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A method is presented for generating nearly uniform distributions of three-

dimensional orientations in the presence of symmetry. The method is based on

the Thomson problem, which consists in finding the configuration of minimal

energy of N electrons located on a unit sphere – a configuration of high spatial

uniformity. Orientations are represented as unit quaternions, which lie on a unit

hypersphere in four-dimensional space. Expressions of the electrostatic

potential energy and Coulomb’s forces are derived by working in the tangent

space of orientation space. Using the forces, orientations are evolved in a

conventional gradient-descent optimization until equilibrium. The method is

highly versatile as it can generate uniform distributions for any number of

orientations and any symmetry, and even allows one to prescribe some

orientations. For large numbers of orientations, the forces can be computed

using only the close neighbourhoods of orientations. Even uniform distributions

of as many as 106 orientations, such as those required for dictionary-based

indexing of diffraction patterns, can be generated in reasonable computation

times. The presented algorithms are implemented and distributed in the free

(open-source) software package Neper.

1. Introduction

Distributions of three-dimensional orientations are routinely

used in studies of the physical and mechanical properties of

crystalline materials. Examples of experimental studies

involve forward simulations of electron backscatter diffraction

(EBSD) (Roşca et al., 2014), electron transmission diffraction

(Rauch & Véron, 2014) and high-energy X-ray diffraction

(Suter et al., 2006). In these studies, simulated diffraction

patterns are compared with experimental ones to identify the

experimental orientations (or phases), in an approach referred

to as ‘dictionary-based indexing’ (Rauch & Véron, 2014).

Correct indexing requires orientation distributions (for

simulating the diffraction patterns) that pave orientation

space with a step size of no more than 1–2�, which can only be

attained by using as many as 106–107 orientations (in the

absence of crystal symmetry). For computational efficiency, it

is important to minimize this number by distributing orien-

tations as uniformly as possible. Examples of numerical

studies in which orientation distributions are used concern

simulations of the deformation of polycrystals. Random

orientations are usually assigned to the grains, but uniformly

distributed orientations could be used to improve orientation

space coverage when analysing the orientation dependency of

a mechanical or physical property (Wong & Dawson, 2010;

Quey et al., 2012, 2015; Wielewski et al., 2017), or to reduce the

variability of the polycrystal response in homogenization

simulations (Nygårds, 2003). Such numerical studies typically

use polycrystals with 102–104 grains, so that orientation sets

are significantly smaller than for dictionary-based indexing.
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The general problem of generating uniform distributions of

(three-dimensional) orientations, or ‘uniform sampling of

orientation space’, has been studied for a long time (Helming,

1997; Yang & Chen, 2006; Karney, 2007; Yershova et al., 2010;

Yan & Chirikjian, 2012) but only rarely in the context of

crystalline materials, which involve symmetries. In the past few

years, two methods have been proposed to generate orienta-

tion distributions for dictionary-based indexing (Roşca et al.,

2014; Larsen & Schmidt, 2017). Both methods parameterize

orientations as unit quaternions to take advantage of the

proportionality between the intrinsic distance separating unit

quaternions and the angle made by their corresponding

orientations (Morawiec, 2004). The problem is then to

generate a uniform distribution of points on the unit-quater-

nion hypersphere. Roşca et al. (2014) combine two homo-

choric projections to transform a regular grid of points in the

cube into a regular grid of points on the unit-quaternion

hypersphere. Larsen & Schmidt (2017) generate a Voronoi

tessellation (and its dual, the Delaunay triangulation) by

considering the unit quaternions as seed points and combine

several optimizations to maximize the minimum distance

between any orientation pair. The method of Roşca et al.

(2014) is direct and therefore very computationally efficient,

and it provides orientation grids that are iso-latitudinal (as

needed for the spherical harmonics expansions used in

texture-related computations). However, it applies only to

specific numbers of orientations (n3), generates orientations

that may be relatively close to each other (as equal volumes

about orientations do not guarantee equal distances between

them) and accounts for crystal symmetry only a posteriori, by

rejecting orientations located outside the fundamental region,

which leads to undesirable boundary effects. The method of

Larsen & Schmidt (2017) provides orientation distributions

which are effectively more uniform (although not iso-latitu-

dinal), but the method may not behave well for relatively

small numbers of orientations owing to an ‘intended use of

Euclidean geometries’ (i.e. the use of the extrinsic Euclidean

distance in four-dimensional space instead of the intrinsic

distance on the unit-quaternion hypersphere; Larsen &

Schmidt, 2017). Finally, it should be noted that both methods

(Roşca et al., 2014; Larsen & Schmidt, 2017) involve relatively

complex mathematical developments.

In this article, we describe a relatively simple and versatile

method that provides improved uniform sampling of crystal

orientations. In x2, we formulate the method and describe how

to solve it. Simplifications are made for the case of large

numbers of orientations. In x3, we apply the method to several

practical cases and compare the results with those of previous

methods. In x4, we close the article and present our conclu-

sions. All algorithms described in this article are implemented

and distributed in the free (open-source) software package

Neper (Quey, 2018).

