
HAL Id: hal-01850383
https://hal.science/hal-01850383v1

Submitted on 27 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Questioning the security and efficiency of the ESIoT
approach

Aida Diop, Said Gharout, Maryline Laurent, Jean Leneutre, Jacques Traoré

To cite this version:
Aida Diop, Said Gharout, Maryline Laurent, Jean Leneutre, Jacques Traoré. Questioning the
security and efficiency of the ESIoT approach. WISEC 2018: 11th ACM Conference on Secu-
rity and Privacy in Wireless and Mobile Networks, Jun 2018, Stockholm, Sweden. pp.202 - 207,
�10.1145/3212480.3212491�. �hal-01850383�

https://hal.science/hal-01850383v1
https://hal.archives-ouvertes.fr

Questioning the security and efficiency of the

ESIoT approach

Aı̈da Diop - Orange Labs [aida.diop@orange.com]
Säıd Gharout - Orange Labs [said.gharout@orange.com]
Maryline Laurent - Télécom SudParis [maryline.laurent@telecom-sudparis.eu]
Jean Leneutre - Télécom ParisTech [jean.leneutre@telecom-paristech.fr]
Jacques Traoré - Orange Labs [jacques.traore@orange.com]

Abstract

ESIoT is a secure access control and authentication protocol in-
troduced for Internet of Things (IoT) applications. The core primi-
tive of ESIoT is an identity-based broadcast encryption scheme called
Secure Identity-Based Broadcast Encryption (SIBBE). SIBBE is de-
signed to provide secure key distribution among a group of devices in
IoT networks, and enable devices in each group to perform mutual au-
thentication. The scheme is also designed to hide the structure of the
group from nodes outside of the group. We identify multiple efficiency
and security issues in this primitive that prove SIBBE unsuitable for
IoT applications. First, we show that contrary to what was claimed,
the size of the ciphertexts generated by the encryption function is not
constant but in fact linear in the number of devices in the group. Addi-
tionally, we demonstrate that the encryption and decryption costs are
also linear in the number of nodes in the group, implying scalability
issues thus inefficiency for IoT applications. In terms of security, we
prove that SIBBE does not achieve the desired property of anonymity
and allows an attacker to gain information on the structure of any
given group. Finally, we demonstrate how SIBBE does not achieve
the claimed chosen-ciphertext security. We however prove its security
for a weaker security notion (namely selective-ID indistinguishability
against chosen-plaintext attacks) under a variant of the GDDHE as-
sumption.

1 INTRODUCTION

The Internet of Things (IoT) is a paradigm where distributed devices form a
wireless network and communicate over the Internet. We consider the case
of Smart buildings with hundreds of heterogeneous smart devices forming
a low-power network. Each of these wireless nodes has an IP address, and
can use IP protocols to communicate data over IPv6 Low-Power Area Net-
work (6LoWPAN). In order to secure communications in such setting, it is
important to establish a secure key distribution model.

ESIoT protocol. ESIoT [10] is a security protocol for managing access
control and authentication in IoT networks. ESIoT’s architecture is based on
the commissioner model introduced by the THREAD industry consortium
[9]. The model comprises a central server, devices divided into policy groups
that perform a specific task (or policy), and a designated node called the
commissioner that is in charge of managing the policy group. The group
tasks can for example include sending temperature data from sensors, under
the supervision of the commissioner. ESIoT differentiates itself from existing
protocols that provide secure access control by not revealing the structure of
the policy groups in clear. In ESIoT, authenticity, confidentiality, privacy,
and access control are provided by the SIBBE primitive in conjunction with
digital signatures, AES encryption and Hash-based Message Authentication
Code (HMAC). The security properties achieved by SIBBE are therefore
crucial to the overall design of the protocol.

IBBE/SIBBE. Broadcast Encryption (BE) schemes were introduced by
Fiat and Naor in [6] as key-distribution mechanisms that allow a source to
broadcast an encrypted message, such that only target receivers are able to
decrypt the ciphertext using their private decryption keys. Identity-Based
Encryption schemes (IBE) were introduced by Shamir in [11] to provide
a more flexible alternative to the centralized certificate-based approach in
standard Public-key Encryption schemes. Each encrypting party can use
a public information (ID) to encrypt messages, and the private decryption
key related to the public ID provides the authentication layer that was pre-
viously delegated to the certification authority. The combination of these
two schemes is the concept of Identity-Based Broadcast Encryption (IBBE).
The first IBBE scheme providing constant-size ciphertexts and private keys
was introduced by Delerablée [5].
Kim et al. introduced a new Identity-Based Broadcast Encryption scheme
[10] called SIBBE, as the main building block for their ESIoT protocol.
Their construction draws inspiration from [5], but aims to differentiate itself

by providing a more efficient decryption function and by hiding the identities
of the receivers (anonymous IBBE).

