARA/AIS =
N

ARA/CMC

sim

N
ARA/AIS

sim

(19)

where N
ARA/CMC

sim
is the required number of CMC samples to reach the same coefficient of variation δ on the probability287
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Algorithm 2 – Generic ARA/AIS-CE plug-in box.

Define: . . . , parametric family of pdfs hλ(·) with λ ∈ Λ a

. . .

Set: k = 1

Generate: i.i.d. samples z(i) of {Z(i)}N
i=1
∼ hλ0

. . .

While γk < yth do

Optimize b: the parameters of the auxiliary pdf family

λk = argmax
λ∈Λ

n
1
N

∑N
i=1

h
1{M(z

(i)

j
)≥γk}(Z

(i)

j
)

fZ|ξ(Z
(i))

hλk−1 (Z
(i))

ln[hλ(Z
(i))]

io

Set: k = k+ 1

Generate: i.i.d. samples z(i) of {Z(i)}N
i=1
∼ hλk−1

Evaluate: Y (1) =M(z(1)), . . . ,Y (N) =M(z(N))

Compute:

empirical ρ-quantile γk of the samples {Y (i)}N
i=1

. . .

aIn this paper: the Gaussian parametric family is used.
bFor particular density families (e.g. Gaussian), the pdf optimal parameters have

analytical formulas, see [1]. In this paper: both mean and standard deviation are

optimized.

estimate for both methods. Thus, it leads to the following expression:288

νARA/AIS =

�
1− eP
∧ARA/AIS

f

�

N
ARA/AIS

sim
× eP
∧ARA/AIS

f
×δ2

. (20)

A value of νARA/AIS > 1 indicates that the method ARA/AIS is more efficient than CMC for the given test-case. In other words,289

νARA/AIS indicates the quantity by which we can divide the initial CMC simulation budget for a same level of accuracy.290

4.2. Example #1: a resistance-sollicitation toy-case291

Description. The goal of this first academic test-case is to validate the method regarding the estimation accuracy of both292

the predictive failure probability and its sensitivities w.r.t. the hyper-parameters. Table 3 gives the input data. The lsf293

g1(X) = R − S = X1 − X2 is linear and involves two independent Gaussian random variables. One assumes that both the294

standard deviation of the first variable and the mean of the second one are affected by epistemic uncertainty. Thus, two prior295

distributions (one unbounded and one bounded) are assumed for the uncertain parameters (e.g., based either on limited296

data, literature-based information or expert opinion). As a remark, one could argue that the choice of a normal prior for297

Θ1 may be inappropriate regarding physical constraints, conjugacy and informativeness. In this paper, common priors (i.e.298

normal and uniform) are set for the sake of illustration to characterize epistemic uncertainty and for a certain convenience299

in sampling, without loss of generality. For a pure Bayesian approach (involving possible updating), the reader should refer300

to [55, 72, 73].301
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Table 3: Input probabilistic model for Example #1.

Variable Distribution Parameter #1 Parameter #2

X1 = R Normal µX1
= 7 σX1

uncertain

X2 = S Normal µX2
uncertain

a σX2
= 1

Θ1 = σX1
Normal ξ1 = µσX1

= 0.7 ξ2 = σσX1
= 0.07

Θ2 = µX2
Uniform ξ3 = aµX2

= 1.5 ξ4 = bµX2
= 2.5

aFor fixed values σX1
= 0.7 and µX2

= 2, pf = 2.50× 10−5.

302

Table 4: Results for Example #1.

ARA/CMC ARA/AIS-CE ARA/NAIS

(Nx,θ = 108 samples) (Nx,θ = 104 samples/step) (Nx,θ = 104 samples/step)

Estimate cv Estimate cv Estimate cv

eP
∧

f 3.72× 10−5 (1.60 %) 3.73× 10−5 (4.39 %) 3.71× 10−5 (3.62 %)

∂ ePf
∧

/∂ ξ1 2.77× 10−4 (3.50 %) 2.81× 10−4 (14.2 %) 2.75× 10−4 (13.7 %)

∂ ePf
∧

/∂ ξ2 1.37× 10−4 (10.8 %) 1.45× 10−4 (62.9 %) 1.35× 10−4 (59.1 %)

∂ ePf
∧

/∂ ξ3 3.30× 10−5 (1.91 %) 3.32× 10−5 (4.91 %) 3.30× 10−5 (4.06 %)

∂ ePf
∧

/∂ ξ4 8.91× 10−5 (1.41 %) 8.87× 10−5 (5.99 %) 8.89× 10−5 (4.74 %)

∂ ePf
∧

/∂ µΘ2

a 2.44× 10−4 − 2.44× 10−4 − 2.44× 10−4 −
∂ ePf
∧

/∂ σΘ2
1.94× 10−4 − 1.92× 10−4 − 1.94× 10−4 −

νARA/AIS − − 103 − 158 −

acf. Eqs. (15a) and (15b) for the uniform case.

