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Abstract: Advanced embedded algorithms are growing in complexity and length, related to the
growth in autonomy, which allows systems to plan paths of their own. However, this promise
cannot happen without proper attention to the considerably stronger operational constraints
that safety-critical applications must meet. This paper discusses the formal verification for
optimization algorithms with a particular emphasis on receding-horizon controllers. Following a
brief historical overview, a prototype autocoder for embedded convex optimization algorithms
will be discussed. Options for encoding code properties and proofs, and their applicability and
limitations will be detailed as well.

1. INTRODUCTION

The need for more safety and better performance is cur-
rently pushing the introduction of advanced numerical
methods into next generations of cyber-physical systems.
While most of the algorithms described in this paper have
been known for a long time, their online use within embed-
ded systems is relatively new and opens issues that have
to be addressed. Among these methods, we are concerned
specifically with numerical optimization algorithms.

Problem: These algorithms solve a constrained optimiza-
tion problem, defined by an objective function – the cost
function – and a set of constraints to be satisfied:

min f0(x)

s.t. fi(x) ≤ bi for i ∈ [1,m]
(1)

This problem searches for x ∈ Rn the optimization vari-
able, minimizing f0 ∈ Rn → R, the objective function,
while satisfying constraints fi ∈ Rn → R, with associated
bound bi. An element Rn is feasible when it satisfies all
the constraints fi. An optimal point is defined by the
element having the smallest cost value among all feasible
points. An optimization algorithm computes an exact or
approximated estimate of the value of the optimal cost,
together with one or more feasible points achieving this
value. A subclass of these problems can be efficiently
solved: convex problems. In these cases, the functions f0

and fi are required to be convex and the optimal solution
is unique. We refer the reader to Boyd and Vandenberghe
(2004); Nocedal and Wright (2006) for more details on
convex optimization.

Context: Recently this formalism has been used with great
success for the guidance of safety-critical application. Such
applications include autonomous cars Jerez et al. (2014)

and reusable rockets Açikmese et al. (2013); Blackmore
et al. (2012). The latter case has resulted in a spectacu-
lar experiments, including landings of SpaceX’s Falcon 9
and BlueOrigin’s New Shepard. Thus, powerful algorithms
solving optimization problems do exist and are already
used online. Although those algorithms have been embed-
ded on board and running on an actual system, they still
lack the level of qualification required by civil aircraft or
manned rocket flight. computing a solution in a given time.

Algorithms: Let us consider the specific case of Linear
Programming problems, a subclass of convex optimiza-
tion. Multiple algorithm methods are available to solve
them. First, the simplex method, which has been used
successfully since the 1940s, despite its exponential worst-
case complexity. Then the Ellipsoid algorithm and the
very popular interior-point methods. These latter both
exhibit polynomial complexity, though only interior point
methods are considered to be practical for large desk-
top applications. These two methods are also applicable
to more general settings such as quadratic programming
(QP), affine constraints and quadratic cost, second order
conic programming (SOCP), quadratic constraints and
linear cost, or semidefinite programs (SDP).

When optimization algorithms are used offline, the sound-
ness of their implementation and the feasibility of the
computed optimizers is not as critical. Solutions could be
validated a posteriori Roux (2015); Roux et al. (2016).
This paper is concerned with online use of such algorithms,
providing evidence of the a priori validity of the computed
solution. This paper focuses on the linear programming
paradigm and makes the following contributions:

• high level properties defining a sound optimization
algorithm are formalized;
• these properties are expressed directly on the code

artifact as annotations;



• the evidence supporting the algorithms properties is
expressed at the code level
• the approach is demonstrated on the Ellipsoid al-
gorithm and on an instance of the Interior Point
method.

We believe this paper addresses a major certification
issue that can considerably influence the use of online
optimization methods in safety-critical applications.

Related work. Several authors including Richter et al.
(2013), McGovern (2000); McGovern and Feron (1998)
have worked on the certification problem of optimization
algorithms for their online uses in control, in particular
on worst-case execution time issues. In those cases, the
authors have chosen to tackle the problem at a high level
of abstraction.

