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Designing Thermoplasmonic Properties of Metallic

Metasurfaces

Ch. Girard, P. R. Wiecha, A. Cuche, and E. Dujardin

CEMES, University of Toulouse and CNRS (UPR 8011), 29 rue Jeanne Marvig, BP

94347, 31055 Toulouse, France

Abstract. Surface plasmons have been used recently to generate heat nanosources,

the intensity of which can be tuned, for example, with the wavelength of the excitation

radiation. In this paper, we present versatile analytical and numerical investigations

for the three–dimensional computation of the temperature rise in complex planar

arrays of metallic particles. In the particular case of elongated particles sustaining

transverse and longitudinal plasmon modes, we show a simple temperature rise control

of the surrounding medium when turning the incident polarization. This formalism is

then used for designing novel thermoplasmonic metasurfaces for the nanoscale remote

control of heat flux and temperature gradients.

PACS numbers: 41.20.-q, 78.20.Bh, 73.20.Mf
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1. Introduction

The ability of metal structures to confine the electromagnetic fields gave birth to a

multitude of applications in areas as diverse as biophysics, sensor technology or devices

for fast data processing[1, 2, 3]. The light confinement phenomenon originates in the

surface plasmons (SP) travelling or localized at the surface of these nanostructures.

Most plasmonics applications, based on the engineering of surface plasmons, exploit the

electromagnetic fields produced by the collective electronic oscillations. In particular, SP

engineering has been considered as a viable approach to the coplanar implementation of

high speed, low dissipative information devices using analogical or digital concepts[4, 5].

Very recently, plasmonics has fostered another realm of applications in which dissipative

effects are being advantageously utilized [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Indeed, besides

their widely used propensity to enhance and confine the near–field electromagnetic

intensity, metal particles and nanostructures have revealed a great potential as local

heat sources[6, 7, 11, 16]. A realistic description of such localized dissipation effects

is directly related to the description of the imaginary part of the dynamical response

functions of the nanostructures, such as the dielectric permittivity of the metal ε(ω), and

the local electric field intensity Il(r, ω) induced inside the metal[7, 11, 17, 18]. While the

dielectric constant only depends on the nature of the metal, the intensity distribution

of the optical electric field induced in the particle is extremely sensitive to the presence

of plasmon resonances occurring in the spectral variation of the local field distribution

Il(r, ω)[7, 17, 19, 20]. These resonances play a crucial role since the amount of heat

tranferred to the particle can be adjusted by tuning the incident wavelength in or out of

the resonance range. Several experimental thermoplasmonic building blocks have indeed

been designed from this concept and realized from colloidal chemistry or sophisticated

lithography processes [13, 14, 16, 21].

In this paper, we propose a flexible analytical scheme [22, 23] completed by

numerical studies [19] to investigate the thermoplasmonic properties of arrays of

individual plasmonic entities with arbitrary shapes sustaining multiple plasmon modes

in the optical range. Arrays of nanostructures are systems of fundamental interest

in plasmonics since they combine the optical properties of individual resonators and

the collective response of the assembly. Such systems have already contributed to major

breakthroughs in several fields in optics like optical sensing, metasurfaces for light phase

and orbital angular momentum control, strong optical coupling, ... [24, 25, 26, 27]. In

a typical configuration, the particle arrangement is supported by a planar dielectric

substrate. Here we apply the well–established self–consistent scheme based on the

Green Dyadic Functions (GDF) formalism and compute the local field intensity inside the

particle array by including the coupling with the substrate. The average temperature

in the vicinity of the metallic sructures is then derived from the local field intensity.

As a first step towards realistic configurations, we describe each individual metal

structure as an anisotropic polarizable particle excited by their self–consistent local

electric field[28]. This first approach consists in gradually developping a quasi–analytical
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description of the calculation that provides an intuitive access to the underlying physical

and thermal mechanisms. This simple analytical description is then complemented by

an adequate discretisation of the particle physical volumes in order to describe arbitrary

geometries[19]. The numerical applications are based on the permittivity of gold taken

from Johnson and Christy data[29]. In the third section, the specific case of periodic

arrays of gold nanorods is investigated and we demonstrate a simple and reversible

control of the temperature rise near the particles when turning the incident polarization.

