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The two-dimensional and time-periodic wake flows produced by a pitching foil are investigated
numerically for a fixed flapping amplitude. As the flapping frequency is increased, three regimes
are identified in the time-marching non-linear simulations. The first regime is characterised by non-
deviated wake flows with zero time-averaged lift. In the second regime, the wake flow is slightly
deviated from the streamwise direction and the time-averaged lift is slightly positive or negative.
The third regime is characterised by larger deviations of the wake, associated with larger values of
both the time-averaged lift and the thrust. The transition from the first to the second regime is
examined by performing a Floquet stability analysis of the non-deviated wake. A specific method
is introduced to compute the time-periodic, non-deviated wake when it is unstable. It is found that
one synchronous anti-symmetric mode becomes unstable at the critical frequency where deviation
occurs. Investigation of its instantaneous and time-averaged characteristics show that it acts as a
displacement mode translating the non-deviated wake away from the streamwise direction. Finally,
it is demonstrated that the transition from the second to the third regime is linked to non-linear
effects that amplify both anti-symmetric and symmetric perturbations around the foil.

Keywords: flapping foil, spatio-temporal symmetry, Floquet stability

I. INTRODUCTION

The locomotion of living animals such as fish and birds
is a source of inspiration for researchers and engineers
designing underwater or aerial vehicles. By mimicking
the kinematics of insect wings, they expect that flapping-
based Micro Air Vehicles will benefit from the amazing
capabilities of insects’ flight: vertical take-off, hovering
and slow-forward flight, and low-acoustic signature [1–
3].

The aerodynamics of an insect’s flapping wings is
very complex, not only because the kinematics of the
wing is highly unsteady and three-dimensional [4, 5],
but also because the surrounding flow is described by
the non-linear Navier-Stokes equations. Consequently,
even when the kinematics of a two-dimensional wing is
a purely harmonic two-dimensional pitching or heaving
motion, the periodic wake-flow can spontaneously be-
come three-dimensional [6–8]. Various two-dimensional
periodic flow-patterns have also been observed in the
wake of the wing [9],[10], depending on the flapping fre-
quency and amplitude. For small values of amplitude
and frequency, the classic Bénard-Von Karman vortex
street is observed in the wake and the aerodynamic force
exerted on the wing is resistive (drag force). For high
values, a reversed Bénard-Von Karman vortex street is
observed in the wake and the aerodynamic force exerted
on the wing is propulsive (thrust force). For intermedi-
ate values, many other wake patterns have been observed
experimentally [9, 11] and numerically [12] (see [10] for
a detailed classification). The present paper investigates

one of the periodic wake flow-patterns, characterised by
the mean deviation of the reverse Bénard-Von Karman
vortex street from the streamwise direction.

To our knowledge, the first experimental observation
of an asymmetric pattern in the wake of pitching wings
was made by Bratt [13]. In this case, the wake-flow
breaks the spatio-temporal symmetry of the wing
kinematics. Later on, Jones et al. investigated experi-
mentally [14] and numerically [15] the deviated reverse
Bénard-Von Karman vortex street in the wake of a
heaving foil. Results of the two-dimensional numerical
simulations compare well with experimental results.
Interestingly, both upward and downward deviation
of the wake have been reported for the same values
of flapping frequency and amplitude. The deviation
direction was shown to depend on the initial flapping
conditions [16, 17]. Zheng et al. [18] observed that
the deviation’s direction results from a competition
between the first three vortices that are emitted by
the foil. The deviation of the propulsive wake behind
a pitching wing was investigated experimentally by
Godoy-Diana et al. [19]. Using only two-dimensional
measurements of the velocity field behind the wing,
they identified the region of asymmetric wake in the
amplitude and frequency parameter space. Later [20],
they proposed a criterion based on the relation between
the experimentally determined phase velocity of the
vortex street and an idealized self-advection velocity
of two consecutive counter-rotating vortices in the
near-wake. The disappearance of asymmetric wakes for
low-flexibility pitching foils was first investigated by
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Marais et al. [21] and then by Zhu et al. [22], who also
showed that highly-flexible pitching foils can instead
enhance the deviation. Experimental investigations of
the wake deviation behind heaving wings were performed
by Cleaver et al. [23–25]. Using direct measurements
of the aerodynamics forces, they reported that the
deviation was associated with high lift production. They
also showed the deviation occurs through a supercritical
bifurcation by obtaining the same results for increasing
or decreasing flapping frequencies without discontinuity.

It should be noted that symmetry-breaking bifurca-
tions also exist in the related problem of oscillating ob-
jects in a quiescent fluid. Experimental [26] and numeri-
cal [27, 28] observations have shown that bodies of differ-
ent shape oscillating vertically in a symmetrical way can
create a non-symmetric flow, leading to a non-zero mean
horizontal force. If the object is free to move in the hori-
zontal direction, this force can set the object into motion
with a non-zero mean velocity in either the left or right di-
rection. For the simplest case of a two-dimensional cylin-
der, Elston et al. [29, 30] performed a Floquet stability
analysis of the periodic, symmetric flow. They showed
that the symmetry-breaking occurring in the flow is ef-
fectively due to the onset of a linear mode which breaks
the spatial, left-right mirror symmetry of the base flow.

In the present paper, it is proposed to apply a similar
stability approach to explain the deviation of the wake
of a flapping foil. Unlike in the case of objects oscillating
in a quiescent fluid discussed in the previous paragraph,
the symmetry which is broken by the bifurcation is
not only spatial but spatio-temporal. Namely, in the
non-deviated Bénard-Von Karman vortex street before
the bifurcation, the half-period corresponding to a
downward stroke is the mirror image of the half-period
corresponding to an upward stroke. Thus, a difficulty
lies in the computation of this time-periodic base flow in
unstable cases. A review of methods to compute unsta-
ble base flows highlights several approaches. In the case
of spatial symmetries as in the work of Elston et al., one
can impose the appropriate boundary conditions on the
symmetry axis. However, in the case of spatio-temporal
symmetry, the corresponding boundary conditions are
unknown. When the base flow is stationary, one can
use the selective frequency damping (SFD) method [31]
to filter unstable temporal frequencies. None of these
approaches is directly applicable to the present case.
An innovative method was therefore designed for this
purpose. The method is related to the SFD in the sense
it is used to damp the component of the time-periodic
base flow that breaks the spatio-temporal symmetry.

The objective of the present study is to investigate
numerically the deviation of the propulsive wake be-
hind a pitching wing, not only by using two-dimensional
unsteady non-linear simulations, but also by perform-
ing linear stability analysis of the time-periodic non-
deviated wake flow. Section II describes the flow con-

figuration and results of unsteady non-linear simula-
tions. They are performed for fixed flapping ampli-
tude and a large range of flapping frequencies, so as
to identify non-deviated, weakly deviated and strongly
deviated wake-flow regimes. The linear stability anal-
ysis of the propulsive wake flow is presented in section
III. Section III A introduces the new ”flow symmetry
preserving” method used to compute the time-periodic
non-deviated flow above the critical frequency. Section
III B presents the Floquet stability analysis of the non-
deviated wake-flows and details linear results obtained
around the critical flapping frequency. Section IV inves-
tigates the non-linear evolution of time-periodic pertur-
bations. A decomposition of the non-linear perturbation
into its spatio-temporal symmetric and anti-symmetric
components is introduced in this section to understand
better the occurrence of strongly deviated wakes for the
largest flapping frequencies.