303

Results. Table 4 gathers numerical values for probability estimates, sensitivities and efficiencies. For comparison purpose, a304

CMC with Nx,θ = 108 samples is performed. The coefficient of variation (cv) for any estimate is calculated using a hundred305

replicates of each algorithm. However, for the sake of conciseness, only the results associated to the highest numerical306

efficiency νARA/AIS are presented in Table 4 for the two proposed methods (here, Nx,θ = 104 samples/step). As a remark,307

one can see that both the predictive failure probability and its sensitivities are well estimated with both methods compared308

to ARA/CMC. Concerning the estimation of the predictive failure probability, one can see that eP
∧

f = 3.72 × 10−5 which309

shows that taking a second uncertainty level into account implies a slight increase compared to the failure probability under310

single-level uncertainty pf = 2.50 × 10−5 (see below Table 3). From these results, one can notice that the sensitivities311

w.r.t. bounds (i.e. ∂ ePf
∧

/∂ ξ3 and ∂ ePf
∧

/∂ ξ4) show a reduced coefficient of variation compared to those for the unbounded312

distribution (i.e. ∂ ePf
∧

/∂ ξ1 and ∂ ePf
∧

/∂ ξ2). This could be due to the fact that they are estimated as a difference of two313

probabilites estimated both by the method which lead to a reduced variance. In terms of comparison, since the problem314

involves two uncertain distribution parameters (Θ1 unbounded and Θ2 bounded), one can use Eqs. (15a) and (15b) to get315

sensitivities w.r.t. moments of Θ2 instead of its bounds. Finally, in this case, the predictive failure probability seems to be316

slightly more sensitivive to the a priori choice of the mean values of both distribution parameters than to the choice of the317

standard deviations. As for the νARA/AIS coefficients, they are very high compared unity for both methods. This implies that,318

for the same level of accuracy, one can reduce the CMC simulation budget by 103 times if one uses ARA/AIS-CE and by 158319

times if one uses ARA/NAIS. This gain can be of practical importance for applications involving rare event probabilities.320
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Figure 2: Two-degree-of-freedom damped oscillator with primary and secondary systems.

4.3. Example #2: a two d.o.f. primary/secondary damped oscillator321

Description. This nonlinear oscillator is based on a two-degree-of-freedom primary-secondary system, as shown in Figure 2,322

excited by a white noise base acceleration [74]. The system’s behavior is characterized by the masses mp and ms, the spring323

stiffnesses kp and ks, the natural frequenciesωp = (kp/mp)
1/2 andωs = (ks/ms)

1/2 and the damping ratios ζp and ζs, where324

the subscripts p and s respectively refer to the primary and secondary oscillators. As for Fs, it denotes the force capacity of325

the secondary spring. Thus, the reliability of the system can be evaluated using the following lsf:326

g2(X) = Fs − 3ks
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 = Fs − Facc. (21)

This equation defines the potential failure event {Fs ≤ Facc} occuring if the force induced by the white noise base acceleration327

overcomes the force capacity in the secondary spring. Table 5 gives the input data (the set of parameters here for the basic328

variables are mean values and coefficients of variation). The lsf g2(·) is highly nonlinear and involves eight independent329

lognormal random variables. One assumes that both the mean of the second mass is not precisely known due to measure330

uncertainty and the mean of the force capacity of the secondary spring is also affected by epistemic uncertainty. Thus, two331

prior distributions (Gaussian and uniform) are assumed for the uncertain parameters based on expert judgment.332

Table 5: Input probabilistic model for Example #2.