Formally verifying high level properties of numerical algo-
rithm implementations was performed on the other con-
text of linear controller stability Feron (2010). This theo-
retical work was later instantiated concretely, generating
code specifications and proving it with respect to the
code Herencia-Zapana et al. (2012); Wang et al. (2016a).
Some other work develop that approach for weaker prop-
erties Araiza-Illan et al. (2015); Pajic et al. (2015).

Our work follows a similar approach with respect to Wang
et al. (2016b) in which interior-point method algorithms
are annotated with convergence proof elements in order
to show the soundness of the imperative implementation.
This work however, remains theoretical, expressed in Mat-
lab level, without any proof performed on the actual code.

Structure. The paper is structured as follows: Section 2
presents backgrounds for linear programming and ax-
iomatic semantics using Hoare triples. Sections 3 and 4
focus on the two considered approaches: Interior Point
method and Ellipsoid method. Section 5 presents our early
proof results on the code artifact, while Section 7 con-
cludes.

2. PRELIMINARIES

In order to support the following analysis, this section
introduces the notions and notations used throughout the
paper. First, we will discuss Linear Programming (LP)
problems. Then we introduce axiomatic semantics and
Hoare logic.

2.1 Linear Programming

Linear Programming is a class of optimization problems.
A linear programming problem is defined by a matrix A
of size m× n, and two vectors b, c of respective size m, n.
Definition 1. Let us consider A ∈ Rm×n, b ∈ Rm and
c ∈ Rn. We will write P (A, b, c) as the linear program:

min
Ax≥b

〈c, x〉. (2)

Definition 2. Let us consider the problem P (A, b, c) and
let us assume that an optimal point exists and is unique.
We have the following definitions:

/*@ logic LMat mat_add(LMat x0, LMat x1);
@ axiom getM_add: \forall LMat A, B; getM(

mat_add(A, B) == getM(A);
@ axiom getN_add: \forall LMat A, B; getN(

mat_add(A, B) == getN(A);
@ axiom get_add:
@ \forall LMat A, B; (
@ \forall integer i, j;
@ mat_get(mat_add(A, B), i, j) ==

mat_get(A, i, j)
@ + mat_get(B, i, j)); */

Fig. 1. Axiomatization of matrix addition

• Ef = {x | Ax ≥ b} the feasible set of P ,
• f(x) = cTx = 〈c, x〉 the cost function and
• x∗ = arg min

x∈Ef

f the optimal point.

2.2 Axiomatic semantics and Hoare Logic

Semantics of programs express their behavior. For the
same program, different means can be used to specify
it: (i) a denotational semantics, expressing the program
as a mathematical function, (ii) an operational seman-
tics, expressing it as a sequence of basic computations,
or (iii) an axiomatic semantics. In the latter case, the
semantics can be defined in an incomplete way, as a set
of projective statements, ie. observations. This idea was
formalized by Floyd (1967) and then Hoare (1969) as a
way to specify the expected behavior of a program through
pre- and post-condition, or assume-guarantee contracts.

Hoare Logic. A piece of code C is axiomatically described
by a pair of formulas (P,Q) such that if P holds before
executing C, then Q should be valid after its execution.
This pair acts as a contract for the function and (P,C,Q)
is called a Hoare triple. In most uses P andQ are expressed
in first order formulas over the variables of the program.
Depending on the level of precision of these annotations,
the behavior can be fully or partially specified. In our case
we are interested in specifying, at code level, algorithm
specific properties such as the convergence of the analysis
or preservation of feasibility for intermediate iterates.

Software frameworks, such as the Frama-C platform,
cf. Cuoq et al. (2012), provide means to annotate a
source code with these contracts, and tools to reason
about these formal specifications. For the C language,
ACSL, cf. Baudin et al. (2016) (ANSI C Specification
language) can be used as source comments to specify func-
tion contracts, or local annotations such as loop invariants.
Statement local annotations act as cuts in proofs and are
typically required when analyzing loops.

Linear Algebra-based Specification. ACSL also provides
means to enrich underlying logic by defining types, func-
tions, and predicates. In its basic version, ACSL contains
no predicate related to linear algebra. It is however pos-
sible to introduce such notions, supporting the expression
of more advanced properties. Figure 1 presents the formal-
ization of matrix addition.