II. UNSTEADY NON-LINEAR SIMULATIONS

The flow around a foil immersed in a fluid of viscosity
ν with an incoming uniform velocity U0 is investigated.
The geometry of the foil, shown in Figure 1, is similar
to the one used in experimental studies [19, 20]. The
leading edge of the foil is a half-cylinder of diameter D,
its central part has the form of a triangle which is closed
at the trailing edge of the foil by a smaller half-cylinder
of diameter d. The ratio of the cylinder diameters is
fixed to D/d = 20 and the chord-to-diameter aspect ra-
tio is c/D = 4. Hereafter, all the variables are made
non-dimensional using D and U0 as characteristic length
and velocity. As the flow is incompressible, the Reynolds
number Re = U0D/ν is the unique flow control param-
eter, which is fixed to Re = 255 for the entire study.
A periodic pitching motion of the foil is imposed along
the z-axis located at the center of the large half-cylinder.
The imposed flapping rotation follows the sinusoidal law

θ(t) = θmsin(2πft) (1)

where f is the non-dimensional flapping frequency, T =
1/f the flapping period and θm is the maximal rotational
angle. The non-dimensional (peak-to-peak) flapping am-
plitude A = 2(c − D/2)sin(θm) = 1.07 is fixed accord-
ingly. In the following, the flapping frequency f will be
varied in the range 0 ≤ f ≤ 0.5.

A. Numerical model and method

Following Mougin et al. [32], the Navier-Stokes equa-
tions are written in a non-inertial frame of reference
(eX , eY ), depicted in Figure 1, which rotates at speed
ω = dθ

dt around the z-axis but does not translate in the
laboratory frame of reference (ex, ey). The vector field
u = (u, v)T then represents the flow velocity in written
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FIG. 1. Sketch of the pitching foil pivoted at the center of
the leading edge half-cylinder.

(eX , eY ) and the incompressible Navier-Stokes equations
are written

∂tu = R (u, p ; θ(t)) , ∇ · u = 0 (2)

with a right-hand-side operator defined by

R (u, p ; θ(t)) =− ω(t) ez × u− ((u−w) · ∇)u

−∇p+
1

Re
∆u (3)

Note that the spatial operators are defined with respect
to the spatial coordinates X = (X,Y ). Compared with
the Navier-Stokes equations written in an inertial frame
of reference, two additional terms appear in the right-
hand side: the rotational acceleration ω(t) ez × u and
a modification of the convective velocity by the velocity
vector w which is defined by

w(X, θ) = −(cos(θ)eX − sin(θ)eY ) + ω(t) ez ×X (4)

The first term accounts for the translational velocity of
the foil, written in the rotating frame of reference, while
the second term accounts for the angular velocity of the
foil. At the surface of the foil, indicated by Xw, the flow
velocity is equal to the velocity of the foil, i.e.

u(Xw) = w(Xw, θ) (5)

Note that the translational velocity is imposed at the
surface of the foil, not at the inlet of the computa-
tional domain, since the rotating frame of reference does
not translate with the foil. Consequently, the bound-
ary condition u = 0 is imposed at the inlet of the com-
putational domain. The no-stress boundary condition
(−pn + 1/Re(∇u + ∇uT )n = 0) is used at the outlet.
The inlet and outlet of the computational domain are
indicated in Figure 2.

The spatial discretisation of the Navier-Stokes equa-
tions (2, 3) is based on a Finite Element formulation [33],
using quadratic elements (P2) for the velocity u and lin-
ear elements (P1) for the pressure p. A semi-implicit
second-order accurate temporal discretisation is used:
the temporal derivative is approximated by a backward-
differential formulae, the linear term in the right-hand-
side (3) are implicit and the non-linear terms are ex-
plicit, using a second-order accurate extrapolation. This
semi-implicit discretisation yields a non-homogeneous
unsteady Stokes problem, which is efficiently solved at
each iteration with a preconditioned conjugate gradient
algorithm [34, 35]. This numerical method, implemented
in the non-commercial software FreeFem++ [33], is vali-
dated in Appendix §A.

The computational domain and mesh used to discre-

inlet outlet

FIG. 2. Computational domain and typical mesh used for the
finite-element discretisation. The mesh is made of triangles,
only one tenth of them are shown in the Figure.

tise the Navier-Stokes equations are displayed in Figure
2. The influence of the size of the computational domain
on the numerical results is described in Appendix §A.
The selected domain is a circle of diameter 60, centered
at the leading-edge half-cylinder of the foil. The mesh
is composed of 42 · 103 triangles, yielding 170 · 103 de-
grees of freedom for each component of the velocity and
42 · 103 degrees of freedom for the pressure. A particu-
lar attention has been paid to create a symmetric mesh
with respect to the x-axis, to avoid introducing artificial
asymmetries in the flow. The size and spatial distribu-
tion of the triangles is adapted to the flow field, leading to
a refinement of the mesh around the foil and in its wake.
The smallest triangles are located at the trailing-edge of
the foil and their size is 7.29 · 10−3. Recalling that the
wake flow rotates periodically around the X-axis (while
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the foil is fixed), the far-wake region is refined accord-
ingly, as shown in Figure 2. Finally, the semi-implicit
time discretisation described above implies a Courant-
Friedrich-Levy stability condition [36]. The time-step is
chosen accordingly , from ∆t = 8 · 10−3 for f = 0 down
to ∆t = 4 · 10−4 corresponding to ∆t = T/5000 for large
frequencies above the deviation.

B. Results

Non-linear simulations are performed for flapping fre-
quencies in the range 0 ≤ f ≤ 0.5. For f = 0, the foil is in
a fixed position with zero angle of incidence with respect
to the incoming uniform flow. The wake flow pattern,
computed for Re = 255 but not displayed here, is a clas-
sical Bénard-Von Karman vortex street, characterised by
a (non-dimensional) natural frequency f0 = 0.167.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 3. Instantaneous vorticity fields for the flapping fre-
quency f = 0.1 (a,b), f = 0.35 (c,d), f = 0.43 (e,f) and
f = 0.45 (g,h) at t = T/4 (left) and t = 3T/4 (right). Black
and white denote negative and positive values respectively.

Let us now investigate the flow pattern obtained when
the foil is forced to pitch. Snapshots of the vorticity field,
obtained for four flapping frequencies, are displayed in
Figure 3 at times t = T/4 (left) and t = 3T/4 (right),
that correspond to the maximal and minimal angular
positions of the foil, respectively. Corresponding movies
are available as Supplemental Materials [37]. In these
Figures, the vorticity is displayed in the laboratory
frame of reference (ex, ey). The four flapping frequencies
used in Figure 3 correspond to four specific patterns
observed in the wake. The flow frequency is always
equal to the flapping frequency of the foil.

For the lowest flapping frequency f = 0.1 (see Figures
3 a-b), the wake flow pattern is similar to the classical
Bénard-Von Karman vortex street obtained without
pitching. Negative (black) and positive (white) vortices
are alternately shed during the upstroke and downstroke
phases of the flapping motion. In the far-wake, the core
of negative and positive vortices lies above and under
the x-axis, respectively. When the flapping frequency
is equal to the natural flow frequency, i.e. f = f0, no
vortex lock-in behaviour is observed. When further
increasing the flapping frequency, the spatio-temporal
structure of the wake flow changes dramatically.