Our contribution. We analyse the efficiency and security of SIBBE, and
show that it is neither practical nor secure for IoT networks. We first analyse
in section 4.1 the efficiency of the scheme, and show that the size of the
ciphertexts as well as the decryption cost are in fact linear in the number of
receivers, and not constant as claimed in [10]. Second, we provide in sections
4.2 and 4.3 an analysis of the efficiency of SIBBE in practice. We also prove
that SIBBE is not secure against chosen-ciphertext attacks in section 5.1,
and that it does not satisfy the security definition of an anonymous IBBE
in section 5.2. Finally, in section 5.3 we prove that SIBBE is secure under
a weaker security definition.

2 PRELIMINARIES

In this section, we review the notations we use, the mathematical tools
employed in the cryptographic primitives, and the assumption upon which
we construct our security proof. We also give a formal description of an
IBBE scheme, and the security definitions for IBBE schemes.
Notations. We use the notation A⇐ B for assignement, Zp to designate a

group of prime order p, and x
$←− G to denote that x is chosen uniformly at

random in the group G. {0, 1}∗ represents the set of bitstrings of arbitrary
length, and H : G1 → G2 is used to designate a function from G1 to G2.

2.1 Bilinear Maps

The construction of SIBBE is based on bilinear pairings. A bilinear pairing
is defined as follows:
Let p be a prime number and G1 = 〈P1〉, G2 = 〈P2〉 two cyclic groups of
order p generated by P1 and P2 respectively 1. Let GT be a finite field of
order p. A pairing is a bilinear map e : G1 × G2 → GT with the following
properties:
Bilinearity: For P ∈ G1, Q ∈ G2 and (a, b) ∈ Z2

p,

e(P a, Qb) = e(P,Q)ab = e(P b, Qa).
Non-degeneracy: For P 6= 1 and Q 6= 1, e(P,Q) 6= 1.
Computability: e is efficiently computable.

1Throughout this paper, for simplicity we will use the multiplicative notation for the
binary operations in G1 and G2.

2.2 GDDHE Assumption

In section 5.3, we prove SIBBE to be secure under a weaker security notion
than the one presented in [10]. The proof is based on a variant of the
general decisional diffie-hellman exponent assumption (GDDHE) introduced
by Delerablée in [5], and proven secure in the generic group model [5]. The
decision problem is defined as follows:

Definition 1. ((f, g, F)−GDDHE problem.)
Let B = (p,G1,G2,GT , e(., .)) be the description of a bilinear map and let
f, g be two coprime polynomials with pairwise distinct roots of respective
orders t and n. Let g0 be a generator of G1 and h0 a generator of G2. Solving
the (f, g, F)−GDDHE problem consists, given:

g0, g
γ
0 , ..., g

γt−1

0 , g
γ.f(γ)
0 , g

k.γ.f(γ)
0

h0, h
γ
0 , ..., h

γ2n

0 , h
k.g(γ)
0

and R ∈ GT , in deciding whether R is equal to e(g0, h0)
k.f(γ).g(γ) or to some

random element of GT .
The advantage of an algorithm A in distinguishing the two distributions is
denoted by AdvGDDHE(f,g,F,A). The security of schemes under the GDDHE
assumption is evaluated over all polynomial-time adversaries. Therefore we
will consider the following advantage: AdvGDDHE(f,g,F) = max(AdvGDDHE(f,g,F,A))
over all polynomial-time adversaries.

2.3 Identity-Based Broadcast Encryption Scheme

Formally, an IBBE scheme comprises the following algorithms:
Setup(λ, n). Takes as input a security parameter λ that polynomially
bounds the running time of the algorithms, and n the maximal size of the
set of receivers. The algorithm returns a master secret key MSK and public
parameters param.
Extract(MSK, IDi). Takes as input MSK and a user identity IDi. The
algorithm generates a private decryption key di.
Encrypt(param, I). Takes as input param and a set of public identities
I = {ID1, ..., IDs} with s ≤ n, and outputs a pair (Hdr,K) where Hdr is
called the header (broadcast ciphertext) and K is the symmetric encryption
key. The broadcaster encrypts a message M under the symmetric key K:
C = EncK(M) (C is called the broadcast body), and broadcasts (Hdr, I).
Decrypt(param, I, IDi, di, Hdr). Takes as input the public parameters

param, a subset I = {ID1, ..., IDs} of identities, an identity IDi, the cor-
responding private key di, and a header Hdr. If IDi ∈ I, the algorithm
outputs K which is then used to decrypt the message M .