Applications to the new concept of thermoplasmonic metasurfaces are then discussed

in the two last sections where we demonstrate that our numerical technique is well–

suited for the design of optimized thermoplasmonic meta–cells, using an evolutionary

optimization (EO) algorithm.
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Figure 1. (color online) Perspective view illustrating a periodic assembly of plasmonic

structures fabricated at the surface of an insulating sample.

2. Thermal response of a periodic array of identical metal particles

Let us consider a periodic 2D array of N elongated gold structures arranged in a periodic

way at the surface of a dielectric planar substrate (Fig. (1)). The particle location is

defined by a set of N vectors ri = (Li, Z) (where the two–dimensional vector Li belongs

to the (XOY ) plane). Unlike what happens with perfectly spherical particles, single

nanorods exhibit extinction spectra with two plasmon bands that correspond to electron

oscillations along their length (low energy longitudinal mode) and across their section

(high energy transverse mode) [30]. This shape effect can be described with a simple

analytical model by using an anisotropic dynamical polarisability [28]. When the long

axis of the particles is aligned along (OY) axis as shown in figure (1), the polarizability

tensor is diagonal and reads:

α(ω0) =


α⊥(ω0) 0 0

0 α‖(ω0) 0

0 0 α⊥(ω0)

 , (1)

where the two independent components α⊥(ω0) and α‖(ω0) can be described by the

formula associated with a prolate ellipsoid [28].
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2.1. Local field calculation

When a monochromatic electromagnetic plane wave of frequency ω0 and electric field

amplitude E0 hits the interface between environment (media 1) and the glass substrate

(media 2) at normal incidence and interacts with the metallic particles, the optical

electric field can be written:

E0(r, t) =
1

2
{E0(r, ω0) exp(iω0t) + C.C.} , (2)

where E0(r, ω0) (with r = (x, y, z)) represents its Fourier amplitude:

E0(r, ω0) = E0[exp(−in1k0z) +R exp(in1k0z)] , (3)

in which k0 is the wave vector modulus in vacuum and R = (n1 − n2)/(n1 + n2) is the

Fresnel reflection coefficient expressed with the optical indices of surrounding medium

(n1) and dielectric substrate (n2), respectively. The polarization of the incident wave,

associated with the direction of the vector E0, can be materialized by the angle θ between

E0 and the (OX) axis:

E0 = E0(cos(θ), sin(θ), 0) . (4)

2.1.1. Self–consistency The local fields E(ri, ω0) induced at the center of the particles

by the illumination field verify a set of N coupled equations that can be condensed as

follows:

E0(ω0) =M(ω0) · E(ω0) (5)

where E0(ω0) is the input supervector that contains the N incident fields at the particle

locations:

E0(ω0) = {E0(r1, ω0), ....,E0(ri, ω0), ...} , (6)

and E(ω0) is the output supervector that contains the local field values:

E(ω0) = {E(r1, ω0), ....,E(ri, ω0), ...} . (7)

For N polarizable particles, the (3N × 3N) coupling matrix M(ω0) has a very simple

form given by:

M(ω0) = I − A(ω0) , (8)

where I is the identity matrix and:

A(ω0) =


A11(ω0) .... A1j(ω0) ....

.... .... .... ....

.... Aij(ω0) .... ....

.... .... .... ANN(ω0)

 , (9)

is composed of N2 submatrices defined from the particle polarizabilities and the field–

propagators S(ri, rj, ω0) between two particles locations, ri and rj:

Aij(ω0) = S(ri, rj, ω0) · α(ω0) (10)
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2.1.2. Weak coupling between individual metallic nanotructures The calculation of the

local field in the particle array needs the inversion of the matrix M(ω0) shown by

equation (5), which can be considerably simplified depending on the interparticle spacing

D. For example, when the lateral spacing D is of the order of the incident wavelength

λ0 and the thickness of the metal particles is much smaller, the mutual interactions

vanish so that all the tensorial components S(ri, rj, ω0) · α(ω0) � 1. This hypothesis,

that corresponds to the first Born approximation (FBA), leads to the simplified relation:

M−1(ω0) = I +A(ω0) +O(A2) , (11)

2.2. Dissipated power

During the illumination process, the temperature rises because of the electronic Joule

effect induced inside the metal particles. This dissipative energy channel can be

described by computing the power per unit volume dissipated inside the metal. From

the electric field Ei(r, t) and the induction vector Di(r, t), we can derive the amount of

power dissipated by the ith metallic particle. In CGS electrostatic units, this leads to:

