
HAL Id: hal-01850582
https://hal.science/hal-01850582

Submitted on 27 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Frequency-domain data-driven control design in the
Loewner framework

Pauline Kergus, Charles Poussot-Vassal, Fabrice Demourant, S. Formentin

To cite this version:
Pauline Kergus, Charles Poussot-Vassal, Fabrice Demourant, S. Formentin. Frequency-domain data-
driven control design in the Loewner framework. IFAC World Congress, 2017, Toulouse, France.
pp.2095-2100, �10.1016/j.ifacol.2017.08.531�. �hal-01850582�

https://hal.science/hal-01850582
https://hal.archives-ouvertes.fr


Frequency-domain data-driven control
design in the Loewner framework

P. Kergus ∗ C. Poussot-Vassal ∗∗ F. Demourant ∗∗

S. Formentin ∗∗∗

∗ ISAE & ONERA, Toulouse, France, pauline.kergus@onera.fr
∗∗ONERA, 2 avenue Edouard Belin, 31000 Toulouse, France
∗∗∗Dipartimento di Elettronica, Informazione e Biongegneria,
Politecnico di Milano, via Ponzio 34/5, 21033 Milano, Italy

Abstract: In this article, a direct data-driven design method, based on frequency-domain data,
is proposed. The identification of the plant is skipped and the controller is designed directly from
the measurements. The identification task is reported on a fixed-order controller using for the
first time the Loewner approach, known for model approximation and reduction. The method
is validated on two numerical examples including the control of an industrial hydroelectric
generation plant, modelled by irrational equations.
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1. INTRODUCTION

In many control engineering applications, no mathematical
description of the plant is available or easily accessible.
Given some input-output data collected on a system, one
can either identify a model of the plant and then, design
a controller using any kind of model based technique
(indirect methods), or directly use the experimental data
to design a controller (direct methods).

In this paper, we are interested in the latter case. Indeed,
direct methods are particularly interesting when a model
of the system would be too time-consuming, too complex
or too costly to obtain. Another application is for indus-
trial processes which tend to exhibit various parametric
variations. Modelling and identifying these behaviors and
taking them into account in the controller design is a
difficult task which is avoided using a direct data-based
method. Moreover, it is worth noting that a model is
always a compromise between complexity and reliability,
and a major difficulty is to determine which parts of the
dynamics have to be considered. Furthermore, the iden-
tification can result in a complex structure for the plant,
and consequently for the controller, and a reduction step
(for the controller) might be needed, which is a complex
task (see Antoulas et al. (2015)). Of course, authors are
conscious that, with direct methods, the identification
problem is shifted to the control one, and the problem
is then to know which parts of the dynamics are to be
controlled. However, since the selection of the controller
is done directly from the experimental data, direct data-
driven methods seem less conservative, and not sensitive to
modelling errors. Moreover, they are less time-consuming
since the modelling and/or identification steps are skipped
and the resulting control law is tailored to the actual
system. However, authors are conscious that an advantage
of indirect methods over direct ones is that the specifica-
tions can be more advanced and that the model can be

used for other purpose (stability and robustness analysis,
simulation, etc...).

Numerous direct methods, also referred to as ”model free”
control, have been proposed to improve the results and
try to achieve the best possible performance without using
any plant model. One of the first direct methods relies the
unfalsified control concept, see Safonov and Tsao (1994).
Another one is the Iterative Feedback Tuning (IFT, Hjal-
marsson (2002)) which finds the controller parameters
thanks to an adaptative and iterative control algorithm
based on explicit criterion minimization. Note that Kam-
mer introduced in Kammer et al. (2000) a frequency-
domain variant of the IFT. Among all these techniques,
the Virtual Reference Feedback Tuning (VRFT) is a direct
method that has been introduced in Campi et al. (2002) in
its original version. It consists in minimizing a performance
criterion, which is a convex function for an a priori fixed
poles selection. It finds the controller (in a class a priori
selected) so that the difference between the closed-loop
and an objective transfer is minimized. See also Formentin
et al. (2013) for an application of the VRFT and Formentin
et al. (2014) for a comparison with indirect methods. In an
applicative set-up, direct methods such as the VRFT are
really useful when a quick and low-cost controller has to
be synthesized. One of the main problem is that selecting
a class of controllers, as it is required in the methods
mentioned above, can be particularly difficult.