2.4 Security Definitions for Identity-Based Broadcast En-
cryption Schemes

The security definition SIBBE claims to satisfy is selective-ID indistinguisha-
bility against chosen-ciphertext attacks (IND-sID-CCA). We provide the
formal definition of a selective-ID IND-CCA secure scheme introduced by
Canetti et al. [4], where the adversary has access to a decryption oracle and
must choose the identities he wants to attack at the beginning of the game.
The formal notion of an IND-sID-CCA secure scheme is defined with the
following game between a challenger C and an adversary A:
Init: A outputs a set of identities I = {ID1, ..., IDs} it wants to attack
(s ≤ n where n is the maximal number of receivers).
Setup: The challenger C runs Setup(λ, n) to obtain the public parameters
param and the master secret key MSK. He gives A the public parameters
param.
Query Phase 1: A adaptively issues queries q1, ..., qs0 where qi can be one
of the following:

– Extraction query (IDi): with the constraint that IDi /∈ I. C runs
Extract(MSK, IDi) and forwards the resulting private key di to A.

– Decryption query (param, I ′, IDi, Hdr): with I ′ ⊂ I and IDi ∈ I ′. C
gives A the output of Decrypt(param, I ′, IDi, di, Hdr).

Challenge: When A decides that phase 1 is over, C runs

Encrypt(param, I) to obtain (Hdr∗,K). C randomly selects b
$←− {0, 1}, sets

Kb = K and sets K1−b = R where R is a random value in the symmetric
key space. C sends (Hdr∗,K0,K1) to A.
Query Phase 2: A continues to adaptively issue queries qs0+1...qs where
qi is one of the following:

– Extraction query (IDi): as in phase1.

– Decryption query (param, I ′, IDi, Hdr): as in phase 1 but with the
constraint that Hdr 6= Hdr∗. The challenger responds as in phase 1.

Guess: A outputs a bit b′ ∈ {0, 1} and wins if b′ = b.

Let us denote by t the total number of extraction queries and qD the total
number of decryption queries. We have s0 ≤ t+ qD.

An algorithmA has the following advantage in winning the game: AdvIBBE,A(t,n,qD) =
|2 · Pr[b′ = b]− 1|.

Definition 2. An IBBE scheme is said to be (t, n, qD)-IND-sID-CCA se-
cure if for all probabilistic polynomial-time adversaries A, its advantage
AdvIBBE,A(t,n,qD) in winning the game is negligible.

In section 5.1 we prove that SIBBE is insecure against selective-ID
chosen-ciphertext attacks by exhibiting an attacker that wins the IND-sID-
CCA game with advantage equal to 1. We however prove in section 5.3 that
the scheme is selective-ID secure against chosen-plaintext attacks (IND-sID-
CPA).
IND-sID-CPA: the security against chosen-plaintext attacks for an IBBE
scheme is defined using the same game between C and A except that A
cannot issue decryption queries.

Definition 3. An Identity-Based Broadcast encryption scheme IBBE is said
to be (t, n)-IND-sID-CPA secure if it is (t, n, 0)-IND-sID-CCA for all prob-
abilistic polynomial-time algorithms A.

SIBBE is designed to provide anonymity between policy groups, which
informally means that a node i in the network should not be able to tell if
a node j belongs to a policy group p if i and j are not in the same group.
Formally, the security definition associated with the scheme is anon-IND-
sID-CPA [2] and is defined with the following game between a challenger C
and an adversary A:
Init: The adversary A outputs two sets of identities
I0 = {IDi1, ..., IDis} and I1 = {IDj1, ..., IDjs} such that |I0| = |I1| and
we can have I0 ∩ I1 6= ∅.
Setup: The challenger C runs Setup(λ, n) to obtain the public parameters
param and the master secret key MSK. He gives A the public parameters
param.
Query Phase 1: A adaptively issues extraction queries as follows:
Extraction query (IDi): with the constraint that IDi /∈ |I0 ∪ I1|. C runs
Extract(MSK, IDi) and forwards the resulting private key di to A.
Challenge: When A decides that phase 1 is over, C randomly selects
b ← {0, 1}, sets I∗ = Ib and then runs Encrypt to obtain (Hdr∗,K) =
Encrypt(param, I∗). C sends (Hdr∗,K) to A.

Query Phase 2: A continues to adaptively issue extraction queries as in
phase1.
Guess: A outputs a bit b′ ∈ {0, 1} and wins if b′ = b.
An algorithmA has the following advantage in winning the game: Advanon-IBBE,A(t,n) =
|2 · Pr[b′ = b]− 1|.

Definition 4. An IBBE scheme is said to be Anon-IND-sID-CPA se-
cure if for all probabilistic polynomial-time adversaries A, its advantage
Advanon-IBBE,A(t,n) in winning the game is negligible.

We will build in section 5.2 a polynomial-time algorithm that wins the
anon-IND-sID-CPA game against SIBBE with advantage equal to 1.