2. Method

The principle of the method is to adapt the Thomson problem

(Thomson, 1904) to orientations represented as unit quater-

nions. The original Thomson problem consists of finding the

configuration of minimal energy for a set of electrons located

on a unit sphere (Thomson, 1904). It is well known that this

configuration is characterized by a uniform spatial distribution

of electrons, for which all electrons occupy about the same

surface area of the sphere and exhibit similar distances to their

first neighbours. Although formulated back in 1904, the

Thomson problem remains open, and several methods have

been proposed to solve it, such as gradient-descent optimi-

zation (Erber & Hockney, 1991), global optimization

(Altschuler et al., 1994), simulated annealing algorithms

(Xiang et al., 1997), Monte Carlo algorithms (Wales et al., 2009;

Bondarenko et al., 2015) and genetic algorithms (Morris et al.,

1996; Kanimozhi et al., 2016). A major difficulty is that the

number of local minima grows exponentially with the number

of electrons (Stillinger & Weber, 1984; Erber & Hockney,

1991). However, these minima are very close to the global

minimum (Stillinger & Weber, 1984; Erber & Hockney, 1991),

so that gradient-descent optimization should provide nearly

optimal configurations. Another difficulty is that the problem

becomes computationally intensive for large numbers of

electrons (say, more than 10 000), as all electrons interact with

each other. This is not dealt with in most studies (such as

Erber & Hockney, 1991; Altschuler et al., 1994; Xiang et al.,

1997; Wales et al., 2009; Bondarenko et al., 2015; Morris et al.,

1996; Kanimozhi et al., 2016), which rather focus on finding,

and analysing, nearly optimal configurations for relatively

small numbers of electrons (less than 1000), and it will

therefore need a specific treatment.

When the Thomson problem is transposed to orientations,

several differences arise in its formulation. First, while elec-

trons can interact along chords of the unit sphere (in three-

dimensional space), orientations (represented as unit quater-

nions) are defined only on the unit-quaternion hypersphere

(the 3-sphere in four-dimensional space) and, as such, should

interact along its geodesics. Second, in contrast to an electron

being a standalone object, an orientation is represented by two

(opposite) quaternions or even more (in the presence of

crystal symmetry). In this section, we start by recalling the

definition and some useful properties of quaternions (x2.1).

We then present a general formulation for interactions

between orientations in the general case and in the presence

of crystal symmetry (x2.2), and treat the case of large numbers

of orientations (x2.3). Finally, we provide a simple and efficient

method to solve the problem (x2.4).

2.1. Orientations as unit quaternions

Quaternions are four-dimensional vectors that can be used

to describe three-dimensional rotations (Hamilton, 1844). In

fact, there is an homomorphism between the multiplicative

group of unit quaternions, SUð2Þ, and the group of rotations in

R
3, SOð3Þ (Morawiec, 2004). The space of quaternions, H, is

described by the real axis and three imaginary axes along the

vectors i, j and k, so that a quaternion, q, can be written as

q ¼ q0 þ q1iþ q2 jþ q3k (q0 being the real component and

q1–3 being the imaginary components). The base vectors i, j
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and k follow the Hamilton rules for multiplication:

ijk ¼ i2 ¼ j2 ¼ k2 ¼ �1, ij ¼ k, jk ¼ i, ki ¼ j, ji ¼ �k,

kj ¼ �i and ik ¼ �j. A unit quaternion, q, can be defined

from a rotation of angle � around an axis r (krk ¼ 1, where ‘kk’

denotes the Euclidean norm) as

q ¼ cosð�=2Þ þ r sinð�=2Þ: ð1Þ

Unit quaternions lie on the unit 3-sphere centred at the origin

of H, denoted S
3 and simply referred to as the ‘unit-quater-

nion hypersphere’ throughout the article. For future reference,

we note that the (three-dimensional) surface area of S3 is 2�2.

Moreover, opposite quaternions, q and �q, which are anti-

podal points on S
3, correspond to rotations of ð�; rÞ and

ð� þ 2�; rÞ, respectively, and so represent the same orienta-

tion. It is therefore sufficient to consider only positive

quaternions, i.e. quaternions of non-negative real parts, to

represent orientations (although it is not required in this

work). These quaternions occupy the positive hemisphere of

S
3, S3

þ. Two rotations, q1 and q2, both expressed in the refer-

ence coordinate system, can be combined into a single rotation

by quaternion multiplication as q2q1. Quaternion multi-

plication is associative, distributive but not commutative. The

inverse rotation is given by the conjugate of the original

quaternion, which corresponds to inverting the rotation axis

[see equation (1)]. Finally, the misorientation between two

orientations, q1 and q2, expressed in the reference coordinate

system, is simply given by q2q
�1
1 .

2.2. Orientation interactions

We formulate the problem of the interaction of orientations

represented as electrically charged quaternions. The aim is to

determine the energy of the orientation set and the forces at

orientations that derive from it. For simplicity, we assume

values of Coulomb’s constant (k) and the elementary charge

(e) equal to 1. We consider a set of two orientations before

incorporating crystal symmetry. We then generalize the

formulation to a set of N orientations.

2.2.1. Case of a set of two orientations. Let us consider a

set of two orientations, qi and qj, and determine its energy, E,

and the resulting forces at these orientations, f i and f j

(f j ¼ �f i), of norm f. As pointed out before, qi and qj are

defined on S
3. They therefore interact on S

3 (not in its

embedding space, H), and so the distances and directions

between them are to be measured along geodesics (not

chords) of S3; i.e. the intrinsic distance is to be used. This is

consistent with the fact that the difference between two

orientations, measured by the misorientation angle, is

proportional to the intrinsic distance between their quater-

nions. Working in S
3 is important to measure distances

between orientations properly, especially when the number of

orientations is small. It also follows that the forces at orien-

tations are tangential to S
3, as can be easily pictured in the

three-dimensional case. In other words, the force at an

orientation belongs to the tangent space at that orientation. It

should therefore be possible to compute it in that space.

