N
N

N

HAL

open science

Towards a qualitative representation for specifying

natural language

Richard Dapoigny, Patrick Barlatier

» To cite this version:

Richard Dapoigny, Patrick Barlatier. Towards a qualitative representation for specifying natu-
ral language. 2017 IEEE International Conference on Computational Intelligence and Virtual En-
vironments for Measurement Systems and Applications (CIVEMSA), Jun 2017, Annecy, France.

10.1109/CIVEMSA.2017.7995299 . hal-01850086

HAL Id: hal-01850086
https://hal.science/hal-01850086
Submitted on 26 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01850086
https://hal.archives-ouvertes.fr

Towards a Qualitative Representation for Specifying
Natural Language

Richard Dapoigny
LISTIC/Polytech’ Annecy-Chambéry,
Domaine Universitaire
Po. Box 80439,

74944 Annecy le vieux cedex, France
Email: richard.dapoigny @univ-smb.fr

Abstract—The imprecision of natural language such as X is
before Y does not provide any information about the distance
between X and Y. The human’s way of reasoning often uses
incomplete knowledge, and any formalization of natural language
should be able to produce qualitative reasoning. For that purpose,
we introduce a modeling for specifying cognitive geometry. More
precisely, in this paper we tackle the problem of geometric
reasoning using a formal representation that is built from an
appropriate spatial theory which departs from classical geometry
in many points. Instead of basic spatial entities of ordinary
geometry such as points, lines and surfaces, we rather consider
physical three-dimensional objects used to perceive space based
on pointless geometry. Based on Tarski’s mereogeometry of solids,
we explain how the interpretation of mereogeometry within
Lesniewski’s framework of mereology leads to a coherent and
simplified framework in which qualitative representations (e.g.,
solids, balls, concentricity, equidistance, etc.) can be expressed.

I. INTRODUCTION

The qualitative representation of information assumes that
knowledge about spatial information is expressed with a finite
set of qualitative relations. It has a wide number of applications
in the fields of computer vision [16], geographic informa-
tion system [25], autonomous robot navigation [23], natural
language understanding [3] and the like. When quantitative
descriptions are not available or computationally intractable,
qualitative representations appear as fruitful substitutes. For
example, a few set of primitives forms the basis of a rich
spatial calculus (see e.g., [17]). Assessing situations require
to specify relationships between objects of the domain. Then,
it seems natural to represent qualitative information with
relations.

Many approaches in qualitative representation are based
on mereological theories. Mereology which is the theory of
parts and wholes assumes that the part-of relation is the
fundamental primitive [19]. However, mereology by itself is
not a sufficient theory to take in account topological relations.
For that purpose, mereotopology has been introduced as a
common theory for integrating both topology and mereology
[8], [24]. As underlined in [10] there are many situations in
which mereotopology itself is lacking e.g., direction and orien-
tation relations, distances and sizes or even, shapes. To cope
with such deficiencies, mereogeometry which builds on the
earlier work of Tarski [21], extends mereology with geometric

Patrick Barlatier
LISTIC/Polytech’ Annecy-Chambéry,
Domaine Universitaire
Po. Box 80439,

74944 Annecy le vieux cedex, France
Email: patrick.barlatier @univ-smb.fr

notions. Using spheres (or balls) as a primitive notion, and a
small set of definitions, it captures full Euclidian geometry
without quantitative relations. The spatial binary relations
can be considered as constraints which restrict the spatial
properties of objects, leading to efficient reasoning algorithms.
In this paper, we explain how a coherent framework based on
mereogeometry could be an expressive tool for representing
qualitative spatial assertions in natural language.

II. BASIS OF MEREOGEOMETRY

We first recall the set of definitions suggested by Tarski
to support the mereogeometry of solids itself referring to the
theory Le$niewski known as (extensional) mereology. In the
second subsection, we discuss some issues about Tarski’s work
while the last subsection presents the type-theoretical account
of Tarski mereogeometry.