Variable a Distribution Parameter #1 Parameter #2

X1 = mp (kg) Lognormal µX1
= 1.5 δX1

= 10%

X2 = ms (kg) Lognormal µX2
uncertain

b δX2
= 10%

X3 = kp (N.m−1) Lognormal µX3
= 1 δX3

= 20%

X4 = ks (N.m
−1) Lognormal µX4

= 0.01 δX4
= 20%

X5 = ζp (1) Lognormal µX5
= 0.05 δX5

= 40%

X6 = ζs (1) Lognormal µX6
= 0.02 δX6

= 50%

X7 = Fs (N) Lognormal µX7
uncertain δX7

= 10%

X8 = S0 (m.s−2) Lognormal µX8
= 100 δX8

= 10%

Θ1 = µX7
(N) Normal ξ1 = µµX7

= 21.5 / 27.5 (Æ) c ξ2 = σµX7
= 2.15 / 2.75 (Æ)

Θ2 = µX2
(kg) Uniform ξ3 = aµX2

= 0.008 ξ4 = bµX2
= 0.012

aThe basic variables are independent.
bFor fixed values µX2

= 0.01 and µX7
= 21.5 / 27.5, pf = 4.78× 10−5 / 3.78× 10−7.

cThe second value is for the rare event case, cf. Table 2.

333
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Results. Numerical results summarized in Table 6 show that, for a moderately rare failure event, both ARA/AIS-CE and334

ARA/NAIS give accurate results in the predictive failure probability estimation compared to ARA/CMC. Again, the coefficient335

of variation (cv) for any estimate is calculated using a hundred replicates of each algorithm. It first reveals the variations336

between the failure probability under single-level uncertainty pf and the predictive one ePf (here, it increases from 4.78×10−5337

to 2.35× 10−4) due to the bi-level uncertainty. In this case, considering uncertainty on a distribution parameter makes the338

system less safe, which can be an important indicator for design or re-design purposes. Concerning sensitivities, most of them339

are correctly estimated, except for ∂ ePf
∧

/∂ ξ2 for which one can observe a tiny relative bias between the proposed methods340

and reference results. In terms of comparison, once again, since the problem involves two uncertain distribution parameters341

(Θ1 unbounded and Θ2 bounded), one can use Eqs. (15a) and (15b) to get sensitivities w.r.t. moments of Θ2 instead of its342

bounds. Finally, in this case, the predictive failure probability seems to be slightly more sensitivive to the a priori choice343

modelling the uncertain mean of the secondary mass. Thus, the lack of knowledge about the mean value of the mass plays344

a key role in terms of system safety. As for the convergence of the results, Figure 3a compares the estimated sensitivities345

(to avoid any redundancy, only the ARA/NAIS plots are presented) to the reference results obtained by ARA/CMC. One can346

notice the convergence w.r.t. the increasing number of samples per step and a low variability of the two last sensitivities347

as mentioned previously. Finally, for a moderate rareness of the failure event, the efficiency of the method is promising:348

νARA/AIS is equals to 14 for ARA/AIS-CE and 17 for ARA/NAIS, meaning the equivalent ARA/CMC simulation budget can349

be still divided while ensuring a given target accuracy in the estimation.350

In the rare event context (Æ) (see Table 7), reference results are supposed to be intractable. Again, a hundred replicates351

were used to get samples’ statistics. One can first observe a slight increase for the predictive failure probability (around352

7×10−6) compared to the failure probability under single-level uncertainty (equals to 3.78×10−7 as given below Table 5).353

With the proposed method, one can notice that the estimated values show relatively low coefficient of variation. Comparing354

sensitivities leads to notice that the rareness of the failure event (i.e. between Table 6 and Table 7) does not impact the355

relative order in terms of influence. The moments of Θ2 are still the most influent hyper-parameters of the predictive failure356

probability. The method ensures a higher efficiency than as the rareness of the probability increases (νARA/AIS from 231 for357

ARA/AIS-CE to 276 for ARA/NAIS). Finally, the global convergence is observed on Figure 3b (for ARA/NAIS only).358

Table 6: Results for Example #2.