In this article, a one shot direct method using frequency-
domain data is proposed. In this approach, the user does
not have to choose a structure for the controller, which
makes it really easy to use. It can be applied to MIMO
plants and it is suitable for large scale problems. As the
VRFT, it is a model reference-based control technique: the
specifications are expressed as a reference transfer function
which represents the desired behavior in closed-loop. The
problem considered (see Figure 1) is to design a controller
for an unknown plant P on the basis of nu input-ny output,
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Fig. 1. Problem formulation: M is the reference transfer,
P is the plant and K the controller to be identified

respectively denoted u and y, measurement data without
identifying a dynamical model of the plant.

The goal is to identify a controller K̂ that gives a closed-
loop as close as possible to the reference transfer M if
inserted in the closed-loop. The measurements can be
given as a data-set {u(tit), y(tit)}, it = 1 . . . Nt, where
u(tit) ∈ Rnu and y(tit) ∈ Rny , or directly as samples of the
frequency response of the plant {ωif ,Φif }, if = 1 . . . Nf ,
where Φif ∈ Cny×nu and ωif ∈ R+.

The closed-loop objective transfer M and the open-loop
experimental data of the plant are used to get the fre-
quency response of the “ideal” controller denoted K(ıωif )
for a limited frozen set of frequency values. This controller
is “ideal” in sense that it would give exactly the objective
transfer function M if inserted in the closed-loop. Then,
the “ideal” controller, known over a limited data samples,
will be approximated by K̂, a linear time-invariant system
defined by the following generalized state-space form:

K̂ :

{
Eẋ(t) = Ax(t) +Be(t)
u(t) = Cx(t) +De(t)

, (1)

where x(t) ∈ Rn the state vector, e(t) = r∗(t)−y(t) ∈ Rny
the input vector of the controller, which is the tracking
error, u(t) ∈ Rnu the output vector (i.e. the control signal)
and E,A ∈ Rn×n, B ∈ Rn×ny , C ∈ Rnu×n and D ∈
Rnu×ny . Its associated transfer function is K̂(s) = C(sE−
A)−1B +D.

The direct data-driven control design technique proposed
in this paper relies on two steps: (i) the obtention of an
“ideal” frequency response of the controller K(ıωif ) and

(ii) its identification K̂ through the Loewner framework in
the frequency domain. As said earlier, this method, called
L-DDC (Loewner Data-Driven Control), does not require
any a priori selection of a class of controllers, the user does
not have to determine a priori the poles which is a long
and difficult task that do not guarantee the selected poles
optimality. Moreover, it is applicable to MIMO systems, a
single set of input-output measurements is needed and, as
shown in the rest of the paper, is easy to apply.

Let us denote ı the complex variable and † the Moore-
Penrose inverse. s ∈ C denotes the complex conjugate
of s ∈ C. The (A,E) pencil denotes the generalized
eigenvalues of A− λE. F(.) denotes the Fourier operator.

This article is organized in five sections. Section 2 in-
troduces the Loewner framework which is the frequency-
based interpolation technique used in this work and which
plays a pivotal role in the proposed approach. Then, the
proposed method to design a controller on the basis of
frequency-domain data is exposed in Section 3. Finally,
two applications are considered in Section 4. The first one
is an academical example concerning a flexible transmis-

sion. The second one consists in designing a controller
for an open-channel hydraulic system described by an
irrational transfer function. Conclusions and outlooks are
finally given in Section 5.

2. PRELIMINARY RESULTS: LOEWNER-BASED
IDENTIFICATION

The Loewner approach, exposed in Mayo and Antoulas
(2007), is an interpolatory method initially used for model
approximation and reduction. In its original version, it
constructs a descriptor model in state-space form directly
from the frequency-domain data so that the model per-
forms a barycentric Lagrange interpolation (see Ionita
(2013) for further details).

This model can be reduced to balance between its com-
plexity and its accuracy. In order to construct such a
realization, the following inputs are required: (i) left in-
terpolation point (µj)j=1...q ∈ C and left tangential direc-
tions (lj)j=1...q ∈ Cny , and (ii) right interpolation points
(λi)i=1...k and right tangential directions (ri)i=1...k ∈ Cnu .
The following vectors are then defined from the input data:

vTj = lTj K(µj) ∀j = 1 . . . q wi = K(λi)ri ∀i = 1 . . . k .

