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Cost Evaluation for Hybrid Inclusions: A Lyapunov Approach

Cost evaluation problems for hybrid inclusions are studied. Sufficient conditions, in the form of Lyapunov-like inequalities, are provided to derive an upper bound on the cost associated with the solution to a hybrid inclusion with respect to a hybrid cost functional. Under additional sufficient conditions, we determine the cost exactly without computing solutions. Constructive results are proposed to solve cost evaluation problems in some relevant applications. Numerical examples are presented.

I. INTRODUCTION

Hybrid dynamical systems are dynamical systems whose evolution is characterized by the interplay of continuoustime dynamics and instantaneous changes. Due to the large number of applications in which hybrid dynamical systems can be used as a modeling paradigm, such a topic has gained an increasing interest over the last two decades. Research efforts in hybrid dynamical systems brought to life numerous tools for modeling, analysis, and design of hybrid systems; see [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF], [START_REF] Lygeros | Dynamical properties of hybrid automata[END_REF], [START_REF] Michel | Towards a stability theory of general hybrid dynamical systems[END_REF], [START_REF] Tavernini | Differential automata and their discrete simulators[END_REF], [START_REF] Van Der Schaft | An introduction to hybrid dynamical systems[END_REF]. In particular, in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF] a general framework for hybrid systems is established. The key feature of the framework in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF] consists of modeling hybrid dynamical systems via hybrid inclusions. Such a modeling approach allows one to deal with robustness aspects in hybrid systems in an elegant and unified way.

More precisely, a hybrid inclusion is formally written as

ẋ ∈ F (x) x ∈ C x + ∈ G(x)
x ∈ D where x is the state, and F and G are set-valued mappings describing the dynamics of the system. The notation ẋ represents the time derivative of the state, while x + represents the value of the state after an instantaneous jumps. With these definitions, the above writing suggests that the state x evolves according to the differential inclusion ẋ ∈ F (x) while in C, and its value changes according to the difference inclusion x + ∈ G(x) when x is in D. Optimality aspects in hybrid systems have seen a growing interest in the community. First results on optimal control of hybrid systems can be traced back to the 90's in the work of Sussmann [START_REF] Sussmann | A maximum principle for hybrid optimal control problems[END_REF], later followed by [START_REF] Caines | A maximum principle for hybrid optimal control problems with pathwise state constraints[END_REF], [START_REF] Shaikh | On the hybrid optimal control problem: theory and algorithms[END_REF], where maximum principles for some class of hybrid and switched systems are formulated. More recently, several research directions concerning optimality in hybrid systems have been explored within the framework of hybrid inclusions in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF]. In [START_REF] Goebel | Optimal control for pointwise asymptotic stability in a hybrid control system[END_REF] connections between pointwise stability and optimal control of hybrid systems are investigated. In [START_REF] Possieri | LQ optimal control for a class of hybrid systems[END_REF], linear-quadratic optimal control for hybrid systems with linear dynamics and periodic jumps is studied. Cost evaluation problems play a central role in guaranteed cost control [START_REF] Esfahani | An LMI approach to the outputfeedback guaranteed cost control for uncertain time-delay systems[END_REF], so the solution to such a problem can be used to develop sub-optimal control design tools. For the class of linear-quadratic problems, i.e., linear dynamics and quadratic costs, closed form expressions of the cost value can be obtained by relying on the solution to a differential Riccati equation; see, e.g., [START_REF] Liberzon | Calculus of variations and optimal control theory: A concise introduction[END_REF]Chapter 6.1.3]. Unfortunately, as pointed out in [START_REF] Bernstein | Nonquadratic cost and nonlinear feedback control[END_REF], this technique cannot be applied when the cost is nonquadratic and does not extend to nonlinear systems. To overcome this problem, the idea proposed in [START_REF] Bernstein | Nonquadratic cost and nonlinear feedback control[END_REF] consists of establishing a connection between the cost functional and a Lyapunov-like inequality.