3 ESIoT protocol and the SIBBE primitive

3.1 ESIoT Protocol

In ESIoT, devices performing a similar task are grouped into policy groups,
and communicate using a group policy key broadcasted by a central server.
The commissioner in charge of managing the group is authenticated by every
node during a policy update phase. At each update phase, the central
server first uses the encryption function of SIBBE presented in section 3.2
to encrypt a symmetric policy key Kp where the corresponding ciphertext
is CT = (CT1, CT2, CT3) for the policy group. It then generates a policy
packet (P) which is the encryption using Kp of a random nonce, the policy
description (DR), and the assigned commissioner ID. The central server
then signs the concatenation of P and CT and propagates P, CT, and the
signature SIG to all nodes via multicast. Each node upon receiving the
policy update message (P, CT, SIG), verifies the signature SIG generated
by the central server, and then proceeds to decrypt the ciphertext CT in
order to retrieve Kp using the SIBBE decryption function and their private
decryption key. They then decrypt the policy packet P in order to recover
the commissioner ID and the policy description DR.

3.2 SIBBE Primitive at the Heart of ESIoT

The main cryptographic primitive in ESIoT is Secure Identity-Based Broad-
cast Encryption (SIBBE). SIBBE is at the heart of the group key distribution
phase, and is used every time there is an update in the network such as node
addition, node revocation, or policy information update. SIBBE comprises

the following algorithms:
Setup(λ, n): Takes as input a security parameter λ and a maximal number
of nodes n.
– Generates a bilinear pairing B = (p,G1,G2,GT , e(., .)), with p a prime
number and g ∈ G1, h ∈ G2, γ ∈ Zp;
– chooses a hash function H : {0, 1}∗ −→ Zp;
– outputs the public parameters param = (gγ , e(g, h), h, hγ);
– derives the master secret key : MSK ⇐ (g, γ).
Extract(param, MSK):

– Generates a private key di = g
1

γ+H(IDi) for each node in {1, ..., n} with
identity in {ID1, ..., IDn}.
Encryption(param, I = {ID1, ..., IDs}2):

– Generates at random k
$←− Z∗p;

– Kp ⇐ e(g, h)k ∈ GT ;
– f ⇐

∏s
j=1,j 6=i(γ +H(IDj)), m⇐

∏s
j=1,j 6=iH(IDj);

– CT1 = e(g−k·γ , h
(f−m)
γ);

– CT2 = hk·(
∏s
i=1(γ+H(IDi))); CT3 = 1∏s

j=1,j 6=iH(IDj)
.

The broadcast ciphertext CT = (CT1, CT2, CT3).
Decryption(param, I, IDi, di, CT): extracts policy key for node i as
follows:
– Kp ⇐ (CT1 · e(di, CT2))CT3.

4 ON THE EFFICIENCY OF SIBBE

4.1 From Constant to Linear-Size Ciphertexts

There are several issues in the assessment of SIBBE’s efficiency. The central
server generates three ciphertexts (CT1, CT2, CT3) as shown in 3.2. First,
we show that the size of the ciphertext is in fact linear in the number of
receivers, and thus generates non-negligble overhead during the ciphertext
distribution phase. Indeed, each receiver gets (CT1, CT2, CT3) and should
be able to decrypt the ciphertext addressed to him using its private decryp-
tion key di. However, both CT1 and CT3 are dependent on the target node
i (i ∈ {1, ..., s} where s is the number of nodes in the target group) in the fol-

2 Note that we use the following notations to refer to a subset I of s IDs:
I = {ID1, ..., IDs} or I = {ID∗1 , ..., ID∗s}. They should be interpreted as I =
{IDφ(1), ..., IDφ(s)} where φ is a permutation: φ : {1, ..., n} → {1, ..., n} and n is the
maximal number of receivers. For convenience, we will sometime omit the function φ.

