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ON MEAN FIELD GAMES MODELS FOR EXHAUSTIBLE COMMODITIES
TRADE

P. JAMESON GRABER AND CHARAFEDDINE MOUZOUNI

ABSTRACT. We investigate a mean field game model for the production of exhaustible re-
sources. In this model, firms produce comparable goods, strategically set their production
rate in order to maximise profit, and leave the market as soon as they deplete their ca-
pacities. We examine the related Mean Field Game system and prove well-posedness for
initial measure data by deriving suitable a priori estimates. Then, we show that feedback
strategies which are computed from the Mean Field Game system provide ε-Nash equi-
libria to the corresponding N -Player Cournot game, for large values of N . This is done
by showing tightness of the empirical process in the Sokorokhod M1 topology, which is
defined for distribution-valued processes.

1. INTRODUCTION

Since its introduction about ten years ago, the theory of the Mean Field Games has ex-
panded tremendously, and has become an important tool in the study of dynamical and
equilibrium behavior of large systems. The theory was introduced separately by a series
of seminal papers by Lasry and Lions [24–26] and Caines et al. [4, 5], and in lectures by
Pierre-Louis Lions at the Collège de France, which were video-taped and made available
on the internet [29]. The main idea is inspired from statistical physics literature, and con-
sists in considering that a given player interacts with competitors through their statistical
distribution in the space of possible states.

Mean Field Games (MFG) theory provides a methodology to produce approximate
Nash equilibria for stochastic differential games with symmetric interactions and a large
(but finite) number of players N . In these games, the exact equilibrium strategies could
be determined by a system of coupled Hamilton-Jacobi-Bellman equations, derived from
the dynamic programming principle. However, the dimension of the system in general
increases in N , which makes this system extremely hard to solve either analytically or
numerically, especially for large values of N . The Mean Field Game approach simplifies
the modelling, and allows to compute an approximation of Nash equilibria by solving a
system of two forward-backward coupled PDEs. This simplification justifies partly the
interest in the MFG modelling for several applications.

In this paper we revisit a family of MFG models related to competing producers with
exhaustible resources. The dynamic market evolution is driven by the use of certain exist-
ing reserves to produce and trade comparable goods. Producers disappear from market
as soon as they exhaust their capacities, so that the fraction of remaining firms decreases
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over time. This type of models was first introduced by Guéant, Lasry, and Lions [19], and
addressed also by Chan and Sircar in [10], where it is referred to as “Bertrand & Cournot
Mean Field Games.” In [11], the same authors use a similar MFG modelling approach, to
discuss recent changes in global oil market. A more sophisticated model for the energy
industry is proposed recently in [30], where producers have also the possibility to explore
new resources to replenish their reserves.

From a mathematical standpoint, Bertrand & Cournot MFG system consists in a system
of a backward Hamilton-Jacobi-Bellman (HJB) equation to model a representative firm’s
value function, coupled with a forward Fokker-Planck equation to model the evolution
of the distribution of the active firms’ states. The exhaustibility condition gives raise to
absorbing boundary conditions at zero. A rigorous analysis of this system was provided
in [18], where authors show existence of smooth solutions to the system of equations,
and uniqueness under a certain restriction. Unconditional uniqueness is proved in [17],
in addition to the analysis of the case with Neumann boundary conditions.

Otherwise, very little is known so far on the rigorous link between the so called Bertrand
& Cournot MFG models, and the corresponding N -Player Bertrand-Cournot stochastic
differential games. Indeed, the classical theory cannot be applied to this specific case for
two main reasons: on the one hand, because of the absorbing boundary conditions; and
on the other hand, because in our model players are coupled through their controls, and
therefore belongs to the class of extended Mean Field Games (cf. [3, 7, 15, 16]). This has
motivated the present work, in which we analyse rigorously this question for Cournot
competition.

We investigate the mean-field approximation for N -Player continuous-time Cournot
game with linear price schedule, and exhaustible resources. In this context, the produc-
ers’ state variable is the reserves level, and the strategic variable is the rate of production.
Producers disappear from the market as soon as they deplete their reserves, and the re-
maining active producers set continuously a non-negative rate of production, in order to
manage their remaining reserves and maximize sales profit. Market demand is assumed
to be linear, so that the received market price is a non-increasing linear function of the
total production across all producers. Further details and explanations about the model
will be given in Section 3.

We shall start by studying the Mean Field Game system corresponding to Cournot
competition. We prove existence and uniqueness of regular solutions to that system by
deriving suitable a priori estimates. We shall assume that the initial data is a probability
measure that is supported on p0,`8q, which entails that all producers start with posi-
tive reserves. Our analysis completes that which is found in [17, 18], by treating the case
of a less regular Hamiltonian function and initial measure data. Next, we prove that
the feedback control given by the solution of the Mean Field Game system, provides an
ε-Nash equilibrium to the corresponding N -Player Cournot game, where the error ε is
arbitrary small for large enough N . We refer the reader to Section 3 for a definition of ε-
Nash equilibria. This result shows that the MFG model is indeed a good approximation
to the game with finitely many players, and reinforces numerical methods based on the
MFG approach. As in the classical theory, the key argument in the proof of this result is
a suitable law of large numbers. In our context, the main mathematical challenge comes
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from the fact that agents interact through the boundary behaviour, and are coupled by
means of their chosen production strategies. To prove a tailor-made law of large num-
bers, we employ a compactness method borrowed from [20, 27], by showing tightness of
the empirical process in the space of distribution valued càdlàg processes, endowed with
Skorokhod’s M1 topology [27]. In contrast to the classical tools used so far, this method
does not provide an exact quantification of the error ε, which is its main downside. Nev-
ertheless, this approach has proven to be convenient for studying systems with absorbing
boundary conditions. We also believe that it could be extended to the case of a systemic
common noise, just as [27] contains an analysis of a stochastic McKean-Vlasov equation.
However, we do not address this case here, finding the analysis of the stochastic HJB/FP-
system somewhat out of reach under our assumptions on the data (Cf. [6, Section 4] and
the hypotheses found there).

For background on Skorokhod’s topologies for real valued processes, we refer the
reader to [35] and references therein. The M1 topology is extended to the space of tem-
pered distributions, and to more general spaces in [27]. The fact that the feedback MFG
control provides ε-Nash equilibria for the corresponding differential games with a large
(but finite) number of players, was first noticed by Caines et al. [4, 5] and further devel-
oped in several works (see e.g.[8, 22] among others). Cournot games with exhaustible
resources and finite number of agents is investigated by Harris et al. in [21], and the
corresponding MFG models were studied in [10, 11, 19, 30] with different variants, and
numerical simulations. We refer the reader to [3, 9, 19, 26] for further background on
Mean Field Game theory.

The paper is organized as follows: In Section 2 we introduce the Mean Field Game
system, prove existence and uniqueness of regular solutions to that system by deriving
suitable Hölder estimates. In Section 3 we explain the corresponding N -Player Cournot
game, and show that the feedback control that is computed from the MFG system, is an ε-
Nash equilibrium to the N -Player game. For that purpose, we start by showing the weak
convergence of the empirical process with respect to the M1 topology, then we deduce
the main result by recalling the interpretation of the MFG system in terms of games with
mean-field interactions.

Notations and preliminaries. Throughout this article we fix L ą 0, define Q :“ p0, Lq,
and QT :“ p0, T q ˆ p0, Lq. For any domain D in R or R2 we define D̄ to be the closer of
D, LspDq, 1 ď s ď 8 to be the Lebesgue space of s-integrable functions on D; LspDq`
to be the set of elements w P LspDq such that wpxq ě 0 for a.e. x P D; W k

s pDq, k P N,
1 ď s ď 8, to be the Sobolev space of functions having a weak derivatives up to order k
which are s-summable on D; CpDq to be the space of all continuous functions on D; CθpDq
to be the space of all Hölder continuous functions with exponent θ on D; C8c pDq to be the
set of smooth functions whose support is a compact included in D; SR denotes the space
of rapidly decreasing functions, and S 1R the space of tempered distributions.

For a subset D Ă QT , we also define C1,2pDq to be the set of all functions on D which
are locally continuously differentiable in t and twice locally continuously differentiable
in x, and by W 1,2

s pDq the space of elements of LspDq having weak derivatives of the form
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B
j
t B
k
x with 2j ` k ď 2, endowed with the following norm:

}w}
W 1,2
s

:“
ÿ

2j`kď2

}B
j
t B
k
xw}Ls .

The space of R-valued Radon measures on D is denoted MpDq, and PpDq, P̃pDq are
respectively the convex subset of probability measures on D, and the convex subset of
sub-probability measures: that is the set of positive radon measures µ, s.t. µpDq ď 1. For
any measure µ PMpDq, we denote by supppµq the support of µ.

Throughout the paper, we fix a complete filtered probability space pΩ,F ,F “ pFtqtě0,Pq,
and suppose that is rich enough to fulfil the assumptions that will be formulated in this
article. We also fix constants r, σ, T ą 0, and denote by C a generic constant whose precise
value may change from line to line. We also use the notation Cpα, β, γq and the like to
point out the dependence of some constant on parameters α, β, γ. Moreover, we use the
notation X „ µ to define a random variable X with law µ. For any R-valued function w
we define the positive and negative parts of w, respectively:

w` :“
1

2
p|w| ` wq, and w´ :“

1

2
p|w| ´ wq;

and for any x, y P R we use the following notation for the minimum and maximum,
respectively:

x^ y :“
1

2
px` y ´ |x´ y|q ; and x_ y :“

1

2
px` y ` |x´ y|q .

Finally, we denote by uT a smooth function on Q̄, such that the first derivative of uT
denoted by u1T fulfils :

(H1) u1T ě 0 and uT p0q “ u1T pLq “ 0.

Let us recall a few basic facts on stochastic differential equation with reflecting bound-
ary in a half-line. Given a random variable V that is supported on p´8, Ls, we look for a
pair of a.s. continuous and adapted processes pXtqtě0 and pξXt qtě0 such that:

Xt “ V `

ż t

0
bps,Xsqds` σWt ´

ż t

0
1tXs“Lu dξXs P p´8, Ls,

ξXt “

ż t

0
1tXs“Lu dξXs ,(1.1a)

X0 “ V, ξX0 “ 0, and ξX is nondecreasing,

where pWtqtě0 is a F-Wiener process that is independent of V . The random process
pXtqtě0 is the reflected diffusion, pξXt qtě0 is the local time, and the above set of equations
is called the Skorokhod problem. Throughout the paper, we shall write problem (1.1a) in
the following simple form:

dXt “ bpt,Xtqdt` σ dWt ´ dξXt , X0 “ V.

Suppose that the function b is bounded, and satisfies for some K ą 0 the following con-
dition:

(1.1b) |bpt, xq ´ bpt, yq| ď K|x´ y|
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for all t P r0, T s, and x, y P p´8, Ls. Then, it is well-known (see e.g. [1, 12]) that under
these conditions, problem (1.1a) has a unique solution on r0, T s. Moreover, this solution
is given explicitly by:

(1.1c) Xt :“ ΓtpY q, ξXt :“ Yt ´ ΓtpY q;

where the process pYtqtPr0,T s is the solution to

(1.1d) Yt “ V `

ż t

0
bps,ΓspY qqds` σWt,

and where Γ is the so called Skorokhod map, that is given by

ΓtpY q :“ Yt ´ sup
0ďsďt

pL´ Ysq
´ .

Furthermore, notice that

(1.1e) ξXt ´ ξ
X
t`h ě inf

vPr0,hs
pYt ´ Yt`vq

for any t P r0, T q and h P p0, T ´ tq. In fact, when ξXt ă ξXt`h, then

0 ă ξXt`h :“ sup
0ďsďt`h

pL´ Ysq
´
“ sup

tďsďt`h
pL´ Ysq

´
“ pYv0 ´ Lq

for some t ď v0 ď t` h. Therefore

ξXt ´ ξ
X
t`h “ sup

0ďsďt
pL´ Ysq

´
´ sup

0ďsďt`h
pL´ Ysq

´

ě pYt ´ Lq ´ pYv0 ´ Lq ě inf
vPr0,hs

pYt ´ Yt`vq.

This entails (1.1e) since the last inequality still holds when ξXt “ ξXt`h.
Now we consider a boundary value problem for the Fokker-Planck equation. Let b in

L2pQT q, m0 P PpQ̄q, and consider the following Fokker-Planck equation

(1.2a)

$

&

%

mt ´
σ2

2
mxx ´ pbmqx “ 0 in QT

mp0q “ m0 in Q,

complemented with the following mixed boundary conditions:

(1.2b) mpt, 0q “ 0, and
σ2

2
mxpt, Lq ` bpt, Lqmpt, Lq “ 0 on p0, T q.