In this paper we take a first step towards the development of connections between Lyapunov theory and optimal control for hybrid systems modeled by hybrid inclusions. In particular, motivated by the general ideas originally presented in [START_REF] Bernstein | Nonquadratic cost and nonlinear feedback control[END_REF] for continuous-time systems and later extended in [START_REF] Ferrante | On the optimality of lyapunov-based feedback laws for constrained difference inclusions[END_REF] to constrained difference inclusions, the problem we address consists of evaluating the cost associated to the solutions to a hybrid inclusion with respect to a given cost functional. Building from Lyapunov theory for hybrid systems in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF], we extend the results in [START_REF] Bernstein | Nonquadratic cost and nonlinear feedback control[END_REF] to hybrid inclusions. More precisely, the contributions in this paper are as follows. First, we provide sufficient conditions for cost evaluation for hybrid inclusions. In particular, we show that under some Lyapunov-like conditions, the cost associated to the solution to a hybrid inclusion, from a given initial condition, with respect to a hybrid cost functional can be upper bounded by a function of the initial condition. As a second step, we show that by strengthening some assumptions, the cost associated to the hybrid inclusion can be perfectly determined via the proposed conditions. Unlike previous results, uniqueness of solutions is nowhere assumed in the paper and when multiple solutions exist from a given initial condition, we take the supremum of the cost over all possible solutions. Finally, it is shown that in some particular applications, the proposed methodology leads to constructive conditions that can be easily used to solve the considered cost evaluation problem.

The remainder of this paper is structured as follows. Section II-A presents some preliminaries on hybrid inclusions. Section II-B and Section II-C present our main results concerning the considered cost evaluation problems. Section III shows how our results can be specialized to deal with some relevant applications and presents some numerical examples. Due to space constraints, proofs of the main results are omitted and will be published elsewhere.

Notation: The symbol N>0 denotes the set of strictly positive integers, N = N>0 ∪{0}, R ≥0 represents the set of nonnegative real scalars, S n denotes the set of real symmetric matrices of dimension n and S n + denotes the set of real symmetric positive definite matrices of dimension n. In partitioned symmetric matrices, the symbol • stands for symmetric blocks. The matrix diag{A1, A2, . . . , An} is the block-diagonal matrix having A1, A2, . . . , An as diagonal blocks. For a vector x ∈ R n , |x| denotes the Euclidean norm, while xi denotes its i-th entry, and 1n denotes the vector in R n whose entries are equal to one. Given two vectors x, y, we denote (x, y) = [x T y T ] T , where x T denotes the transpose of x. Given M ∈ S n , we denote by C(M ) the negative cone generated by M , i.e., C(M ) := {x ∈ R n : x T M x ≤ 0}. Given a vector x ∈ R n and a closed set A, the distance of x to A is defined as |x|A = infy∈A |x -y|. Given a set S, we denote S the closure of S.

II. COST EVALUATION FOR HYBRID INCLUSIONS

A. Preliminaries on Hybrid Inclusions

We consider hybrid inclusions with state x ∈ R n of the form

H 0 ẋ ∈ F (x) x ∈ C x + ∈ G(x) x ∈ D (1) 
In particular we denote, F : R n ⇒ R n as the flow map, C ⊂ R n as the flow set, G : R n ⇒ R n as the jump map, and D ⊂ R n as the jump set.

A set E ⊂ R ≥0 × N is a hybrid time domain if it is the union of a finite or infinite sequence of intervals [t j , t j+1 ]× {j}, with the last interval (if existent) of the form [t j , T ) with T finite or T = ∞. Given a hybrid time domain E, we denote

sup j E = sup{j ∈ N : ∃t ∈ R ≥0 s.t. (t, j) ∈ E} and sup t E = sup{t ∈ R ≥0 : ∃j ∈ N 0 s.t. (t, j) ∈ E}.
A hybrid signal φ is a function defined over a hybrid time domain. A hybrid signal φ : dom φ → R n is a hybrid arc if φ(•, j) is locally absolutely continuous for each j. In particular, we denote X the class of hybrid arcs with values in R n . Given a hybrid signal u,