Q(ri) =
1

4π

∫
vi
dr < Ei(r, t) ·

∂

∂t
Di(r, t) > , (12)

where the integral runs over the particle volume, and the brakets schematize the time

average. Similarly to equation (2), the vectors Ei(r, t) and Di(r, t) can be expressed in

term of their Fourier amplitudes Ei(r, ω0) and Di(r, ω0). After taking the time average,

this transformation leads to:

Q(ri) =
1

16π

∫
vi
iω0

{
Ei(r, ω0) ·D?

i (r, ω0) (13)

−E?
i (r, ω0) ·Di(r, ω0)

}
dr ,

Next, we introduce the constitutive relation between Di(r, ω0) and Ei(r, ω0). Rewriting

this equation in a tensorial form will allow to consider non–spherical particles:

Di,α(r, ω0) =
∑
β

εα,β(ω0)Ei,β(r, ω0) , (14)

where α and β are two cartesian indices. After replacing (14) into (13) and assuming a

diagonal form for εα,β(ω0) one gets:

Q(ri) =
ω0

8π

∫
vi

{∑
α

=εα,α(ω0)|Ei,β(r, ω0)|2
}
dr , (15)

where the = symbol means imaginary part. Equation (15) is general and does not contain

any approximation and applies to arbitrary geometries and any type of materials.

2.2.1. Dipolar response approximation For metallic particles of small size, the

multipolar contributions higher than the dipolar one can be neglected. In this case,
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the permittivity of the ith particle can be schematized by the following relation in which

δ(r− ri) represents the Dirac δ distribution centered around the particle location ri:

ε(ω0) = 1 + 4π


α⊥(ω0) 0 0

0 α‖(ω0) 0

0 0 α⊥(ω0)

× δ(r− ri) . (16)

From this simplified relation it is straightforward to perform the volume integral found

in equation (15):

Q(ri) =
ω0

2

{
=α⊥(ω0)|Ei,y(ri, ω0)|2

+=α‖(ω0)(|Ei,x(ri, ω0)|2 + |Ei,z(ri, ω0)|2)
}
, (17)

Notably, a more accurate calculation of both the local fields and the successive

field-gradients would require to go beyond the dipolar approximation. However, the

proposed description makes it possible to derive the analytical calculation throughout

its development.

2.2.2. The particular case of a single elongated plasmonic particle When the metallic

pattern simply consists in a single particle located at the position r1, the collective

effects vanish and the matrix M−1(ω0) = I which means that the local electric field

E(r1, ω0) = E0(r1, ω0). This asymptotic case gives rise to a particularly simple equation

that can be obtained by using Eqs. (3) and (4):

Q =
E2

0ω0

2
{=α⊥(ω0) cos2(θ) + =α‖(ω0) sin2(θ)} . (18)

Here, we explicitly see how tuning the polarization angle θ controls the amount of heat

transferred to the particle. Finally, after introducing the well–known relation between

electric field amplitude E0 and laser power S0 delivered per unit area [31]:

E2
0 =

8πS0

c
, (19)

one obtains:

Q = 4πS0k0{=α⊥(ω0) cos2(θ) + =α‖(ω0) sin2(θ)} . (20)

In this last equation, the influence of the relative weights of both transverse and

longitudinal plasmon modes clearly appears through the two components of the nanorod

polarizability. To illustrate how this equation governs the heat absorbed by a single

ellipsoidal gold nanorod, we present in Fig (2) a sequence of four mapsQ(λ0, θ) for aspect

ratios η = a/b varying from 1 to 4. The laser power S0 is set at 1 mW/µm2 and the

particle long axis is chosen parallel to the (OY ) cartesian axis. In the (λ0, θ) coordinate

plane, the resulting heat response of the particle varies from polarization–independent

dissipation maximized at low incident wavelength for the sphere case (characterized by

a single color band), to an oblong domain that is shifted to longer incident wavelength

as η increases and shows an optimum for 90o polarization angle.
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Figure 2. (color online) Simulation of four color plots of the heat Q(λ0, θ) dissipated

per time unit as a function of the incident wavelength (500 nm ≤ λ0 ≤ 850 nm) and

the polarization angle (0 ≤ θ ≤ 180o) for a gold prolate ellipsoid of short and long

axis b and a, respectively. In maps (A) to (D), four aspect ratio η = a/b have been

considered: (A) sphere case (η =1) a = b = 10 nm; (B) ellipsoid (η =2) a = 20 nm

and b = 10 nm; (C) ellipsoid (η =3) a = 30 nm and b = 10 nm; and (D) ellipsoid (η

=4) a = 40 nm and b = 10 nm. All the color bars are expressed in nanoWatt (nW).