The tangent space at an orientation is obtained by logarithm

mapping (Morawiec, 2004), so that the position of qj in the

tangent space at qi, dij, is given by

dij ¼ ln qjq
�1
i

� � ¼ ð�ij=2Þrij; ð2Þ
where qjq

�1
i corresponds to the misorientation between qi and

qj, and �ij and rij are the corresponding rotation angle and axis

(see x2.1). It should be noted that, even if qi and qj are taken as

positive quaternions, qjq
�1
i is of arbitrary sign, with the real

part defined in ½�1; 1�, and so �ij 2 ½0; 2��. dij is a pure

imaginary quaternion, and the space to which it belongs is the

three-dimensional ball of radius �. The geodesics passing

through qi on S
3 correspond to straight lines passing through

the origin in tangent space, and distances are conserved along

these lines (Morawiec, 2004). The distance between qi and qj

(either on S
3 or in tangent space), dij, is

dij ¼ kdijk ¼ �ij=2; ð3Þ
and the (signed) direction between qi and qj is equal to rij.

Since �ij 2 ½0; 2��, we have dij 2 ½0; ��. As the orientation

represented by qj can also be represented by �qj, qi interacts

with both qj and �qj. We may compute the position of �qj in

the tangent space at qi, d
0
ij, as

d0ij ¼ ln �qjq
�1
i

� � ¼ ð�0ij=2Þr0ij: ð4Þ
Noting that dij and d0ij are mapping opposite quaternions, and

using equation (1), it is easy to show that �0ij ¼ 2�� �ij and

r0ij ¼ �rij. Therefore, d0ij can be written as

d0ij ¼ � 2�� �ij

2
rij; ð5Þ

and it follows that [also using equation (3)]

d0
ij ¼ kd0ijk ¼ 2�� �ij

2
¼ �� dij: ð6Þ

As dij 2 ½0; ��, we also have d0
ij 2 ½0; ��. It can finally be noted

that dij and d0ij are parallel but point in opposite directions, and

that if one of dij or d0ij belongs to the three-dimensional ball of

radius �=2, the other belongs to the three-dimensional sphe-

rical shell of inner radius �=2 and outer radius �, as illustrated

in Fig. 1(a). The same calculations could be carried out by

considering �qi instead of qi, which would provide the same

distances (dij and �� dij). The total energy of the set of two

orientations (E) results from the interactions between the four

pairs ðqi; qjÞ, ðqi;�qjÞ, ð�qi; qjÞ and ð�qi;�qjÞ, and is given by

E ¼ 2
1

dij

þ 1

�� dij

� �
: ð7Þ

The force at qi, f i, derives from the energy that qi forms with qj

and �qj, which is equal to E=2. Moreover, as the force is

repulsive, f i is opposite to rij. So, the force at qi can be written

in scalar and vector forms as

f ¼ � dðE=2Þ
ddij

; f i ¼ �f rij: ð8Þ

Replacing E by its expression in equation (7) and applying the

derivative, we finally obtain
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f ¼ 1

d2
ij

� 1

�� dij

� �2 ; f i ¼ � 1

d2
ij

� 1

�� dij

� �2

" #
rij: ð9Þ

Fig. 1(b) shows the evolutions of E and f as a function of dij. As

expected, a minimal value of E and a zero value of f are

obtained for dij ¼ �=2 (�ij ¼ �), i.e. when qi and qj represent

opposite orientations [there actually is a family of quaternions

qj representing orientations opposite to qi, which corresponds

to the sphere of radius dij ¼ �=2 in Fig. 1(a) (�ij ¼ �, arbitrary

rij)].

Finally, it should be noted that equations (7) and (9) differ

from the corresponding concepts known from electrostatics in

several ways. First, antipodal symmetry leads to an equili-

brium configuration at a finite distance, where forces vanish.

Second, and strictly speaking, the force equilibrium between

the two orientations, f j ¼ �f i, can only be written under the

concept of parallel transport. Indeed, f i and f j have the same

magnitude ( f), but they belong to different tangent spaces and

so have different directions in H. Only when f j is transported

from qj to qi (along the geodesics between qj and qi) does the

standard expression of force equilibrium hold true. This will,

however, not be used in the following since the forces at

orientations will always be computed in their respective

tangent spaces.

2.2.2. Crystal symmetry. In the presence of crystal

symmetry, an orientation, represented by quaternion q, can be

described by several equivalent quaternions, qk, k ¼ 1; . . . ; nc,

given by

qk ¼ quk; ð10Þ
where uk is a symmetry operator. For cubic crystal symmetry,

nc ¼ 24 and uk can represent the identity, the three rotations

of �=2 about each of the three h100i crystal directions, the

rotation of � about each of the six h110i crystal directions and

the two rotations of 2�=3 about each of the four h111i crystal

directions. To compute E and f i, all equivalent orientations

must be taken into account. Let us consider the interaction

between qi and qk
j . The misorientation axis and angle between

qi and qk
j are denoted as rk

ij and �k
ij , respectively. qj can be

replaced by qk
j in equations (2) and (3) to compute the

distance between qi and qk
j , dk

ij. The total energy of the pairs

formed by qi and all qk
j s (and their negatives) can simply be

written as the sum of the energies of all orientation pairs

[which are of the form of equation (7)]. It should then be

noted that, owing to symmetry considerations, the same result

would be obtained by considering qk
i (k ¼ 1; . . . ; nc) instead

of qi. The total energy, therefore, is

E ¼ 2nc

Xnc

k¼1

1

dk
ij

þ 1

�� dk
ij

 !
: ð11Þ

The net force at an orientation, f i, can be written as the sum of

the forces between the orientation (qi) and all other orienta-

tions (qk
j ) [which are of the form of equation (9)]:

f i ¼ �
Xnc

k¼1

1

dk
ij

2 �
1

�� dk
ij

� �2

" #
rk

ij: ð12Þ

2.2.3. General case. Let us now consider a set of N orien-

tations, qi, i ¼ 1; . . . ;N, with crystal symmetry. The total

energy of the orientation set (E) can be written as the sum of

the energies of all orientation pairs [see equation (11)]:

E ¼ 2nc

XN

i¼1

XN

j¼iþ1

Xnc

k¼1

1

dk
ij

þ 1

�� dk
ij

 !
: ð13Þ

The net force at an orientation (f i) can be written as the sum of

the forces between the orientation and all other orientations

[see equation (12)]:

f i ¼ �
XN

j¼1;j6¼i

Xnc

k¼1

1

dk
ij

2
� 1

�� dk
ij

� �2

" #
rk

ij: ð14Þ
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Figure 1
Interaction between two orientations, qi and qj. (a) Interaction shown in the tangent space at qi (which is at the origin, O), where the inner sphere has a
radius of �=2 and the outer sphere has a radius of �. As dij and d0ij are distant by �, if one of them belongs to the inner ball (dij here), the other belongs to
the outer spherical shell (d0ij here). f i and f j tend to move the origin and the closest of dij and d0ij (dij here) away from each other until dij ¼ d0

ij ¼ �=2 (and
so �ij ¼ �), i.e. when qi and qj represent opposite orientations. (b) Evolution of the energy (E) and the force ( f ) as a function of the distance (dij), where
the dashed line indicates the configuration illustrated in (a).
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As expected from the original Thomson problem (Thomson,

1904) and as will be seen in x3, a minimal value of the energy

(E) and zero values of the forces (f i) are obtained when

orientations are uniformly distributed on S
3.

2.3. Case of a large number of orientations

As the energy and the forces [provided by equations (13)

and (14)] depend on all orientation pairs, the time taken to

compute them can be relatively long [OðN2Þ] when the

number of orientations (N) is large. However, it should be

noted first that only the forces (not the energy) must be

computed during the resolution (see x2.4), and second that the

forces should be mostly driven by short-distance interactions,

as the (many) long-distance interactions yield low forces that

tend to cancel each other out. It should therefore be sufficient

to compute the forces in close neighbourhoods of the orien-

tations. In contrast to what was done in x2.2, it is here useful to

write the expression of the forces by representing all quater-

nions (positive and negative) equivalently, so that equation

(14) becomes

f i ¼ �
X

q2fqk
j
;�qk

j
g; j 6¼i

1

dðqi; qÞ2 rðqi; qÞ; ð15Þ

where dðqi; qÞ and rðqi; qÞ denote the distance and the

misorientation axis between qi and q, respectively (and

correspond, respectively, to dij and rij for q 2 fqk
j g, and to d0

ij

and r0ij for q 2 f�qk
j g). An approximate value of f i can then be

obtained by considering only the quaternions located in the

neighbourhood of qi:

f i ’ �
X

q2fqk
j
;�qk

j
g; j6¼i

dðqi;qÞ��dr

1

dðqi; qÞ2 rðqi; qÞ; ð16Þ

where the neighbourhood corresponds to a hyperspherical cap

(on S
3) of radius �dr and centre qi. � is a multiplicative factor

(to be determined in x3.3), and dr is the so-called ‘average

orientation radius’ and corresponds to the radius of a hyper-

spherical cap of (three-dimensional) surface area S, defined as

S ¼ �2=N?: ð17Þ
Here, N? ¼ Nnc. S is related to the angular radius of the

corresponding hyperspherical cap, �r, by (Morawiec, 2004)

S ¼ �ð�r � sin �rÞ: ð18Þ
Knowing N and nc, �r can be computed using equations (17)

and (18), and dr is given by �r=2. Knowing �dr, neighbours are

rapidly found using a k-dimensional tree technique [in

OðN log NÞ] (Blanco & Rai, 2014).

2.4. Resolution

The energy of an orientation distribution and the resulting

forces being known [equations (13) and (14))], the energy can

be minimized using a conventional gradient-descent method,

which iteratively evolves the orientations along (and propor-

tionally to) their respective forces.

2.4.1. General formulation. During an iteration (l), each

orientation evolves from its initial position, q
ðl�1Þ
i , to its final

position, q
ðlÞ
i . The rotation during the iteration, Dqðl�1Þ

i , is

computed from the force at the beginning of the iteration,

f
ðl�1Þ
i , as

Dq
ðl�1Þ
i ¼ �ðl�1Þfðl�1Þ

i ; ð19Þ
where �ðl�1Þ is the step size of the iteration (l) and controls the

degree of evolution of the orientations. �ðl�1Þ is the same for all

orientations and is computed as described in x2.4.2. [Should

some orientations be constrained to their nominal values (as

will be done in Fig. 10, x3.4), Dq
ðl�1Þ
i ¼ 0 would be used.] The

orientation evolution during the iteration (i.e. the calculation

of q
ðlÞ
i from q

ðl�1Þ
i and Dq

ðl�1Þ
i ) can be expressed as a simple

additive composition, although it needs more discussion. It

should be recalled that while qi is a unit quaternion, i.e. a point

on S
3, f i and therefore Dqi belongs to the tangent space at qi.

This space is the space of pure imaginary quaternions and is

centred at the origin of the space of unit quaternions,

ð1; 0; 0; 0Þ. Dqi is therefore tangential to S
3 at ð1; 0; 0; 0Þ, not at

qi. An additive composition requires Dqi to be rotated to qi

(through parallel transport), which leads to Dq?i :

Dq?i ¼ Dqiqi: ð20Þ
The orientation evolution during an iteration can then be

written as

q
ðlÞ
i ¼ d

q
ðl�1Þ
i þ Dq?i

ðl�1Þq
ðl�1Þ
i þ Dq?i

ðl�1Þ; ð21Þ
i.e. the additive composition is subjected to a normalization

(represented by ‘c. . .. . . ’). Normalization is necessary since,

during the iteration, and as Dq?i is tangential to S
3, qi moves

along S
3 but also deviates from it to second order.