Then we define a weak solution to (1.2a)-(1.2b) to be a function m P L1pQT q` such that
m|b|2 in L1pQT q, and

(1.2c)
ż T

0

ż L

0
mp´φt ´

σ2

2
φxx ` bφxqdx dt “

ż L

0
φp0, .q dm0

for every φ P C8c pr0, T q ˆQq satisfying

(1.2d) φpt, 0q “ φxpt, Lq “ 0, @t P p0, T q.

This is the definition given by Porretta in [32]. The only difference is that here we consider
mixed boundary conditions and measure initial data.
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When m0 P L
1pQq`, the problem (1.2a) endowed with periodic, Dirichlet or Neumann

boundary conditions has several interesting features that were pointed out in [32, Sec-
tion 3]. In particular, they are unique [32, Corollary 3.5] and enjoy some extra regularity
[32, Proposition 3.10]. Note that these results still hold in the case of mixed boundary
conditions (1.2b). Throughout the paper, we shall use the results of [32, Section 3] for
(1.2a)-(1.2b).

In the case where b is bounded, we shall use the fact that (1.2a)-(1.2b) admits a unique
weak solution, for any m0 P PpQ̄q. In fact, one can construct a solution by considering
a suitable approximation of m0, and then use the compactness results of [32, Proposition
3.10] in order to pass to the limit in L1pQT q. The uniqueness is obtained by considering
the dual equation, and using the same steps as for [32, Corollary 3.5] (cf. Proposition B.1).

Acknowledgement. The first author was supported by the National Science Founda-
tion under NSF Grant DMS-1612880. The second author was supported by LABEX MI-
LYON (ANR-10-LABX-0070) of Université de Lyon, within the program ”Investissements
d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR),
and partially supported by project (ANR-16-CE40-0015-01) on Mean Field Games.

2. ANALYSIS OF THE MFG SYSTEM

This section is devoted to the analysis of the following coupled system of parabolic
partial differential equations:

(2.1)

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

ut `
σ2

2
uxx ´ ru` q

2
u,m “ 0 in QT ,

mt ´
σ2

2
mxx ´ tqu,mmux “ 0 in QT ,

mpt, 0q “ 0, upt, 0q “ 0, uxpt, Lq “ 0 in p0, T q,

mp0q “ m0, upT, xq “ uT pxq, in r0, Ls,

σ2

2
mx ` qu,mm “ 0 in p0, T q ˆ tLu,

where the function qu,m involved in the system is given by:

(2.2) qu,mpt, xq :“
1

2
p1´ κq̄ptq ´ uxpt, xqq

` , where q̄ptq :“

ż L

0
qu,mpt, xqmpt, xq dx,

and κ ą 0. Similar versions of the Mean Field Game system (2.1) were addressed in
[10, 17–19, 30]. We focus in Section 2 on the mathematical analysis of the PDE system
(2.1). The interpretation of that system in terms of mean-field game is recalled briefly
in Section 3, where we use that system of equation to compute an approximate Nash
equilibrium forN -Player Cournot games. For now, we keep in mind thatm is the density
of a continuum of market actors, qu,mpt, xq is the production rate of an atomic player with
reserves x at time t, and u is the the game value function of an atomic player following
the production policy qu,m.

Let us assume that:

(H2) m0 P PpQ̄q, and supppm0q Ă p0, Ls.
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We shall say that a pair pu,mq is a solution to (2.1), if

(i) u P C1,2pQT q, u, ux P CpQT q;
(ii) m P Cpr0, T s;MpQ̄qq X L1pQT q`, and }mptq}L1 ď 1 for every t P p0, T s;

(iii) the equation for u holds in the classical sense, while the equation for m holds in
the weak sense (1.2c).

2.1. Preliminary estimates. We start by giving an alternative convenient expression for
the production rate function qu,m. We aim to write qu,m as a functional of ux,m and the
market price function pu,m, that is defined by [10]:

(2.3) pu,mpt, xq :“ 1´ pqu,mpt, xq ` κq̄ptqq.

The latter expression means that the price pu,mpt, xq received by an atomic player with
reserves x at time t, is a linear and nonincreasing function, of the player’s production rate
qu,mpt, xq, and the aggregate production rate across all producers q̄ptq. This expression of
the price is a “mean-field” version of that given in Section 3. For any µ PMpQ̄q, we define

(2.4) apµq :“
1

1` κηpµq
; cpµq :“ 1´ apµq; ηpµq :“

ż L

0
d|µ|

and set

(2.5a) pptq :“
1

ηpmptqq

ż L

0
pu,mpt, xqmpt, xqdx.

By integrating (2.3) with respect to m and after a little algebra one recovers the following
identity

a pmptqq ` c pmptqq pptq “ 1´ κq̄ptq,

which entails

(2.5b) pu,mpt, xq “ a pmptqq ` c pmptqq pptq ´ qu,mpt, xq,

and

(2.5c) qu,mpt, xq “
1

2
ta pmptqq ` c pmptqq pptq ´ uxpt, xqu

` .

This duality is also known as Bertrand and Cournot equivalence, and expresses the fact
that the problem of controlling the rate of production by anticipating global production,
is equivalent to the problem of controlling the selling price by anticipating the average
price in the market and the rate of active producers. We omit the details and refer to
[10, Section B.2]. For convenience, we shall often use (2.5c) as a definition for qu,m.

In contrast to the systems studied in [10, 17, 18], pu,m has no explicit formula and is
only defined as a fixed point through (2.5a)-(2.5c). The following Lemma makes that
statement clear and point out a few facts on the market price function.

Lemma 2.1. Let u P L8
`

0, T ; C1pQ̄q
˘

, m P L1pQT q`, and κ ą 0. Then the market price
function pu,m is well-defined through (2.5a)-(2.5c), belongs to L8p0, T ; CpQ̄qq, and satisfies

(2.6) ´ }ux}8 ď pu,m ď 1.

Moreover, if ux is non-negative, then pu,m is non-negative as well.
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Proof. Let f : R2 Ñ R be given by fpx, yq “ x ´ 1
2px ´ yq`. Note that f is 1-Lipschitz

in the first variable, and 1
2 -Lipschitz in the second. For any p, w P X :“ L8p0, T ; CpQ̄qq,

define

`pm, pqptq :“ a pmptqq ` c pmptqq pptq, where pptq :“
1

ηpmptqq

ż L

0
ppt, xqmpt, xqdx,

and
Λpw,m, pqpt, xq :“ fp`pm, pqptq, wpt, xqq.

We note the following inequalities for future reference:
ˇ

ˇ`pm, pqptq ´ `pm, p1qptq
ˇ

ˇ ď
κ

1` κ

›

›ppt, ¨q ´ p1pt, ¨q
›

›

8
,(2.7a)

›

›Λpw,m, pqpt, ¨q ´ Λpw,m, p1qpt, ¨q
›

›

8
ď

κ

1` κ

›

›ppt, ¨q ´ p1pt, ¨q
›

›

8
,(2.7b)

ˇ

ˇΛpw,m, pqpt, xq ´ Λpw1,m, pqpt, xq
ˇ

ˇ ď
1

2

ˇ

ˇwpt, xq ´ w1pt, xq
ˇ

ˇ ,(2.7c)
ˇ

ˇΛpw,m, pqpt, xq ´ Λpw,m1, pqpt, xq
ˇ

ˇ ď
ˇ

ˇ`pm, pqptq ´ `pm1, pqptq
ˇ

ˇ .(2.7d)

We aim to use Banach fixed point Theorem to show that

(2.8) p “ apmq ` cpmqp̄´
1

2
tapmq ` cpmqp̄´ uxu

`

has a unique solution pu,m P X, which satisfies (2.6). For any p P X, let us set

ψppq :“ Λpux,m, pq “ apmq ` cpmqp̄´
1

2
tapmq ` cpmqp̄´ uxu

` .

Observe that ψpXq Ă X, and p ď 1 entails ψppq ď 1. Moreover, if we suppose that
p ě ´}ux}8, then it holds that

ψppq ě ´cpmq}ux}8,

so that ψppq ě ´}ux}8, since cpmq ă 1. On the other hand, by appealing to (2.7b) we
have

}ψpp1q ´ ψpp2q}X ď
κ

1` κ
}p1 ´ p2}X @p1, p2 P X.

Therefore by invoking Banach fixed point Theorem, and the estimates above we deduce
the existence of a unique solution pu,m P X to problem (2.8) satisfying (2.6).

When ux is non-negative, note that p ě 0 entails ψppq ě 0, so that the same fixed point
argument yields pu,m ě 0. �

Next, we collect some facts related to the Fokker-Planck equation (1.2a)-(1.2b).

Lemma 2.2 (regularity of η). Let m be a weak solution to (1.2a)-(1.2b), starting from some m0

satisfying (H2). Suppose that b is bounded, and satisfies (1.1b). Then the map t Ñ ηptq :“

ηpmptqq is continuous on r0, T s.
Moreover, if in addition m0 belongs to L1pQq, then we have:

(i) the function t Ñ ηptq is locally Hölder continuous on p0, T s; namely, there exists γ ą 0

such that

(2.9a) |ηpt1q ´ ηpt2q| ď Cpt0, }b}8q |t1 ´ t2|
γ

@t1, t2 P rt0, T s

for all t0 P p0, T q;
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(ii) for any α ą 0 and φ P CαpQ̄q, there exists β ą 0 such that

(2.9b)
ˇ

ˇ

ˇ

ˇ

ż L

0
φpxq pmpt1, xq ´mpt2, xqq dx

ˇ

ˇ

ˇ

ˇ

ď Cpt0, }b}8, }φ}Cαq|t1 ´ t2|
β @t1, t2 P rt0, T s

for all t0 P p0, T q.

Proof. The proof requires several steps and lies on the probabilistic interpretation of m
which we recall briefly here, and use in other parts of this paper.

Step 1 (probabilistic interpretation): Consider the reflected diffusion process governed by

(2.10a) dXt “ ´bpt,Xtqdt` σ dWt ´ dξXt , X0 „ m0,

where X0 is F0-measurable, pWtqtPr0,T s is a F-Wiener process that is independent of X0,
and set

(2.10b) τ :“ inftt ě 0 : Xt ď 0u ^ T.

By virtue of the regularity assumptions on b, equation (2.10a) is well-posed in the classical
sense. Furthermore, since the process pξXt qtě0 is monotone, pXtqtPr0,T s is a continuous
semimartingale. Hence, by means of Itô’s rule and the optional stopping theorem, we
have for any test function φ P C8c pr0, T q ˆQq satisfying (1.2d):

E rφp0, X0qs “ E
„
ż τ

0

ˆ

´φtpv,Xvq ´
σ2

2
φxxpv,Xvq ` φxpv,Xvqbpv,Xvq

˙

dv



.

The function b being bounded, one sees that

E
„
ż T

0
bps,Xsq

2 ds



ă 8.

Therefore, by virtue of the uniqueness for (1.2a)-(1.2b) (cf. Proposition B.1), we obtain:

(2.10c)
ż

A
mpt, xq dx “ Ppt ă τ ;Xt P Aq

for every Borel set A P Q̄ and for a.e. t P p0, T q.
Step 2: Now, let us show that t Ñ Ppt ă τq is right continuous on r0, T s. In fact, we

have for any ε ą 0 and t P r0, T s

Ppt ă τq ´ Ppt` h ă τq “ Ppt` h ě τ ; t ă τq(2.11a)

ď Ppt` h ě τ ;Xt ě εq ` Ppt ă τ ;Xt ă εq.

On the one hand, for every t P r0, T s

(2.11b) lim
εÑ0`

Ppt ă τ ;Xt ă εq ď lim
εÑ0`

P p0 ă Xt ă εq “ 0,

thanks to the bounded convergence theorem. On the other hand

Ppt` h ě τ ;Xt ě εq ď P
ˆ

inf
vPrt,t`hs

Xv ´Xt ď ´ε

˙

ď P
ˆ

inf
vPr0,hs

σpWt`v ´Wtq ` pξ
X
t ´ ξ

X
t`hq ď ´ε` h}b}8

˙

,
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where we have used the fact that the local time is nondecreasing and b is bounded. Fur-
thermore, by using (1.1e), it holds that

ξXt ´ ξ
X
t`h ě inf

vPr0,hs
pYt ´ Yt`vq ě σ inf

vPr0,hs
pWt ´Wt`vq ´ h}b}8.