For the frequency f = 0.35 (see Figures 3 c-d), neg-
ative and positive vortices of larger magnitude are shed
during the upstroke and downstroke phase of the flap-
ping motion. Unlike for the classic Bénard-Von Kar-
man vortex steet, the cores of the negative and posi-
tive vortices now lie below and above the x-axis, respec-
tively. This is the characteristic pattern of the reverse
Bénard-Von Karman vortex street [15]. Interestingly,
the vorticity fields satisfy the spatio-temporal symmetry
ωz(x, y, t) = −ωz(x,−y, t + T/2), at any position (x, y)
downstream of the wing. Around the wing, this relation
is not valid as some positions (x, y) belong to the flow or
to the solid depending on the flapping motion. However,
when considering the spatial position written in the ro-
tating frame of reference, the spatio-temporal symmetry

(u, v, p)(X,Y, t) = (u,−v, p)(X,−Y, t+ T/2)

ωz(X,Y, t) = −ωz(X,−Y, t+ T/2) (6)

holds for all points (X,Y ). This spatio-temporal sym-
metry breaks when the flapping frequency is increased.

(a) (b)

FIG. 4. Instantaneous vorticity fields for f = 0.43 at t = T/4
showing an upward (a) and downward (b) deviation of the
wake. Black and white denote negative and positive values
respectively.

For the frequency f = 0.43 shown in Figures 3(e-f) the
wake exhibits an upward deviation. Positive and negative
vortices are still alternately shed from the trailing edge
but they are now convected downstream along a direction
not aligned with the streamwise axis y = 0.

For the frequency f = 0.45, the deviation is even
more pronounced, as seen in Figures 3(g-h). Positive
and negative vortices, instead of being arranged in an
array of monopolar structures as for lower frequencies,
now form an array of dipolar structures [20].
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Most of the results presented in this study exhibit an
upward deviation. However, the downward deviation
is also possible and illustrated in Figure 4(b) next to
the upward deviation in Figure 4(a). In both cases,
the spatio-temporal symmetry (6) is broken. During
our simulations, upward or downward deviations were
obtained by starting the pitching of the wing to the
top or the bottom respectively. The selection of the
deviation’s direction seems to depend on the initial
condition but was not investigate in our study. More
details can be found on this matter in [16–18].

The deviation and antisymmetry of the wake flow can
be analysed further by performing a temporal Fourier de-
composition of the periodic vorticity. This decomposition
writes

ωz(x, t) = 〈ωz〉 (x) +
∑
k≥1

(ωz
k(x)eik2πt/T + c.c.) (7)

where 〈ωz〉 is the (real) mean vorticity and ωz
k is the

kth (complex) Fourier component. In particular, the real
and imaginary parts of the first Fourier component ωz

1

extract the component of the flow which oscillates at the
flapping frequency f = 1/T . As long as the flow solution
remains T -periodic, the Fourier components are easily
computed as

ωz
k(x) =

1

T

∫ t0+T

t0

ωz(x, t)e
−ik2πt/T dt (8)

Figure 5 displays the mean (left) and first Fourier
component (right) of the vorticity field for the flapping
frequencies f = 0.1 (a,b), f = 0.35 (c,d), f = 0.43 (e,f)
and f = 0.45 (g,h). For f = 0.1 in Figure 5(a), the
mean vorticity field is anti-symmetric with respect to the
x-axis i.e. 〈ωz〉 (x,−y) = −〈ωz〉 (x,−y). Positive and
negative values are observed in the lower and upper parts
of the wake, respectively. This is typical of dragging
wake flow profiles, with a negative upper shear layer and
a positive lower shear layer. For f = 0.35 in Figure 5(c),
the mean vorticity field remains anti-symmetric with
respect to the x-axis. However, negative and positive
values are now observed in the lower and upper parts of
the wake, respectively. This is typical of mean jet flow
profiles, with a positive upper shear layer and a negative
lower shear layer. Around the foil, the signs of the
shear layers are opposite : a negative upper shear layer
and a positive lower shear layer. The inversion of the
sign of the two shear layers occurs around the trailing
edge and is characteristic of propulsive flapping bodies
[16, 38]. For both these frequencies, the vorticity of
the first Fourier component in 5(b,d) is symmetric with
respect to the x-axis, i.e. ωz

1(x,−y) = ωz
1(x,−y) unlike

the mean vorticity. The vorticity of the first Fourier
component exhibits its strongest values downstream of
the foil.

In the f = 0.43 case (Figures 5(e-f)), the mean vor-
ticity field is stronger in magnitude and clearly deviated

upward. This deviation is also visible on the first Fourier
component and on higher-order Fourier components, not
shown here. The spatial anti-symmetry of the mean vor-
ticity field as well as the symmetry of the vorticity of
the first Fourier components are broken because of this
lateral deviation of the wake. It is even more so the case
for f = 0.45 (Figures 5(g-h)). The deviation of the wake-

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 5. Vorticity field of the mean flow (left) and the real
part of the first Fourier component (right) for the flapping
frequency f = 0.1 (a,b), f = 0.35 (c,d), f = 0.43 (e,f) and
f = 0.45 (g,h). Black and white denote negative and positive
values respectively. The foil at zero incidence is shown in red.

flow described above impacts the aerodynamic forces ex-
erted on the foil. The instantaneous drag and lift coeffi-
cients are defined as Cx(t) = 2Fx(t) and Cy(t) = 2Fy(t),
with Fx and Fy the components of the non-dimensional
aerodynamic force. When the flow satisfies the spatio-
temporal symmetry (6), the drag and lift coefficients sat-
isfy

Cx(t+ T/2) = Cx(t) , Cy(t+ T/2) = −Cy(t) (9)

i.e. the instantaneous drag coefficients are equal in the
upstroke and downstroke phases of the foil, while the
instantaneous lift coefficients are of opposite sign. This
property is proved in Appendix C.

Figure 6 displays the time-evolution of the system in
a Cx(t)/Cy(t) phase diagram. The trajectory is a closed
orbit, which is consistent with the fact that the flow is al-
ways periodic. Note that the lift coefficient is one order of
magnitude larger than the drag coefficient as previously
reported [39]. For f = 0.35 (solid line) the trajectory has
a butterfly shape, symmetric with respect to the Cy = 0
axis, implying that the symmetry (9) is verified. Re-
garding the f = 0.43 case (dashed line), first we notice
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FIG. 6. Instantaneous drag versus lift coefficients over one
flapping period for f = 0.35 (solid line), f = 0.43 (dashed
line) and f = 0.45 (dash-dotted line). The mean positions of
the drag and lift coefficients are indicated by the black circle
f = 0.35), diamond (f = 0.43) and square (f = 0.45).

that during the cycle, both the lift and drag reach larger
values. Most importantly, the butterfly shape of the tra-
jectory in the (Cx, Cy)-plane is no longer symmetric with
respect to the Cy = 0 axis, implying that the symmetry
(9) is broken. This symmetry breaking is even more pro-
nounced for the f = 0.45 case (dash-dotted line).