lowing manner: CT1i = e(g−k·γ , h
(f−m)
γ) where f =

∏s
j=1,j 6=i(γ +H(IDj)),

m =
∏s
j=1,j 6=iH(IDj), and CT3i = 1∏s

j=1,j 6=iH(IDj)
. CT2 is generated once

because it is independent of the target node i. Therefore the size of the
ciphertext the server generates is linear in the number of nodes.
Second, we show that the decryption cost for each node is linear in the
total number of receivers. Indeed on one hand, considering the fact that
one of SIBBE’s security property is to conceal the structure of each policy
group, node i does not know which triplet (CT1i, CT2, CT3i) is addressed
to him. It must therefore perform O(s) decryptions, and obtain O(s) session
keys Kp in order to test which one gives him an intelligible payload data
(namely a policy description and commissionner ID) after decryption of the
policy packet (see section 3.1). The decryption time for a constrained node
is unfeasible, especially considering the cost of pairing operations as demon-
strated in section 4.3. On the other hand, we prove in section 5.2 that an
attacker can distinguish between two sets of identities thus gaining informa-
tion on the structure of policy groups (non-anonymity). Consequently, we
may consider a constant time decryption for each receiver simply by allow-
ing the server to attach the corresponding node identifier IDi to each triplet
(CT1i, CT2, CT3i) i ∈ {1, ..., s} of the ciphertext. However such consider-
ation would not be compatible with the security goals presented in [10] as
attackers can capture packets over the wireless network and thus gain clear
access to the structure of the group.
Finally, an adversary could perform a simple Denial-of-Service (DoS) attack
on the system by constantly replaying previous update protocol sessions
(namely P, CT and SIG) in order to trigger costly decryption of broadcast
ciphertexts CT on the receiver side. Given our bandwidth limitations, this
could easily render the network unavailable to perform any policy task 3.

4.2 Pairings in Practice

The implementation of a pairing is often used as a black-box in practice,
however it is important to understand their properties and the different

3Note that to prevent such a ”replay attack”, the authors of ESIoT suggest to use
random nonces in policy update sessions. However these nonces are encrypted using the
session key Kp (see section 3.1). To retrieve such a nonce and detect a replay attack, a
node would have to first decrypt CT to recover Kp. This would therefore not prevent a
DoS attack. A better solution to detect a replay attack would be for the nodes to store
each valid signature made by the central server. However nodes are constrained devices
which do not necessarily have external memory (EEPROM or Flash memory) to store
such signatures.

types of pairings in order to determine which ones offer the best security
and efficiency trade-off. There are two forms of cryptographic pairings:
symmetric (where G2 = G1) and asymmetric (where G2 6= G1). Galbraith,
Paterson and Smart presented in [7] three types of pairings, one falls into
the first form and the other two in the second form. In type 1 pairings
we have G1 = G2. In type 2 pairings G1 6= G2 but there is an efficiently
computable homomorphism φ : G2 → G1 and no efficiently computable
homomorphism from G1 to G2. In type 3 pairings G1 6= G2 and there are no
efficiently computable homomorphisms between G1 and G2. Type 1 pairings
are implemented using supersingular curves, and type 2 and type 3 pairings
are implemented using ordinary curves. The efficiency of any scheme based
on pairings is dependent on the type of pairing used for implementation.

4.3 On the Efficiency of SIBBE in Practice

The implementation of SIBBE uses type 1 pairings for which group elements
are points on supersingular elliptic curves. For a security level of 128-bit in
type 1 pairings, G1 contains elements of size 3072 bits. Its computational
complexity for a given security level is therefore closer to RSA performances
than ECC. Additionally, recently there have been various discrete logarithm
attacks on type 1 pairing curves [8]. Consequently for better security and
efficiency, the good practice is to use type 3 pairings with Barreto-Naehrig
curves over a finite field [1]. For a 128-bit security in type 3 pairings, op-
erations in G1 are done on 256-bit elements, operations in G2 on 512-bit
elements, and operations in GT on 3072-bit elements [3].
Furthermore, let us consider the characteristics of the microcontrollers used
to provide benchmarks for SIBBE. The node-side component was imple-
mented on microcontrollers with 32 MHz processors, 512 Kb of ROM and
32 Kb of RAM. A node performing a SIBBE decryption will perform in
the worst case s pairing operations and s exponentiations in GT . The cost
of one exponentiation in GT (respectively in G1) is roughly equivalent to
2/3 (respectively 1/11) of one pairing operation [3]. In [10] we consider a
network with groups of 250 devices, during an update phase each node will
have to perform around 416 pairing operations (5/3 × 250). Considering
the most efficient pairings in practice (type 3), the node will have to store
[((250 × (3072 + 256)) + 512)/8]/1024 = 101Kb of data during each de-
cryption operation, which exceeds the current storage capacity of most IoT
devices. Furthermore, in [10] the cost of one pairing operation is estimated
to be around 700ms. In our example, each node will take 0.7× 416 = 291s
(roughly 5min) to perform one decryption and not 971ms as claimed in [10].

More efficient decryption of Kp. Based on the discussion above, we
can argue that exponentiations in GT should be avoided when possible.
However, in SIBBE the decryption algorithm retrieves the policy key Kp

by computing Kp = (CT1i · e(di, CT2))CT3i where i ∈ {1, ..., s}. We could
avoid this costly exponentiation in GT by replacing it by a far less costly
exponentiation (scalar multiplication) in G1 as follows:
The server computes CT1′i = CT1CT3ii i ∈ {1, ..., s}. To decrypt the cipher-

text, each node computes CT1′i · e(d
CT3i
i , CT2) i ∈ {1, ..., s}. Given that

the server is more computationally powerful, this step reduces the num-
ber of operations on the node side and provides a more efficient decryption
function.