These definitions are straightforward and fully defined.
We also wrote a library for operators used in linear



/*@ logic real norm(LMat V, LMat X) =
@ sqrt(mat_get(mat_mul(
@ mat_mul(transpose(V), inv(hess(X)))
@ , V), 0, 0)); */

Fig. 2. Hessian norm in ACSL.

optimization, defining norm, grad, hess, lower.... Fig-
ure 2 presents the definition a Hessian-induced norm,
parametrized by the Hessian at point X.

Lemmas can also be defined to support later analyzers
to prove annotations.To preserve proof consistency, the
Frama-C tool requires to prove these additional lemmas.
For example, splitting a complex theorem into several
small lemmas usually helps analyzers in proving the whole
goal.

3. INTERIOR-POINT METHOD

We focus here on Interior Point methods, that, starting
from a feasible solution, solve iteratively a sequence of
linear problems, eg. using Newton methods, to reach the
optimal solution. This method presented by Karmarkar
(1984) and improved by Nesterov and Nemirovski (1988,
1994) is one the most efficient methods to solve linear
and convex optimization problems. The presented work
directly follows the theory presented in (Nesterov, 2004,
S4). To keep the presentation simple and show the feasi-
bility of our approach, we chose a primal method starting
from the analytic center, whereas common methods are
primal-dual and start from any point of the domain.
Let us introduce the major concepts before presenting the
algorithm.

3.1 Basic concepts: Barrier functions and Central path

Barrier Function. Finding the optimum of a function is
usually achieved by computing its derivative and searching
for its zeros. In LP, we know that the optimum value is
located on the border of the feasible set, which could be
problematic to reach numerically. To solve this issue, we
add a barrier function F to the cost function. The rationale
of the barrier function F (x) is to diverge when x get closer
to the border of the feasible set.

In order to guarantee convergence bounds, the barrier
function must be a Lipschitz function. In practice, a
self-concordant barrier function Nesterov and Nemirovski
(1989) satisfies this requirement. The typical choice is a
sum of logarithmic functions.
Definition 3. (Log barrier function). Let F be the barrier
function associated to problem P . We have:

F (x) =

m∑
i=1

−ln(〈ai, x〉 − bi) (3)

where ai is the i-th row of A.
Definition 4. (Analytic center). We define the analytic
center as the point x∗F verifying:

x∗F = arg min
x∈Ef

F (x) (4)

Fig. 3. In blue: Points of the central path for different value
of t

Central path. Using both the barrier function and the
initial cost function, one can characterize their linear
combination.
Definition 5. Let us introduce a new function, f̃ as:

f̃(t, x) = tf(x) + F (x) (5)

In this function, t is the parameter that weights the relative
importance of the initial cost function with respect to the
barrier function. When t = 0 the original cost function
vanishes and minimizing f̃ leads to the analytic center
while when t→ +∞ the cost function is predominant and
minimizing f̃ leads to the optimal point up to ε (Figure 3)
Definition 6. (Central path). The central path is defined
as the curve:

x∗(t) = arg min
x∈Ef

f̃(t, x) for t ∈ [0,+∞) (6)

Interior-point methods are part of the path-following op-
timization methods: starting from the analytic center and
following the central path to reach the optimal point, as
illustrated in Figure 3.

Approximate Centering Condition (ACC). Since the al-
gorithm is doing numerical computation, the computed
points cannot be located exactly on the central path. Thus,
we need to introduce an approximate centering condition:
Definition 7. (ACC). Let us define λ(t, x) as:

λ(t, x) = f̃ ′(t, x)TF ′′(x)f̃ ′(t, x) (7)
The approximate centering condition becomes:

λ(t, x) < β2 (8)

Notice that F ′′(x) induces a norm 1 so λ measures how
close to 0 the derivative is.