2.4.2. Step size and termination criterion. The step size

(�ðl�1Þ) used in equation (19) must be set appropriately

throughout optimization, so that the fewest possible iterations

are needed. This could be done by determining, at each

iteration and through a line search, the value of � that most

decreases the energy. However, this would require many

(expensive) computations of E (one for each value of �
tested). Instead, we adopt some assumptions to compute

values of �ðl�1Þ from information known a priori or from the

previous iteration.

The value of � at the first iteration, �ð0Þ, is defined so that it

provides a maximal decrease of E, i.e. a minimal value of Eð1Þ,
for a typical random orientation distribution. A minimal value

of Eð1Þ is obtained for specific amplitudes of the rotations,

kDqð0Þi k, or, equivalently [as all rotations evolve according to

equation (21)], for a specific value of their average, hkDqð0Þi ki.
The average amplitude of the rotations (hkDqð0Þi ki) can be

expressed as a fraction, �, of the average orientation radius

(dr). This can be formulated as

hkDqð0Þi ki ¼ �dr with hkDqð0Þi ki such that Eð1Þ is minimum:

ð22Þ
By combining equations (19) and (22), �ð0Þ can be written as
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�ð0Þ ¼ �dr

hkfð0Þi ki ; ð23Þ

where hkfð0Þi ki corresponds to the average of the forces at

orientations in the initial configuration. Note that f
ð0Þ
i is of the

form 1=d2
ij [neglecting the term in 1=ð�� dijÞ2 in equation (9),

as in x2.3] and therefore depends mostly on interactions within

the close neighbourhood of q
ð0Þ
i . The distances to the orien-

tations within the neighbourhood (dij) are proportional to dr,

and so hkfð0Þi ki is inversely proportional to 1=d2
r :

hkfð0Þi ki ¼ �=d2
r : ð24Þ

By combining equations (23) and (24), �ð0Þ can finally be

written as

�ð0Þ ¼ ð�=�Þd3
r : ð25Þ

It is then interesting to determine the values of � and �
independently, which can be done using, as values of q

ð0Þ
i , a

random distribution of 105 orientations (considered suffi-

ciently large to give representative results). The value of �, as

defined in equation (22), can be determined by a line search

(see Fig. 2), which provides � ¼ 0:8. In other words, at the first

iteration, a maximal decrease of the energy (E) is obtained

when orientations are rotated on average by 80% of the

average orientation radius (dr). The value of �, as defined in

equation (24), can be computed directly, which provides

� ¼ 3:4.

The values of � at the following iterations are determined

using the Barzilai–Borwein method (Barzilai & Borwein,

1988). In general terms, the Barzilai–Borwein method assumes

a quadratic form of the minimized function and computes �
from the evolutions, during the previous iteration, of the

solution vector and of the gradient of the minimized function.

In this work, the minimized function is the energy (E), the

solution vector corresponds to the qi values and its evolution

to the Dqi values, and the gradient of the minimized function

corresponds to the forces (f i) and its evolution to the

Df
ðl�1Þ
i ¼ fðlÞi � fðl�1Þ

i values. The Barzilai–Borwein method

provides two possible values of �ðl�1Þ (which result from two

different least-squares problems) (Barzilai & Borwein, 1988):

�ðl�1Þ
1 ¼

PN
i¼1 Dq

ðl�2Þ
i � Dfðl�2Þ

i

� �
PN

i¼1 Dfðl�2Þ
i � Dfðl�2Þ

i

� � and

�ðl�1Þ
2 ¼

PN
i¼1 Dqðl�2Þ

i � Dqðl�2Þ
i

� �
PN

i¼1 Dqðl�2Þ
i � Dfðl�2Þ

i

� � :
ð26Þ

Which of �ðl�1Þ
1 and �ðl�1Þ

2 is the most efficient in decreasing E is

unknown a priori, and a common practice is to alternate

between them during optimization. In this work, we use �ðl�1Þ
1

on odd iterations and �ðl�1Þ
2 on even iterations. Finally, the

optimization terminates on the basis of the relative error on

the forces (a residual):PN
i¼1 kfðlÞi k2

� �1=2

PN
i¼1 kfð0Þi k2

� �1=2
<"r: ð27Þ

In this article (and unless mentioned otherwise), we use

"r ¼ 10�3, which provides a good compromise between accu-

racy and computation time.

3. Results

The method is validated and applied to several practical cases.

In x3.1, we describe how the uniformity of an orientation

distribution is measured. In x3.2, we analyse the method in

detail through the evolution of an orientation distribution

during optimization. In x3.3, we discuss the influence of

restraining the force calculation to the close neighbourhood of

an orientation. In x3.4, we provide several examples of

applications, including the case of symmetry and the specifi-

cation of some orientations, and we compare the results with

those of previous methods (Roşca et al., 2014; Larsen &

Schmidt, 2017).