ARA/CMC ARA/AIS-CE ARA/NAIS

(Nx,θ = 108 samples) (Nx,θ = 104 samples/step) (Nx,θ = 104 samples/step)

Estimate cv Estimate cv Estimate cv

eP
∧

f 2.35× 10−4 (0.603 %) 2.36× 10−4 (4.69 %) 2.38× 10−4 (4.57 %)

∂ ePf
∧

/∂ ξ1 −1.61× 10−4 (0.661 %) −1.60× 10−4 (4.80 %) −1.61× 10−4 (5.32 %)

∂ ePf
∧

/∂ ξ2 9.04× 10−3 (0.602 %) 1.08× 10−2 (4.69 %) 1.09× 10−2 (4.57 %)

∂ ePf
∧

/∂ ξ3 5.57× 10−2 (0.650 %) 5.58× 10−2 (4.89 %) 5.63× 10−2 (4.81 %)

∂ ePf
∧

/∂ ξ4 1.36× 10−1 (0.525 %) 1.35× 10−1 (6.45 %) 1.34× 10−1 (6.22 %)

∂ ePf
∧

/∂ µΘ2

a 3.82× 10−1 − 3.82× 10−1 − 3.82× 10−1 −
∂ ePf
∧

/∂ σΘ2
2.77× 10−1 − 2.75× 10−1 − 2.71× 10−1 −

νARA/AIS − − 14 − 17 −

acf. Eqs. (15a) and (15b) for the uniform case.

359
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Table 7: Results for Example #2 considering the influence of the failure event rareness.

ARA/AIS-CE (Æ) ARA/NAIS (Æ)

(Nx,θ = 104 samples/step) (Nx,θ = 104 samples/step)

Estimate cv Estimate cv

eP
∧

f 6.71× 10−6 (6.25 %) 6.82× 10−6 (5.97 %)

∂ ePf
∧

/∂ ξ1 −4.95× 10−6 (6.58 %) −4.98× 10−6 (5.56 %)

∂ ePf
∧

/∂ ξ2 2.41× 10−4 (6.25 %) 2.45× 10−4 (5.97 %)

∂ ePf
∧

/∂ ξ3 1.62× 10−3 (6.51 %) 1.65× 10−3 (6.14 %)

∂ ePf
∧

/∂ ξ4 4.63× 10−3 (6.74 %) 4.59× 10−3 (9.01 %)

∂ ePf
∧

/∂ µΘ2

a 1.25× 10−2 − 1.25× 10−2 −
∂ ePf
∧

/∂ σΘ2
1.04× 10−2 − 1.02× 10−2 −

νARA/AIS 231 − 276 −

acf. Eqs. (15a) and (15b) for the uniform case.

360

Number of samples per step

1e3 2e3 3e3 5e3 7e3 1e4

S
en
si
ti
v
it
ie
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Sensitivities of P̃f w.r.t. hyper-parameters

∂P̃f/∂ξ1

∂P̃f/∂ξ2

∂P̃f/∂ξ3

∂P̃f/∂ξ4

(a) Estimated sensitivities (error bars) vs. reference results obtained

by ARA/CMC (dashed lines).

Number of samples per step

1e3 2e3 3e3 5e3 7e3 1e4

S
en
si
ti
v
it
ie
s

×10−3

-1

0

1

2

3

4

5

6

7

8
Sensitivities of P̃f w.r.t. hyper-parameters

∂P̃f/∂ξ1

∂P̃f/∂ξ2

∂P̃f/∂ξ3

∂P̃f/∂ξ4

(b) Estimated sensitivities (error bars) in a context of rare event (Æ).

Figure 3: Convergence plots obtained by ARA/NAIS for Example #2.

4.4. Example #3: application to a launch vehicle stage fallback zone estimation361

Description. The role of a launch vehicle is to carry a payload (e.g., a satellite) from the Earth’s surface to a given orbit.362

A traditional expendable space launcher is composed of multiple stages, equipped with their propulsion systems. An ex-363

ample of such a launch vehicle is given in Figure 4. During the flight, uncertainties can affect several variables in multiple364

disciplines (e.g., on the dynamics perturbations or stage combustion). For instance, focusing on the optimal trajectory as-365

sessesment leads to consider the separation point (see “stage separation” in Figure 4) as a key point in terms of uncertainty366

analysis. Dynamic perturbations, varying unburned propellant left mass, error measurements due to sensors, are all types367

of uncertainties that are of prime importance to estimate and predict the fallback zone into the ocean. A misestimation368

can have dramatic consequences in terms of launcher safety and in terms of human security and environmental impact. To369

assess reliability of such a system, the black-box modelM(·) considered here is a trajectory simulation code of the dynamic370

fallback phase of a generic launcher first stage [75]. As input, the state vector gathers six independent random variables371

representing some perturbations of the initial conditions and launcher stage characteristics at separation point:372
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• X1: stage altitude perturbation at separation (∆h (m));373