2.2.3. Volume discretization approach Finding exact solutions of equation (12) for

more realistic situations requires an additional volume discretization procedure of the

source region occupied by the plasmonic particles. Generally, each particle volume Vp is

discretized into np identical elementary volumes vp. Such a procedure converts integrals

into discrete summations. The main analytical steps of this technique are detailed in

reference[19] and lead to:

E(rt,i, ω0) = E0(r, ω0) +
N∑
p=1

χp(ω0)
np∑
j=1

(21)

×S(rt,i, rp,j, ω0) · E(rp,j, ω0) .

In this expression, the parameters χp(ω0) associated with the elementary volumes vp are

homegeneous to dipolar polarizabilities:

χp(ω0) =
εp(ω0)− εenv(ω0)

4π
vp . (22)

The vectors rp,j and rt,i represent the location of jth and ith discretized cells inside the

pth and tth metallic particles, respectively. Next, the self–consistent electric field inside

the metal particles is computed. This procedure leads to a system of N × np vectorial

equations with N × np unknown fields E(rp,j, ω0).
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For a given metal particle (labelled by the subscript p), the solving procedure

detailed in reference[19] is directly related to the discretization volume vp, which itself

depends on the discretization grid used to mesh the particles. The expressions of the

χp(ω0) coefficients for both cubic and hexagonal compact discretization grids can be

found in table (1) of reference [19].

3. Temperature Profile
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Figure 3. (color online) Simulation of three temperature spectra computed above a

set of nine cylindric gold nanorods (25 × 80 nm) illuminated in normal incidence by

a linearly polarized plane wave (see geometry insert). The laser power S0 is fixed at

5 mW/µm2 and the lateral pitches, dx and dy between the rods is 500 nm. The three

spectra correspond to the polarization directions indicated by the red, blue and green

arrows. The computation has been performed by discretization of the nanorod volumes

by N × 333 elementary cells distributed over a hexagonal compact three–dimensional

mesh.

The steady-state temperature increase, ∆T (λ0, θ), can be deduced from the

distribution of heat Q(rp,j) deposited inside the particle lattice (cf. Eq. (15)), by

the thermal Poisson equation:

∆T (λ0, θ) =
1

4πκ

N∑
p=1

np∑
j=1

Q(rp,j)

|Robs − rp,j|
(23)

where κ is the environmental thermal conductivity and Robs defines an observation point

located in the vicinity of the sample. In figures (3) and (4), we have used relation (23)



Designing Thermoplasmonic Properties of Metallic Metasurfaces 9

Y

X

Y

(o)

(o)

(o)T

X

T

A

B

C

X

Y T

Figure 4. (color online) 3D color plots of three simulations of the temperature

distribution above a set of nine gold nanorods corresponding to incident polarization

aligned (A) along Y axis, (B) at 45o and (C) along the X axis (same parameters as

figure (3)). The wavelength, λ0 = 680 nm, is chosen at the center of the longitudinal

plasmon band.

to investigate the photothermal effects induced near an array of nine gold nanorods

deposited on a dielectric surface (see insert of figure (3)). The metal particles are

surrounded by an isotropic medium of refractive index n1 = 1.33, mimicking an aqueous

medium.

The spectral variation of the temperature as a function of the incident wavelength

is presented in figure (3). The temperature shift ∆T (λ0, θ) is computed from equation

(23) at a position Robs = (0, 0, 150nm) which overhangs the central gold pad. The three

polarisation directions considered here, i.e. zero degree (red curve); 45o (blue curve)

and 90o (green curve), demonstrate that the temperature around the metal pattern can

be effectively tuned with a drastic increase observed near the longitudinal resonance.

Thus, by exciting the longitudinal plasmon band (λ = 680 nm) of the sample, the local

temperature can be modulated over one order of magnitude by the simple tuning of

the the field polarization. Obviously, this control is much less effective when exciting

the transverse mode (λ = 530 nm) because of a weaker quality factor. In addition

this resonance is bound by two isobestic points [32] at 500 and 540 nm, where the

temperature is independent of the polarization (Figure 3).