Therefore

Ppt` h ě τ ;Xt ě εq ď P

˜

sup
vPr0,hs

Bv ´ inf
vPr0,hs

Bv ě
ε´ 2h}b}8

σ

¸

,

where pBtqtě0 is a Wiener process.
Now, choose ε “ εphq :“ h1{2 logp1{hq. We have εphq Ñ 0 as h Ñ 0`, and by using

Markov’s inequality and the distribution of the maximum of Brownian motion we get:

(2.11c) Ppt` h ě τ ;Xt ě εq ď
2σ

εphq ´ 2h}b}8
E |Bh| ď

2σ

logp1{hq ´ 2}b}8h1{2
.

Thus 0 ď Ppt ă τq ´ Ppt` h ă τq Ñ 0 as hÑ 0`.
Step 3 (Hölder estimates): Now, we prove (2.9a)-(2.9b). At first, note that (2.10c) entails

(2.12)
ż L

0
φpxqmpt, xq dx “ E rφpXtq1tăτ s

for a.e. t P p0, T q and for any φ P CpQ̄q. Actually (2.12) holds for every t P r0, T s, since the
RHS and LHS of (2.12) are both right continuous on r0, T s, and m0 is supported on p0, Ls.
Indeed, on the one hand tÑ

şL
0 φpxqmpt, xqdx is continuous on r0, T s for any continuous

function φ on Q̄, since m P Cpr0, T s;L1pQqq (cf. [32, Theorem 3.6]). On the other hand, for
any φ P CpQ̄q

(2.13) E |φpXt`hq1t`hăτ ´ φpXtq1tăτ |

ď }φ}8pPpt ă τq ´ Ppt` h ă τqq ` E |φpXt`hq ´ φpXtq| ,

so that

lim
hÑ0`

E |φpXt`hq1t`hăτ ´ φεpXtq1tăτ | “ 0

thanks to (2.11a)-(2.11c), and the bounded convergence theorem.
Now, let us fix ε ą 0 and define φε “ φεpxq to be a smooth cut-off function on r0, Ls,

which satisfies the following conditions:

(2.14) 0 ď φε ď 1; 0 ď φ1ε ď 2{ε; φε1r0,εs “ 0; φε1r2ε,Ls “ 1.

As a first step, we aim to derive an estimation of the concentration of mass at the origine.
Namely, we want to show that for an arbitrary k ą 1,

(2.15)
ż L

0
p1´ φεpxqqmpt, xqdx ď Cpk, }b}8q

´

1´ e´π
2t{4L2

¯´1{2k
ε1{2k @t P p0, T s.

Given (2.12), this is equivalent to showing that

(2.16) E rp1´ φεpXtqq1tăτ s ď Cpk, }b}8q
´

1´ e´π
2t{4L2

¯´1{2k
ε1{2k @t P p0, T s
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holds for any k ą 1. Apply Girsanov’s Theorem with the following change of measure:

dQ
dP

ˇ

ˇ

ˇ

ˇ

Ft
“ exp

"

´σ´1
ż t

0
bps,XsqdWs ´

σ´2

2

ż t

0
bps,Xsq

2 ds

*

“: Ψt.

Under Q, the process pXtqtPr0,T s is a reflected Brownian motion at L, with initial condition
X0, thanks to (1.1c). Moreover, by virtue of Hölder inequality, we have for every k ą 1:

EP rp1´ φεpXtqq1tăτ s

“ EQ
“

Ψ´1t p1´ φεpXtqq1tăτ
‰

ď EQrΨ
´k1

t s1{k
1

EQ

”

p1´ φεpXtqq
k1tăτ

ı1{k

ď EPrΨ
1´k1

t s1{k
1

EQ

”

p1´ φεpXtqq
k1tăτ

ı1{k

ď EP

„

exp

"

Cpk, σq

ż t

0
bps,Xsq

2 ds

*1{2k1

EQ

”

p1´ φεpXtqq
k1tăτ

ı1{k
.

Using the fact that b is bounded, we obtain

(2.17) EP rp1´ φεpXtqq1tăτ s ď Cpk, }b}8qEQ

”

p1´ φεpXtqq
k1tăτ

ı1{k
.

Now

EQ

”

p1´ φεpXtqq
k1tăτ

ı

“

ż L

0
p1´ φεpxqq

kwpt, xqdx,

where w solves

wt “
1

2
wxx, wpt, 0q “ 0, wxpt, Lq “ 0, w|t“0 “ m0.

We can compute w via Fourier series, namely

wpt, xq “
ÿ

ně1

Ane
´λ2nt{2 sinpλnxq, An :“

2

L

ż L

0
sinpλnyq dm0pyq, λn :“

p2n´ 1qπ

2L
.

Note that
ż L

0
p1´ φεpxqq

kwpt, xq dx ď p2εq1{2}wpt, ¨q}L2

ď ε1{2

˜

ÿ

ně1

L|An|
2e´λ

2
nt

¸1{2

(Parseval)

ď ε1{2
ˆ

4

Lp1´ e´π2t{4L2
q

˙1{2

.

So (2.17) now yields

(2.18) EP rp1´ φεpXtqq1tăτ s ď Cpk, }b}8q

ˆ

4

Lp1´ e´π2t{4L2
q

˙1{2k

ε1{2k

which is (2.16). This in turn implies (2.15).
Furthermore, note that for any 1 ă s ă 3{2,

(2.19) }mpt1q ´mpt2q}W´1
s
ď C

`

}m0}L1 , }m|b|2}L1

˘

|t1 ´ t2|
1´1{s @t1, t2 P r0, T s,
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where W´1
s pQq is the dual space of W 1,s1

0 pQq :“
 

v PW 1
s1pQq : vp0q “ 0

(

. This claim
follows from [32, Proposition 3.10(iii)], where we obtain the estimate

(2.20) }m}L8p0,T ;L1pQqq ` }∇m}LspQT q ` }m}LvpQT q ` }mt}Lsp0,T ;W´1
s pQqq

ď C
`

}m0}L1 , }m|b|2}L1

˘

for any s up to 3{2 and v up to 3. In particular, (2.19) follows from the estimate on
}mt}Lsp0,T ;W´1

s pQqq. Now, fix 0 ă t1 ď t2 ď T , and let φε be the cut-off function that is
defined in (2.14). Based on the specifications of (2.14), observe that

}φε}W 1
s1
ď Cε´1{s.

Since φε satisfies Neumann boundary conditions at x “ L and Dirichlet at x “ 0, it is a
valid test function and we can appeal to the estimates above to obtain for any k ą 1,

(2.21) |ηpt1q ´ ηpt2q|

ď C

ˆ
ż L

0
p1´ φεpxqqpmpt1, xq dx`mpt2, xqqdx

˙

`

ˇ

ˇ

ˇ

ˇ

ż L

0
φεpxqpmpt1, xq ´mpt2, xqqdx

ˇ

ˇ

ˇ

ˇ

ď Cpk, }b}8q
´

1´ e´π
2 t1{4L2

¯´1{2k
ε1{2k ` }φε}W 1

s1
}mpt1q ´mpt2q}W´1

s

ď Cpk, }b}8q
´

1´ e´π
2t1{4L2

¯´1{2k
ε1{2k ` Cε´1{s|t1 ´ t2|

1´1{s.

Given 0 ă γ ă ps´ 1q{ps` 2q, we take ε “ |t1 ´ t2|sp1´γq´1 and then set k “ sp1´γq´1
2γ ą 1

to obtain (2.9a).
Finally, let φ P CαpQ̄q for some α ą 0, an let t0 P p0, T q. In view of (2.12), we have for

every t1, t2 P rt0, T s,
ˇ

ˇ

ˇ

ˇ

ż L

0
φpxqpmpt1, xq ´mpt2, xqqdx

ˇ

ˇ

ˇ

ˇ

ď E |φpXt1q1t1ăτ ´ φpXt2q1t2ăτ |

ď }φ}Cα p|ηpt1q ´ ηpt2q| ` E |Xt1 ´Xt2 |
α
q .

Hence, by using (2.9a) and the Burkholder-Davis-Gundy inequality [34, Thm IV.42.1], we
deduce the desired result:

ˇ

ˇ

ˇ

ˇ

ż L

0
φpxqpmpt1, xq ´mpt2, xqqdx

ˇ

ˇ

ˇ

ˇ

ď Cpt0, }b}8q}φ}Cα |t1 ´ t2|
β ,

for some β ą 0.
Step 4 (general data): Now, we suppose thatm0 is a probability measure satisfying (H2),

and not necessarily an element ofL1pQq. Let us choose a sequence pmn
0 q Ă L1pQq`, which

converges weakly (in the sense of measures) to m0, such that

(2.22) }mn
0 }L1 ď

ż L

0
dm0 ď 1,

and let mn to be the weak solution to (1.2a)-(1.2b) starting from mn
0 . The function b be-

ing bounded, we can use [32, Proposition 3.10] to extract a subsequence of pmnq, which
converges to m in L1pQT q. Owing to (2.9a), the sequence ηn :“ ηpmnq is equicontinuous.
Hence, one can extract further a subsequence to deduce that η is continuous on p0, T s.
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Combining this conclusion with the fact that t Ñ Ppt ă τq is right continuous on r0, T s
and (2.10c), we deduce in particular that

(2.23) ηptq “ Ppt ă τq, @t P p0, T s.

Now, since m0 is supported on p0, Ls one has ηpm0q “ ηp0q “ Pp0 ă τq “ 1, which in
turn entails that η is continuous on r0, T s thanks to (2.11a)-(2.11c) and (2.23). The proof is
complete. �

Remark 2.3. When m0 satisfies (H2) and does not necessarily belong to L1pQq, the prob-
abilistic characterisation (2.12) still holds for every t P r0, T s. In fact, using the same
approximation techniques as in Lemma 2.2- Step 4, and appealing to (2.9b) and (2.10c), it
holds that

ż L

0
φpxqmpt, xq dx “ E rφpXtq1tăτ s

for every t P r0, T s, α ą 0 and φ P CαpQ̄q. Thus, (2.12) ensues by using density arguments.

2.2. A priori estimates. Now, we collect several a priori estimates for system (2.1).

Lemma 2.4. Suppose that pu,mq satisfies the system (2.1) such that m P L1pQT q`, and u

belongs to W 1,2
s pQT q for large enough s ą 1. Then, we have:

(i) the maps u and ux are non-negative; in particular

(2.24) 0 ď qu,m ď 1{2;

(ii) there exists θ ą 0 and a constant c0 ą 0 such that

(2.25) }u}CθpQT q, }ux}CθpQT q ď c0

where c0 depends only on T and data. In addition, we have

}uxx}CθpQ1q,ď c1pQ
1, θq @Q1 ĂĂ p0, T q ˆ p0, Ls;

If in addition m0 belongs to L1pQq, then there exists a Hölder exponent θ ą 0 such that

}pu,m}Cθprt0,T sˆr0,Lsq ď c2pt0, θq, @t0 P p0, T q,

and
}ut}CθpQ1q ď c2pQ

1, θq @Q1 ĂĂ p0, T q ˆ p0, Ls.

Proof. For large enough s ą 1, we know that u, ux P CpQT q thanks to Sobolev-Hölder
embeddings. In view of

´ut ´
σ2

2
uxx ` ru ě 0,

one easily deduces that u ě e´rT minx uT , which entails in particular that u ě 0 thanks
to (H1). Thus, the minimum is attained at upt, 0q “ 0, so that uxpt, 0q ě 0 for all t P r0, T s.
Differentiating the first equation in (2.1) we have that ux is a generalised solution (cf.
[23, Chapter III]) of the following parabolic equation:

uxt `
σ2

2
uxxx ´ rux ´ qu,muxx “ 0.
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By virtue of the maximum principle [23, Theorem III.7.1] we infer that ux ě 0, since
uxpt, 0q, uxpt, Lq and u1T are all non-negative functions. Therefore (2.24) follows straight-
forwardly from (2.5c) thanks to Lemma 2.1.

Note that u solves a parabolic equation with bounded coefficients. Since compatibility
conditions of order zero are fulfilled thanks to (H1), then from [23, Theorem IV.9.1] we
have an estimate on u in W 1,2

k pQT q for arbitrary k ą 1, namely
(2.26)

}u}
W 1,2
k pQT q

ď C

ˆ

}qu,m}LkpQT q ` }uT }
W

2´ 2
k

k pQT q

˙

ď C

ˆ

}qu,m}L8pQT q ` }uT }
W

2´ 2
k

k pQT q

˙

.