5 SIBBE’S SECURITY SHORTCOMINGS

5.1 SIBBE is Not selective-ID CCA Secure

In this section, we prove that SIBBE is not selective-ID CCA secure as
claimed in [10]. Indeed, we build a polynomial-time adversary that has non-
negligible advantage in the IND-sID-CCA game, and prove the following
theorem:

Theorem 1. There exists a polynomial-time algorithm A in the
IND-sID-CCA game with the following advantage:

AdvIND−sID−CCASIBBE,A(0,n,1) = 1.

Proof 1. Init: Adversary A outputs a set of identities
I = {ID1, ID2}.
Setup: The challenger C runs Setup(λ, n) to obtain the public parameters
param and the master secret key MSK. He gives param to A.
Query Phase 1: A issues no query and decides that phase 1 is over.
Challenge: C runs EncryptSIBBE(param, I) to obtain (C∗,K). C randomly

selects b
$←− {0, 1}, sets Kb = K and sets K1−b = R where R is a random

value in the symmetric key space. C sends (C∗ = (CT1∗i , CT2∗, CT3∗i)i∈I ,K0,K1)
to A.
Query Phase 2:
– A issues no extraction query.
– Decryption query: A deletes (CT1∗2, CT3∗2) for node 2 from C∗. A sets
I ′ = {ID1} and sends a new ciphertext C ′ = (CT1∗1, CT2∗, CT3∗1) to the
decryption oracle. We can verify that I ′ ⊂ I and C ′ 6= C∗. Therefore C

sends back the result K ′ = Kb of Decrypt(param, I ′, ID1, d1, C
′).

Guess: A outputs 0 if K ′ = K0, and 1 if K ′ = K1.
The success probability of the adversary A in this game is equal to 1, which
proves theorem 1. �

5.2 SIBBE is Not an Anonymous IBBE

Selective-ID anonymity. Anonymous IBBE schemes were formalised by
Barth et al. in [2]. In order to prove that SIBBE is not an anonymous IBBE
for selective identities, we build a polynomial-time adversary that wins the
anon-IND-sID-CPA game with probability 1.
Init: The adversary A outputs two sets of identities I0 = {ID1, ID2} and
I1 = {ID2, ID3}.
Setup: The challenger C runs SetupSIBBE(λ, n) to obtain the public param-
eters param and the master secret key MSK. He gives param to A.
Query phase 1: A issues no query and decides that phase 1 is over.

Challenge: C randomly selects b
$←− {0, 1}, sets I∗ = Ib and then runs

the encryption algorithm to obtain (C∗,K) = EncryptSIBBE (param, I∗). C
sends (C∗ = (CT1∗i , CT2∗, CT3∗i)i∈I∗ ,K) to A.
Query Phase 2: A issues no query.
Guess: Let CT3∗ = {CT3∗b+1; CT3∗b+2}. A computes the CT3 correspond-
ing to I0 as follows:
CT3 = {CT31 = 1/H(ID2); CT32 = 1/H(ID1)}. If CT3 = CT3∗ then A
outputs 0, else A outputs 1.
The adversary wins the game with probability 1 because CT3∗ allows to
uniquely identify for which set of IDs the ciphertext C∗ is intended.
Non-selective-ID anonymity. We prove that even if the adversary has
no idea of the IDs of the devices forming the group (A does not select target
identites prior to starting the security game), it can still retrieve all members
of the group in O(n2) multiplications, where n is the maximal size of the set
of receivers.
Let the target ciphertext for the set of intended receivers I = {ID1, ..., IDs}
(see Footnote 2) be CT ∗ = (CT1∗i , CT2∗, CT3∗i) where i ∈ {1, ..., s}. A
fixes {i, j} ∈ {1, ..., s}, i 6= j and computes CT3∗i,j =

CT3∗i
CT3∗j

=
H(IDj)
H(IDi)

. By

computing for all n·(n−1) = O(n2) pairs (k, l), where k and l ∈ {1, ..., n}, the

following value CT3k,l = H(IDl)
H(IDk)

and testing which one matches CT3∗i,j , A
can easily identify IDi and IDj . To find the remaining receivers, A computes

for each k ∈ {1, ..., s} and k 6= i and k 6= j: CT3∗i,k =
CT3∗i
CT3∗k

= H(IDk)
H(IDi)

. From

CT3∗i,k, A can easily retrieve, by exhaustive search, the corresponding IDk

(in O(n) multiplications). Therefore A can find all the remaining IDk (for
k 6= i and k 6= j) in O(n · s) steps. Overall the complexity to identify all the
intended receivers of CT ∗ is in O(n2 + n · s) = O(n2) multiplications. �

5.3 SIBBE’s Security Analysis

We prove SIBBE to be selective-ID CPA secure under the variant of the
GDDHE assumption presented in 2.2, using Shoup’s game hoping method
[12].