Finally, figure (4) shows a sequence of three temperature maps resulting from the

monochromatic excitation of the longitudinal band (λ = 680 nm) at normal incidence
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with a plane wave. All three maps are displayed with the same vertical scale to highlight

the temperature rise occurring when the incident polarization is aligned with the main

axis of the nanorods. A general observation is the strong temperature rise in the direct

vicinity of individual metallic structures and the broader yet less intense temperature

increase over the entire pattern [21].

4. Metasurfaces for Thermoplasmonic control

(a)
(b)

Figure 5. (color online) Example of thermoplasmonic metasurface able to generate

strong temperature contrast. The unit cell, located inside the dashed white frame,

is a set of four gold nanorods perpendicular to each other. The labels (a) and

(b) represents two consecutive rod orientations, parallel and antiparallel, inside the

pattern. The metasurface is superimposed by a temperature map computed with a

incident polarization aligned along the (a) nanorods.

In the recent years, by designing the surface of some materials at a subwavelength

scale, new applications for optics were highlighted (see for example [33]). These new

structures have been referred to as metasurfaces because they can modify the main

physical characteristics of the incident light. These modifications include, the phase,

the angular momentum, or the light polarization [34], and can generate and exalt

nonlinear phenomena [35, 36, 37]. For example, plasmonic metasurfaces containing

two–dimensional subwavelength gold patterns have been developed that allow imprinting

arbitrary phase patterns onto a propagating beam [25] and perpendicular gold nanorods

arrays have been used to perform polarization conversion control from the capacitive

coupling to the conductive coupling regimes between the gold entities [34].

Metasurface physics also presents attractive opportunities for the thermoplasmon-

ics. In particular, the design and the juxtaposition of elementary plasmonic cells sen-

sitive to the incident polarization is a good manner to lead to efficient temperature



Designing Thermoplasmonic Properties of Metallic Metasurfaces 11

gradient controls. In figure (5), we consider a simple example of metasurface consisting

of elementary cells containing four nanorods. In this paving, two consecutive plas-

monic elements are perpendicular relative to each other, so that the excitation of the

transverse and longitudinal modes will move from one structure to its neighbor, when

progressively turning the polarization angle of the incident light. The next figure (6)

displays the temperature map evolution expected around this metasurface geometry.

These computations have been performed by keeping the same parameters as in the

previous section, i.e., 16 cylindric gold nanorods (25 × 80 nm) illuminated in normal

incidence by a linearly polarized plane wave (see geometry insert). The laser power S0 is

fixed at 5 mW/µm2 and the lateral pitches, dx and dy between the rods are 250 nm. A

detailed examination of the maps shows a regular shaping of the temperature distribu-

tion, in a range that varies from 5 degrees for an incident power of 5 mW/µm2, and that

displays a periodic series of hot spots with tunable location by applying a remote control

of the polarization. For example, as shown in the first map of figure (6), a polarization

parallel to OX axis yields a hot spot pattern distributed on a square lattice with a side

equal to
√

2 × the lateral nanorod pitch dx. Consequently, by gradually turning the

incident polarization, we can accurately drag these hot spots, in a controllable manner,

from the parallel to perpendicularly oriented nanorods. In addition, as described in the

Supplemental Information Document (see figures S2 and S3), such a local temperature

gradient tuning leads to the possibility of controlling the heat flux in the vicinity of the

metasurface.

This functionality is particularly attractive for nano-biology manipulations and

applications, where tuning the symmetry of such temperature gradients would generate

complex convection currents in liquids that could be advantageously exploited, for

example, to thermally assisted plasmonic trapping [38, 39], to trigger thermotactic

mobility or behavioral plasticity on demand [40, 41].

5. Evolutionary optimization of optical hybrid material meta–cells

In order to complete this theoretical paper, we demonstrate that our numerical

technique is well–suited for the design of optimized thermoplasmonic meta–cells, using

an evolutionary optimization (EO) algorithm. In the recent past, EO techniques have

been successfully applied on various problems in nano–optics[42, 43, 44]. We will also

use a multi-material structure in our demonstration, which means that each meta-cell

(or meta-unit) is composed of multiple elements of different materials. Multi-material

systems can be modeled with our approach by using position-dependent dielectric

functions εp(ω0) in equation (22) for the meshpoints at rp. A full metasurface would

finally consist of many of those optimized meta-units.
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Figure 6. (color online) (A) Top view of the thermoplasmonic metasurface described

in figure (5). (B) to (G) evolution of the temperature maps when the incident

polarization, represented by a double red arrow, is turned from 0deg to 90deg with

18deg steps.