3.1. Methodology

The uniformity of orientation distributions is analysed using

two metrics. The first metric relates to the orientation distri-

bution function (ODF), f ðqÞ, and we will focus on its standard

deviation, �f . The ODF [ f ðqÞ] is computed using a discrete

method, in which each orientation (qi) [and its symmetry

equivalents (qk
i )] is represented by a continuous Bingham

distribution (which acts as a smoothing kernel) (Morawiec,

2004). The ODF can therefore be written as

f ðqÞ ¼ 1

Nnc

XN

i¼1

Xnc

k¼1

1F1
1
2 ; 2;K
� ��1

exp wk
i

t
UKUtwk

i

� �h i
ð28Þ

with wk
i ¼ qk

i q
�1, where U is an orthonormal 4 � 4 matrix, K is

a diagonal matrix describing the shape of the distributions and

1F1 is the hypergeometric function with matrix argument

normalizing the density of the Bingham distribution. In this

work, we consider isotropic Bingham distributions of

(unidirectional) standard deviation equal to dr, as obtained

using U ¼ I4, K11 ¼ 2=d2
r and K22 ¼ K33 ¼ K44 ¼ 0. Consid-

ering dr as the standard deviation provides a level of
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Figure 2
Identification of parameter �, entering the definition of �ð0Þ [see equation
(25)], using a random distribution of 105 orientations.
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smoothing that is independent of the number of orientations

(N?).

Different orientation parameterizations can be used to

visualize the ODF. In the absence of crystal symmetry, the

homochoric parameterization (Roşca et al., 2014), xh, is used:

xh ¼ r 3
4 � � sin �ð Þ� 	1=3

; ð29Þ

which maps orientation space onto the three-dimensional ball

of radius ð3�=4Þ1=3 (as will be seen in Fig. 3; x3.2). In the

presence of crystal symmetry, it is sufficient to represent the

ODF in the fundamental region of orientation space. The

Rodrigues parameterization, xR, is used:

xR ¼ r tanð�=2Þ; ð30Þ

which maps the fundamental region of orientation space into a

convex polyhedron whose size and shape depend on the

crystal symmetry. For cubic crystal symmetry, the polyhedron

is a truncated cube, while for hexagonal crystal symmetry, the

polyhedron is a dodecagonal prism (as will be seen in Fig. 5;

x3.4). The more uniform an orientation distribution, the closer

to 1 its ODF [f ðqÞ] and the lower �f . �f has a value of 0.3 for a

typical random orientation distribution and a minimal value of

0 for a perfectly uniform orientation distribution. It should,

however, be noted that, as the ODF is computed from a finite

number of orientations, �f will never reach the minimal value

of 0. It instead attains a slightly higher ‘residual’ value that is

independent of N? (because of the chosen dependence of dr

on N?). The optimal covering in a local area should be the

body-centred cubic (b.c.c.) lattice, since this is the best known
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Figure 3
Generation of a uniform distribution of 1000 orientations (no symmetry). (a) Evolution of the energy (E) and the ODF standard deviation (�f ). The
dashed lines represent the asymptotic solutions (1000 iterations). (b) Orientation distribution functions shown on the homochoric projection ball at
iterations 0 (initial solution), 1, 2, 5, 34 (final solution) and 1000 (asymptotic solution). Note how the evolution of �f is non-monotonic (the same applies
to E), which is typical for the Barzilai–Borwein method.

covering in R
3 (Larsen & Schmidt, 2017); the corresponding

value of �f is 0.0021, which can be considered as an absolute

minimal value of �f .

The second metric is the function corresponding to the

misorientation between an arbitrary orientation and the

nearest orientation of the orientation distribution, �mðqÞ, and

we will focus on properties such as its average or maximum.

Unlike f ðqÞ, which is a fundamental and widely used metric,

�mðqÞ is relevant specifically in the context of dictionary-based

indexing. Although the two metrics are related, they are not

strictly equivalent, as f ðqÞ considers that orientations are

represented by a kernel (and therefore represent a small

region) while �mðqÞ depends only on the closest orientation.

As a result, the two metrics may not evolve in the same way, as

will be seen in the following.
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3.2. Orientation evolution during optimization

The evolution of a distribution of 1000 orientations during

optimization is illustrated in Fig. 3 (no symmetry). In Fig. 3(a),

it can be seen that the energy (E) shows a rapid decrease at the

beginning of optimization and then saturates. The energy

decreases only from 7.75 � 105 to 7.69 � 105 but, at the same

time, the ODF standard deviation (�f ) decreases significantly,

from 0.29 to 0.007. This reveals that the local arrangement of

the orientations or, more specifically, its degree of uniformity

(which is related to �f ) represents only a small fraction of the

energy (all the more that N is large). Still, minimizing the

energy appears to be very efficient in decreasing �f . Fig. 3(b)

provides the ODF at successive iterations, and it can be seen

how the ODF, which initially shows large variations, becomes

more and more uniform during optimization to eventually

reach values very close to 1. In Fig. 3, the ODF is shown only

on the surface of the homochoric region, but this should not be

considered a limitation since surface values are representative

of interior values; slice views will be provided for comparison

with other methods (see Fig. 7 in x3.4).

3.3. Influence of the local calculation of the forces

The influence of restraining the force calculation to a close

neighbourhood (as described in x2.3) on the resulting ODF

standard deviation (�f ) can be analysed. The aim is to deter-

mine how small the neighbourhood can be (minimal value of

�) while still providing a value of �f similar to the nominal

value. The procedure is as follows: distributions of 105 orien-

tations (no symmetry) are generated for increasing values of �,
and their respective ODF standard deviations (�f ) are

computed. The evolution of �f as a function of � is plotted in

Fig. 4 for two values of the residual, "r ¼ 10�3 (the default)

and "r ¼ 10�4. For both values, and as expected, �f tends to

decrease as � increases. For "r ¼ 10�3, �f becomes close to the

nominal value (and lower than 0.01) for � ’ 20. For larger

values of �, fluctuations of �f appear, which are caused by the

variations of the residual as it approaches "r (at the end of

optimization). As can be seen in Fig. 4, "r ¼ 10�4 leads to

lower values of �f (and no apparent fluctuations), albeit at the

cost of longer computations and larger values of � to approach

the nominal value. A value of � of 20 corresponds to 7500

orientations in the neighbourhood, and so restraining the

force calculation to close neighbourhoods (with � ¼ 20)

reduces the computation time for 2N? > 7500.