This definition aims to guarantee that the points are close
to the central path so that the last point can be close
enough to the optimal:
Theorem 1. (cf. (Nesterov, 2004, S4)). If λ(t, x) < β2

then 〈c, x〉 − 〈c, x∗〉 ≤ ∆
t with ∆ = 1 + (β+1)β

1−β

1 By construction, thanks to the use of a self-concordant barrier
function.



/*@ requires acc(0, MatVar(X,2,1));
@ ensures dot(c, MatVar(X,2,1))-dot(c,sol(A,b,c

))<EPSILON;
@ ensures A * MatVar(X,2,1) > b; */

void pathfollowing () {
t = 0;
/*@ loop invariant ensures acc(t, MatVar(X, 2

, 1));
loop invariant A * MatVar(X, 2, 1) > b;
loop invariant ensures t > LOWER(l); */

for (unsigned int l = 0;l<NBR;l++)
{

compute_pre ();
compute_dt ();
compute_dx ();
t = t + dt;
for(unsigned int i = 0;i<N;i++)

X[i] = X[i] + dx[i];
}

}

Fig. 4. Shape of the path following algorithm

While t increases, computed points converge to the opti-
mal. The approximate centering condition is the invariant
that we maintain along the iterations of the algorithm.

3.2 Algorithm

Since we are targeting embedded systems, we will only use
static variables, a common practice in embedded systems.
We also define macros representing the different values of
the problems, simplifying the definition of annotations.

Figure 4 presents the main function of the algorithm,
computing the next iterate while following the central
path. It relies on:

• acc, dot and sol, ACSL self-defined operators repre-
senting, the approximate centering condition, the dot
product and the solution of P (A, b, c) respectively.
• several constants representing:

· EPSILON: the desired precision
· M x N: the size of the matrix
· LOWER, a function associating a lower bound for t
at each iteration .
· NBR: the number of iterations required so that

lower(NBR) > ∆
ε

• subfunctions compute_pre, compute_dt, compute_dx

In this program, we need to prove that at the end of the
loop we ensure :

dot(c, x)− dot(c, sol(A, b, c)) < EPSILON.

This is proved thanks to a lemma we call acc_solution
and the main function loop invariants. From the first loop
invariant and acc_solution, one deduces that dot(c, x)−
dot(c, sol(A, b, c)) < ∆

t and from the second loop invariant,
that t > ∆

ε , leading to the expected post-condition.

We will now detail the content and contracts of the three
functions used by the main one: compute_dt, compute_dx
and compute_pre.

Function compute_pre computes the gradient F ′(X)
and the hessian F ′′(X) of F at point X according to the
Equs. 9 and 10.

/*@ requires acc(t, MatVar(X,2,1));
@ ensures MatVar(H,2,2) == hess(MatVar(X,2,1));
@ ensures dt > t*0.125;
@ ensures dt = (5/36)/norm(c,MatVar(X,2,1));
@ */

void compute_dt ();

Fig. 5. Contract on compute_dt

(G)j(X) =

m−1∑
i=0

− ai,j
〈ai, X〉 − bi

(9)

(H)j,k(X) =

m−1∑
i=0

ai,jai,k
〈ai, X〉 − bi

(10)

Function compute_dt computes the update of dt accord-
ing to Eq. 11. Following Nesterov (2004), we have

dt =
5

36
· 1

cT ×H × c
(11)

We can deduce that dt > 0.125t. From this, we can lower
bound t by a geometric progression: lower(n) = t0 ×
(1.125)n. This allow us to determine the fixed number of
iterations required to reach a given level of precision.

Function compute_dx updates X using a Newtonian it-
eration on the derivative of F :

dx = H−1(tc+G) (12)
Notice that t in this formula is the one already updated
(t+dt). We expect from this update that the approximate
centering condition remains valid.

4. THE ELLIPSOID METHOD

The other method that has attracted our attention is the
Ellipsoid Method. Despite its relative efficiency with re-
spect to Interior Point methods, the Ellipsoid method ben-
efits from concrete proof elements and could be considered
viable option for critical embedded systems where safety
is more important than performance. Before recalling the
main steps of the algorithm, the needed elements will be
presented.

4.1 Preliminaries

Ellipsoids in Rn. An ellipsoid can be characterized by a
positive definite matrix. A symmetric matrix P of Rn×n
is positive definite (S+

n ) when
xTPx > 0 , ∀x 6= 0 ∈ Rn

Furthermore, this definition implies that all matrices P in
S+
n are invertible.

Definition 8. (Ellipsoid Sets). Let x ∈ Rn and P ∈ Rn×n
positive-definite, we denote the Ellipsoid E(P, x) the set :

E(P, x) = {z ∈ Rn : (z − x)TP−1(z − x) ≤ 1}
Definition 9. (Euclidean ball). Let n ∈ N we denote Vn
the unit Euclidean ball in Rn. Vol(Vn) denotes its volume.