5.1. Evolutionary optimization of photonic nano-structures

As illustrated in our previous examples (see section (4)), the design of geometric

assemblies of nanostructures starts with the conception of a reference geometry by

intuitive considerations. Via the systematic variation of a few parameters, this reference

systems is then optimized within its possibilities. Such an approach, however, is limited

to rather simple problems and requires a certain degree of understanding and intuition
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for the considered system. In case of complex structures or complicated phenomena,

the intuitive method often fails. To overcome these limitations, we apply in this section

an evolutionary optimization algorithm in order to design a meta–unit for optimum

nano–scale heat generation. EO is a heuristic optimization method to find the global

maximum or minimum of complex, possibly non-analytic problems. EO algorithms

use a population of parameter–sets for the problem, which are driven through a cycle of

reproduction, evaluation and selection, in which weak solutions are iteratively eliminated

and strong parameter-sets are kept. Here, we couple the “jDe” EO algorithm [45]

provided by the “paGMO” toolkit [46] to our volume discretization method for full–field

electrodynamical simulations. For these simulations, we use our own toolkit “pyGDM”

[47]. More details on the approach can be found in Ref. [44].

x

y
z

focused illumina-
tion on first rod
at (0,0,0) [nm]

D .....D D

αi

maximize temperature at:
(4500, 0, 300) [in nm]

chain of 20 rods, each rod made 
either  from gold or from silicon

same distance D
between all rods

each rod: individual 
rotation angle αi 

BA

selection
 

reproduction
 

evaluation
 

stop-
criterion 

met?

quit cycle, take
best solution

random
initialization

Figure 7. (color online) A) sketch of the evolutionary optimization scheme. (B)

illustration of the optimization model and problem. A chain of 20 nano-rods on

a glass substrate is searched in order to maximize the temperature increase at a

specific location (x = 4500, y = 0, z = 300) [nm], far from the focal spot of a focused

illumination (at (x = 0, y = 0, z = 0) [nm]). The free parameters of the optimization

are the angles αi as well as the material (either gold or silicon) of each rod. As further

parameter, the spacing D between the rods is optimized by the algorithm.

5.2. Optimization of a chain of nano-rods for localized heating

This problem is inspired by works which have shown that chains of both, dielectric and

metallic nano-particles can effectively guide light along relatively large distances[49, 50].

Here, the aim of the optimization is to find a chain of 20 nano-rods (each rod of size

70×175×140 nm3) which delivers the highest possible temperature increase at a specific

location far from a focused illumination with a wavelength of λ0 = 600 nm. The focal

spot with a beam waist of w0 = 300 nm is set at the origin, centered on the first nano-

rod (see also subplots (ii) in Fig. 8). The rods lie on a glass substrate (n = 1.5, κ = 0.8

Wm−1K−1), in water (n = 1.33, κ = 0.6 Wm−1K−1). The temperature increase ∆T

is to be maximized at (x = 4500, y = 0, z = 300) [nm]. The free parameters for the

optimization are each rod’s rotation angle αi, each rod’s material (either gold or silicon,

refractive indices taken from Refs. [29, 48]) and the distance D between the nano-rods

(which are equidistant along the chain). The geometry of the problem is depicted in
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Fig. 7B. It is obvious, that a systematic evaluation of all possible solutions is impossible,

considering the 41 free parameters. For the EO algorithm we use a population of 50

individuals, which we evolve for 2000 iterations. On an ordinary office PC (AMD FX-

8350 CPU) one run never took longer than 24 hours. Figure 8 shows the results of the

optimizations, the fitness as a function of the iteration number is shown in the subplots

(i). In order to verify the convergence, we ran the optimizations several times with

random initial parameters. The different runs yielded similar results, hence we conclude

that the optimizations converged close to the global optimum.