3.4. Practical applications

The method is first applied to the generation of uniform

distributions of 1000 orientations with cubic and hexagonal

crystal symmetries. The ODFs corresponding to the initial,

random orientation distributions and to the final, uniform

orientation distributions are shown in Fig. 5. Similarly to the

case of triclinic symmetry (Fig. 3b), the ODFs corresponding

to the uniform orientation distributions exhibit significantly

lower standard deviations (�f ). During the simulation, �f

actually decreases from 0.27 to 0.007 for cubic symmetry and

from 0.32 to 0.007 for hexagonal crystal symmetry.

The method can be applied to arbitrary numbers of orien-

tations (N). Typical computation times are reported in Table 1

for several values of N and several crystal symmetries. Fig. 6

provides the values of �f for N ranging from 102 to 106 in the

case of cubic crystal symmetry, for the present method and for

previous methods (Roşca et al., 2014; Larsen & Schmidt,

2017). It appears that the present method leads to a value of �f

of about 0.007 independently of N, which is significantly lower

than those obtained by previous methods (Roşca et al., 2014;

Larsen & Schmidt, 2017). More specifically, the method of

Roşca et al. (2014) provides relatively low values of �f only for

high values of N, but these values are still 10–20 times higher

than for other methods, while the method of Larsen &

Schmidt (2017) provides a value of 0.024 independently of N.

Fig. 6 also shows that, unlike the present method, previous

methods apply only to specific values of N [those available

online for the method of Larsen & Schmidt (2017)]. A closer

comparison can be made between the different methods by

inspecting their ODFs, as illustrated in Fig. 7 for N = 9218 [N =

9077 for Roşca et al. (2014)]. It can be seen that, unlike other

methods, the method of Roşca et al. (2014) leads to strong

research papers

J. Appl. Cryst. (2018). 51, 1162–1173 Romain Quey et al. � Nearly uniform sampling of crystal orientations 1169

Figure 4
Influence of the size of the neighbourhood (�) on the ODF standard
deviation (�f ). The dashed lines indicate the asymptotic values. A
distribution of N ¼ 105 orientations was used, with no symmetry. For
"r ¼ 10�3, the fluctuations of �f for �> 20 are due to the relatively large
variations of the residual near the termination criterion, which are in turn
due to the relatively large value of "r (10�3) and to the Barzilai–Borwein
method.

Table 1
Computation times for generating uniform distributions for several
numbers of orientations (N) and crystal symmetries.

For N 	 105, forces are computed in neighbourhoods (� = 20). Computation
times are averaged over 50 simulations (starting from different random
orientation distributions). Simulations are run on ten cores (20 threads) of an
Intel Xeon CPU E5-2660 v3 processor. Note that the computation times are
similar for all symmetries for N ¼ 106, which is a consequence of the force
computation in close neighbourhoods.

N Triclinic Cubic Hexagonal

103 3 s 20 s 13 s
104 4 min 36 min 22 min
105 17 min 45 min 31 min
106 3 h 30 min 3 h 30 min 3 h 30 min
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variations of the ODF near the surface of the fundamental

region. This results from the fact that crystal symmetry is only

taken into account a posteriori, by discarding orientations

located outside the fundamental region (Roşca et al., 2014). As

for the method of Larsen & Schmidt (2017), it is confirmed

that the ODF shows stronger variations compared to the

present method.

The different methods can also be compared in terms of the

distribution of the misorientations to the nearest orientation

[�mðqÞ], as illustrated in Fig. 8. A distribution of 262 144

orientations [259 385 orientations for the method of Roşca et

al. (2014)] with cubic crystal symmetry is considered, and the

frequency distribution of �mðqÞ was computed from the values

at 108 arbitrary orientations. It can be seen that the present

method and the method of Larsen & Schmidt (2017) generate

similar distributions, with an average value of 
0.63�, which is

lower than that of the method of Roşca et al. (2014), 0.67�.

Larger differences arise for the maximal values: 1.84� for the

method of Roşca et al. (2014), 0.99� for the method of Larsen

& Schmidt (2017) and 1.17� for the present method. As a

matter of fact, 0.2% of the values of �m(q) exceed 0.99� for the

present method, while 4.5% do so for the method of Roşca et

al. (2014). The fact that the method of Larsen & Schmidt

(2017) produces a lower maximal value of �mðqÞ (but a higher

value of �f ) can be attributed to its being specifically designed

for that purpose. Actually, the Thomson problem solved in this

work and the packing problem solved by Larsen & Schmidt

(2017) are two specializations of the generalized Thomson

problem of minimizing a Riesz energy of the form
P

i6¼j 1=ds
ij

(Dragnev et al., 2002). For the Thomson problem, s ¼ 1 and

the energy depends on the interaction between all pairs, while

for the packing problem, s ¼ 1 and only the orientation pair

with the smallest distance matters (Dragnev et al., 2002). This

explains why the present method provides better results on �f

(which depends on interactions within a neighbourhood)

while the method of Larsen & Schmidt (2017) provides better

results on the maximum value of �mðqÞ (which is local).
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Figure 5
Comparison of a random distribution (initial solution) and a uniform distribution (final solution) of 1000 orientations in the presence of crystal
symmetry. ODFs are shown in the fundamental regions of Rodrigues space. (a) Cubic crystal symmetry and (b) hexagonal crystal symmetry.