Along with the instantaneous values of the lift and
drag coefficients, Figure 6 also displays their values
averaged over one cycle. For all three cases displayed,
the mean drag coefficient is negative, implying that the
flapping foil is in the propulsive regime. The mean lift
is strictly zero for f = 0.35 and the symmetry relations
(9) are satisfied. On the other hand, for f = 0.43 and
f = 0.45, the spatio-temporal symmetry is broken,
resulting in non-zero mean lift. Interestingly, the mean
lift is found to be positive (resp. negative) when the
wake is deviated upward (resp. downward), in agreement
with results of previous studies [40–42]. As explained
by Cleaver et al. [40], the sign of the mean lift is the
same as the deviation direction because of a low (mean)
pressure region existing on the same side of the foil
as the deviation direction. This low-pressure region is
induced by vortices detaching from the leading edge
and travelling till the trailing edge, as visible on the
top of the foil in Figure 3(g,h). The pressure lift and
drag being two orders of magnitude larger than their
respective viscous components, this low-pression region
indeed explains why the lift force is oriented on the same
side as the wake is deviated.

The evolution of the mean lift and drag coefficients is
examined in Figure 7 as a function of the flapping fre-
quency. Three successive transitions are identified in the
range 0.3 ≤ f ≤ 0.5 . First there is a transition from a
drag regime to a thrust regime, which occurs at f ∼ 0.31
according to Figure 7(b). This first transition was exam-
ined in [14, 19] and is not the object of the present paper.

(a) (b)

FIG. 7. Mean lift and drag coefficients as a function of the
flapping frequency.

The second transition is the spatio-temporal
symmetry-breaking leading to non-zero 〈Cy〉 occur-
ring for f ∼ 0.39. This transition separates the regimes
I and II in Figure 7, which correspond to non-deviated
wakes and deviated wakes respectively. As already
stated, both upward and downward deviations are
equally possible and correspond to positive and negative
〈Cy〉 respectively. Both cases are displayed in Figure
7(a) which strongly suggests that the onset of the wake
deviation is due to a supercritical bifurcation of the
periodic flow. This will be examined in section III by
performing a linear Floquet analysis of the symmetric
periodic flow.

A third transition is eventually observed in Figure 7
for f & 0.435 where the mean lift reaches much higher
values and the mean drag experiences a change of slope.
This last transition separates the regimes II and III in
Figure 7, the latter corresponding to strongly deviated
wakes. This transition will be examined in section IV
where it is argued that it results from non-linear effects.

III. FLOW BIFURCATION AND DEVIATION

To investigate the deviation of the periodic wake-flow
as a bifurcation problem, it is first required to compute
the symmetry-preserving base flow solution above the
bifurcation threshold. A novel method is introduced
in §III A which aims at preserving the spatio-temporal
symmetry of the flow field to compute this unstable base
flow. The linear stability of this symmetric base flow is
then studied in §III B by performing a Floquet stability
analysis.

A. Symmetry-preserving method

To present the method, let us first introduce the oper-
ator S which acts on a velocity field u and extracts the
component satisfying the spatio-temporal symmetry (6).
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This operator is defined by

us = Su =
1

2

(
u(x, y, t) + u(x,−y, t− T/2)
v(x, y, t)− v(x,−y, t− T/2)

)
(10)

where us denotes the symmetric component. Similarly,
the anti-symmetric component ua (with respect to the
spatio-temporal symmetry (6)) can be extracted using
the operator A defined by

ua = Au =
1

2

(
u(x, y, t)− u(x,−y, t− T/2)
v(x, y, t) + v(x,−y, t− T/2)

)
(11)

Then the flow can then be decomposed as

u = us + ua (12)

Note that the symmetric and anti-symmetric components
satisfy Sus = us ; Sua = 0 ; Aua = ua ; Aus = 0.
Inserting the above decomposition into the Navier-Stokes
equations (2),(3) and (5) yields the system of coupled
equations governing the dynamics of the symmetric and
anti-symmetric components

∂us

∂t
= R(us, ps ; θ(t))− (ua · ∇)ua

∂ua

∂t
= L(us ; θ(t))ua (13)

supplemented with the wall boundary conditions

us(Xw, t) = w(Xw, θ(t)) , ua(Xw, t) = 0 (14)

The non-linear equation governing the symmetric com-
ponent is the original equation forced by an additional
non-linear advection term. The anti-symmetric compo-
nent is governed by a linear equation, where the linear
operator L is defined as

L(us; θ)ua = −(
dθ

dt
ez)× ua − ((us −w(X, θ)) · ∇)ua

− (ua · ∇)us −∇pa +
1

Re
∆ua (15)

and is the linearisation operator of the right-hand-side
operator R around the symmetric velocity component
us. Interestingly, if the anti-symmetric component van-
ishes (i.e. ua = 0), the symmetric component satis-
fies the original equation (2). The symmetry-preserving
method consists in driving the anti-symmetric compo-
nent to zero, by adding a damping term to the second
equation (13). The new system of equations writes

∂us

∂t
= R(us, ps ; θ(t))− (ua · ∇)ua

∂ua

∂t
= L(us ; θ(t))ua − χua (16)

where χ is a damping parameter. The theoretical choice
of this parameter depends on the eigenvalues of largest
growth rate of the linear operator L. χ should be chosen
so as to stabilise all of these eigenvalues. The eigenvalues
of (L − χI) are then all of negative growth rate and the

anti-symmetric component is driven to zero. In the fol-
lowing, the solution satisfying the spatio-temporal sym-
metry (also called the base flow) is denoted Us (Ua = 0)
and satisfies

∂Us

∂t
= R(Us, Ps ; θ(t)) (17)

Us(Xw, t) = w(Xw, θ(t))

In practice, the eigenvalues of largest growth rate

FIG. 8. Evolution of the symmetric (solid) and antisymmetric
(dashed) component as a function of time with χ = 0.3 at f =
0.43. Simulation is started from converged deviated wake.

are not known and a trial-and-error method is used
to determine values of the parameter χ. Its effect is
discussed in Appendix B.

For the frequency f = 0.43, the solution of the original
equation (2,5) is a deviated wake as seen in Figure 3.
Starting from this solution, the new system of equations
(16) is solved with the damping parameter χ = 0.3. As a
consequence, the antisymmetric component vanishes, as
shown in Figure 8 where its norm is given as a function
of time. Snapshots and first Fourier components of

(a) (b)

(c) (d)

FIG. 9. Vorticity snapshots (top) of the non deviated wake at
f = 0.43 obtained using χ = 0.3. Vorticity field averaged in
time and first temporal Fourier component (bottom). Black
and white denote negative and positive values respectively.
The foil at zero incidence is shown in red.

the solution are displayed in Figure 9. A movie of the
non-deviated wake for f = 0.43 is available as a Sup-
plemental Material [37]. The spatio-temporal symmetry
of the solution is clearly visible in the two snapshots of
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the vorticity separated by T/2. The suppression of the
deviation is clearly observed on the mean vorticity field
and on the first Fourier component.
Using this symmetry-preserving method for several
frequencies, the mean drag and lift coefficients of the
solutions are computed and shown in Figure 10 with
black circles. Results obtained without the symmetry
preserving method, already shown in Figure 7, are
recalled in the Figure with white circles. The left
plot displaying 〈Cy〉 demonstrates that the symmetry-
preserving method is efficient to compute a symmetric
base flow even in the range f & 0.39 where it is unstable
and cannot be accessed using temporal integration of
the starting equations which only give access to the
asymmetric states. The right plot displaying 〈Cx〉 shows
that for 0.39 . f . 0.43 the symmetry-breaking has
almost no impact on the drag (the open circles being
superposed to the black ones), while it has a strong
impact above the transition for f & 0.44 which will be
examined in section IV.