Game 0: We fix a polynomial-time adversary A. Let us define Game 0
to be the initial attack game against SIBBE (emulated here by the chal-
lenger C). Both the adversary and the challenger are given as input n (the
maximal size of a set of intended receivers), and t the total number of ex-
traction and random oracle queries that can be issued by the adversary.
Init: A sends C the list of target identities I = {ID1, ..., IDs}s≤n.
Setup: C generates (param, MSK) ⇐ Setup(λ, n), and sends param to A.
Query phase 1:
– A can issue an extraction query qi as follows: if IDi /∈ I, C generates

γ
$←− Z∗p, computes

di = g
1

γ+H(IDi) , and sends A the private key di as the result of the extraction
query. Else, C sends back di associated with IDi.
– A decides when phase 1 is over.
Challenge: C generates the ciphertext and the session key using SIBBEEncrypt(param,I):
– (CT1∗i , CT2∗, CT3∗i) = SIBBE encryption of Kp for i ∈ {1, ..., s};
– C sends (CT1∗i , CT2∗, CT3∗i ,K0,K1) to A.
Query phase 2: Same as phase 1.
Guess: A outputs b′ ∈ {0, 1} and wins the game if b′ = b.
Let S0 be the event that b′ = b in Game 0. The advantage of the adversary
against SIBBE in the selective CPA attack is the following:

AdvIND-sID-CPA
SIBBE,A(t,n) = |2 · Pr[S0]− 1| (1)

Game 1: It is the same game as Game 0 except the public parameters,
the private key di and the challenge are computed from a random GDDHE
instance with R = e(g0, h0)

k·f(γ)·g(γ) (see Definition 1) and the {xi}’s denote
the roots of f and g.
Init: A sends C the list of target identities I = {ID1, ..., IDs}s≤n.
Setup: C has access to a random instance of GDDHE withR = e(g0, h0)

k·f(γ)·g(γ)

(see Definition 1). He then uses this GDDHE instance to simulate the pa-
rameters of SIBBE as follows:

– C sets g = g
f(γ)
0 without computing it and computes gγ = g0

γ·f(γ),
h = h0

g(γ), e(g, h) = e(g0, h0)
f(γ)·g(γ).

– C sends param = (gγ , e(g, h), h, hγ) to A. C sets MSK = (g, γ).
Hash queries: A can query for the hash of any identity not in I. C
maintains a list LH = {{∗, xi, ∗}si=1; {IDi, xi, ∗}s+ni=s+1}, and upon receiving a
query on IDi, he replies in the following way:
– if IDi ∈ LH , send xi to A;
– otherwise set H(IDi) = xi and complete LH with (IDi, xi, ∗), send xi.
Query phase 1: A adaptively issues extraction queries, and C answers in
the following way:
– if A has already issued an extraction query on IDi, send back di ∈ LH ;
– else if A has already issued a hash query on IDi, use the corresponding

xi to compute the associated private key di = g0
fi(γ) = g0

f(γ)
γ+xi 4. Complete

LH with (IDi, xi, di);
– otherwise, C sets H(IDi) = xi, computes di as above, and completes LH .
C sends di to A.
Challenge: When A decides phase 1 is over, C proceeds as follows to gen-
erate the ciphertext and Kp for node i ∈ {1, ..., s}:
– Kp ⇐ R = e(g0, h0)

k·f(γ)·g(γ);
– Compute f ⇐

∏s
j=1,j 6=i(γ + xj), and m⇐

∏s
j=1,j 6=i xj ;

– CT1∗i ⇐ e(g0
−k·γ·f(γ), h0

g(γ)· (f−m)
γ). 5;

– CT2∗ ⇐ h0
k·f(γ)·g(γ); CT3∗i ⇐ 1

mi
.

We can verify that CT ∗i = (CT1∗i , CT2∗, CT3∗i) is a valid ciphertext.

Pick b
$←− {0, 1}. Set Kb = Kp and K1−b

$←− GT .
– Send (CT ∗i ,K0,K1) to A.
Query phase 2: Same as in phase 1.
Guess: A outputs b′ ∈ {0, 1}.
Let S1 be the event that b′ = b in Game 1. We have Pr[S0] = Pr[S1] because
the distributions of the parameters, the private keys and the challenge are
the same in the two games.

Game 2: This game is identical to Game 1 except that both K0 and K1

are generated at random (i.e. Kb is not equal to Kp = e(g, h)k).
Init, Setup, Query phase 1: Same as in Game 1

4We can verify that di corresponds to g
1

γ+H(ID)i and is thus a valid private key from
A’s point of view.