dom t u := {t ∈ R ≥0 : ∃j ∈ N s.t. (t, j) ∈ dom u} and dom j u := {j ∈ N 0 : ∃t ∈ R ≥0 s.t. (t, j) ∈ dom u}. Given a hybrid signal u, s ∈ dom t u, and i ∈ dom j u, j(s) = min{j ∈ N : (s, j) ∈ dom u} and t(i) = min{t ∈ R ≥0 : (t, i) ∈ dom u}. A hybrid arc φ ∈ X is a solution to H if φ
satisfies the dynamics of H; see [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF] for more details on hybrid systems. A solution φ to H is maximal if it cannot be extended and is complete if dom φ is unbounded. Given a set M and the hybrid inclusion H 0 , we denote by S H0 (M ) the set of all maximal solutions φ to H 0 with φ(0, 0) ∈ M . If no set M is mentioned, S H0 is the set of all maximal solutions to H 0 .

B. Upper bounds

By following the general ideas proposed in [START_REF] Bernstein | Nonquadratic cost and nonlinear feedback control[END_REF], in this section we investigate how a Lyapunov-like function can be used to provide estimates of nonlinear cost functionals for a given hybrid inclusion.

For each initial condition ξ ∈ C ∪ D to H 0 in (1), consider the following cost:

J (ξ) = sup φ∈SH 0 (ξ) dom t φ q c (φ(s, j(s)))ds + domj φ j=1 q d (φ(t(j), j -1))   (2) 
where

q c : C → R ≥0 and q d : D ∪ G(D) → R ≥0 .
Remark 1. Given φ ∈ S H0 , the definition of the cost (2) implies that, when dom j φ is bounded, the value of φ(t J , sup j dom φ), with t J = inf{t ∈ R ≥0 : (t, sup j dom φ) ∈ dom φ}, does not contribute to the "jump cost". Obviously, this does not lead to any difference in the cost value when dom φ is unbounded in the jdirection. Such a formulation turns out to be convenient for our analysis.

Throughout the paper, given a solution φ to (1), we denote

J φ := lim (τ,ι)∈dom φ (τ,ι)→sup dom φ [0,τ ] q c (φ(s, j(s)))ds + ι j=1 q d (φ(t(j), j -1))  
The following result can be established.

Proposition 1. Let ξ ∈ C ∪ D, q c : C → R ≥0 , and 
q d : D ∪ G(D) → R ≥0 . Let V : dom V → R with dom V ⊃ C ∪ D ∪ G(D) be continuously differentiable on an open set containing C. Assume that sup f ∈F (x) ∇V (x), f + q c (x) ≤ 0 ∀x ∈ C (3a) sup g∈G(x) V (g) -V (x) + q d (x) ≤ 0 ∀x ∈ D (3b)
Let φ : dom φ → R n be a solution to (1) from ξ. Assume that (t, j) → V • φ(t, j) is bounded. Then, J φ is a finite number and in particular

J φ + lim sup (τ,ι)∈dom φ (τ,ι)→sup dom φ V (φ(τ, ι)) ≤ V (ξ) (4) 
Sketch of the proof. Pick any solution φ to (1) from ξ and observe that for each (τ, ι)

∈ dom φ V (φ(τ, ι)) -V (φ(0, 0)) = τ 0 d ds V (φ(s, j(s)))ds+ ι j=1 [V (φ(t(j), j)) -V (φ(t(j), j -1))]
(5) By using (3a) and (3b), the latter implies

V (φ(τ, ι)) -V (φ(0, 0)) ≤ -J φ (τ, ι) (6) 
where for each (t, j) ∈ dom φ

J φ (t, j) := t 0 q c (φ(s, j(s)))ds + j i=1 q d (φ(t(i), i -1))
Therefore, from (6) one gets

V (φ(t, j)) + J φ (t, j) ≤ V (ξ) ∀(t, j) ∈ dom φ (7)
Since by assumption V • φ is bounded, [START_REF] Goebel | Optimal control for pointwise asymptotic stability in a hybrid control system[END_REF] implies that (t, j) → J φ (t, j) is bounded. Using nonnegativity of q c and q d , one can conclude that lim (t,j)∈dom φ (t,j)→sup dom φ J φ (t, j) = J φ is a finite number. In particular, from [START_REF] Goebel | Optimal control for pointwise asymptotic stability in a hybrid control system[END_REF] one has

V (ξ) ≥ lim sup (t,j)∈dom φ (t,j)→sup dom φ (V (φ(t, j))+ J φ (t, j)) = lim sup (t,j)∈dom φ (t,j)→sup dom φ V (φ(t, j)) + J φ
which gives (4), concluding the proof.