For f ≥ 0.39, three branches of periodic solutions exist:
one branch of symmetric (or non-deviated) periodic so-
lutions characterised by zero mean lift and two branches
of asymmetric (or deviated) periodic solutions charac-
terised by mean lift of opposite sign. To complete this
bifurcation diagram, the stability of the symmetric solu-
tions is addressed in the next paragraph using a Floquet
stability analysis.

(a) (b)

FIG. 10. Mean lift and drag coefficients as functions of the
flapping frequency f . ◦: asymmetric solutions, •: symmetric
solutions.

B. Floquet stability analysis of the non-deviated
wake flow

The stability of the time-periodic base flow Us is de-
termined by investigating the long-term dynamics of in-
finitesimal perturbations u′. The flow field is first decom-
posed as u = Us + εu′ with ε � 1 and this decomposi-
tion is introduced into the Navier-Stokes equations (2).
Recalling that the base flow is governed by (17) and ne-
glecting the quadratic terms in ε, we obtain the equation

governing the dynamics of linear perturbations

∂u′

∂t
= L(Us)u

′ (18)

with the wall boundary condition u′(Xw, t) = 0. Note
that symmetric perturbations u′s = Su′ and anti-
symmetric perturbations u′a = Au′ are both solutions
of the above equation. The linear operator L(Us) is T -
periodic because the base flow Us is T -periodic. Thus,
according to Floquet theory [43], any solution of (18) can
be decomposed into the sum

u′(x, t) =
∑
k

ûk(x, t)eλkt (19)

where ûk are T -periodic functions, called the Floquet
modes of L, and the complex numbers λk are the Flo-
quet exponents. The Floquet multipliers µk = eλkT cor-
respond to the temporal growth or decay of the Floquet
modes over one period T . The stability of the base flow is
determined by examining the spectrum of Floquet mul-
tipliers. A Floquet mode is stable (resp. unstable) when
the corresponding Floquet multiplier lies inside (resp.
outside) the unit circle |µk| < 1 (resp. |µk| > 1) in the
complex plane. When one Floquet mode becomes unsta-
ble, the time-periodic base flow becomes unstable.
The numerical method used to compute the Floquet
modes and multipliers is similar to that used in [44] and
[45]. The evolution of the linear perturbation u′ over one
period T is formally rewritten

u′(t0 + T ) = Pu′(t0) (20)

where P is the propagator over one period, also known
as the linearised Poincaré map. The action of this propa-
gator on the perturbation u′(t0) at the arbitrary time t0
is obtained by integrating the linearised equation (18) in
time from t0 to t0 + T . The eigenvalues of the propaga-
tor P are precisely the Floquet multipliers µk of L, and
the eigenvectors of P correspond to the Floquet modes
û(x, t0) of L for the arbitrary time t0. The time-periodic
evolution of the Floquet mode is then determined by
temporal integration of equation (18) over one period
starting with û(x, t0) as the initial condition. The Flo-
quet mode is the solution of this temporal integration,
corrected by the multiplicative factor e−λkt to account
for the instantaneous growth or decay. Arnoldi method
was used to compute the eigenvalues of largest amplitude
[46]. A serial implementation using the modified Gram-
Schmidt algorithm for the orthogonalization process is
used to generate an approximation of n eigenvectors. All
computed modes were normalised by their total kinetic
energy.

First, results of the stability analysis are shown for the
flapping frequency f = 0.4. The largest Floquet multipli-
ers are displayed in Figure 11(a). Most of the eigenvalues
are stable, but one eigenvalue marked by the black cir-
cle is unstable as it lies outside the unit circle. As this
eigenvalue is real (µ1 = 1.046 + 0.0i), the Floquet mode
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is synchronous with the base flow and therefore does not
modify its periodicity. The evolution of this eigenvalue
with the flapping frequency is shown in Figure 11(b). The
Floquet mode becomes unstable for the critical frequency
fc ∼ 0.385. This critical frequency is consistent with
the observation of wake deviation and the apparition of
mean lift in Figure 7 which define the transition between
regimes I and II. For every flapping frequency tested, the
leading Floquet mode was found to be real and there-
fore synchronous with the base flow. No other unstable
modes were detected for frequencies below f = 0.46.

(a) (b)

FIG. 11. Spectrum of the Floquet multipliers at f = 0.4. The
dominant mode’s Floquet multiplier, in black, is µ1 ' 1.046
(a). Evolution of Floquet multiplier magnitude |µ| with the
flapping frequency f (b). The line |µ| = 1 corresponds to
marginal stability of Floquet modes. The dominant mode is
always real.

Figure 12 displays two snapshots of the dominant Flo-
quet mode’s vorticity separated by T/2. A movie of this
mode dynamics is available as a Supplemental Material
[37]. Vorticity dipoles are emitted at the trailing edge and
grow spatially and temporally whilst convected down-
stream. Negative vortices (in black) are aligned with the
central line whereas positive vortices (in white) are alter-
nately above and below the negatives ones. It can also be
seen that wz(X,Y, T/4) = wz(X,−Y, 3T/4). This prop-
erty has been verified for all t over one flapping period
and demonstrates that the leading Floquet mode breaks
the spatio-temporal symmetry (6) and is therefore of the
form u′a. To explain the link between the computed Flo-

(a) (b)

FIG. 12. Vorticity snapshots of the dominant Floquet mode
at flapping frequency f = 0.45 and time t = T/4 (a) and
t = 3T/4 (b). Black and white denote negative and positive
values respectively.

quet mode and the deviation of the wake, we provide, in
Figure 13, a snapshot of (a) the base flow, (b) the lead-
ing Floquet mode and (c) their superimposition inside

the dotted square (the base flow is represented with iso-
lines and the mode with isocontours). First, a certain
synchronisation between the two flows can be observed.
In the whole wake and at all times, a vortex of the base
flow is synchronised with a dipole of the linear mode.

A dipolar perturbation of a monopolar vortex is a
classic structure called a displacement mode [47–49]. It
is well known that this structure is associated with a
displacement of the vorticity centroid. More specifically,
consider the negative vorticity monopole located at the
left of the dotted square. The corresponding dipole in
the Floquet mode has negative vorticity (black) in the
upper part and positive vorticity (white) in the lower
part. The superposition strengthens the top part of the
monopole and weakens its lower part, resulting in a net
displacement of the monopole in the upward direction.
The same argument can be applied to the positive vor-
ticity monopole located at the right of the dotted square,
which is also displaced upward. Thus, the structure of
the Floquet mode is able to explain the deviation of the
whole wake in the upward direction. Note that as the
amplitude of the linear mode is arbitrary, changing its
sign leads to the equally probable deviation of the wake
in the downward direction.

(a)

(b) (c)

FIG. 13. Vorticity snapshots of (a) the base flow, (b) the
Floquet mode and (c) a zoom of their superimposition at f =
0.43 and t = 0. Black and white colours (in (a),(b) and (c)),
and dotted and continuous lines (in (c)) denote negative and
positive values respectively.