5We can retrieve the first argument of this pairing from the GDDHE instance,and can

compute h0
g(γ)· (f−m)

γ using the powers of h0
γ .

Challenge: C picks b
$←− {0, 1}, Kb

$←− GT ,K1−b
$←− GT

– C generates (CT1∗i , CT2∗, CT3∗i) the challenge CT ∗i for node i as in Game
1.
– C sends ((CT1∗i , CT2∗, CT3∗i),K0,K1) to A.
Query phase 2: Same as in Game 1.
Guess: A outputs b′ ∈ {0, 1}.
Let S2 be the event that b′ = b in Game 1. Under the GDDHE assumption,
A cannot detect the change (i.e. that K0 and K1 are both generated at
random). Indeed we can easily construct a GDDHE distinguisher D that
would answer as follows: D outputs 1 if b′ = b and 0 otherwise. Therefore
Pr[D = 1|Kb was generated as e(g, h)k]
= Pr[S1] and Pr[D = 1|Kb is generated at random] = Pr[S2]. Thus we
have |Pr[S2]− Pr[S1]| = |Pr[D = 1|Kb is generated at
random]− Pr[D = 1|Kb was generated as e(g, h)k]|
≤ AdvGDDHE(f,g,F,D) ≤ AdvGDDHE(f,g,F). Also observe that in Game 2, no
information (in a strong information theoretic sense) is given to A about
the bit b (since both K0 and K1 are chosen at random and are independent
from the key Kp). Therefore we have Pr[S2] = 1

2 . It results from the above
that (AdvSIBBE,A(t,n))/2 = |Pr[S0] − 1

2 | = |Pr[S0] − Pr[S2]| ≤ |Pr[S0] −
Pr[S1]|+ |Pr[S1]− Pr[S2]|
≤ AdvGDDHE(f,g,F).
Thereby SIBBE satisfies the IND-sID-CPA requirement, in the Random
Oracle Model, under the variant of GDDHE assumption. �

6 CONCLUSION

We have exhibited several issues in the recently introduced ESIoT protocol,
and more specifically in their Identity-Based Broadcast Encryption scheme
SIBBE. The efficiency of the scheme is hindered by important analysis fail-
ures in the encryption function, and in the assessment of the decryption
cost. We showed that the scheme does not achieve the security properties
claimed in [10] by providing attacks against the anonymous property, and
the chosen-ciphertext security. We however proved SIBBE secure for the
weaker notion of selective ID chosen-plaintext security under a variant of
the GDDHE assumption. The previous points are strong arguments against
the use of ESIoT to secure IoT networks.

References

[1] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic
curves of prime order. In Selected Areas in Cryptography, 12th Inter-
national Workshop, SAC 2005, 2005.

[2] Adam Barth, Dan Boneh, and Brent Waters. Privacy in encrypted
content distribution using private broadcast encryption. In Financial
Cryptography and Data Security, 10th International Conference, 2006.

[3] Sébastien Canard, Nicolas Desmoulins, Julien Devigne, and Jacques
Traoré. On the implementation of a pairing-based cryptographic pro-
tocol in a constrained device. In Pairing-Based Cryptography - Pairing
2012 - 5th International Conference, 2012.

[4] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-
key encryption scheme. In Advances in Cryptology - Proc of EURO-
CRYPT 2003, International Conference on the Theory and Applica-
tions of Cryptographic Techniques, 2003.

[5] Cécile Delerablée. Identity-based broadcast encryption with constant
size ciphertexts and private keys. In Advances in Cryptology - Proc of
ASIACRYPT 2007, 13th International Conference on the Theory and
Application of Cryptology and Information Security, 2007.

[6] Amos Fiat and Moni Naor. Broadcast encryption. In Advances in Cryp-
tology - Proc of CRYPTO ’93, 13th Annual International Cryptology
Conference, 1993.

[7] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pair-
ings for cryptographers. Discrete Applied Mathematics, 2008.

[8] Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. On the
discrete logarithm problem in finite fields of fixed characteristic. IACR
Cryptology ePrint Archive, 2015.

[9] Thread Group. Thread commissioning whitepaper. 2015.

[10] Jun Young Kim, Wen Hu, Dilip Sarkar, and Sanjay Jha. Esiot: enabling
secure management of the internet of things. In Proceedings of the
10th ACM Conference on Security and Privacy in Wireless and Mobile
Networks, WiSec 2017, 2017.

[11] Adi Shamir. Identity-based cryptosystems and signature schemes. In
Advances in Cryptology, Proceedings of CRYPTO ’84, 1984.

[12] Victor Shoup. Sequences of games: a tool for taming complexity in
security proofs. IACR Cryptology ePrint Archive, 2004.