In addition, we define B(x,R) as the ball of radius R
centered on x.



Fig. 7. Ellipsoid Cut for an iteration applied to LP

Definition 10. (Volume of ellipsoids). Let E(P, x) be an
ellipsoid set in Rn. We denote by V ol(E) its volume
defined as

Vol(E(P, x)) = Vol(E) =
√
det(P ) ·Vol(Vn)

4.2 Algorithm

Let us now recall the main steps of the algorithm detailed
in Bland et al. (1981); Grötschel et al. (1981); Khachiyan
(1980); Boyd and Barratt (1991).
Remark 1. In the following, we denote Ek, xk and Pk, the
ellipsoid, the corresponding center and positive-definite
matrix, respectively computed by the algorithm at the
k − th iteration.

e representing the vector normal to
the chosen cutting hyperplane from
oracle separation.

Fig. 6. Ellipsoid Cut for an
iteration

Algorithm. We start the
algorithm with an ellip-
soid containing the feasi-
ble set Ef , and therefore
the optimal point x∗.
We iterate by transform-
ing the current ellipsoid
Ek into a smaller vol-
ume ellipsoid Ek+1 that
also contains x∗. Given
an ellipsoid Ek of cen-
ter xk, we find a hy-
perplane containing xk
that cuts Ek in half, such
that one half is known
not to contain x∗. Find-
ing such a hyperplane is
called the oracle sepa-
ration step, cf. Ben-Tal
and Nemirovski (2004). In our LP setting, this step is not
computationally expensive. Then, we define the ellipsoid
Ek+1 by the minimal volume ellipsoid containing the half
ellipsoid Êk that is known to contain x∗. In addition to
that, we can compute an upper bound γ of the ratio of
Vol(Ek+1) to Vol(Ek). The Figures 6 and 7 illustrates such
ellipsoids cuts.

Ellipsoid transformation. From the oracle separation
step, a separating hyperplane, e, that cuts Ek in half with
the guarantee that x∗ is localized in Êk has been com-
puted. The following step is the Ellipsoid transformation.
Using this hyperplane e, one can update the Ellipsoid Ek
to its next iterate Ek+1 according to equations 13 and 14.

xk+1 = xk −
1

n+ 1
Pkẽ (13)

and

Pk+1 =
n2

n2 − 1
(Pk −

2

n+ 1
Pkẽẽ

TPk) (14)

with: ẽ = e
eTPke

.

One can now characterize the upper bound of the ratio of
Vol(Ek+1) to Vol(Ek).
Property 1. (Reduction ratio). Let k ≥ 0 be an iteration
of the algorithm. We have

V ol(Ek+1) ≤ exp(
−1

2 · (n+ 1)
) · V ol(Ek)

Hypotheses. We recall that we assumed the matrix A and
the vector b are such that the feasible set Ef is bounded
and not empty. Additionally, further information about Ef
is needed. Indeed, in order to know the number of steps
required for the algorithm to return an ε-optimal solution,
two scalars are needed:

• a radius R such that Ef is included in B(0n, R)
• another scalar r such that there exist a center c1 such
that B(c1, r) is included in Ef .

The main result can be stated as:
Theorem 2. Let us assume that Ef is bounded, not empty
and such that R, r are known. Then, for all ε > 0,
c ∈ Rn there exists a N such that the algorithm, using
N iterations, will return x̂, such that

f(x̂) ≤ f(x∗) + ε and x̂ ∈ Ef (ε optimal)

4.3 Algorithm’s Structure and Annotations

Figure 8 presents an annotated version of the imple-
mentation. Annotations combine ellipsoidal constraints
inEllipsoid and volume related properties to express the
progress of the algorithm along iterates.

5. TOWARD PROVING ANNOTATION

FramaC supports the analysis of C code with ACSL
annotations through multiple analyzers. The tool WP
projects both the ACSL specification – the Hoare triples
– and the source code in a predicate encoding on which
external tools can be applied.

Each function contract, or statement assertion, becomes
a goal, a proof objective. This goal can be solved either
in an automatic fashion by SMT solvers such as Alt-Ergo,
cf. Conchon et al. (2012), Z3, cf. de Moura and Bjørner
(2008), or thanks to manual proofs supported by proof
assistants such as Coq, cf. The Coq development team
(2012).