• X2: velocity perturbation at separation (∆v (m.s−1));374

• X3: flight path angle perturbation at separation (∆γ (rad));375

• X4: azimuth angle perturbation at separation (∆ψ (rad));376

• X5: propellant mass perturbation at separation (∆m (kg));377

• X6: drag force error perturbation (∆Cd dimensionless).378

The input probabilistic model is given in Table 8. The code output is the distance Dcode between the theoretical fallback379

position into the ocean and the estimated one. The lsf g3(·) can be written as follows:380

g3(X) = dsafe −M(X) = dsafe − Dcode (22)

for which the rareness of the failure event depends on the safety threshold distance dsafe. To get a moderate target failure381

probability, one can set the safety distance to dsafe = 15,000 meters while to increase the rareness, one can set it to 20,000382

meters (Æ).383

Table 8: Input probabilistic model for Example #3.

Variable a Distribution Parameter #1 Parameter #2

X1 =∆h (m) Normal µX1
= 0 σX1

= 1650

X2 =∆v (m.s−1) Normal µX2
uncertain

b σX2
= 3.7

X3 =∆γ (rad) Normal µX3
uncertain σX3

= 0.001

X4 =∆ψ (rad) Normal µX4
= 0 σX4

= 0.0018

X5 =∆m (kg) Normal µX5
= 0 σX5

= 70

X6 =∆Cd (1) Normal µX6
= 0 σX6

= 0.1

Θ2 = µX2
(m.s−1) Normal ξ1 = µµX2

= 0 ξ2 = σµX2
= 3.7

Θ3 = µX3
(rad) Normal ξ3 = µµX3

= 0 ξ4 = σµX3
= 0.001

aThe basic variables are independent.
bFor fixed values µX2

= 0 and µX3
= 0: for dsafe = 15 (km), pf = 1.36× 10−4 while for

dsafe = 20 (km), pf = 2.31× 10−7.

384

In addition to this first level of uncertainty, one assumes that epistemic uncertainty is affecting two mean values, re-385

spectively µX2
and µX3

, i.e. the mean values of the perturbations affecting the velocity at separation and the perturbations386

affecting the flight path angle at separation as shown in Table 8. These physical quantities are difficult to measure and to con-387

trol in real conditions. For the sake of demonstration, the numerical values (distribution parameters and hyper-parameters)388

used in this example are hypothetic. The analysis results for the proposed method are averaged over a hundred replications389

of the algorithm (this code is a simplified version of a real trajectory code with a reasonable computational cost).390

Results. Numerical results gathered in Table 9 show that both methods manage to correctly estimate the predictive failure391

probability. As a first remark, this predictive failure probability is slightly greater than the failure probability under single-392

level uncertainty pf recalled below Table 8. This shows again that, in this case, the distribution parameter makes the system393
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Figure 4: Illustration scheme of a first stage fallback phase (adapted from an infographic by Jon Ross (http://www.zlsadesign.com)).

be less safe. Then, one can highlight the fact that ARA/NAIS gets closer results to reference ones (obtained by ARA/CMC)394

than ARA/AIS-CE. The problem here is inherent to the cross-entropy method as it shows some difficulty to converge with395

a correct accuracy when the problem involves multiple failure regions. However, in [76], a cross-entropy-based adaptive396

importance sampling algorithm using Gaussian mixture has been proposed and seems to manage to compensate this issue.397

In terms of comparison, the predictive failure probability seems to be more sensitivive to the hyper-parameters ξ4 and ξ3398

which are respectively the standard deviation and the mean of Θ3 = µX3
. Here, the lack of knowledge affecting the mean399

value of the flight path angle perturbation really plays a key role on the final predictive failure probability. This can be a400

relevant information for refining the a priori probabilistic model for Θ3 (especially in terms of variance reduction) and set401

up an investigation policy about the possible reduction of epistemic (statistical) uncertainty affecting Θ3. Concerning the402

efficiencies, while ARA/AIS-CE is inefficient in this specific case where AIS-CE is not accurate enough, ARA/NAIS manages403

to provide a precise estimation for both the probability and the sensitivities. The convergence plot in Figure 5a illustrates404

these results.405

In the rare event context (Æ, as given in Table 10, one can still see that ARA/NAIS provides better results than ARA/AIS-406

CE, even if this one still manages to get relevant orders of magnitude for both the probability and the sensitivities. However,407

the efficiency of ARA/AIS-CE is annealed by the poor accuracy of the estimation while ARA/NAIS outperforms ARA/CMC408

by allowing to reduce the simulation budget by 207. Similar comparisons can be drawn to the previous case regarding the409

relative influence of the hyper-parameters. However, one can still notice that increasing the rareness of the failure event410

decreased, in proportion, the relative influence of ξ4. Finally, the global convergence of ARA/NAIS sensitivity estimation is411

represented in Figure 5b.412
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Table 9: Results for Example #3.