The interpolation points correspond to the data of the
model to be identified, which are, in our approach, the
samples of the frequency response of the “ideal” controller
{ωif ,K(ıωif )}, if = 1 . . . Nf . The computation of the
samples K(ıωif ) and the separation of the data between
left and right interpolation points, respectively (µj)j=1...q

and (λi)i=1...k, are explained in Section 3. Note that in case
of a SISO system, the tangential directions (lj)j=1...q and
(ri)i=1...k are useless and can be fixed to 1. In the Loewner

approach, one seek for a model K̂ that interpolates the

data as follows:

{
lTj K̂(µj) = lTj K(µj) = vTj ∀j = 1 . . . q

K̂(λi)ri = K(λi)ri = wi ∀i = 1 . . . k
,

where K represents the ideal controller (Section 3 explains
how to obtain samples of its frequency response for a given
set of frequency values).

Based on the (µj , l
T
j ,v

T
j ) and (λi, ri,wi) data, one can

construct the Loewner and shifted Loewner matrices L
and Lσ as follows for all j = 1 . . . q and i = 1 . . . k:

[L]j,i =
vTj ri − lTj wi

µj − λi
, [Lσ]j,i =

µjv
T
j ri − λilTj wi

µi − λj
. (2)

As explained in Mayo and Antoulas (2007), one of the
main advantages of the Loewner framework is that the
minimal Mc Millan order of the interpolating model K̂ can
be obtained by evaluating r = rank[L,Lσ]. The matrices

of the model K̂ are then computed as follows :

E = −Y ∗LX , A = −Y ∗LσX , B = Y ∗V , C = WX ,
(3)

where X ∈ Ck×r and Y ∈ Cq×r are two matrices
determined by the singular value decomposition of the
Loewner pencil (Lσ,L) as follows:

[L,Lσ] = Y ΣlX̃∗ ,

[
L
Lσ

]
= Ỹ ΣrX

∗ , (4)

where Σl,Σr ∈ Rr×r.

Computing ν = rank(L) allows to know whether the
model is strictly proper rational or not. If not, a D-term



or a polynomial term is added. More details are available
in Antoulas et al. (2015).

In addition to determining the smallest exact interpolat-
ing model, the Loewner framework allows to control the
complexity of the identified model: by keeping the n largest
singular values of the decomposition of the Loewner pencil
only (4), the obtained realization is a n-th order one. In
our case, n is the objective order for the controller (n ≤ r).
Usually, the Loewner framework presented here is used
for model order reduction, see Dalmas et al. (2016) for
an industrial application. In the context of the proposed
data-driven controller design, the Loewner framework will
be used for the first time to identify directly a controller of
a limited complexity. The proposed procedure is detailed
in the next section.

3. MAIN CONTRIBUTIONS: LOEWNER BASED
DATA-DRIVEN CONTROL DESIGN

As introduced above, we propose a model reference control
technique using frequency-domain data. The proposed
procedure is indicated in the following L-DDC algorithm
(Algorithm 1).

The idea is to use the interconnection of Figure 1 and
to exploit experimental data {ωif ,Φif }, if = 1 . . . Nf to
determine the frequency response of the “ideal” controller
K(ıωif ). The “ideal” controller is the one which would
allow to get exactly the desired closed-loop transfer mate-
rialized by the functionM in Figure 1. Then, we propose to
identify the controller using the Loewner framework which
principles are recalled in Section 2.

Our approach does not require to select a class of con-
trollers a priori, contrary to the VRFT which allows to
tune controllers with a prescribed structure. This is actu-
ally, from a practical viewpoint, one of the main strengths
of our approach and is due to the interpolatory property
of the Loewner framework.

As in the classic VRFT method, the performance objective
is fixed by a transfer function M which represents the
dynamic one wants to achieve in closed-loop.

If a time data-set {u(tit), y(tit)}, it = 1 . . . Nt, of input-
output measurements of the plant is available, a Fourier
transform of the input and output signals is done and
samples of the plant frequency response are estimated:

Φif =
Y (ıωif )

U(ıωif ) =
F(y(tit ))

F(u(tit ))
, ∀if = 1 . . . Nf . Obviously, the

signal u should sufficiently excite the system to get rich-
enough information in terms of frequencies.