This estimate depends only on T , k and data, thanks to (2.24). We deduce (2.25) thanks
to Sobolev-Hölder embeddings.

Now, let φ P C8c pp0, T q ˆ p0,`8qq. Observe that w “ φux satisfies

wt `
σ2

2
wxx ´ rw ´ qu,mwx “ φtux ` σ

2φxuxx `
σ2

2
φxxux ´ qu,mφxux.

For any k ą 1, the right-hand side is bounded in LkpQT q with a constant that depends
only on φ, and previous estimates. Since w has homogeneous boundary conditions, we
deduce from [23, Theorem IV.9.1] that }wx}CθpQT q is bounded by a constant depending
only on the norm of φ and previous estimates. The local Hölder estimate on uxx then
follows.

Let ppt, xq “ pu,mpt, xq. Recall that ppt, xq “ fp`pm, pqptq, uxpt, xqq where fpx, yq :“

x´ 1
2px´ yq

` (cf. Lemma 2.1). Since f is 1-Lipschitz in the first variable and 1
2 -Lipschitz

in the second, we deduce that

(2.27) |ppt1, x1q ´ ppt2, x2q| ď |`pm, pqpt1q ´ `pm, pqpt2q| `
1

2
|uxpt1, x1q ´ uxpt2, x2q|.

In particular, for each t,

(2.28) |ppt, x1q ´ ppt, x2q| ď
1

2
|uxpt, x1q ´ uxpt, x2q|

which, by (2.25), implies that ppt, ¨q is Lipschitz continuous for every t.
Now, we further assume that m0 P L

1pQq` to use (2.9a)-(2.9b). Fix t0 P p0, T q and for
t1, t2 in rt0, T swrite

(2.29) `pm, pqpt1q ´ `pm, pqpt2q “ apmpt1qq ´ apmpt2qq

` κpapmpt1qq ´ apmpt2qqq

ż L

0
ppt1, .qdmpt1q

` κapmpt2qq

ż L

0
ppt1, .qdpmpt1q ´mpt2qq

` κapmpt2qq

ż L

0
pppt1, .q ´ ppt2, .qqdmpt2q,

where we have used the fact that cpmq “ κapmqηpmq. Observe that η Ñ 1
1`κη is κ-

Lipschitz in the η variable, and recall that ppt1, ¨q is Lipschitz continuous. Moreover, by
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virtue of (2.25) we know that qu,m satisfies (1.1b). Therefore, using the upper bound on
apmq, cpmq and (2.9a)-(2.9b) we infer that

(2.30) |`pm, pqpt1q ´ `pm, pqpt2q| ď C|t1 ´ t2|
β `

κ

1` κ
}ppt1, ¨q ´ ppt2, ¨q}8.

Note that the constant in (2.30) depend only on c0 and κ thanks to (2.24), (2.25) and
Lemma 2.1. Using now (2.30) in (2.27), and choosing θ small enough, we deduce

(2.31)
1

1` κ
}ppt1, ¨q ´ ppt2, ¨q}8 ď C|t1 ´ t2|

β `
1

2
}uxpt1, ¨q ´ uxpt2, ¨q}8 ď C|t1 ´ t2|

θ.

Putting together (2.28) and (2.31) we infer that p has a Hölder estimate, whereupon by
(2.30) so does `pm, pq. Thus qu,m also has a Hölder estimate, and so does ut by the HJB
equation satisfied by u. �

2.3. Well-posedness. We are now in position to prove the main result of this section:

Theorem 2.5. There exists a unique solution pu,mq to system (2.1).

Proof of Theorem 2.5. The proof requires several steps, the key arguments being precisely
the estimates collected in Lemmas 2.1-2.4.

Step 1 (data in L1): We suppose that m0 is an element of L1pQq satisfying (H2). Define
X to be the space of couples pv, νq, such that v and vx are globally continuous on QT , and
ν belongs to L1pQT q`. The functional space X endowed with the norm:

}pv, νq}X :“ }v}8 ` }vx}8 ` }ν}L1

is a Banach space. Consider the map T : pv, ν, λq P X ˆ r0, 1s Ñ pw, µq where pw, µq are
given by the following parametrized system of coupled partial differential equations:

(2.32)

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

piq wt `
σ2

2
wxx ´ rw ` λ

2q2v,ν “ 0 in QT ,

piiq µt ´
σ2

2
µxx ´ tλqv,νµux “ 0 in QT ,

piiiq µpt, 0q “ 0, wpt, 0q “ 0, wxpt, Lq “ 0 in r0, T s,

pivq µp0q “ λm0, wpT, xq “ λuT pxq in r0, Ls,

pvq
σ2

2
µx ` λqv,νµ “ 0 in r0, T s ˆ tLu.

By virtue of Lemma 2.1, the map qv,ν is well-defined for any pv, νq P X, and satisfy

(2.33) |qv,ν | ď Cp1` }vx}8q.

Recall that compatibility conditions of order zero hold owing to (H1). Thus, in view of
[23, Theorem IV.9.1], the function w exists and is bounded in W 1,2

s pQT q for any s ą 1, by
a constant which depends on }vx}8 and data. We deduce that

}w}Cα ` }wx}Cα ď CpT, L, uT , }vx}8q

for some α ą 0. On the other hand, it is well known (see e.g. [23, Chapter III]) that for any
pv, νq P X, equation (2.32)(ii) has a unique weak solution µ. Therefore, T is well-defined.
Let us now prove that T is continuous and compact. Suppose pvn, νn, λnq is a a bounded
sequence in X ˆ r0, 1s and let pwn, µnq “ Tpvn, νn, λnq. To prove compactness, we show
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that, up to a subsequence, pwn, µnq converges to some pw, µq in X. Since pvnqx is uni-
formly bounded, by virtue of [32, Proposition 3.10], the sequence µn is relatively compact
in L1pQT q`, thanks to (2.33) (cf. (2.34) below where more details are given). Since wn and
pwnqx are uniformly bounded in CαpQT q, by the Ascoli-Arzelà Theorem and uniform con-
vergence of the derivative there exists some w such that w,wx are continuous in QT and,
passing to a subsequence, wn Ñ w and pwnqx Ñ wx uniformly, where in fact wn á w

weakly in W 1,2
s pQT q for any s ą 1. This is what we wanted to show.

To prove continuity, we assume pvn, νn, λnq Ñ pv, ν, λq in Xˆ r0, 1s. It is enough to show
that, after passing to a subsequence, Tpvn, νn, λnq Ñ Tpv, ν, λq. By the preceding argu-
ment, we can assume Tpvn, νn, λnq Ñ pw, µq. We can also use estimates (2.7b)-(2.7d) to
deduce that qvn,νn Ñ qv,ν a.e. (cf. the proof of Equation (2.37) below), and since qvn,νn is
uniformly bounded we can also assert qvn,νn Ñ qv,ν in Ls for any s ě 1. Then we deduce
that pw, µq is a solution of (2.32) for the given pv, ν, λq. Therefore, pw, µq “ Tpv, ν, λq, as
desired.

Now, let pu,mq P X and λ P r0, 1s so that pu,mq “ Tpu,m, λq. Then pu,mq satisfies as-
sumptions of Lemma 2.4 with m0, uT , qu,m replaced by λm0, λuT and λqu,m, respectively.
Since the bounds of Lemma 2.4 carry through uniformly in λ P r0, 1swe infer that

}pu,mq}X ď 1_ c0,

where c0 ą 0 is the constant of Lemma 2.4. In addition, for λ “ 0 we have Tpu,m, 0q “
p0, 0q. Therefore, by virtue of Leray-Schauder fixed point Theorem (see e.g. [14, Theorem
11.6]), we deduce the existence of a solution pu,mq in X to system (2.1).

Step 2 (measure data): We deal now with general m0, i.e. a probability measure that is
supported on p0, Ls. Let pmn

0 q Ă L1pQq` be a sequence of functions, which converges
weakly (in the sense of measures) to m0, and such that

}mn
0 }L1 ď

ż L

0
dm0 ď 1, and supppmn

0 q Ă p0, Ls.

For any n ě 1, define pun,mnq to be a solution in X to system (2.1) starting from mn
0 .

In view of [32, Proposition 3.10 (iii)] and (2.24), the corresponding solutions mn to the
non-local Fokker-Planck equation lie in a relatively compact set of L1pQT q. Moreover, it
holds that

(2.34) mn ě 0 and sup
0ďtďT

}mnptq}L1 ď

ż L

0
dm0.

Passing to a subsequence we have mn Ñ m in L1pQT q, mnptq Ñ mptq in L1pQq for a.e. t
in p0, T q, and mn Ñ m for a.e. pt, xq in QT . It follows that m P L1pQT q` and

(2.35) }mptq}L1 ď 1 for a.e. t P p0, T q.

In addition, we know that qu,m fulfils the assumptions of Lemma 2.2. Thus tÑ }mptq}L1

is continuous on p0, T s, so that (2.35) holds for avery t P p0, T s. Furthermore, we can
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appeal to the probabilistic characterisation (2.12), thanks to Remark 2.3, to get
ˇ

ˇ

ˇ

ˇ

ż L

0
φpxqpmpt` h, xq ´mptqqdx

ˇ

ˇ

ˇ

ˇ

ď E |φpXt`hq1t`hăτ ´ φpXtq1tăτ |

ď }φ}8|ηptq ´ ηpt` hq| ` E |φpXt`hq ´ φpXtq|

for every φ P CpQ̄q, and t P r0, T s. Now owing to Lemma 2.2, η is continuous on r0, T s.
Hence, by taking the limit in the last estimation we infer that

lim
hÑ0

ż L

0
φpxqpmpt` h, xq ´mptqqdx “ 0

thanks to the bounded convergence theorem. Consequently the map t Ñ mptq is contin-
uous on r0, T swith respect to the strong topology of MpQ̄q.

On the other hand, by Lemma 2.4 we have that un, unx are uniformly bounded in
CθpQT q, and unt , unxx are uniformly bounded in CθpQ1q for each Q1 ĂĂ p0, T q ˆ p0, Ls.
Thus, up to a subsequence we obtain that u, ux P CpQT q, and

(2.36) un Ñ u P C1,2pp0, T q ˆ p0, Lsq

where the convergence is in the C1,2 norm on arbitrary compact subsets of p0, T q ˆ p0, Ls.
To show that the Hamilton-Jacobi equation holds in a classical sense and the Fokker-

Planck equation holds in the sense of distributions, it remains to show that

(2.37) qun,mn Ñ qu,m a.e.

at least on a subsequence. Set pn “ pun,mn “ Λpunx,m
n, pnq and p “ pu,m “ Λpux,m, pq,

with Λ defined in Lemma 2.1. Using (2.7b)-(2.7d) we get

(2.38) }pnpt, ¨q ´ ppt, ¨q}8 ď }Λpu
n
x,m

n, pnqpt, ¨q ´ Λpux,m
n, pnqpt, ¨q}8

` }Λpux,m
n, pnqpt, ¨q ´ Λpux,m

n, pqpt, ¨q}8 ` }Λpux,m
n, pqpt, ¨q ´ Λpux,m, pqpt, ¨q}8

ď
1

2
}unx ´ ux}8 `

κ

1` κ
}pnpt, ¨q ´ ppt, ¨q}8 ` |`pm

n, pqptq ´ `pm, pqptq|

which means

(2.39) }pnpt, ¨q ´ ppt, ¨q}8 ď
1` κ

2
}unx ´ ux}8 ` p1` κq|`pm

n, pqptq ´ `pm, pqptq|.

Noting that (up to a subsequence) mnptq Ñ mptq in L1pQq a.e., we use the fact that
apmq, cpmq, ηpmq are all continuous with respect to this metric to deduce that

(2.40) |`pmn, pqptq ´ `pm, pqptq| Ñ 0 a.e. t P p0, T q

from which we conclude that

(2.41) }pnpt, ¨q ´ ppt, ¨q}8 Ñ 0 a.e. t P p0, T q.

Now from (2.41) and (2.7a) we have

(2.42) |`pm, pnqptq ´ `pm, pqptq| Ñ 0 a.e. t P p0, T q.

Combining (2.40) and (2.42) we see that `pmn, pnq Ñ `pm, pq a.e. We deduce (2.37) from
the definition (2.5c). Therefore pun,mnq converges to some pu,mq which is a solution to
(2.1) with initial data m0.
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Step 3 (uniqueness): Let pui,miq, i “ 1, 2 be two solutions of (2.1). We set

Gi :“ qui,mi and Ḡi :“

ż L

0
qui,mipt, yq dmiptq.