The structure of the Floquet mode can also be
analysed using temporal Fourier decomposition, just
as was done for the flow obtained through non-linear
simulations in §II. Figure 14 displays the mean vorticity
(a) and the first Fourier component (b) which are
respectively symmetric and anti-symmetric with respect
to the x-axis. This is the opposite of the base flow
presented in Figure 9 confirming that the mode does
break the symmetry (6). Three alternate vorticity layers
are present in the mean wake, with negative vorticity
on the x-axis. By superimposing it with the mean wake
of the base flow (in Figure 9c), and using the same
arguments as for the instantaneous superimposition, the
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mean wake of the mode will strengthen both the positive
upper and negative lower shear layers on their tops, and
weaken their bottoms. This will result in a deviated
jet-like mean wake, like the bottom-left frame of Figure 5.

(a) (b)

FIG. 14. Vorticity field averaged in time over one period and
first temporal Fourier component at f = 0.43. Black and
white denote negative and positive values respectively. The
foil at zero incidence is shown in red.

IV. NON-LINEAR EFFECTS

The linear stability analysis detailed in the previous
section explains the onset of the small deviation observed
in regime II (0.385 6 f 6 0.43). However it does not
provide any explanation for the large deviation, the
sudden increase of thrust and lift obtained in regime III
(f > 0.44). To better understand the large deviation
and corresponding increase of thrust/lift obtained in
regime III, the effects of non-linearity are now analysed.
The non-linear perturbation is defined as the difference

(a) (b)

(c) (d)

(e) (f)

FIG. 15. (a-d) Snapshots of the vorticity field for (a-b) linear
and (c-d) non-linear perturbations at time t = T/4 and fre-
quency (a,c) f = 0.43 and (b,d) f = 0.45. (e-f) y-integrated
kinetic energy of the linear (dashed) and non-linear (solid)
perturbations as a function of the streamwise coordinate for
(e) f = 0.43 and (f) f = 0.45.

between the asymmetric flow and the symmetric base
flow, i.e. u′′ = u − Us. Linear and non-linear per-
turbations are first compared for frequencies f = 0.43

and f = 0.45 which correspond to regime II and III
respectively.

For f = 0.43, snapshots of the linear and non-linear
perturbations are shown in Figures 15(a) and 15(c).
The linear perturbation is an array of dipolar structures
aligned with the x-axis and centered in the monopo-
lar structures of the base flow, as described previously.
These dipolar structures grow in time, and in space when
moving downstream. The spatial growth is quantified
by examining Figure 15(e), which shows the streamwise
evolution of the kinetic perturbation energy integrated
in y and averaged over one flapping period. The spatial
growth of the linear perturbation (dashed line) is quasi-
exponential. Note that its value depend on the normali-
sation of the Floquet mode (unitary total kinetic energy
in our study). In order to be the same order of magnitude
as the non-linear perturbation, the y-integrated kinetic
energy of the linear perturbation has been mutliplied by
104. Regarding the pattern of the non-linear perturba-
tion shown in Figure 15(c), we observe that it is very sim-
ilar to that of the linear perturbation in the near-wake.
The spatial growth of the linear and non-linear perturba-
tions are also very similar for x ≤ 10 (Figure 15(e)). In
this region, the effect of non-linearities is therefore negli-
gible. However, in the far-wake (for x ≥ 15), the kinetic
energy of the non-linear perturbation tends towards a
constant value, unlike the linear perturbation which still
grows in space. Clearly the effect of non-linearities is
to saturate the spatial growth of the perturbation. This
non-linear saturation comes with a very specific pattern
in the far-wake region (see Figure 15(c)). Two arrays of
vortical structures are now visible. One array of monopo-
lar structures remains aligned with the x-axis while the
other is slightly deviated upward. In this far-wake region,
the monopolar structures in the non-deviated array are
of opposite sign to the monopolar structures of the base
flow (compare Figure 15(c) with 9). Therefore, when
adding the non-linear perturbation to the base flow, the
array of monopolar structures disappears in the far-wake
and only the deviated array of dipolar structures remains
in the instantaneous solution. As such, a second effect of
non-linearities is to increase the deviation of the wake.
Let us now examine the non-linear effects for the larger
frequency f = 0.45 in regime III where large deviation
and thrust are obtained. Snapshots of the linear and
non-linear perturbations are shown in Figures 15(b) and
15(d), and the streamwise evolution of the kinetic energy
is displayed in Figure 15(f). The region where the linear
and non-linear spatial growths match, is limited to the
very near-wake region. For x ≥ 7, the saturation occurs
and the two arrays of vortical structures are visible in
the wake. The array of dipolar structures is more devi-
ated than for f = 0.43 and the dipolar structure is more
pronounced.

When increasing the flapping frequency, non-linear sat-
uration occurs closer to the wing. This may impact the
aerodynamic forces exerted on the wing and explain the
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increase of thrust observed in regime III. First, we note
that a linear anti-symmetric perturbation generates a
mean lift force but does not create a mean drag/thrust
force (see details in Appendix §C). Therefore, the ad-
ditional thrust observed for f ≥ 0.44 is necessarily as-
sociated to symmetric flow components. To better un-
derstand how non-linear terms produce a symmetric flow
component, the equations governing the dynamics of the
symmetric and anti-symmetric components are exam-
ined. To that aim, the non-linear perturbation is de-
composed into its symmetric u′′s and anti-symmetric u′′a
components. They are defined respectively by Su′′s = u′′s
and Su′′a = 0. Introducing this decomposition into (13)
yields the following system of coupled non-linear equa-
tions

∂u′′s
∂t

= L(Us; θ(t))u
′′
s − [u′′

s · ∇]u′′
s − [u′′

a · ∇]u′′
a

∂u′′a
∂t

= L(Us; θ(t))u
′′
a − [u′′

a · ∇]u′′
s − [u′′

s · ∇]u′′
a

(21)

where the first and second equations govern the non-
linear dynamics of the symmetric and anti-symmetric
components, respectively. In addition to the linear oper-
ator L around the periodic base solution Us, quadratic
non-linear terms appear in the right-hand-sides and cou-
ple the two dynamics. In the linear regime, for which
all quadratic terms are negligible, the symmetric com-
ponent decays in time while the anti-symmetric com-
ponent grows in time. For large enough amplitude of
the anti-symmetric component, its quadratic interaction
with itself in the first equation drives the development
of a non-zero symmetric component. The existence of
such a symmetric component influences in return the
anti-symmetric dynamics, via the quadratic interactions
between u′′s and u′′a in the second equation of (21).