With reference to Algorithm 1, first step (1) aims at
obtaining the frequency response of the “ideal” con-
troller K(ıωif ) at given frequencies (ıωif )if=1...Nf . Then,
steps (2) to (6) consist in identifying the controller from
the “ideal” frequency response computed above. This is
achieved through the Loewner framework. The data are
equally separated between left and right interpolation
points. In Ionita (2013), the author recommends to al-
ternate between left and right to avoid rank loss in the
Cauchy-like Loewner matrix L. Let us consider the follow-

ing shift selection: ıω =
[
µ1 λ1 . . . µNf

2

λNf
2

]
. Finally, to

deal with real arithmetic only, the complex conjugate val-
ues are considered, ensuring L realness (see Ionita (2013)),
so the left and right interpolation points are given by:

µ =
[
µ1 µ1 . . . µNf

2

µNf
2

]
, λ =

[
λ1 λ1 . . . λNf

2

λNf
2

]
,

where q = k = Nf . Note that K(−ıω) = K(ıω) (in
order to compute the vectors vTj ∀j = 1 . . . q = Nf and
wi ∀i = 1 . . . k = Nf ).

Concerning the tangential directions, if the system is SISO,
the tangential directions are fixed to 1. In a multivariable
case, the choice of the tangential directions is still an open
problem and it could be a way to improve our method in
the future. If not choosing them randomly, an idea is to
spread the directions on the unit sphere. See Ionita (2013)
for further details on these problems.
Data:
• Samples of the frequency response of the plant
{ωif ,Φif }, if = 1 . . . Nf . Note that q = k = Nf .

• Objective order n for the controller
• Reference transfer function M

Solution:
(1) Compute the samples of the frequency response of the

“ideal” controller as follows:∀ if = 1 . . . Nf ,

K(ıωif ) = (Φif − ΦifM(ıωif ))†M(ıωif ).

(2) Divide the samples between left and right interpo-
lation points, respectively (µj)j=1...q and (λi)i=1...k.
Choose the left and right tangential directions, re-
spectively (lj)j=1...q ∈ Cny and (ri)i=1...k ∈ Cnu . See
the comments above for the choice of the repartition
and the directions.

(3) Compute the Loewner pencil (L, Lσ) following the
definitions of (2).

(4) Compute the dimension of the minimal representa-
tion r = rank[L,Lσ].

(5) Perform the Singular Value Decomposition of the
Loewner pencil as in (4). If n ≤ r, only the n largest
singular values are kept. Otherwise, the controller will
be of order r.

(6) Compute the descriptor controller model as indicated
by (3) to obtain the matrices E ∈ Rn×n, A ∈ Rn×n,
B ∈ Rn×ny , C ∈ Rnu×n and D ∈ Rnu×ny . The
controller K̂ is then given as in (1).

Algorithm 1. L-DDC algorithm

Remark 1. An optional filtering of the frequency-domain
data ωif , if = 1 . . . Nf , can be applied before or after
computing the ideal frequency response at step (1). We
have not proposed any filtering option yet, this would be
an interesting outlook for further research.

Remark 2. Note that the complexity of the L-DDC algo-
rithm resides in the Singular Value Decomposition com-
puted at step (5) of the algorithm. Consequently, it is well
tailored to large scale problems (i.e. with a large number
of data), and there is no limitations to MIMO cases, see
Demourant and Poussot-Vassal (2016) for a multivariable
example.

4. NUMERICAL APPLICATIONS

In order to illustrate the main features of the L-DDC
algorithm, simulation examples are presented. The first
one is a simple academical example while the second one



is an industrial simulation one (it consists in an application
to an open channel flow described by an irrational transfer
function).

4.1 Flexible transmission system

Here, the considered plant is the well-known flexible trans-
mission system. This example has been used in Campi
et al. (2002) and in Hjalmarsson et al. (1995) as a bench-
mark for the presentation of the VRFT using time-domain
data. The system consists of three horizontal pulleys con-
nected by two elastic belts (see Campi et al. (2002)).

The system input is the angular position of the first pulley
and its output is the angular position of the third pulley.
The control objective is to pilot the angular position of
the third pulley. The behavior of the plant is described
by the following discrete-time linear transfer function

(using a sampling time Ts = 0.05s): P (z) = z−3B(z)
A(z) ,

where B(z) = 0.28261 + 0.50666z−1 and A(z) = 1 −
1.41833z−1 + 1.58939z−2− 1.31608z−3 + 0.88642z−4. The
control objective is defined, as in Campi et al. (2002),
by the following closed-loop reference transfer function:

M(z) = z−3(1−α)2

(1−αz−1)2 , with α = e−Tsω and ω = 10 the desired

bandwidth.