From (2.2), we know that

(2.43) Gi “
1

2

`

1´ κḠi ´ ui,x
˘`
.

Let u “ u1 ´ u2,m “ m1 ´m2, G “ G1 ´G2, Ḡ “ Ḡ1 ´ Ḡ2. Using pt, xq Ñ e´rtupt, xq

as a test function in the equations satisfied by m1,m2, with some algebra yields

(2.44) 0 “

ż T

0
e´rt

ż L

0
pG2

2 ´G
2
1 ´G1uxqm1 ` pG

2
1 ´G

2
2 `G2uxqm2 dx dt

“

ż T

0
e´rt

ż L

0
pG1 ´G2q

2pm1 `m2qdx dt`

ż T

0
e´rt

ż L

0
p2G` uxqpG2m2 ´G1m1q dx dt.

Now since G2 “ 0 on the set where 1´ κḠ2ptq ´ u2,x ă 0, we can write

p2G` uxqG2 “

´

`

1´ κḠ1 ´ u1,x
˘`
´
`

1´ κḠ2ptq ´ u2,x
˘

` u1,x ´ u2,x

¯

G2

“

´

´κḠ`
`

1´ κḠ1 ´ u1,x
˘´

¯

G2.

Similarly we can write

p2G` uxqG1 “

´

`

1´ κḠ1 ´ u1,x
˘

´
`

1´ κḠ2ptq ´ u2,x
˘`
` u1,x ´ u2,x

¯

G1

“

´

´κḠ´
`

1´ κḠ2 ´ u2,x
˘´

¯

G1.

Thus we compute
ż L

0
p2G` uxqpG2m2 ´G1m1qdx dt “ κḠ2 `

ż L

0

`

1´ κḠ1 ´ u1,x
˘´
G2m2 dx dt

`

ż L

0

`

1´ κḠ2 ´ u2,x
˘´
G1m1 dx dt ě κḠ2.

So from (2.44) we conclude

(2.45)
ż T

0
e´rt

ż L

0
pG1 ´G2q

2pm1 `m2q dx dt` κ

ż T

0
e´rtpḠ1 ´ Ḡ2q

2 dt “ 0.

In particular, Ḡ1 ” Ḡ2. We can then appeal to uniqueness for the Hamilton-Jacobi equa-
tion to get u1 ” u2 (cf. [23, Chapter V]). By (2.43), this entails that G1 ” G2, and so
m1 ” m2 by uniqueness for the Fokker-Planck equation. �

3. APPLICATION OF THE MFG APPROACH

In this section, we present the N -Player Cournot game with limited resources, and
build an approximation of Nash equilibria to that game when N is large, by means of the
Mean Field Game system (2.1). Namely, we show that the optimal feedback strategies,
computed from the MFG system (2.1), provides an ε-Nash equilibria for the N -Player
Cournot game, where the error ε is arbitrarily small as N Ñ8.
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Throughout this section pu,mq is the solution to (2.1) starting from some probability
measure m0 satisfying (H2), and the function qu,m is given by (2.5c).

3.1. Cournot game with linear demand and exhaustible resources. We start by intro-
ducing the N -Player Cournot game. Consider a market with N producers of a given
good, whose strategic variable is the rate of production and where raw materials are in
limited supply. Concretely, one can think of energy producers that use exhaustible re-
sources, such as oil, to produce and sell energy. Firms disappear from the market as soon
as they deplete their reserves of raw materials.

Let us formalize this model in precise mathematical terms. Let
`

W j
˘

1ďjďN
be a fam-

ily of N independent F-Wiener processes on R, and consider the following system of
Skorokhod problems:

(3.1)

#

dXi
t “ ´q

i
t dt` σ dW i

t ´ dξX
i

t ,

Xi
0 “ Vi, i “ 1, ..., N.

Here pV1, ..., VN q is a vector of i.i.d and F0-measurable random variables with law m0,
such that V1, ..., VN are independent of W 1, ...,WN respectively. Let us fix a common
horizon T ą 0, and set

τ i :“ inf
 

t ě 0 : Xi
t ď 0

(

^ T.

The stopped random process
`

Xi
t^τ i

˘

tPr0,T s
models the reserves level of the ith producer

on the horizon T , which is gradually depleted according to a non-negative controlled
rate of production

`

qit
˘

tPr0,T s
. The stopping condition indicates that a firm can no longer

replenish its reserves once they are exhausted. The Wiener processes in (3.1) model the
idiosyncratic fluctuations related to production. We consider L to be an upper bound
on the reserves level of any player. This latter assumption is also considered in [17, 18],
and is taken into account by considering reflected dynamics in (3.1). Since the rate of
production is always non-negative, note that reflection has practically no effect when L

is large compared to the initial reserves.
The producers interact through the market. We assume that demand is linear, so that

the price pi received by the firm i reads:

(3.2) pit “ 1´ pqit ` κq̄
i
tq, where q̄it “

1

N ´ 1

ÿ

j‰i

qjt1tăτ j , for 0 ď t ď T.

Here κ ą 0 expresses the degree of market interaction, in proportion to which abundant
total production will put downward pressure on all the prices. Note that only firms with
nonempty reserves at t P r0, T s are taken into account in (3.2). The other firms are no
longer present on the market. The producer i chooses the production rate qi in order to
maximize the following discounted profit functional:

J i,N
c pq1, ..., qN q :“ E

"
ż T

0
e´rs

`

1´ κq̄is ´ q
i
s

˘

qis1săτ i ds` e´rTuT pX
i
τ iq

*

.

Observe that firms can no longer earn revenue as soon as they deplete their reserves. We
refer to [11, 21] for further explanations on the economic model and applications.
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We denote by Ac the set of admissible controls for any player; that is the set of Markov-
ian feedback controls, i.e. qit “ qi

`

t,X1
t , ..., X

N
t

˘

; such that pqitqtPr0,T s is positive, satisfies

E
„
ż T

0
|qis|

21săτ i ds



ă 8,

and the ith equation of (3.1) is well-posed in the classical sense. Restriction to Markovian
controls rules out equilibria with undesirable properties such as non-credible threats (cf.
[13, Chapter 13]).

Now, we give a definition of Nash equilibria to this game:

Definition 3.1 (Nash equilibrium). A strategy profile
`

q1,˚, ..., qN,˚
˘

in
śN
i“1Ac is a Nash

equilibrium of the N -Player Cournot game, if for any i “ 1, ..., N and qi P Ac

J i,N
c

`

qi; pqj,˚qj‰i
˘

ď J i,N
c

`

q1,˚, ..., qN,˚
˘

.

In words, a Nash equilibrium is the set of admissible strategies such that each player
has taken an optimal trajectory in view of the competitors’ choices.

The dynamic programming principle provides a methodology to build exact Nash
equilibria for the N -Player Cournot game. However it is very tedious to compute this
equilibrium either analytically or numerically, especially when N is very large. In this
specific case with exhaustible resources, the situation is even worse because of the non-
standard boundary conditions which are obtained (cf. [21, Section 3.1]). To remedy this
problem several works have rather considered a Mean-Field model [10,11,19,21,30] as an
approximation to the initial N -Player game, when N is large. The purpose of this section
is to explain this approximation in a rigorous way. More precisely, the main result of this
section is the following:

Theorem 3.2. For any N ě 1 and i P t1, ..., Nu let

(3.3)

#

dX̂i
t “ ´qu,mpt, X̂

i
tqdt` σ dW i

t ´ dξX̂
i

t

Xi
0 “ Vi,

and set q̂it :“ qu,mpt, X̂
i
tq. Then for any ε ą 0, the strategy profile pq̂1, ..., q̂N q is admissible, i.e.

belongs to
śN
i“1Ac, and provides an ε-Nash equilibrium to the game J 1,N

c , ...,JN,N
c for largeN .

Namely: @ε ą 0, DNε ě 1 such that

(3.4) @N ě Nε,@i “ 1, ..., N, J i,N
c

`

qi; pq̂jqj‰i
˘

ď ε` J i,N
c

`

q̂1, ..., q̂N
˘

,

for any admissible strategy qi P Ac.

The rest of this section is devoted to the proof of Theorem 3.2.

3.2. Tailor-made law of large numbers. Let us set

τ̂ i :“ inf
!

t ě 0 : X̂i
t ď 0

)

^ T,

and define the following process:

(3.5) ν̂Nt :“
1

N

N
ÿ

k“1

δX̂k
t
1tăτ̂k , @t P r0, T s,
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where δx denotes the Dirac delta measure of the point x P R. Observe that the above
definition makes sense because the stochastic dynamics pX̂1, ..., X̂N q exists in the strong
sense owing to Lemma 2.4. In particular, the strategy profile

`

q̂1, ..., q̂N
˘

defined in Theo-
rem 3.2 belongs to

śN
i“1Ac. Moreover, by using the probabilistic characterization (2.10c),

note that for any measurable and bounded function φ on Q̄ we have

(3.6) E
„
ż L

0
φ dν̂Nt



“

ż L

0
φ dmptq, for a.e. t P p0, T q.

The above identity is not strong enough to show Theorem 3.2. Therefore, we need to
work harder in order to get more information on the asymptotic behavior of the empirical
process (3.5) when N Ñ8.

We aim to prove that the empirical process
`

ν̂N
˘

Ně1
converges in law to the determin-

istic measure m in a suitable function space, by using arguments borrowed from [20, 27].
For this, we start by showing the existence of sub-sequences pν̂N

1

q that converges in law
to some limiting process ν˚. Then, we show that ν˚ belongs to P̃pQ̄q and satisfies the
same equation as m. Finally, we invoke the uniqueness of weak solutions to the Fokker-
Planck equation to deduce full weak convergence toward m.

The crucial step consists in showing that the sequence of the laws of
`

ν̂N
˘

Ně1
is rel-

atively compact on a suitable topological space. This is where the machinery of [27]
is convenient. In order to use the analytical tools of that paper, we view the empirical
process as a random variable on the space of càdlàg (right continuous and has left-hand
limits) functions, mapping r0, T s into the space of tempered distributions. This function
space is denoted DS1R and is endowed with the so called Skorokhod’s M1 topology. Note
that there are no measurability issues owing to [27, Proposition 2.7]. Moreover, by virtue
of [31], the process

`

ν̂Nt
˘

tPr0,T s
has a version that is càdlàg in the strong topology of S 1R for

everyN ě 1, since ν̂Nt pφq :“
ş

R φ dν̂Nt is a real-valued càdlàg process, for every φ P SR and
N ě 1. We refer the reader to [27] for the construction of pDS1R ,M1q, and to [35] for gen-
eral background on Skorokhod’s topologies. We shall denote by pDR,M1q the space of
R-valued càdlàg functions mapping r0, T s to R, endowed with Skorokhod’s M1 topology.

The main strengths of working with the M1 topology in our context, are based on the
following facts:

‚ tightness on pDS1R ,M1q implies the relative compactness on pDS1R ,M1q thanks to
[27, Theorem 3.2]);

‚ the proof of tightness on pDS1R ,M1q is reduced through the canonical projection to
the study of tightness in pDR,M1q, for which we have suitable characterizations
[27, 35];

‚ bounded monotone real-valued processes are automatically tight on pDR,M1q;
this is an important feature, that enables to prove tightness of the sequence of
empirical process laws, by using a suitable decomposition.

It is also important to note that this approach could be generalized to deal with the case
of a systemic noise, by using a martingale approach as in [20, Lemma 5.9]. We do not
deal with that case in this paper.
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More generally, one can replace S 1R by any dual space of a countably Hilbertian nuclear
space (cf. [27] and references therein). Although the class S 1R seems to be excessively large
for our purposes, we recover measure-valued processes by means of Riesz representation
theorem (cf. [20, Proposition 5.3] for an example in the same context).

Throughout this part, we shall use the symbol ñ to denote convergence in law. The main
result of this part is the following:

Lemma 3.3. As N Ñ8, we have ν̂N ñ m on pDS1R ,M1q.

The rest of this part is devoted to the proof of Lemma 3.3.

3.2.1. Tightness. At first, we aim to prove the tightness of pν̂N qNě1 on the space pDS1R ,M1q.
We start by controlling the concentration of mass at the origin:

Lemma 3.4. For every t P r0, T s, we have

sup
Ně1

Eν̂Nt p0, εq Ñ 0, as εÑ 0.

Proof. Let us fix ε ą 0. Note that, for every t P r0, T s

Eν̂Nt p0, εq “
1

N

N
ÿ

i“1

P
´

X̂i
t P p0, εq; t ă τ̂ i

¯

.