A maximize absolute ΔT B maximize relative temp.:  ΔT/ ΔT@laser

(ii)

(iv) (iv)

(v) (vi) (vi)(v)

E0

ΔT = 2.38 K
(ΔT/ΔT@laser = 0.051)

ΔT = 0.73 K
(ΔT/ΔT@laser = 2.83 )

(i)

(ii)E0

(i)

(iii) (iii)

Figure 8. (color online) Results of the EO of a chain for a maximization of (A) the

absolute temperature increase at the target location and (B) the relative temperature

increase at the target position, normalized to ∆T@laser at the location of the focused

illumination. (i) convergence of the optimization. (ii) intensity of the incident field E0,

with focal spot of waist w0 = 300 nm at (0, 0, 0) nm, linearly polarized along OY (λ0
= 600nm). (iii) scattered field intensity on a logarithmic color scale, calculated 50nm

above the chain of nano–rods (normalized to |E0|2). (iv) mapping of the temperature

increase along the chain. (v) and (vi) zooms around the focal spot and the location

of the ∆T probe. All temperature mappings are calculated at a height of z = 300

nm. White scale bars are 500 nm. The optimization target location is indicated by a

cross–shaped marker.

5.2.1. Maximize absolute temperature increase In the first run, the absolute

temperature difference ∆T is the optimization target. The results are shown in figure 8A.

The EO algorithm chose a spacing D of approximately 250nm. It placed two gold rods

in the beginning of the chain, which are aligned with the incident light’s polarization in

order to obtain the strongest response and, consequently, the highest dissipation inside

the metal. Following the first two gold blocks, a chain of silicon rods is guiding light
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towards the target location, where further gold rods dissipate the arriving light into

heat (see the scattered near-field in subplot (iii) of figure 8). The heat radiated from

the two initial blocks locally rises the temperature by more than 45◦. At x = 4.5 µm,

the temperature still is increased by more then 2 degrees. The temperature rise is shown

in subplots (iv)-(vi) of figure 8. The heat generation from the terminal gold elements in

the chain is only contributing weakly to the total temperature increase, adding about

0.25◦.

5.2.2. Maximize normalized temperature increase In a second run, the goal of the

optimization is set to the relative temperature increase ∆T/∆T@laser. We aim to

maximize the temperature at the target location (4500, 0, 300) [nm] normalized to the

temperature at the position of the illumination beam at (0,0,300) [nm]. The results

of this simulation are shown in figure 8B. The spacing D was set by the EO again to

approximately 250 nm, which seems to be ideal for guiding light trough the chain at the

illumination wavelength λ0 =600 nm. However, in contrast to the maximization of the

absolute temperature, the EO algorithm chose silicon for the entire chain and placed

two gold elements only at its very end. The first two nano–rods were furthermore

rotated perpendicular to the light’s polarization in order to minimize their optical

response and hence reduce dissipation in the early chain. If the silicon-rod at (0,0,0)

were oriented along the polarization of E0, it would induce a temperature increase of

≈ 1.4◦ at (0, 0, 300) [nm]. Despite their horizontal orientation, the first two silicon rods

effectively couple light into the chain, through which it is guided towards the gold-rods

at its end. There the light is dissipated inside the metal, which acts as a local heat

source just below the target position. The solution, found by the EO, has a very low

∆T@laser ≈ 0.13◦ at the origin, but increases the temperature at the target location by

∆T ≈ 0.73◦.Compared to ∆Tlaser, this is ×2.8 higher.

6. Conclusion

To conclude, we have presented new geometries based on arrays of subwavelength

metallic nanoparticles organized at the surface of a dielectric substrate that results

in thermoplasmonic metasurfaces. The different kinds of arrays discussed here make

possible an on-demand and spatially controlled rise of temperature by the mean of the

incident wavelength and polarization. This approach, based on localized resonances,

is complementary to high order plasmonic resonances in larger 2D cavities that allow

for an all-optical and polarization dependent control of the temperature landscape in

their vicinity [51]. The formalism used in this work is optimized for the direct space

applications and provides convenient analytical formula, with which the mechanisms for

converting light energy into heat can be intuitively represented for both spherical and

elongated metallic particles. Using anisotropic polarizabilities, our approach reveals

the clear relationship between excitation parameters (laser power, polarization, and

wavelength) and expected thermal effects (heat amount, temperature, ...). Interestingly,
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the extension of this formalism by means of a volume discretization procedure of the

metallic structures placed in the vicinity of a solid–liquid interface, supplies a numerical

test bench for future applications of complex metasurfaces in thermoplasmonics, such

as those encountered in micro-fluidic environments for nano-biology. Finally, we

demonstrated that evolutionary optimization together with nano-optical simulations

allows finding geometric assemblies for complex thermoplasmonic problems. Using an

appropriately formulated problem, a hybrid–material chain of silicon and gold nano-rods

can be optimized such, that the optical energy, delivered by a focused illumination spot,

is transferred towards a distant location where it is locally transformed into heat.
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