For the VRFT technique, the selected class of con-
trollers proposed in Campi et al. (2002) is defined

as KV RFT (z, ϑ) = ϑ0+ϑ1z
−1+ϑ2z

−2+ϑ3z
−3+ϑ4z

−4+ϑ5z
−5

1−z−1 ,
where ϑi, ı = 1 . . . 5 are the decision variables. In
the noise free simulation case, the parameters found
by the VRFT are (see Campi et al. (2002)) ϑ2 =

[0.32905,−0.59771, 0.70728,−0.64010, 0.46499,−0.11763]
T
.

The input signal used for the simulation was a linear
swept-frequency signal from f = 1Hz to f = 500Hz
(Nf = 750). Now, to stick to the L-DDC approach,
a Fourier transform of the input-output signals allows
us to compute samples of the frequency response of the

plant: Φif =
Y (ıωif )

U(ıωif ) , ∀if = 1 . . . Nf . Then, following the

L-DDC algorithm, the frequency response of the ideal
controller is computed and data are shown as blue dots in

Figure 2: ∀if = 1 . . . Nf , K(ıωif ) =
M(ıωif )

Φif−Φif (ıωif ) .

The model of the 5-th order controller obtained by the L-
DDC algorithm is visible in Figure 2. First, note that the
frequency response of the ideal controller is really similar
to the VRFT controller one, which allows to get quite
exactly the reference transfer in closed-loop.

The L-DDC controller, obtained by applying the algo-
rithm of Section 3, fits the data of the ideal controller
with a 5-th order (same order as the VRFT controller).
Note that the minimal order giving an exact interpolation
of the data is r = 72. However, the singular values of
the Loewner matrix L, given in Figure 3, show that the
five first singular value are enough to describe the con-
troller. The Bode magnitude plots of the plant P and the
reference model M are shown in Figure 4 (solid red and
solid blue respectively). The closed-loops obtained by the
two different controllers are also visible in Figure 4. The
VRFT controller allows to get a similar closed-loop to the
reference transfer. However the L-DDC controller gives
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a closed-loop that almost perfectly match the objective
function M , with the exact same complexity.



The fact that the L-DDC controller allows a better
fit of the reference transfer can be explained by the
fact that the user does not have to select a structure a
priori, it is directly identified from the “ideal” frequency
response. The absence of a user-defined structure adds
degrees of freedom to the problem that are used toward
the realization of the objective transfer function M . Not
choosing a structure for the controller is a strength of our
method and makes it really appealing in practice.

4.2 Application to an open-channel flow for hydroelectricity
(MISO case)

Now let us move to an industrial problem provided by
the French power producer EDF (Electricité de France).
EDF uses water resources to generate green energy with
run-of-the-river power plants. They rely on open-channel
hydraulic systems that are non-linear and which dynamic
depends on the operating point. Here, for simplicity we
will consider one single operating point only.

Their physical model requires partial differential equations
(namely Saint-Venant equations). In Dalmas et al. (2016),
a new irrational transfer function is proposed for open
channels to represent the level-to-flow variations for any
operating point. It is the solution of Saint-Venant equa-
tions under many assumptions. The system has two inputs,
the entering and the outgoing flows qe and qs, and one
output, the water depth h. The transfer is given by:

h(x, s,Q0) = Ge(x, s,Q0)qe(s) +Gs(x, s,Q0)qs(s)

= P (x, s,Q0)

[
qe
qs

]
,

where

Ge(x, s,Q0)=
λ1(s)eλ2(s)L+λ1(s)x − λ2(s)eλ1(s)L+λ2(s)x

B0s(eλ1(s)L − eλ2(s)L)

Gs(x, s,Q0)=
λ1(s)eλ1(s)x − λ2(s)eλ2(s)x

B0s(eλ1(s)L − eλ2(s)L)

where x is the position of the measurement point on
the channel, Q0 the nominal flow, L the length of the
open channel. B0, λ1(s) and λ2(s) depend on the canal
configuration and the nominal flow (see Dalmas et al.
(2016)). The system, which dynamic is visible in Figure
5, is extremely slow, has a delay behavior and a pole in
limit of stability. Moreover, it has an infinite number of
poles since the transfer function is irrational.

The system have been approximated in Dalmas et al.
(2016) by a 21-st order rational transfer function depend-
ing on the nominal flow with input time delays: τe ' 500s
and τs ' 1500s, on qe and qs respectively. This approxi-
mation is shown in Figure 5 (dashed red).