Figure 6
ODF standard deviation (�f ) for uniform orientation distributions in the
case of cubic crystal symmetry, as obtained by different methods:
cubochoric after Roşca et al. (2014), CRO after Larsen & Schmidt (2017)
and Thomson (this work). Values for a random distribution and for the
b.c.c. lattice are provided for reference. The cubochoric and CRO data
are shown by the symbols while the dashed lines are added for
visualization.
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The improvement provided by a uniform orientation

distribution (compared to a random orientation distribution)

can finally be analysed from a different perspective: instead of

determining how �f can be decreased (for a fixed N), we can

determine how N can be decreased (for a fixed �f ), as illu-

strated in Fig. 9. This corresponds to looking at how the

number of orientations can be decreased while still getting the

same ‘coverage’ of orientation space (measured by �f ). This

can be done by computing the ODFs slightly differently than

previously, using the same smoothing kernel for all values of

N. We can then analyse how �f changes as a function of N, for

random and uniform orientation distributions. In Fig. 9, it can

be seen that, in the case of cubic crystal symmetry, a uniform

distribution of 130 orientations has the same value of �f as a

random distribution of 1000 orientations.

A last application concerns the generation of a uniform

orientation distribution including prescribed orientations. This

is desirable in some applications, for example to analyse the

behaviour of specific (experimental) orientations (Quey et al.,

2012, 2015). Fig. 10 shows a distribution of 1000 orientations

among which 82 orientations were positioned along the

Xikh100i and Xikh110i orientation fibres. It can be seen that,

despite the constraints imposed by the prescribed orientations,

the final orientation distribution is as uniform as in the
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Figure 7
ODFs provided by different methods, for 
9200 orientations and cubic crystal symmetry: (a) Roşca et al. (2014) (9077 orientations), (b) Larsen &
Schmidt (2017) (9218 orientations) and (c) this work (9218 orientations). ODFs are shown as surface and slice views. Note that the colour scale has been
reduced to ½0:8; 1:2� compared to Figs. 3 and 5.
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standard case (see Fig. 7c), which indicates that the uncon-

strained orientations have adapted to the prescribed orienta-

tions during optimization.

4. Conclusion

By transposing the well known Thomson problem for the

equilibrium distribution of electrons on a unit sphere to

orientations represented as unit quaternions, we have devised

a relatively simple, versatile and efficient method for gener-

ating uniform orientation distributions. The key points of the

method are the following:

(i) Owing to the fact that three-dimensional orientations

represented as unit quaternions are defined on S
3 (not in its

embedding space, H), they were considered to interact along

its geodesics, so that the forces at orientations can be elegantly

written in the tangent space at those orientations. This both

allows a simple calculation and avoids biases, especially for

small numbers of orientations.

(ii) The forces at orientations, being tangential to S
3,

provide evolution paths and rates (for the orientations)

toward states of lower energy, which was used in a conven-

tional gradient-descent optimization. Although this corre-

sponds to local optimization and does not ensure a global

minimum, the resulting orientation distributions are highly

uniform.

(iii) In the exact formulation, the force at an orientation

depends on its interaction with all other orientations, so that a

large number of orientations (N) leads to very high compu-

tation times [OðN2)]. However, we showed that for more than

about 7500 orientations the forces can be computed in close

neighbourhoods of the orientations, as forces mostly depend

on short-distance interactions. This significantly reduces

computation time [OðN log NÞ], so that large values of N can

be used (e.g. 106).

(iv) Crystal symmetry can be included naturally, by repre-

senting each orientation by all its symmetrically equivalent

quaternions. Similarly, orientations that are desired in the

distribution can be prescribed.

(v) An efficient resolution and implementation enables one

to generate uniform distributions of as many as 106
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Figure 9
Comparison of the orientation space coverages (measured by �f )
obtained for random and uniform orientation distributions, in the case
of cubic crystal symmetry. A fixed smoothing kernel is used (which
corresponds to the nominal kernel for 1000 orientations). The dashed
lines indicate how a uniform orientation distribution of 130 orientations
provides the same orientation space coverage as a random orientation
distribution of 1000 orientations.

Figure 10
Generation of a uniform orientation distribution in the presence of prescribed orientations. Case of 1000 orientations among which 82 are prescribed,
which are located along the Xikh100i and Xikh110i fibres. The prescribed orientations are shown by blue dots and the colour field represents the ODF.
Cubic crystal symmetry is considered. ODFs are shown as surface and slice views. Note that the ODF is as uniform as in the standard case (Fig. 5a).

Figure 8
Frequency distributions of the misorientations to the nearest orientation
[�mðqÞ] in the case of cubic crystal symmetry, as obtained by different
methods: cubochoric after Roşca et al. (2014), CRO after Larsen &
Schmidt (2017) and Thomson (this work). N = 259 385 for cubochoric
(after Roşca et al., 2014), and N = 262 144 for CRO (after Larsen &
Schmidt, 2017) and Thomson (this work). The average values are 0.66,
0.63 and 0.63� for the three methods, respectively, and the maximal values
are 1.84 (beyond the limits shown), 0.99 and 1.17� for the three methods,
respectively. The cubochoric distribution has been scaled to correct for its
slightly smaller number of orientations.
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orientations within reasonable computation time. A parallel

(MPI) implementation could be used to reduce computation

time further.

The uniformity of the orientation distributions was analysed

using two metrics: the orientation distribution function [ f ðqÞ]
and the distribution of the misorientations to the nearest

orientation [�mðqÞ], both of which are of practical importance

for crystalline materials. The present method provides highly

uniform orientation distributions in terms of the standard

deviation of f ðqÞ (�f ) and the average value of �mðqÞ. Uniform

distributions for any number of orientations (from only a few

to 106 or more) and any crystal symmetry can be generated

and used routinely.
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