ARA/CMC ARA/AIS-CE ARA/NAIS

(Nx,θ = 106 samples) (Nx,θ = 104 samples/threshold) (Nx,θ = 104 samples/threshold)

Estimate cv Estimate cv Estimate cv

eP
∧

f 4.40× 10−3 (1.38 %) 4.41× 10−3 (10.3 %) 4.40× 10−3 (2.08 %)

∂ ePf
∧

/∂ ξ1 −9.13× 10−4 (3.44 %) −8.68× 10−4 (27.7 %) −9.12× 10−4 (5.90 %)

∂ ePf
∧

/∂ ξ2 2.95× 10−3 (2.32 %) 3.02× 10−3 (14.8 %) 2.95× 10−3 (3.22 %)

∂ ePf
∧

/∂ ξ3 −2.31 (3.88 %) −2.29 (25.7 %) −2.30 (5.82 %)

∂ ePf
∧

/∂ ξ4 6.43 (2.18 %) 6.26 (14.6 %) 6.41 (3.77 %)

νARA/AIS − − 0.5 − 13 −

413

Table 10: Results for Example #3 considering the influence of the failure event rareness.

ARA/AIS-CE (Æ) ARA/NAIS (Æ)

(Nx,θ = 104 samples/step) (Nx,θ = 104 samples/step)

Estimate cv Estimate cv

eP
∧

f 1.00× 10−4 (29.7 %) 1.19× 10−4 (2.85 %)

∂ ePf
∧

/∂ ξ1 −4.65× 10−5 (46.9 %) −3.66× 10−5 (7.00 %)

∂ ePf
∧

/∂ ξ2 1.21× 10−4 (40.3 %) 1.41× 10−4 (3.62 %)

∂ ePf
∧

/∂ ξ3 −1.19× 10−1 (34.4 %) −9.18× 10−2 (7.67 %)

∂ ePf
∧

/∂ ξ4 2.51× 10−1 (25.2 %) 3.10× 10−1 (4.24 %)

νARA/AIS 2 − 207 −
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Figure 5: Convergence plots obtained by ARA/NAIS for Example #3.

4.5. Synthesis about numerical results and discussion415

The aim of this subsection is to give a synthesis for the interested reader to get the main advantages and drawbacks of416

the proposed approach. According to the numerical results, one can sum up the following characteristics:417
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• ARA/AIS-CE and ARA/NAIS lead to similar results for predictive failure probability and reliability-based sensitivities418

estimation to the reference approach, namely ARA/CMC. They both enable to reduce the variance of estimation and419

limit the number of calls to the black-box model;420

• ARA/AIS-CE and ARA/NAIS, coupled to the derived sensitivity estimators, enable to estimate sensitivities w.r.t. dis-421

tribution parameters appearing in both unbounded and bounded priors;422

• ARA/AIS-CE suffers from the possible multimodality of the optimal auxiliary density (i.e. problem with multiple423

failure regions), which is a known issue of this method [76];424

• ARA/NAIS is dedicated to problems whose input dimensionality (including the stochastic distribution parameters) is425

a few dozen while ARA/AIS-CE can handle higher input dimensions.426

Figure 6 summarizes the evolution of the numerical efficiency νARA/NAIS (only for the ARA/NAIS method here) for the427

two last examples (Example #2 and Example #3) in their two configurations – initial problem (�) and increased rareness428

of the failure event (Æ) – as a function of the number of samples per step (from 1e3 to 1e4). If the efficiencies for the429

initial problems reach values around νARA/NAIS
≈ 10 to 15 (meaning that one can divide the simulation budget by 15), the430

efficiencies in a rare event context reach high values such as νARA/NAIS
≈ 50 to 270 which indicates that the proposed method431

can efficiently handle problems with very low predictive failure probabilities whose estimation by ARA/CMC is definitely432

intractable. As a remark, one can notice that the increasing curves as a function of the number of samples only represent the433

underlying tradeoff of the proposed method between accuracy (coefficient of variation decreasing as the number of samples434

increases) and the global computational cost.435
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Figure 6: Efficiency.