The objective is to stabilize the system and to obtain a
faster dynamic. The reference closed-loop M is chosen to
be a second order continuous transfer function: M(s) =

1

1+ 2ξ
ω0
s+ s2

ω2
0

, with ω0 = 10−5rad.s−1 and ξ = 1. In this

example, the frequency approach is interesting since the
system is represented by an irrational transfer function.
Therefore, one cannot have a time-domain simulation.
However we still can estimate samples of the frequency
response of the system {ωif ,Φif }, if = 1 . . . Nf , from
which the ideal controller’s frequency response can be
deduced.

10-4 10-2 100

Pulsations (rad/s)

-160

-150

-140

-130

-120

-110

-100

G
ai

n 
(d

B
)

From qe

10-4 10-2 100

Pulsations (rad/s)

-170

-160

-150

-140

-130

-120

-110

-100

G
ai

n 
(d

B
)

From qs

Original transfer
Model
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imation obtained by Dalmas et al. (2016) in dashed
red.
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Fig. 6. L-DDC controller synthesized of order 2 (dashed
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the ideal frequency response (red dots).

The “ideal” controller K(ıωif ), which exactly provides the
desired closed-loop behavior dictated by M when placed
in the closed-loop, is obtained as follows (step (1) of the
L-DDC algorithm):

∀if = 1 . . . Nf , K(ıωif ) = (Φif −M(ıωif )Φif )†M(ıωif )

The samples of the frequency response Φif = P (ıωif ), if =
1 . . . Nf = 500 are extracted from the irrational transfer
function P . Note that the Moore-Penrose inverse † is used
because it is no longer a SISO case. Therefore, the pseudo-
inverse should be employed.

The result of the identification step is given in Figure 6.
The mallest order giving an exact interpolating model for
the considered data is r = rank[L,Lσ] = 215. Even if a
controller with an higher order would be more accurate in
terms of fitting the ideal frequency response, the second
order controller K̂, n = 2, shown in Figure 6, which is an
approximation of the ideal controller, should be sufficient
to obtain good performances.
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Since we had no access to the EDF simulator, the 21-st
order rational transfer function of Dalmas et al. (2016)
is used to simulate the closed-loop with the 2-nd order
controller obtained by the L-DDC. The results are shown
in Figure 7. The closed-loop dynamic is similar to the
objective behaviour. Note that the command signal (not
shown here for space limitations) is reasonable, the max-
imum flow variation is around 3m3.s−1, which is in the
acceptable range for this application with a controller of
order 2. In this case, the L-DDC method is appealing
since it does not require to simulate the complex system
described by an irrational transfer function to obtain time-
domain data. Only samples of the frequency response of
the plant are needed, which can be estimated directly
from the irrational transfer function. Moreover, one should
notice that controlling such an infinite order model is
also quite challenging even for model-based methods. A
perspective is to try this controller on the EDF simulator
instead of using the approximate model to validate the
performances.

5. CONCLUSION AND DISCUSSION

In this paper, the L-DDC (Loewner Data-Driven Con-
trol), which is a direct data-driven method involving
frequency-domain data, has been proposed. It is a model
reference technique which specifications are imposed eas-
ily through a reference transfer function representing the
desired closed-loop behavior. Despite its simplicity, the L-
DDC approach seems to provide good performances and,
thanks to the Loewner framework, a set of interesting
properties.

First, the frequency response of the “ideal” controller is
computed thanks to frequency-domain data from the plant
and the reference transfer. This controller is called “ideal”
because it would give exactly the objective if inserted in
the closed-loop. Then, the Loewner framework is used to
identify the controller on the basis of this “ideal” frequency
response. The Loewner framework provides a nice bundle
of properties we pretend to exploit in the future of this
work (such as the rank, the interpolary features or the
potential structuration of the controller for example).

The main advantage of the L-DDC method relies on its
simplicity, the user does not have to choose a structure for

the controller, only the order, which becomes a tunable pa-
rameter allowing to find a compromise between complexity
and reliability. This technique is appealing for engineers
for applications when a controller should be synthesized
quickly and for which it would be too costly or too complex
to identify a model. It is a one shot method and the
obtained controller is tailored to the actual system. It can
be applied to MIMO plants and it is suitable for large scale
problems since the computational cost is low. The use of
more properties of the Loewner framework is promising.
However, the L-DDC technique, as other direct methods,
does not allow the use of model-based analysis of stability
and robustness and further research will address this point.
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