Thus, on the one hand

sup
Ně1

Eν̂N0 p0, εq “
ż ε

0
dm0 Ñ 0, as εÑ 0.

On the other hand, we have for any t P p0, T s

(3.7) sup
Ně1

Eν̂Nt p0, εq ď sup
Ně1

N´1
N
ÿ

i“1

E
”

p1´ φεpX̂
i
tqq1tăτ̂ i

ı

where φε is the cut-off function defined in (2.14). Thus, by virtue of (2.18) we obtain

sup
Ně1

Eν̂Nt p0, εq ď CpL, t, }qu,m}8qε
1{4,

which entails the desired result. �

The second ingredient is the control of the mass loss increment:

Lemma 3.5. For every t P r0, T s and λ ą 0

lim
hÑ0

lim sup
N

P
`ˇ

ˇη
`

ν̂Nt
˘

´ η
`

ν̂Nt`h
˘ˇ

ˇ ě λ
˘

“ 0,

where the map µÑ ηpµq is defined in (2.4).

Proof. The proof is inspired by [20, Proposition 4.7]. Let ε, h ą 0 and t P r0, T s, we have

(3.8) P
`

η
`

ν̂Nt
˘

´ η
`

ν̂Nt`h
˘

ě λ
˘

ď P
`

ν̂Nt p0, εq ě λ{2
˘

` P
`

η
`

ν̂Nt
˘

´ η
`

ν̂Nt`h
˘

ě λ; ν̂Nt p0, εq ă λ{2
˘

.
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The reason why we use the latter decomposition will be clear in (3.9). Owing to Markov’s
inequality and Lemma 3.4, one has

lim sup
N

Ppν̂Nt p0, εq ě λ{2q ď 2λ´1 sup
N

Eν̂Nt p0, εq Ñ 0, as εÑ 0.

Now we deal with the second part in estimate (3.8). Define It to be the following random
set of indices:

It :“
!

1 ď i ď N : X̂i
t ě ε

)

;

then, we have

P
`

η
`

ν̂Nt
˘

´ η
`

ν̂Nt`h
˘

ě λ; ν̂Nt p0, εq ă λ{2
˘

ď
ÿ

#IěNp1´λ{2q
P
`

η
`

ν̂Nt
˘

´ η
`

ν̂Nt`h
˘

ě λ | It “ IqPpIt “ I
˘

,

where #I denotes the number of elements of I Ď t1, 2, . . . , Nu. Thus, we reduce the
problem to the estimation of the dynamics increments; using the same steps as for (2.11c)
we have

(3.9) P
`

η
`

ν̂Nt
˘

´ η
`

ν̂Nt`h
˘

ě λ | It “ I
˘

ď P
ˆ

#

"

i P I : inf
sPrt,t`hs

X̂i
s ´ X̂

i
t ď ´ε

*

ě λN{2
ˇ

ˇ

ˇ
It “ I

˙

ď P

˜

#

#

i P I : sup
sPr0,hs

Bi
s ´ inf

sPr0,hs
Bi
s ě

ε´ h

σ

+

ě λN{2

¸

,

where we have used the uniform bound on qu,m of Lemma 2.4, and where pBiq1ďiďN is
a family of independent Wiener processes. By symmetry, this final probability depends
only on #I, so that the right hand side above is maximized when I “ t1, ..., Nu. We infer
that

P
`

η
`

ν̂Nt
˘

´ η
`

ν̂Nt`h
˘

ě λ; ν̂Nt p0, εq ă λ{2
˘

ď P

˜

1

N

N
ÿ

i“1

1tsupsPr0,hsBis´infsPr0,hsBisě
ε´h
σ u

ě λ{2

¸

.

In the same way as for (2.11c), we choose εphq “ h1{2 logp1{hq so that limhÑ0` εphq “ 0,
and use Markov’s inequality to get

P
`

η
`

ν̂Nt
˘

´ η
`

ν̂Nt`h
˘

ě λ; ν̂Nt p0, εq ă λ{2
˘

ď
4σ

λplogp1{hq ´ h1{2q
.

This entails the desired result by taking the limit hÑ 0`.
Now we deal with the case of a left hand limit. Let t P p0, T s and h ÞÑ εphq as defined

above. Using a similar decomposition as before, we have for small enough h ą 0

P
`

η
`

ν̂Nt´h
˘

´ η
`

ν̂Nt
˘

ě λ
˘

ď P
`

ν̂Nt´hp0, εq ě λ{2
˘

` P
`

η
`

ν̂Nt´h
˘

´ η
`

ν̂Nt
˘

ě λ; ν̂Nt´hp0, εq ă λ{2
˘

.

Appealing to Markov’s inequality, estimate (3.7), and estimate (2.18) of Section 2, we have
for small enough h ą 0

P
`

ν̂Nt´hp0, εq ě λ{2
˘

ď 2λ´1Eν̂Nt´hp0, εq ď 2Cλ´1
´

1´ e´π
2t{8L2

¯´1{4
ε1{4,
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whence
lim
hÑ0`

lim sup
N

P
`

ν̂Nt´hp0, εphqq ě λ{2
˘

“ 0.

On the other hand, we show by using the same steps as in (3.9) that

P
`

η
`

ν̂Nt´h
˘

´ η
`

ν̂Nt
˘

ě λ; ν̂Nt´hp0, εq ă λ{2
˘

ď
4σ

λplogp1{hq ´ h1{2q
.

This entails the desired result by taking the limit hÑ 0`. �

We are now in position to show tightness on pDS1R ,M1q.

Proposition 3.6 (Tightness). The sequence of the laws of pν̂N qNě1 is tight on the space pDS1R ,M1q.

Proof. We present a brief sketch to explain the main arguments, and refer to [20, Proposi-
tion 5.1] for a similar proof.

Thanks to [27, Theorem 3.2], it is enough to show that the sequence of the laws of
`

ν̂N pφq
˘

Ně1
is tight on pDR,M1q for any φ P SR. To prove this, one can use the conditions

of [35, Theorem 12.12.3], which can be rewritten in a convenient form by virtue of [2].
From [27, Proposition 4.1] , we are done if we achieve the two following steps:

(1) find α, β, c ą 0, such that

P
`

HR
`

ν̂Nt1 pφq, ν̂
N
t2 pφq, ν̂

N
t3 pφq

˘

ě λ
˘

ď cλ´α|t3 ´ t1|
1`β,

for any N ě 1, λ ą 0 and 0 ď t1 ă t2 ă t3 ď T , where

HR px1, x2, x3q :“ inf
0ďγď1

|x2 ´ p1´ γqx1 ´ γx3| for x1, x2, x3 P R;

(2) show that

lim
hÑ0`

lim
N

P

˜

sup
tPp0,hq

|ν̂Nt pφq ´ ν̂
N
0 pφq| ` sup

tPpT´h,T q
|ν̂NT pφq ´ ν̂

N
t pφq| ě λ

¸

“ 0.

The key step is to consider the following decomposition [27, Proposition 4.2]:

(3.10) ν̄Nt pφq :“
1

N

N
ÿ

k“1

φpX̂k
t^τ̂kq “ ν̂Nt pφq ` φp0qENt ,

where
ENt :“ 1´ η

`

ν̂Nt
˘

is the exit rate process, which quantifies the fraction of firms out of market. Since
`

ENt
˘

tPr0,T s

is monotone increasing we have

inf
0ďγď1

ˇ

ˇENt2 ´ p1´ γqE
N
t1 ´ γE

N
t3

ˇ

ˇ “ 0,

so that
HR

`

ν̂Nt1 pφq, ν̂
N
t2 pφq, ν̂

N
t3 pφq

˘

ď
ˇ

ˇν̄Nt1 pφq ´ ν̄
N
t2 pφq

ˇ

ˇ`
ˇ

ˇν̄Nt2 pφq ´ ν̄
N
t3 pφq

ˇ

ˇ .

Thus, by virtue of Markov’s inequality

P
`

HR
`

ν̂Nt1 pφq, ν̂
N
t2 pφq, ν̂

N
t3 pφq

˘

ě λ
˘

ď 8λ´4
´

E
ˇ

ˇν̄Nt1 pφq ´ ν̄
N
t2 pφq

ˇ

ˇ

4
` E

ˇ

ˇν̄Nt2 pφq ´ ν̄
N
t3 pφq

ˇ

ˇ

4
¯

.
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Therefore, we deduce requirement (1) from the following estimate:

(3.11) @s, t P r0, T s,

E
ˇ

ˇν̄Nt pφq ´ ν̄
N
s pφq

ˇ

ˇ

4
ď }φx}

4
8

1

N

N
ÿ

k“1

E|X̂k
t^τ̂k ´ X̂

k
s^τ̂k |

4 ď C}φx}
4
8|t´ s|

2;

where we have used Hölder’s inequality and the Burkholder-Davis-Gundy inequality
[34, Thm IV.42.1].

The second requirement is also obtained by using the latter estimate, decomposition
(3.10), and Lemma 3.5. In fact, we have

P

˜

sup
tPp0,hq

|ν̂Nt pφq ´ ν̂
N
0 pφq| ě λ

¸

ď P

˜

sup
tPp0,hq

|ν̄Nt pφq ´ ν̄
N
0 pφq| ě λ{2

¸

` P
`

|φp0q|ENh ě λ{2
˘

,

so that the desired result follows thanks to (3.11), and Lemma 3.5. By the same way, we
deal with the second term P

´

suptPpT´h,T q |ν̂
N
T pφq ´ ν̂

N
t pφq| ě λ

¯

. �

3.2.2. Full convergence. We arrive now at the final ingredient for the proof of Lemma 3.3.
Let us set

Ctest :“
 

φ P C8c pr0, T q ˆ Q̄q
ˇ

ˇ φpt, 0q “ φxpt, Lq “ 0, @t P p0, T q
(

.

We start by deriving an equation for pν̂Nt qtPr0,T s.

Proposition 3.7. For every N ě 1 and φ P Ctest, it holds that
ż L

0
φp0, .qdν̂N0 “

ż T

0

ż L

0

ˆ

´φt ´
σ2

2
φxx ` qu,mφx

˙

dν̂Ns ds` IN pφq a.s.,

where

IN pφq :“ ´
σ

N

N
ÿ

k“1

ż T

0
φx

´

s, X̂k
s

¯

1săτ̂k dW k
s .

Proof. Let us consider φ P Ctest. First observe that for any k P t1, ..., Nu, and t P r0, T s

X̂k
t^τ̂k “ Vk ´

ż t

0
q̂ks1săτ q̂k ds` σW k

t^τ q̂k
´ ξX̂

k

t .

Hence, for any k P t1, ..., Nu, the random process
´

X̂k
t^τ̂k

¯

tPr0,T s
is a continuous semi-

martingale, and by applying Itô’s rule we have:

φpT, X̂k
τ̂kq ´ φp0, Vkq `

ż T

0
φx

´

s, X̂k
s^τ̂k

¯

dξX̂
k

s

“

ż T

0

"

σ2

2
φxxps, X̂

k
s q ´ qu,mps, X̂

k
s qφxps, X̂

k
s q

*

1săτ̂k ds

`

ż T

0
φt

´

s, X̂k
s^τ̂k

¯

ds` σ

ż T

0
φx

´

s, X̂k
s

¯

1săτ̂k dW k
s .
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By using the boundary conditions satisfied by φ, and noting that φtpt, 0q “ 0 for any
t P p0, T q, we deduce that

´ φp0, Vkq ´ σ

ż T

0
φx

´

s, X̂k
s

¯

1săτ̂k dW k
s

“

ż T

0

"

φt

´

s, X̂k
s

¯

`
σ2

2
φxx

´

s, X̂k
s

¯

´ qu,mps, X̂
k
s qφx

´

s, X̂k
s

¯

*

1săτ̂k ds

The desired result follows by summing over k P t1, ..., Nu, and multiplying by N´1. �

By virtue of [27, Theorem 3.2], the tightness of the sequence of laws of pν̂N qNě1 en-
sures that this sequence is relatively compact on pDS1R ,M1q. Consequently, Proposition
3.6 entails the existence of a subsequence (still denoted pν̂N qNě1) such that

ν̂N ñ ν̂˚, on pDS1R ,M1q.

Thanks to [27, Proposition 2.7 (i)],

@φ P SR, ν̂N pφq ñ ν̂˚pφq, as N Ñ8, on pDR,M1q.