Proposition 1, by building on a suitable function V , provides an upper bound on the cost J φ that depends on the solution chosen from ξ. Next, by relying on further assumptions, for a given initial condition ξ ∈ C ∪ D, we provide an upper bound on the cost J (ξ) that is solution independent.

Corollary 1. Let A ⊂ R n be closed, ξ ∈ C ∪ D, q c : C → R ≥0 , and q d : D ∪ G(D) → R ≥0 . Assume there exists a function V : dom V → R, dom V ⊃ C ∪ D ∪ G(D)
, that is continuously differentiable on an open set containing C and uniformly continuous on a neighborhood of A such that V (A ∩ dom V ) = {0} and (3) holds. Furthermore, assume that each φ ∈ S H0 (ξ) is such that

lim (t,j)∈dom φ (t,j)→sup dom φ |φ(t, j)| A = 0 (8) Then J (ξ) ≤ V (ξ) (9) 
Remark 2. To get a solution independent upper bound on the cost, in the above result we assumed V to be uniformly continuous on a neighborhood of A. Indeed, since V (dom V ∩A) = {0}, one can show that uniform continuity on a neighborhood of dom V ∩ A ensures that for any (t, j) → φ(t, j) such that φ approaches A, V • φ approaches zero. Alternatively, building upon Proposition 1, to relax the uniform continuity requirement of V , one could assume that for each φ ∈ S H0 (ξ) such that |φ| A approaches zero, one has lim sup

(t,j)∈dom φ (t,j)→sup dom φ V (φ(t, j)) = 0
On the other hand, observe that when A is compact (which is often the case in applications), by the Heine-Cantor Theorem, continuity of V on a neighborhood of A is enough. Remark 3. Corollary 1 shows that when maximal solutions from ξ converge to A, then an upper bound on the cost J (ξ) (which is solution independent) is given by V (ξ). On the one hand, when q d , q c , and V are positive definite with respect to A, (3) implies for any complete solution φ, that V • φ approaches zero. On the other hand, for maximal solutions that are not complete, finite time convergence to A is needed. Conditions for finite-time convergence for hybrid systems are given in [12, Theorem 3.9].

C. Exact cost evaluation

In this section, our main objective is to obtain the exact value of the cost J (ξ) in (2) for a given initial condition ξ, without explicitly computing it. To that end, next, under further assumptions on the system data and a stronger condition than (3), we provide a way to determine the exact value of J (ξ) for a given initial condition ξ ∈ C ∪ D.

Corollary 2. Let A ⊂ R n be closed, ξ ∈ C ∪ D, q c : C → R ≥0 , q d : D ∪ G(D) → R ≥0
, and F (x) and G(x) be compact, respectively, for each x ∈ C and each x ∈ D. Assume that there exists a continuous function

V : dom V → R, dom V ⊃ C ∪ D ∪ G(D), that is continuously differentiable on an open set containing C such that max f ∈F (x) ∇V (x), f + q c (x) = 0 ∀x ∈ C (10a) max g∈G(x)
V (g) -V (x) + q d (x) = 0 ∀x ∈ D (10b) Furthermore, assume that for any solution φ 0 to (1) from ξ, V • φ 0 is bounded. Pick any solution φ to the hybrid system

ẋ ∈ arg max f ∈F (x) ∇V (x), f x ∈ C x + ∈ arg max g∈G(x) V (g) x ∈ D (11) 
with φ(0) = ξ and let φ 0 be any solution to (1) from ξ. Then, one has that J φ0 and J φ are finite and in particular