/*@ requires inEllipsoid(Ellipsoid(
P_minus,x_minus),sol(A,b,c));

@ ensures dot(c,MatVar(X,2,1))-dot(c,sol(A,b,c)
) <= EPSILON;

@ ensures A * MatVar(X,2,1) <= b; */
void ellipsoidMethod () {

long double P_minus[N*N],x_minus[N];
long double x_best[N],grad[N];
int i,Nit;
initializationEllipsoid(P_minus,x_minus,N,R);
affectationVector(x_best, x_minus, N);

/*@ loop invariant Vol(Ellipsoid(
P_minus,x_minus)) <= gamma^i * R^N ;

@ loop invariant inEllipsoid(Ellipsoid(
P_minus,x_minus),sol(A,b,c)) ;

@ loop invariant isMoreOptimal(
x_best,x_minus) ; */

for (i = 0; i < NBR; ++i) {
updateBest(x_best, x_minus);
getGrad(x_minus, grad);
updateEllipsoid(P_minus, x_minus, grad);

}
affectationVector(x, x_best, N);

}

Fig. 8. Shape of the Main Ellipsoid Method Algorithm

Fig. 9. Automatic Verification Framework

5.1 Low level matrix operation

We used this toolchain to prove that the annotations
are valid. The goal is to have as many annotations as
possible proven by SMT solvers since a Coq proof requires
additional work. One of the difficulties in Coq is to address
low level C manipulations such as matrix operations. The
memory model axiomatization makes the manipulation
of these encodings difficult while the properties are not
specifically hard to prove. To avoid this, all matrix opera-
tions in C are associated to an ACSL contract, stating the
computation performed in linear algebra instead of arrays
and pointers. Fig. 10 presents an example of these annota-
tions while Sec. 8 describes the (simplified) generated goal.
SMT solvers easily discard this kind of proof objectives.

5.2 Lemmas hierarchy

Once these matrix operations have been abstracted by
their ACSL axiomatization, all that remains is to prove
the regular annotation.

/*@ ensures MatVar(X, 2, 1) == \old(
@ mat_add(MatVar(X, 2, 1),
@ MatVar(dx, 2, 1))); */

{
X[0] = X[0] + dx[0];
X[1] = X[1] + dx[1];

}

Fig. 10. Simple example of matrix operation specification

For each postcondition Q, we find what precondition
P1, ..Pk is required to proveQ. We also extract all variables
v1, ..vl appearing in Q and P1, ..Pk. With all this informa-
tion we write an ACSL lemma stating : ∀v1, ..vl, P1 ⇒
P2 ⇒ ... ⇒ Pk ⇒ Q.

Assuming this lemma an SMT will prove easily the post-
condition. This permits to remove all C code aspect, to
have pure math results to proof.

To ease the proof of this lemmas, one can build interme-
diary lemmas. This lemmas premits to split the proof into
small pieces. Then each pieces can be proved by a SMT
solver. We represented as a dependance graph in Fig. 5.2
the current status of the proof. This depency graph is used
to tell the SMT which lemmas is useless to prove a given
lemmas. This permits to remove a lot of lemmas from the
context of the SMT simplifying their task.

We considered some results as Axioms(Blue colored in the
figure). Deciding if a results should be an axiom is difficult.
For now we decided that all math results we can find in
(Nesterov, 2004, S4) should be axioms. This permits to
be clear on what we admited or not. Moreover results in
Nesterov are usually quite general but remain feasible for
SMT.

Maybe at some point, SMT wont be powerfull enough
to prove the lemmas. If this happens we can write the
proof by hand using a proof assistant as Coq. An other
possibility would be to use machine learning to build the
proofs, see e.g. Kaliszyk and Urban (2015).

6. FLOATING-POINT CONSIDERATIONS

Another issue concerns the necessary rounding on the vari-
ables that happens due to the floating point representation
of the variable and the impact of this numerical impreci-
sion on the validity of the algorithm implementation.