Let us examine now the spatial evolution of the sym-
metric and anti-symmetric components of the non-linear
perturbation computed for the flapping frequencies
f = 0.43 (regime II) and f = 0.45 (regime III). The
mean kinetic energy integrated in the y direction is
displayed in Figure 16 for the non-linear perturbation
(black solid line) and its symmetric (red dashed line)
and anti-symmetric (blue dash-dotted line) components.
Results obtained for f = 0.43 and f = 0.45 are shown
in Figures 16(a) and 16(b) respectively and present
similar tendencies when progressing downstream. The
anti-symmetric perturbation is amplified first while
the symmetric one is negligible, as can be expected
in the linear regime. Then the amplitude of the anti-
symmetric perturbation saturates while the symmetric
one increases. As explained above, the transfer of energy
from the anti-symmetric component to the symmetric
component is ensured by the quadratic interaction of
u′′a with itself. For a critical streamwise position xc,
the amplitude of the symmetric perturbation becomes
larger than that of the anti-symmetric one. Further
downstream, the anti-symmetric component decreases in

amplitude, while the symmetric component continues to
increase, then saturates before decreasing. The evolution

(a) (b)

FIG. 16. Evolution of the non-linear perturbations’ mean
kinetic energy (integrated in the transverse direction) in the
streamwise direction for f = 0.43 (a) and f = 0.45 (b) : u′

(black solid), u′
s (red dashed), u′

a (blue dash-dotted).

of the critical position xc with the flapping frequency
is displayed in Figure 17 in the range 0.4 < f < 0.45.
For f ≤ 0.434 (regime II), xc decreases linearly with
the flapping frequency. For f ≥ 0.438 (regime III), the
critical position is constant and almost equal to the
position of the trailing edge, shown with the dashed line.
The transition from regime II to regime III corresponds
to the predominance of the symmetric component of
the perturbation in the vicinity of the wing. To explore

FIG. 17. Evolution of xc as a function of f . The trailing edge
position is indicated with a dashed line.

further the link between aerodynamic forces and sym-
metries of the non-linear perturbation, Figure 18 shows
the mean lift and drag induced by the symmetric (red
circles) and anti-symmetric (blue diamonds) components
of the non-linear perturbation. Let us first remark that
the mean lift of the symmetric component is equal to
zero (red curve in Figure 18(a)) while the mean drag of
the anti-symmetric component is also zero (blue curve
in Figure 18(b)). These results are inferred from the
spatio-temporal symmetry properties in Appendix §C,
and here, are confirmed numerically. The mean lift
induced by the non-linear perturbation is due only to its
anti-symmetric component (blue curve in Figure 18(a))
while the mean drag is due solely to its symmetric
component (red curve in Figure 18(b)). The transition
from regime II to regime III when increasing the flapping



12

frequency is clearly induced by non-linear effects and
can now be explained as follows. When the flapping
frequency is increased, the effect of the non-linear terms
is to create a symmetric component with larger and
larger amplitudes close to the wing. This symmetric
component produces a mean thrust force, which explains
the change of slope in the total mean drag seen in Figure
7(b). Its quadratic interaction with the anti-symmetric
component also alters the latter and results in a strong
mean lift correction. This explains the change of slope in
the total mean lift seen in Figure 7(a) between regimes
II and III.

(a) (b)

FIG. 18. Mean lift and drag coefficients for the symmetric u′′
s

(red circles) and anti-symmetric u′′
a (blue diamonds) compo-

nents as a function of the flapping frequency f .

To our knowledge, this is the first time those two dis-
tinct deviated regimes are clearly highlighted. Godoy-
Diana’s work [20] also presented a change of slope in the
evolution of the angle of deviation with increasing flap-
ping frequency. However, this change of slope was asso-
ciated with significant error bars, which makes it ques-
tionable whether this is the same phenomenon.

Finally, the transition between the two regimes is also
related to a change in the wake structure. As can be
seen in Figure 3(g,h) for f = 0.45, successive counter-
rotating vortices approach each other in pairs to form
dipolar structures. For lower unstable frequencies such
as f = 0.43, this is much less notable and occurs only far
from the foil as seen in Figure 3(e,f). This dipolar struc-
ture was previously noted by Godoy-Diana et al. [20].
They derived a quantitative criterion based on the phase
velocity produced by two successive counter-rotating vor-
tices to identify the deviation threshold. They showed
that the dipolar organisation of the wake promotes the
deviation, without ruling on any causal relationship.
Later, Zheng et al. [18] derived a similar model based on
the competition between successive phase velocities and
attributed the wake deviation to the vortex pairing in the
wake. Our study shows the dipolar aggregation develops
in the wake, far from the foil in regime II. For increas-
ing flapping frequency, the aggregation is visibly closer to
the foil due to non-linear amplification. The clear aggre-
gation of vortices directly after the trailing edge marks
the transition with regime III. These observations imply

that the dipolar aggregation, though shown in these stud-
ies to be favorable to deviation, does not cause it. It is
a secondary effect of the deviation, enhancing it through
the non-linear coupling of symmetric and anti-symmetric
perturbations. Ultimately, this non-linear coupling re-
sults in a strong increase of the deviation angle, the mean
lift and thrust.

V. CONCLUSION

In this paper, we investigated the deviation of the wake
behind a flapping foil. A novel flow symmetry-preserving
method was specifically developed to compute the unsta-
ble non-deviated wake. This method is based on the de-
composition of the governing equations into a set of two
equations governing the dynamics of the non-deviated
wake and the perturbations evolving around it. Then,
the second equation is stabilised to suppress the pertur-
bations that break the spatio-temporal symmetry inher-
ent to the flapping motion. A Floquet stability analysis
of the time-periodic non-deviated wake showed the ex-
istence of a synchronous anti-symmetric mode becoming
unstable at the critical flapping frequency where devia-
tion occurs. This Floquet mode is an array of counter-
rotating dipoles that act as a succession of displacement
modes. Both the instantaneous and the averaged-in-time
effects of the mode are to displace the non-deviated wake
away from the streamwise direction, resulting in a devi-
ated wake. Finally, non-linearities are associated with a
dipolar aggregation of vortices in the wake. As non-linear
effects develop closer to the foil with increasing flapping
frequency, they ultimately occur at the trailing edge,
which results in the transition to a third regime with a
much stronger deviation of the wake. This third regime
is also associated with a strong increase of mean thrust
and lift which are associated respectively with symmetric
and anti-symmetric perturbations around the foil.
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Appendix A: Validation of the non-linear code and
convergence tests

Different tests are used in order to validate the present
study. First of all, we validate the numerical method
by reproducing the case of a laminar flow generated by
an oscillating circular cylinder in an initially quiescent
fluid. This case was described and studied experimen-
tally by Dütsch et al. [50]. The periodic oscillation of
the cylinder follows the law x(t) = −Asin(2πft) where
A and f stands for the oscillating amplitude and fre-
quency respectively. Two non-dimensional numbers are
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used to describe this case : the Keulegan-Carpenter num-
ber KC = U/fD and the Reynolds number Re = UD/ν,
where U is the maximum velocity of the cylinder, D is
the cylinder diameter and ν is the fluid kinematic viscos-
ity. We reproduce some results obtained experimentally
by Dütsch et al. [50] and numerically by Guilmineau et
al. [51] and Hosseinjani et al. [52], at Re = 100 and
KC = 5.

In Figure 19 we show vorticity isolines, which are com-
pared to the numerical results of Guilmineau et al. at
two different moments t = 0 and t = 19T/72 of the oscil-
lation. The results compare very well.

FIG. 19. Vorticity isolines for two different instants t.
Guilmineau et al. (2002) at t = 0 (a) and t = 19T/72 (c).
Present method at t = 0 (b) and t = 19T/72 (d).

Additionally, Figure 20 shows the horizontal velocity u
along the transverse direction y at x = −0.6D at two dif-
ferent moments of the oscillating period T . The profiles
obtained with the present method (black line) agree well
with the experimental results of Dütsch et al. (black
squares) and are almost perfectly superposed with the
numerical results of Hosseinjani et al. (blue line). These
results show both qualitative and quantitative validity of
our numerical method.