To avoid possible confusion about multiple distinct limit points, we will denote ν̂˚

any limiting processes that realizes one of these limiting laws. First, we note that ν̂˚ is a
P̃pQ̄q-valued process:

Proposition 3.8. For every t P r0, T s, ν̂˚t is almost surely supported on Q̄ and belongs to P̃pQ̄q.

Proof. This follows from the portmanteau theorem and the Riesz representation theorem.
We omit the details and refer to [20, Proposition 5.3]. �

Next, we recover the partial differential equation satisfied by the process pν̂˚t qtPr0,T s.

Lemma 3.9. For every φ P Ctest, it holds that
ż L

0
φp0, .q dm0 `

ż T

0

ż L

0

ˆ

φt `
σ2

2
φxx ´ qu,mφx

˙

dν̂˚s ds “ 0 a.s.

Proof. Let us consider φ P Ctest and set:

µpφq :“

ż L

0
φp0, .qdm0 `

ż T

0

ż L

0

ˆ

φt `
σ2

2
φxx ´ qu,mφx

˙

dν̂˚s ds;

and

µN pφq :“

ż L

0
φp0, .qdm0 `

ż T

0

ż L

0

ˆ

φt `
σ2

2
φxx ´ qu,mφx

˙

dν̂Ns ds.

Owing to Proposition 3.7 we have

µN pφq “ IN pφq `

ż L

0
φp0, .qdpm0 ´ ν̂

N
0 q.

Note that
EIN pφq2 ď C}φx}

2
8N

´1.

Hence, by appealing to Horowitz-Karandikar inequality (see e.g. [33, Theorem 10.2.1])
we deduce that

Eµ2N pφq ď C}φx}
2
8N

´2{5.
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Consequently, to conclude the proof it is enough to show that

µN pφq ñ µpφq as N Ñ8.

Let A be the set of elements in DS1R that take values in P̃pQ̄q, and consider a sequence
pψN q Ă A which converges to some ψ in A with respect to the M1 topology. Let qu,m be
a continuous function on r0, T s ˆ R, which satisfies the following conditions:

(3.12a) qu,m|QT
” qu,m; }qu,m}8 “ }qu,m}8; @t P r0, T s, supp qu,mpt, .q Ă p´L, 2Lq.

We also define the sequence

(3.12b) qnu,mpt, xq :“ pqu,mpt, .q ˚ ξnq pxq, n ě 1,

where ξnpxq :“ nξpnxq is a compactly supported mollifier on R.
We have

J :“

ˇ

ˇ

ˇ

ˇ

ż T

0

ż L

0
qu,mφx dψNs ds´

ż T

0

ż L

0
qu,mφx dψs ds

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R
qu,mφx dψNs ds´

ż T

0

ż

R
qu,mφx dψs ds

ˇ

ˇ

ˇ

ˇ

ď 2}φx}8
›

›qnu,m ´ qu,m
›

›

8

`

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R
qnu,mφx dpψNs ´ ψsqds

ˇ

ˇ

ˇ

ˇ

“: J1 ` J2.

Since qnu,mps, .qφxps, .q P SR for any s P r0, T s, then J2 vanishes as ψN Ñ ψ . On the other
hand, note that J1 also vanishes as nÑ `8 so that we obtain limN J “ 0. Moreover, one
easily checks that

ż T

0

ż L

0
F dψNs dsÑ

ż T

0

ż L

0
F dψs ds, F ” φt, φxx as N Ñ `8.

Therefore, by virtue of the continuous mapping theorem, we obtain that µN pφq ñ µpφq,
which concludes the proof. �

We are now in position to prove Lemma 3.3.

Proof of Lemma 3.3. From Lemma 3.9, we know that dν˚ “ dν̂˚t dt and dm “ dmptq dt

both satisfy (almost surely) the same Fokker-Planck equation in the sense of measures (cf.
Appendix B). By invoking the uniqueness of solutions to that equation (cf. Proposition
B.1), we deduce that ν̂˚ ” m almost surely. Since all converging sub-sequences converge
weakly toward m, we infer that ν̂N ñ m, on pDS1R ,M1q. �

3.3. Mean-Field approximation. By virtue of the analytical tools of the previous section,
we are now in position to show Theorem 3.2. We start by recalling an important fact
related to the Mean Field Game system (2.1), then we prove Theorem 3.2.
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3.3.1. The mean-field problem. In this part, we recall briefly the interpretation of system
(2.1) in terms of games with mean-field interactions. We refer the reader to [10, 18, 19, 30]
for more background. Let us consider a continuum of agents, producing and selling
comparable goods. At time t “ 0, all the players have a positive capacity x P p0, Ls, and
are distributed on p0, Ls according to m0.

The remaining capacity (or reserves) of any atomic producer with a production rate
pρqtě0 depletes according to

dXρ
t “ ´ρt1tăτρ dt` σ1tăτρ dWt ´ dξX

ρ

t ,

where

τρ :“ inftt ě 0 : Xρ
t ď 0u ^ T,

and pWtqtPr0,T s is a F-Wiener process. A generic player which anticipates the total pro-
duction q̄ “

şL
0 qu,m dm, expects to receive the price

p :“ 1´ pκq̄ ` ρq

and solves the following optimization problem:

(3.13) max
ρě0

Jcpρq :“ max
ρě0

E
"
ż T

0
e´rs p1´ κq̄s ´ ρsq ρs1săτρ ds` e´rTuT

`

Xρ
T

˘

*

,

The maximum in (3.13) is taken over all F-adapted and non-negative processes pρtqtPr0,T s,
satisfying

E
„
ż T

0
|ρs|

21săτρ ds



ă 8

and pXρ
t qtPr0,T s exists in the classical sense. We claim that the feedback MFG strategy qu,m

is optimal for the stochastic optimal control problem (3.13):

Lemma 3.10. Let ρ˚t :“ qu,mpt,X
ρ˚

t q, then it holds that:

(3.14) max
ρě0

Jcpρq “ Jcpρ˚q “
ż L

0
up0, .q dm0.

The proof of Lemma 3.10 is standard, and is given in Appendix A. We deduce that
the MFG system (2.1) describes an equilibrium configuration for a Cournot game with
exhaustible resources, and a continuum of producers.

3.3.2. Proof of Theorem 3.2. We start by collecting the following technical result whose
proof is given in Appendix A.

Lemma 3.11. Fix n ě 1, define A to be all elements in DS1R that take values in P̃pQ̄q, and let
Ψm (resp. Ψn

q) be the map defined from DS1R into DS1R (resp. from A into DR) such that

Ψmpνqptq :“ νptq ´mptq and Ψn
qpνqptq :“

ˇ

ˇ

ˇ

ˇ

ż

R
qnu,mpt, .qdνptq

ˇ

ˇ

ˇ

ˇ

.

Then Ψm,Ψ
n
q are continuous with respect to the M1 topology.
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Let us now explain the proof of Theorem 3.2. We shall proceed by contradiction, as-
suming that (3.4) does not hold. Then there exists ε0 ą 0, a sequence of integers Nk such
that limkNk “ `8, and sequences pikq Ă t1, ..., Nku, pqikq Ă Ac, such that

(3.15) J ik,Nk
c

`

qik ; pq̂jqj‰ik
˘

ą ε0 ` J ik,Nk
c

`

q̂1, ..., q̂N
˘

, @k ě 0.

Let us set for any k ě 0,
#

dXik
t :“ ´qikt dt` σ dW ik

t ´ dξX
ik

t , Xik
0 “ Vik ,

τ ik :“ inftt ě 0 : Xik
t ď 0u ^ T,

and define

Zk
1,T :“

ż T

0
qiks 1săτ ik ds, and Zk

2,T :“

ż T

0

ˇ

ˇqiks
ˇ

ˇ

2
1săτ ik ds.

Recall that all elements of Ac are non-negative, so that Zk
1,T ě 0 for any k ě 0. We start

by collecting estimates on
´

Z ik
1,T

¯

kě0
and

´

Z ik
2,T

¯

kě0
. Observe that for any t P r0, T s,

Xik
t^τ ik

“ Vk ´

ż t

0
qiks 1săτ ik ds` σW ik

t^τ ik
´ ξX

ik

t , @k ě 0.

Since the local time is nondecreasing, we infer that

0 ď Zk
1,T ď Vik ´X

ik
τ ik
` σW ik

τ ik
, @k ě 0

holds almost surely. By means of the optional stopping theorem, we deduce that

(3.16) sup
kě0

E
”

Zk
1,T

ı

ď L.

Moreover, recall that

J ik,Nk
c

`

qik ; pq̂jqj‰ik
˘

“ E
"
ż T

0
e´rs

´

1´ κq̂s
ik
´ qiks

¯

qiks 1săτ ik ds` e´rTuT pX
ik
τ ik
q

*

,

where for any k ě 0

q̂s
ik
“

1

Nk ´ 1

ÿ

j‰ik

qu,mps, X̂
j
s q1săτ̂ j .

Thus, for any k ě 0

e´rTE
”

Zk
2,T

ı

ď }uT }8 ` E
"
ż T

0
e´rs

ˇ

ˇ

ˇ
1´ κq̂s

ik
ˇ

ˇ

ˇ
qiks 1săτ ik ds

*

´ J ik,Nk
c

`

qik ; pq̂jqj‰ik
˘

.

By virtue of (3.15) and the uniform bound on qu,m that is given in (2.24), we deduce that

e´rTE
”

Zk
2,T

ı

ď 2}uT }8 ` pκ` 1q sup
kě0

E
”

Zk
1,T

ı

` Cpκ, T q,

so that

(3.17) sup
kě0

E
”

Zk
2,T

ı

ď CpT, κ, }uT }8, Lq.
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On the other hand, we have for any k ě 0,

J ik,Nk
c

`

qik ; pq̂jqj‰ik
˘

ď E
"
ż T

0
e´rs

ˆ

1´ κ

ż L

0
qu,mps, .q dν̂Nks ´ qiks

˙

qiks 1săτ ik ds` e´rTuT pX
ik
τ ik
q

*

` κ

ˆ

Nk

Nk ´ 1
´ 1

˙

`
κ

Nk
sup
kě0

E
”

Z ik
1,T

ı

.

Thus, for any k ě 0

J ik,Nk
c

`

qik ; pq̂jqj‰ik
˘

´ Jcpqikq ´ CN´1k

ď κE
„
ż T

0
e´rsqiks 1săτqik

ˇ

ˇ

ˇ

ˇ

ż

R
qu,mps, .q d

`

mpsq ´ ν̂Nks
˘

ˇ

ˇ

ˇ

ˇ

ds



ď κE
„
ż T

0
e´rsqiks 1săτqik

ˇ

ˇ

ˇ

ˇ

ż

R
qnu,mps, .q d

`

mpsq ´ ν̂Nks
˘

ˇ

ˇ

ˇ

ˇ

ds



` κE
„
ż T

0
e´rsqiks 1săτqik ds



›

›qnu,m ´ qu,m
›

›

8
,

where Jc is defined in Lemma 3.10, and qu,m,q
n
u,m are given by (3.12a)-(3.12b).

Let us fix ε ą 0. Since
`

qnu,m
˘

ně1
converges uniformly toward qu,m on r0, T s ˆ R, we

can choose n large enough and independently of k ě 0 so that

(3.18) J ik,Nk
c

`

qik ; pq̂jqj‰ik
˘

´ Jcpqikq

ď κE
”

Zk
2,T

ı1{2
E

«

ż T

0

ˇ

ˇ

ˇ

ˇ

ż

R
qnu,mps, .qd

`

ν̂Nks ´mpsq
˘

ˇ

ˇ

ˇ

ˇ

2

ds

ff1{2

` κεE
”

Zk
1,T

ı

` CN´1k .

Appealing to Lemma 3.3, Lemma 3.11 and the continuous mapping theorem we have

lim
N

E

«

ż T

0

ˇ

ˇ

ˇ

ˇ

ż

R
qnu,mps, .qd

`

ν̂Nks ´mpsq
˘

ˇ

ˇ

ˇ

ˇ

2

ds

ff

“ 0.

Thus, by combining (3.16), (3.17), and (3.18):

J ik,Nk
c

`

qik ; pq̂jqj‰ik
˘

´ Jcpqikq ď CpT, κ, }uT }8, Lqε

for big enough k ě 0. Whence, by means of Lemma 3.10:

J ik,Nk
c

`

qik ; pq̂jqj‰ik
˘

ď CpT, κ, }uT }8, Lqε` Jcpρ˚q

for big enough k ě 0. With the same way, one can show that

Jcpρ˚q ď Cε` J ik,Nk
c

`

q̂1, ..., q̂N
˘

holds for big enough k ě 0. Hence, going back to (3.15) and using the above estimates,
we obtain

ε0 ă CpT, κ, }uT }8, Lqε.