In the following, we denote by F the set of floating point
numbers. Since the sum of two floats is not necessarily
a float, each computation will generate noise. One can
still bound such numerical errors using the so-called stan-
dard model Rump (2006); Roux et al. (2012). This anal-
ysis can either be performed symbolically, analyzing the
compuation performed and summing up the accumulated
errors. Another approach, eg. implemented in the tool
Fluctuat Delmas et al. (2009), will rely on affine or interval
arithmetics to represent such acucmulated errors of the
standard models and bound the overall error obtained.

Problem Formulation: Ellipsoid method In the Ellipsoid
method algorithm, we iterate the center point and matrix
x, P such that the ellipsoid Ell(x, P ) has a decreasing
volume and includes the optimal point.



Blue: axioms
Red: unproved
Green: contract (proved)
Rose: lemma (proved)

Fig. 11. Lemma proof hierarchy

Fig. 12. Ellipsoid Widening

The operations being done in F and not R, we have no
guarantee that the optimal point lies within the ellipsoid at
each iteration (see figure 12). Therefore, this last condition
being an important aspect of the program’s semantics, the
errors due to floating point rounding could have a direct
impact on its stability.

Let fl(x) and fl(P ) be, respectively, the floating point
values of x and P computed and used in the algorithm. x
and P being the values in R obtained if the computations
were not rounded. The objective here is to find a λ > 1
such that:

Ell(x, P ) ⊂ Ell(fl(x), λ · fl(P ))

By doing that, we widen the ellipsoid Ell(x, P ), as il-
lustrated on Fig. 12, to take into account the rounding.
The convergence issue becomes a problem when reaching
the optimal value, ie. the need to prove the decreasing
volume of the ellipsoids. Thus, the widening coefficient λ
cannot be too big. This last constraint is currenlty under
investigation.

7. CONCLUSION

In this article, annotations for numerical algorithms solv-
ing linear programming problems were proposed. We fo-
cused on a primal Interior Point algorithm and on the
Ellipsoid method. The Interior Point algorithm is fully
automated annotated while annotations for the Ellipsoid
method are still manual. Annotations can be partitioned
in two levels:

• Low-level annotation specifying matrix operations.
This separates the handling of memory array accesses
from math reasoning, easing the automatic proof of
simpler annotations by SMT solvers.

• Math reasoning annotations specify the high level
properties of the algorithms: convergence, preserva-
tion of feasibility, ε-optimality of the solution, etc.
These annotations are proven either by SMT solvers
or with Coq. The finalization of these proofs is still a
work in progress.

Our perspectives include the application of this approach
to more general settings, eg. generic linear programming
problems. We plan to couple code generation with an-
notations and proof synthesis, providing embedded code
together with its functional soundness proof, at the code
level. This would include the generation of the correspond-
ing Coq proofs.

Our approach is also compatible with more general con-
vex optimization problems. Finally, we intend to address
floating point semantics issues while performing the proofs.
This would guarantee a completely sound and bug-free
implementation.
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8. APPENDIX

Example of a generated goal for basic matrix operation:
goal set_X_post:

let a = shift_A2_float64(global(G_X_1018), 0) : addr in
let a_1 = shift_float64(a, 0) : addr in
let a_2 = shift_float64(a, 1) : addr in
let a_3 = shift_A2_float64(global(G_dx_1019), 0) : addr

in let a_4 = shift_float64(a_3, 0) : addr in
let a_5 = shift_float64(a_3, 1) : addr in
forall t : (addr,real) farray.
let r = t[a_1] : real in
let r_1 = t[a_2] : real in
let r_2 = t[a_4] : real in
let r_3 = t[a_5] : real in
let a_6 = L_mat_add(L_MatVar(t, a, 2, 1), L_MatVar(t, a_3

, 2, 1)) : A_LMat in
let a_7 = L_MatVar(t[a_1 <- r + r_2][a_2 <- r_1 + r_3],

a, 2, 1) : A_LMat in
is_float64(r) → is_float64(r_1) →
is_float64(r_2) → is_float64(r_3) →
(1 = L_getN(a_6)) → (2 = L_getM(a_6)) →
(1 = L_getN(a_7)) → (2 = L_getM(a_7)) →
(L_mat_get(a_6, 0, 0) = L_mat_get(a_7, 0, 0)) →
(L_mat_get(a_6, 1, 0) = L_mat_get(a_7, 1, 0)) → (a_6 =

a_7)