J φ0 + lim sup (t,j)∈dom φ (t,j)→sup dom φ V (φ 0 (t, j)) ≤ J φ + lim sup (t,j)∈dom φ (t,j)→sup dom φ V (φ(t, j)) = V (ξ) (12) Moreover, if V is nonnegative 1 , uniformly continuous on neighborhood of A, V (dom V ∩ A) = {0},
and there exists a maximal solution φ to [START_REF] Andrea | Differential games, continuous lyapunov functions, and stabilisation of non-linear dynamical systems[END_REF] with φ(0, 0) = ξ such that lim (t,j)∈dom φ (t,j)→sup dom φ |φ(t, j)| A = 0 then, one has

J (ξ) = V (ξ) (13) 
The results given in this section extend previous results on cost evaluation for continuous-time nonlinear systems [START_REF] Bernstein | Nonquadratic cost and nonlinear feedback control[END_REF] and constrained difference inclusions [START_REF] Ferrante | On the optimality of lyapunov-based feedback laws for constrained difference inclusions[END_REF] to hybrid inclusions. Similarly as in [START_REF] Bernstein | Nonquadratic cost and nonlinear feedback control[END_REF], [START_REF] Ferrante | On the optimality of lyapunov-based feedback laws for constrained difference inclusions[END_REF], our results have strong connections to Lyapunov analysis. More specifically, the applicability of our results to specific examples requires the search of a suitable Lyapunov-like function, which is in general a challenging task. In the subsequent section, we show how our results can be be used in some relevant applications in a constructive fashion.

III. APPLICATIONS AND EXAMPLES

In this section, we specialize our results to two specific classes of cost evaluation problems. The first class of problems we analyze pertains to the case of hybrid systems with linear maps, conic flow and jump sets, and quadratic cost. This setting is relevant since hybrid systems with conic flow and jump sets arise in many different areas, such as reset control systems; see [START_REF] Nešić | Stability properties of reset systems[END_REF]. The second class of problems concerns the case of hybrid systems with linear maps, periodic jumps, and quadratic cost. Such a type of systems can be found in numerous applications such as sampleddata control [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF] and has recently attracted the attention of researchers; see, e.g., [START_REF] Marconi | Internal model principle for linear systems with periodic state jumps[END_REF], [START_REF] Possieri | LQ optimal control for a class of hybrid systems[END_REF] just to mention a few. In particular, in [START_REF] Possieri | LQ optimal control for a class of hybrid systems[END_REF] specific tools have been provided for the solution to quadratic optimal control problems for linear hybrid systems with periodic jumps 2 .

A. Linear-Quadratic Problems with Conic Flow and Jump sets

Consider the following hybrid system 3

H C ẋ = A c x x ∈ C c := C(M c ) x + = A d x x ∈ D c := C(M d )
where M c , M d ∈ S n and A c , A d ∈ R n×n . Then, we have the following result.

Proposition 2. Let A = {0}, ξ ∈ C ∪ D, x → q c (x) := x T Q c x, and x → q d (x) := x T Q d x, where Q c , Q d ∈ S n + . Assume that there exists P ∈ S n + , τ 1 , τ 2 ∈ R >0 such that A T c P + P A c + Q c -τ 1 M c ≤ 0 A T d P A d -P + Q d -τ 2 M d ≤ 0 (14) 
Let φ ∈ S HC (ξ) and assume that φ is complete. Then

J φ ≤ ξ T P ξ (15) 
Moreover, if every φ ∈ S HC (ξ) is complete, one has

J (ξ) ≤ ξ T P ξ (16) 
2 Simulations of hybrid systems are performed in Matlab ® via the Hybrid Equations (HyEQ) Toolbox [START_REF] Sanfelice | A toolbox for simulation of hybrid systems in matlab/simulink: Hybrid equations (HyEQ) toolbox[END_REF]. 3 Given M ∈ S n , the symbol C(M ) denotes the negative cone generated by M ; see Notation. In the published proceeding, C(M ) is not defined and C + (M ) stands for the positive cone.