In a second time, we show a large enough computa-
tional domain has been chosen to ensure good values
of the aerodynamic forces. On this study case, we test
four different domains, which size is specified by their
radius R. The same refinement has been used for the
four meshes. Three frequencies f = 0.35, f = 0.42 and
f = 0.44 were tested, corresponding to the three regimes
defined in the paper respectively.

In Table I is shown the mean drag coefficient 〈Cx〉 for
each domain and frequency. It is barely not affected by
the domain size for f = 0.35 and f = 0.42. For f =
0.44, it changes a little more with 3% relative difference
between the smallest and largest domains.

In Table II is shown the mean lift coefficient 〈Cy〉 for
each domain and frequency. For f = 0.35 (regime I), the

(a) (b)

FIG. 20. The x-velocity component in the transverse direction
y at x = −0.6D for two different instants t of the flapping
period T . (a) t = T/2; (b) t = 7T/12. Dütsch et al. (1998)
: black squares. Hosseinjani et al. (2015) : blue dashed line.
Present method : black solid line.

f = 0.35 f = 0.42 f = 0.44

R = 20 −0.114 −0.374 −0.647

R = 25 −0.112 −0.371 −0.655

R = 30 −0.111 −0.370 −0.665

R = 35 −0.110 −0.369 −0.667

R = 40 −0.110 −0.369 −0.667

TABLE I. Evolution of the mean drag coefficient 〈Cx〉 for
three flapping frequencies f and four domain radius R.

mean lift is zero for every domain, which is consistent
with the fact the wake is not deviated. For f = 0.44
(regime III), the mean lift is practically independent of
the size of the domain for R > 30 (0.5% relative differ-
ence). For f = 0.42 (regime II), the mean lift is more
sensitive to the size of the domain with 3% relative dif-
ference for the largest domains (R > 30). However, this
magnitude of error does not affect the distinction between
the different regimes. The lift coefficients are not distin-
guishable when they are superimposed in a (〈Cy〉,f) map
as in Figure 7. For these reasons, we decided to use the
mesh of size R = 30 since it is large enough to ensure
good values of aerodynamic forces and allow us to keep
a satisfactory computational cost.

Appendix B: Choice of damping coefficient χ in the
symmetry preserving method

As explained in §III A, one needs an appropriate choice
of damping coefficient in order to stabilise the second
equation of system (16).

Figure 21 displays the time evolution of the anti-
symmetric component’s norm for four values of the
damping coefficient. All four simulations have been ini-
tialised with the same deviated wake at f = 0.45. For
χ = 0.02, the norm converges towards T-periodic os-
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f = 0.35 f = 0.42 f = 0.44

R = 20 0 0.029 3.246

R = 25 0 0.140 3.332

R = 30 0 0.225 3.431

R = 35 0 0.263 3.447

R = 40 0 0.273 3.450

TABLE II. Evolution of the mean lift coefficient 〈Cy〉 for three
flapping frequencies f and four domain radius R.

FIG. 21. Norm of the anti-symmetric velocity component as
a function of time for increasing damping coefficients χ =
[0.02, 0.1, 0.2, 0.3] at flapping frequency f = 0.45.

cillations (of very small magnitude with respect to its
mean magnitude) indicating the anti-symmetric compo-
nent is not damped and the wake remains deviated. For
the three other values of χ, and after a small transi-
tory stage, the norm decreases at almost constant speed
towards the zero-machine value. As can be observed,
convergence speed increases with the value of χ. Tests
showed that there is a minimum threshold of the damping
coefficient above which the anti-symmetric component is
suppressed. With this flapping frequency, the threshold
is between χ = 0.02 and χ = 0.1. Without the damping
term, the linear operator L governs the anti-symmetric
component dynamics, which asymptotically, will have a
non-zero solution if and only if the real part of its leading
eigenvalue is positive. The damping coefficient counter-
acts this so that if χ is bigger than the leading eigen-
value’s real part, the complete linear operator L − χI
will only have stable eigenvalues. Therefore, the only
asymptotic solution of the equation will be nil.

Appendix C: Symmetry properties for the forces

In this section, more details are given concerning the
determination of the following symmetry properties re-
spected by the aerodynamic forces. For a symmetric flow

field us, which respects the spatio-temporal symmetry
property (6), the aerodynamic forces verify the following
properties  Fx(t− T/2) = Fx(t)

Fy(t− T/2) = −Fy(t)
〈Fy(t)〉 = 0

(C1)

The first two equations imply that the instantaneous drag
forces are equal in the upstroke and downstroke phase of
the foil, while the instantaneous lift forces are of opposite
sign. The third equation states that the time-averaged
lift coefficient is zero.

The same can be done for an anti-symmetric flow field
ua which respects the following symmetry properties in-
stead

(ua, va, pa)(X,Y, t) = (−ua, va,−pa)(X,−Y, t+ T/2)

ωza(X,Y, t) = ωza(X,−Y, t+ T/2) (C2)

In that case, the aerodynamic forces verify the following
properties  Fx(t− T/2) = −Fx(t)

Fy(t− T/2) = Fy(t)
〈Fx(t)〉 = 0

(C3)

This time, the instantaneous lift forces are equal in the
upstroke and downstroke phase of the foil, while the in-
stantaneous drag forces are of opposite sign. The time-
averaged drag is nil in this case.

In order to show how properties (C1) and (C3) are
obtained, we will focus on the first property of (C1) :
Fx(t − T/2) = Fx(t). The others can be derived using
the same method. The aerodynamic forces F exerted by
the fluid on the foil are expressed as

F =

∫
Γ

−pn +
1

Re

(
∇u + (∇u)T

)
n dΓ (C4)

where Γ is the foil boundary with the fluid, n = (nx, ny)
denotes the unit outward normal. We take its horizontal
component

Fx =

∫
Γ

−pnx+
1

Re
[2∂xunx + (∂yu+ ∂xv)ny] dΓ (C5)

Let us focus on the streamwise pressure forces F px (t); the
following reasoning can be applied the same way to the
viscous component F vx (t).

F px (t) =

∫
Γ

−p(x, y, t)nx(x, y, t) dΓ (C6)

The outward unit normal respects the following symme-
try property, as a consequence of the symmetry of the
foil w.r.t the X-axis and its periodic motion

(nx, ny)(x, y, t) = (nx,−ny)(x,−y, t+ T/2) (C7)
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Let us now assume that the flow field is symmetric. We
can introduce (6) and (C7) into (C6)

F px (t) =

∫
Γ

−p(x,−y, t−T/2)nx(x,−y, t−T/2) dΓ (C8)

By introducing a change of variables z = −y into equa-
tion (C8) and using the fact that the foil is symmetric
with respect to the X-axis, we find the following spatio-
temporal property

F px (t) = F px (t− T/2) (C9)

As explained previously, this procedure can be repro-
duced for the viscous component of the streamwise force
and for the transverse force to obtain the spatio-temporal
properties in (C1) for any symmetric flow field us. Fi-
nally, the property of zero time-averaged lift for any us
is obtained by integrating the second property of (C1)
over one flapping period. The properties for any anti-
symmetric flow field ua in equation (C3) are obtained
in the same way by using the property of anti-symmetry
(C2).
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