In terms of interpretation of the sensitivities derived in this paper, one should remember that local sensitivities are not436

quantities that can be easily ranked. Using local sensitivities can only give a qualitative result which should be considered as437

an indication for the user to know whether he/she should get more information about the lack of knowledge affecting one or438
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more distribution parameters. It cannot be used as a variable importance measure for factor fixing purposes [10]. However,439

they can be useful to highlight some features and underlying behaviors associated, either to the input probabilistic modeling,440

or to the model behavior at failure. To do so, one should compare sensitivities of the same nature, for instance sensitivities441

to a mean together, sensitivities to a standard deviation together, sensitivities to bounds together. Another possible solution442

is to build what is called an elasticity which is a normalized sensitivity [3]. In reliability literature, several authors advocated443

different types of elasticities. For instance, Table 11 gathers three different formulas and the corresponding literature sources444

for computing elasticities (adapted here to the bi-level uncertainty framework). From the authors knowledge, there is no445

consensus about the elasticity formulation. For the sake of generality, the sensitivity indicator provided in this paper do not446

take into account any normalization factor. All the derivative-based formulas (and associated numerical results) described447

in this paper can be combined with the formulas given in Table 11 to obtain elasticities.448

Table 11: Different formulas for elasticities.

Formula Hyper-parameters Source

(f1) e j =
∂ ePf
∂ ξ j
×

σΘ j

ePf
ξ j = µΘ j

or ξ j = σΘ j
[20]

(f2) e j =
∂ ePf
∂ ξ j
× ξ j ξ j = µΘ j

or ξ j = σΘ j
[77]

(f3) e j =
∂ ePf
∂ ξ j
×
ξ j

ePf
ξ j = µΘ j

or ξ j = σΘ j
[3]

449

It is important to notice that the choice of prior distribution is a crucial step in practice and can be lead by various450

techniques (expert judgment, data analysis, experimental results). For the sake of conciseness, in this paper, the sensitivity451

estimator formula (and application cases) are explicitely given using only normal and uniform probability distributions as452

priors. When facing more complex priors (e.g., truncated normal distribution to avoid unrealistic physical data), these453

formula can be adapted. Finally, for some priors, score functions may not be available [26, 28, 29].454

5. Conclusion - perspectives455

In this article, new reliability-based sensitivity estimators are proposed using the so-called “augmented reliability ap-456

proach”. The proposed derivative-based local sensitivity estimators of predictive failure probability, with respect to determin-457

istic distribution hyper-parameters, are derived for two cases: firstly, when all the stochastic distribution parameters follow458

some unbounded prior probability distributions; secondly, when at least one distribution parameter follows a bounded prior.459

Thus, this method allows to get sensitivities with either none (in the unbounded case) or a moderate extra computational460

effort (in the bounded case). To enhance the efficiency of the method, these estimators are derived using an adaptive im-461

portance sampling scheme, either using a parametric algorithm (ARA/AIS-CE) or a nonparametric one (ARA/NAIS). Then,462

three numerical applications on both academic and industrial test-cases (launch vehicle stage fallback zone estimation) are463

considered, the final ones beeing representative of the complex simulation codes used in aerospace engineering. The com-464

parison with a reference method (ARA/CMC) demonstrates the convergence and the performance of the proposed method.465

Finally, this study shows the benefits of using an ARA/AIS strategy when the failure event becomes very rare, especially for466

complex models.467

A first enhancement track could be to study the possibility of enhancing ARA/AIS-CE strategy for reliability and sensi-468

tivity assessment under bi-level uncertainty by adapting recent works on AIS-CE [76, 78] to handle both multiple failure469

regions and high-dimensionality. In order to further reduce the computational cost of these estimations, another possible470

enhancement track could be to couple the ARA/AIS strategy to a metamodel such as proposed in [79] to possibly extend471
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it to the bi-level uncertainty problem. However, metamodels also bring their own contribution to the overall uncertaintiy472

by adding some “model uncertainty”. This type of uncertainty has to be handled and should not cover the uncertainty473

introduced by considering a prior on the distribution parameters. Some recent metamodel-based strategies also consider a474

so-called “augmented framework” by considering that the metamodel can handle all kinds of epistemic uncertainties in its475

own definition [80]. These possible tracks are left for future work.476
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