Obviously the upper bound one gets is in general conservative. On the other hand, such a conservatism can be reduced by suitably selecting the matrix P in [START_REF] Lofberg | YALMIP: A toolbox for modeling and optimization in matlab[END_REF]. In particular, P can be selected to minimize a certain criterion. A possible choice to minimize ξ T P ξ in all directions consists of picking λ max (P ) as a criterion; i.e., the induced 2-norm of P ; see [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]. Pursuing this approach, P can be taken as the solution to the following semidefinite program:

minimize P,λ,τ1,τ2 λ λI -P ≥ 0 A T c P + P A c + Q c -τ 1 M c ≤ 0 A T d P A d -P + Q d -τ 2 M d ≤ 0 τ 1 > 0, τ 2 > 0, λ > 0, P ∈ S n + (17)
An example within the setting considered in the above result is presented next.

Example 1. Consider the following data for the hybrid inclusion H

C A c = 0 1 -1 0 , A d = exp (A c -I) , Q c = Q d = I M d = -M c = -1 0.5 0.5 0
by [9, Proposition 6.10], it can be easily shown that the above definition of the data of H C ensures that maximal solutions to H C are complete. By solving [START_REF] Michel | Towards a stability theory of general hybrid dynamical systems[END_REF] in Matlab ® using the YALMIP package [START_REF] Lofberg | YALMIP: A toolbox for modeling and optimization in matlab[END_REF], combined with the solver Mosek [START_REF] Mosek Aps | The MOSEK optimization toolbox for MATLAB manual[END_REF], one gets 4 P ≈ 1.526 -0.5 -0.5 2.526

Fig. 1 shows the unique maximal solution to H C from ξ = [START_REF] Bernstein | Nonquadratic cost and nonlinear feedback control[END_REF][START_REF] Ferrante | On the optimality of lyapunov-based feedback laws for constrained difference inclusions[END_REF]. The solution converges to the origin and is Zeno. In Fig. 2, we report the evolution of the function

(t, j) → J φ (t, j) := t 0 q c (φ(s, j(s)))ds+ j i=1 q d (φ(t(i), i -1))
As expected, J (ζ) = lim t+j→∞ J φ (t, j) is upper bounded by

V (ξ) = ξ T P ξ.

B. Linear-Quadratic Problems with Periodic Jumps

Consider the following hybrid system with state x = (x p , τ ) :∈ R n × [0, T ] where A c , A d ∈ R n×n , and T > 0. We have the following result.

H P            ẋp = A c x p τ = 1 x ∈ C P := R n × [0, T ] x + p = A d x p τ + = 0 x ∈ D P := R n × {T }
Proposition 3. Let A = {0} × [0, T ], ξ = (ξ p , ξ τ ) ∈ R n × [0, T ], x → q c (x) := x T p Q c x p , and x → q d (x) := x T p Q d x p , where Q c , Q d ∈ S n
+ , and x = (x p , τ ). Furthermore, define

Ψ(τ ) := e H(τ -T ) = ψ 1,1 (τ ) ψ 1,2 (τ ) ψ 2,1 (τ ) ψ 2,2 (τ ) ∀τ ∈ [0, T ]
with

H := A c 0 -Q c -A T c
Assume that there exists X ∈ S n + such that

X -A T d e A T c T Xe AcT A d = A T d ψ 2,1 (0)e AcT A d + Q d (18a)
and define for each τ ∈ [0, T ]

P (τ ) = ψ 2,1 (τ ) + e -A T c (τ -T ) X e -Ac(τ -T ) (18b) Then J (ξ) = ξ T p P (ξ τ )ξ p (19) 
Sketch of the proof. First notice that due to the structure of H, it is straightforward to check that for each τ ∈ [0, T ]

Ψ(τ ) = e Ac(τ -T ) 0 ψ 2,1 (τ ) e A T c (T -τ ) (20)
for some τ → ψ 2,1 (τ ). Thanks to [START_REF] Ntogramatzidis | On the exact solution of the matrix riccati differential equation[END_REF]Theorem 2.1] and due to the structure of Ψ outlined in [START_REF] Possieri | LQ optimal control for a class of hybrid systems[END_REF], it follows that [0, T ] ∋ τ → P (τ ) in (18b), which is continuously differentiable on (0, T ), is the unique solution to the following final value problem:

d dτ P (τ ) = -He(A T c P (τ )) -Q c ∀τ ∈ (0, T ) (21a) P (T ) = X (21b) 
Moreover, it can be proven that for each τ ∈ [0, T ], P (τ ) ∈ S n + . Define C P ∋ x → V (x) := x T p P (τ )x p and observe that, due to P ([0, T ]) ⊂ S n + , V is positive definite with respect to A on C P . For all x ∈ C P ∇V (x), (A c x p , 1) = x T p He(P (τ )A c ) +

d dτ P (τ ) x p
hence, thanks to (21a), the latter gives

∇V (x), (A c x p , 1) = -x T p Q c x p ∀x ∈ C P (22) 
which corresponds to (10a). Additionally, for all x ∈ D P , one has