We deduce the desired contradiction by choosing ε suitably small.
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APPENDIX A. PROOFS OF SOME ELEMENTARY OR TECHNICAL RESULTS

We start by giving a proof to Lemma 3.10.

Proof of Lemma 3.10. This kind of verification results is standard: one checks that the can-
didate optimal control is indeed the maximum using the equation satisfied by u; which
is the value function. Let ρ be an admissible control (F-adapted and satisfying the con-
straints). Since the local time is monotone, then Xρ is a semimartingale and with the use
of Itô’s rule we obtain

E
“

e´rTuT pX
ρ
τρq

‰

“

E
„

up0, Xρ
0 q `

ż τρ

0
e´rs

"

utps,X
ρ
s q ´ rups,X

ρ
s q ´ ρsuxps,X

ρ
s q `

σ2

2
uxxps,X

ρ
s q

*

ds



“ E
„

up0, Xρ
0 q ´

ż τρ

0
e´rs

 

q2u,mps,X
ρ
s q ` ρsuxps,X

ρ
s q
(

ds



,

where we have used the boundary value problem satisfied by u and the fact that ut, ux, uxx
are continuous on p0, T q ˆ p0, Ls (cf. (2.36)).

By using definition (2.2), note that

q2u,m “
1

4
|p1´ κq̄ ´ uxq _ 0|2 “ sup

ρě0
ρp1´ κq̄ ´ ρ´ uxq “ qu,mp1´ κq̄ ´ qu,m ´ uxq.

Therefore

E
“

e´rTuT pX
ρ
τρq

‰

ď E
„

up0, Xρ
0 q ´

ż τρ

0
e´rsρsp1´ κq̄ ´ ρsq ds



,

so that
ż L

0
up0, .qdm0 “ E rup0, Xρ

0 qs ě E
„
ż τρ

0
e´rsp1´ κq̄ ´ ρsqρs ds` e´rTuT pX

ρ
τρq



.

By virtue of Lemma 2.4, we know that the process pXρ˚

t qtPr0,T s exists in the strong sense.
Replacing ρ by ρ˚ in the above computations, inequalities become equalities and we eas-
ily infer that

Jcpρ˚q “
ż L

0
up0, .q dm0.

Thus (3.14) is proved. �

Next, we give a proof to Lemma 3.11.

Proof of Lemma 3.11. Throughout the proof, we shall use notations of [27, 35].
Step 1 (continuity in S 1R): By virtue of Theorem 2.5, we know that tÑ mptq is continuous

on r0, T s with respect to the strong topology of S 1R. Let φ P S 1R, we aim to compute the
modulus of continuity of t Ñ

ş

R φ dmptq. For this, we shall appeal to the probabilistic
characterization (2.12), thanks to Remark 2.3. We have for any h ą 0

(A.1)
ˇ

ˇ

ˇ

ˇ

ż

R
φ dpmpt` hq ´mptqq

ˇ

ˇ

ˇ

ˇ

ď E |φpXt`hq1t`hăτ ´ φpXtq1tăτ |

ď C}φ}C1 pPpt ă τq ´ Ppt` h ă τq ` E |Xt`h ´Xt|q .
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Following the same steps as for (2.11a)-(2.11c), and using Burkholder-Davis-Gundy in-
equality, we obtain for small enough h ą 0

ˇ

ˇ

ˇ

ˇ

ż

R
φ dpmpt` hq ´mptqq

ˇ

ˇ

ˇ

ˇ

ď C}φ}C1ωmphq,

where

ωmphq :“ h1{2 `
´

logp1{hq ´ h1{2
¯´1

` sup
sPr0,T s

ż L

0
p1´ φh1{2 logp1{hqpxqqmps, xq dx,

and φε is the cut-off function defined in (2.14). In order to get limhÑ0` ωmphq “ 0, we
need to prove that

lim
hÑ0`

sup
sPr0,T s

ż L

0
p1´ φh1{2 logp1{hqpxqqmps, xq dx “ 0.

This ensues easily from Dini’s Lemma, by choosing the sequence pφεqεą0 to be monoton-
ically increasing.

Step 2 (continuity of Ψm): Let ε ą 0, x, y P DS1R , B be any bounded subset of SR, and
λx :“ pzx, txq, λy :“ pzy, tyq be a parametric representations of the graphs of x and y

respectively, such that

gBpλx, λyq :“ sup
sPr0,1s

pBpzxpsq ´ zypsqq _ |txpsq ´ typsq| ď ε,

where pBpνq :“ supxPB |νpxq|. Note that λx, λy depend on ε, but we do not use the sub-
script ε in order to simplify the notation. We have

gBpλx, λyq ě sup
sPr0,1s

pB pzxpsq ´mptxpsqq ´ zypsq `mptypsqqq _ |txpsq ´ typsq|

´ sup
sPr0,1s

max pBpmptxpsqq ´mptypsqqq _ |txpsq ´ typsq| .

Since the map tÑ mptq P S 1R is continuous, observe that

λ1v : sÑ pzvpsq ´mptvpsqq, tvpsqq , v ” x, y

is a parametric representation of the graph

γ1v :“
 

pw, tq P S 1R ˆ r0, T s : w P
“

vpt´q ´mptq, vptq ´mptq
‰(

, v ” x, y.

Consequently

(A.2)
dB,M1 pΨmpxq,Ψmpyqq ď gBpλx, λyq ` sup

sPr0,1s
pBpmptxpsqq ´mptypsqqq _ |txpsq ´ typsq|

ď 2ε` sup
sPr0,1s

pBpmptxpsqq ´mptypsqqq.

Hence, by using the estimation of Step 1, we infer that:

(A.3) dB,M1 pΨmpxq,Ψmpyqq ď CpBqωmpεq,

which in turn implies that Ψm is continuous.
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Step 3 (continuity of Ψn
q): Let us fix n ě 1. Note that qnu,m maps r0, T s into SR, and the

following holds:

(A.4) sup
tPr0,T s

sup
xPR

ˇ

ˇ

ˇ
xαBβxq

n
u,mpt, xq

ˇ

ˇ

ˇ
ď CpL,αqnβ

ż

R

ˇ

ˇ

ˇ
Bβxξpyq

ˇ

ˇ

ˇ
dy, @α, β P N.

Owing to (A.4), we have qnu,mpr0, T sq Ă Bn, where Bn is a bounded subset of SR. Let
ε ą 0, x, y P A, and λx :“ pzx, txq, λy :“ pzy, tyq be a parametric representations of the
graphs of x and y respectively such that

gBnpλx, λyq ď ε.

We have

gBnpλx, λyq ě sup
sPr0,1s

ˇ

ˇ

ˇ

ˇ

ż L

0
qnu,mptxpsq, .qdpzxpsq ´ zypsqq

ˇ

ˇ

ˇ

ˇ

_ |txpsq ´ typsq|

ě sup
sPr0,1s

ˇ

ˇ

ˇ

ˇ

ż L

0
qnu,mptxpsq, .qdzxpsq ´

ż L

0
qnu,mptypsq, .qdzypsq

ˇ

ˇ

ˇ

ˇ

_ |txpsq ´ typsq|

´ sup
sPr0,1s

ˇ

ˇ

ˇ

ˇ

ż L

0

`

qnu,mptxpsq, .q ´ qnu,mptypsq, .q
˘

dzypsq

ˇ

ˇ

ˇ

ˇ

_ |txpsq ´ typsq| .

Thus, it holds that

sup
sPr0,1s

ˇ

ˇ

ˇ

ˇ

ż L

0
qnu,mptxpsq, .qdzxpsq ´

ż L

0
qnu,mptypsq, .qdzypsq

ˇ

ˇ

ˇ

ˇ

_ |txpsq ´ typsq|

ď 2ε` sup
sPr0,1s

ˇ

ˇ

ˇ

ˇ

ż L

0

`

qnu,mptxpsq, .q ´ qnu,mptypsq, .q
˘

dzypsq

ˇ

ˇ

ˇ

ˇ

ď 2ε` ωn2 pεq.

where ωn2 is the continuity modulus of qnu,m. By noting that

λ2v : sÑ

ˆ
ż L

0
qnu,mptvpsq, .qdzvpsq, tvpsq

˙

, v ” x, y

is a parametric representation of the graph

γ2v :“

"

pw, tq P S 1R ˆ r0, T s : w P

„
ż L

0
qnu,mpt, .qdvpt´q,

ż L

0
qnu,mpt, .qdvptq

*

, v ” x, y,

we deduce that
dM1

`

Ψn
qpxq,Ψ

n
qpyq

˘

ď 2ε` ωn2 pεq.

The proof is complete. �

APPENDIX B. ON UNIQUENESS FOR SOLUTIONS OF FOKKER-PLANCK EQUATIONS

In this part, we show that problem (1.2a)-(1.2b) admits at most one weak solution in a
wide class of positive Radon measures. We believe that this result is well-known, and we
explain the proof for lack of precise reference.

Let us start by generalizing the notion of weak solution that is given in (1.2c). For any
m0 P PpQ̄q, we define a measure-valued weak solution to (1.2a)-(1.2b) to be a measure m on
QT of the type

dm “ dmptqdt,
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with mptq P P̃pQ̄q for all t P r0, T s, and tÑ mpt, Aqmeasurable on r0, T s for any Borel set
A Ă Q̄; such that

}b}2L2
m

:“

ż T

0

ż L

0
|b|2 dm ă 8

and

(B.1)
ż T

0

ż L

0
p´φt ´

σ2

2
φxx ` bφxqdm “

ż L

0
φp0, .qdm0

for every φ P Ctest. We claim that such a solution is unique:

Proposition B.1. There is at most one measure-valued weak solution to (1.2a)-(1.2b).

Proof. Our approach is similar to [32, Section 3.1]. Let m be a measure-valued weak
solution to (1.2a)-(1.2b), and consider the following dual problem:

(B.2)

$

’

’

’

&

’

’

’

%

´ wt ´
σ2

2
wxx ` bwx “ ψ in QT ,

wpt, 0q “ wxpt, Lq “ 0 in p0, T q,

wpT, xq “ 0 in Q,

where ψ,b P C8pQT q. Let w be a smooth solution to (B.2). Since w2 is smooth, we have:
ż T

0

ż L

0

"

´pw2qt ´
σ2

2
pw2qxx ` bpw

2qx

*

dm “

ż L

0
w2p0, .qdm0.

By (B.2) we thus have
ż T

0

ż L

0
wpψ ´ bwxq dm´

σ2

2

ż T

0

ż L

0
|wx|

2 dm`
σ2

2

ż T

0

ż L

0
bwwx dm “

ż L

0
w2p0, .q dm0,

so that
σ2

4

ż T

0

ż L

0
|wx|

2 dm ď C

ˆ

}w}28

ż T

0

ż L

0
|b´ b|2 dm` }ψ}8}w}8

˙

.

Hence, from the maximum principle:

(B.3)
ż T

0

ż L

0
|wx|

2 dm ď C}ψ}28

´

1` }b´ b}2L2
m

¯

.

Now, let m1,m2 be two measure-valued weak solutions to (1.2a)-(1.2b). We know that

b P L2
m1
pQT q X L

2
m2
pQT q.

Thus, b P L2
mpQT q, where m “ m1 `m2. Let bε be a sequence of smooth functions con-

verging to b in L2
mpQT q. Since m is regular, note that such a sequence exists by density of

smooth functions in L2
mpQT q. The measures m1,m2 being positive, bε converges toward

b in L2
m1
pQT q X L2

m2
pQT q as well. Now, let us consider wε to be a solution to the dual

problem that is obtained by replacing b by bε in (B.2). By using wε as a test function, we
obtain

(B.4)
ż T

0

ż L

0
ψ dpm1 ´m2q “

ż T

0

ż L

0
pb´ bεqwεx dm2 ´

ż T

0

ż L

0
pb´ bεqwεx dm1 “: Iε2 ´ I

ε
1.
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By virtue of (B.3), we have for j “ 1, 2:

}wεx}L2
mj
ď C}ψ}8

´

1` }b´ bε}L2
mj

¯

ď C,

so that
ˇ

ˇIεj
ˇ

ˇ ď }wεx}L2
mj
}b´ bε}L2

mj
ď C}b´ bε}L2

mj
Ñ 0, as εÑ 0.

Consequently, for any smooth function ψ
ż T

0

ż L

0
ψ dpm1 ´m2q “ 0,

which entails m1 ”m2 and concludes the proof. �
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