V ((A d x p , 0)) -V (x) = x T p (A T d P (0)A d -X)x p (23) 
By substituting the expression of P (0) given by (18b) into [START_REF] Sussmann | A maximum principle for hybrid optimal control problems[END_REF] and by using (18a), one gets

V ((A d x p , 0))-V (x) = -x T p Qx p x ∈ D P ∀x ∈ D P (24 
) which corresponds to (10b). At this stage, since Q c and Q d are positive definite and maximal solutions to H P are complete, by [9, Theorem 3.18], ( 22)- [START_REF] Tavernini | Differential automata and their discrete simulators[END_REF] imply that maximal solutions to H P converge to A. Therefore, by invoking Corollary 2, ( 22) and ( 24) give ( 13) and the result is established. Remark 4. It is worthwhile to observe that (21a) is a differential Riccati equation 5 . The fact that our approach when specialized to the case of linear hybrid systems with periodic jumps leads to a differential Riccati equation is consistent with linear quadratic control theory. In particular, from linear quadratic control theory (see, e.g., [ Therefore, Proposition 3 establishes a direct relationship between the considered hybrid cost evaluation problem and a specific continuous-time finite-horizon linear quadratic cost evaluation problem. In particular, by comparing [START_REF] Van Der Schaft | An introduction to hybrid dynamical systems[END_REF] with [START_REF] Ntogramatzidis | On the exact solution of the matrix riccati differential equation[END_REF], Proposition 3 enables to conclude that, for any (ξ p , ξ τ ) ∈ C P , the cost associated to the solutions to H P with respect to the "hybrid" cost (2), with q c and q d are quadratic functions, coincides with T ξτ ϕ(s) T Q c ϕ(s)ds + ϕ T (T )P (T )ϕ(T )

where for all t ∈ (0, T ), φ(t) = A c ϕ(t), ϕ(0) = ξ p , and the terminal-cost matrix X is selected as in (18a). with φ ∈ S HP (ξ) and ξ = (0.2, 0, 0). As expected

J (ξ) = lim t+j→∞ J φ (t, j) = V (ξ)
IV. CONCLUSION

In this paper we addressed cost evaluation problems for hybrid inclusions in the framework of [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF]. The results are obtained by establishing a connection between a general hybrid cost functional and a Lyapunov like function. Sufficient conditions for exact cost evaluation are provided. Additionally, in some applications of relevant interest, our results have been specialized to get constructive tools for cost evaluation.

Future research directions include the extension of the proposed approach to hybrid optimal control. Moreover, the extension of the proposed approach to hybrid dynamical games in the spirit of [START_REF] Andrea | Differential games, continuous lyapunov functions, and stabilisation of non-linear dynamical systems[END_REF] is part of our current research.
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 12 Fig. 1: The flow (grey) and jump (white) sets, and a trajectory from the initial condition ξ = (2, 6) (red ×) for the system H C in Example 1.

  13, Chapter 6.1.3]), it is well-known that the solution P : [0, T ] → S n + to (21) is such that for any solution ϕ to ẋ = A c x with ϕ(0) = ξ p and any θ ∈ [0, T ], one has ξ T p P (θ)ξ p = T θ ϕ(s) T Q c ϕ(s)ds + ϕ T (T )P (T )ϕ(T ) (25)
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 323 Fig. 3: The evolution of the function J φ in Example 2.

In the conference paper this assumption is missing.

A similar definition for the Lyapunov function appeared in [8, Example 26], though no cost evaluation is considered therein.

Code at https://github.com/HybridSystemsLab/HybridCostLQPeriodic
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