A. Lesniewski’s Mereology

In the early 20th century, S. Les$niewski first proposed a
higher-order logical theory [!4] including (i) a logical part
based on the basic category of propositions (S) and a single
axiom about equivalence (=) called protothetic and (ii) a
calculus of name (ak.a. Le$niewski’s Ontology) which is
centered on the category of name N together with a single
axiom denoted €, which belongs to the category N — N — S.
Every name denotes either one object of the world (singular
name), many objects (plural name) or no object at all (empty
name). A single axiom is introduced for governing its behavior.
Notice that there are no free variables in Le$niewskis systems
and that there is only a general quantifier (for all) denoted
V. The particular quantifier (for some) is expressed from the
general quantifier as —Vz—(¢(x)), for any formula ¢ which
depends on a single variable x. Following the work of Henkin
[13], we assume that mereology can be fruitfully expressed in
type theory. we describe all relations in the usual logic.

Axiom iSEpsilon : ¥ A a,Aea=((=V B, 7(BeA)A
(VCD, (CeA)A(DeA) — (CeD) A
(Y C, (C e A) — (C ¢ a))).

The first conjunction of the right side of the equivalence
prevents A from being an empty name, the second conjunction
states the uniqueness of A while the last conjunction refers to
a kind of convergence (anything which is A is also an a). Only
two constant name definitions hold in Le$§niewski’s Ontology,



the universal name (universal) and the empty name (empty),

each of them having the type N.

This logical system was the support of a theory called
mereology, whose purpose was the description of the world
with collective classes and mereological relations such as the
so-called part-of relation. While set theory relies on the oppo-
sition between element and set, mereology is rather based on
the opposition between part and whole. Mereology primarily
assumes the distinction between the distributive and collective
interpretations of a class. Whereas the ontology introduces
names, where name is the distributive notion, the mereology
rather relies on classes, where class is the collective notion.
Notice that the introduction of plural names gives mereology
an expressive power that goes beyond the capabilities of first-
order logic (e.g., predicates may be introduced which have
plural subjects). The most usual formalization introduces a
mereological element called part (pt), as a primitive. Mereol-
ogy is developed on a minimal collection of axioms and new
primitive functors are defined whose the most important are
that of (collective) class, denoted K (a.k.a sum) and el (for
element of). In this axiomatization pt is taken as primitive,
while el and Kl are introduced by definitions. Two axioms
govern the behavior of the pt function:

Axiom asymmetric_Part : ¥ A B, A € pt B — B ¢ (distinct (pt A)).
Axiom transitive_Part : Y AB C,AeptBABeptC—
A e pt C.

where distinct refers to a name corresponding to all objects
that are distinct from pt A. The name forming function el i.e.,
being an element of, is specified as a definition with respects
to:

Variable MD1:YVAB,AcelB=AcAN
(singular_equality A B V A € pt B)).

A similar definition formally introduces the K function.

Variable MD2 :VAa,AcKla=(AcA N (=Y B, =(B ¢ a))
AN B,(Bea— BeelA))
ANVB,BeelA—-YCD,(Cea)

(Deel C) A D e el B))).

In other words, A is the class of objects a if and only
if the following conditions are met: (i) A is an object, (ii)
every a is an element of the object A and (iii) for all B, if
B is an element of the object A, then some element of the
object B is an element of some a. Furthermore, an axiom
states the uniqueness of the collective class. The semantics

AeA A is an object

AeB Ais B

Ace (pt B) A is part of the object B
Ae —-(pt B) A is not part of the object B
Ace (el B) A is an element of the object B
singular_equality (A B) A is the same object as B
Ae (Kla) A is the class of object a

TABLE I
SEMANTICS FOR BASIC EXPRESSIONS IN MEREOLOGY.

underlying some basic expressions is given in table I. Many
other useful constructs have been added to mereology such
as collection (coll), sub-collection (subcoll), external (ext) or
overlap (ov).!

Variable MD3:V Pa,Peccola=PecPAYQ,QcelP
— - VCD,~(CeaNCeelPNDeelCNDeelQ)).
Variable MD4 :V P Q, P ¢ subcoll Q = (Pe P AV C,

Due to a lack of space, we restrict the description to these three notions.

(CeelP— CecelQ)).

Variable MD5:V P Q,PcextQ=(PecP A
VC,~(CecelPANCecelQ)).

Variable MD7 : Y PQ,PcovQ =(Pec P N —VC,
—(CeelPN\CecelQ)).

B. Tarski’s Definitions

Tarski starts out from some mereological notions such as
being a part of and sum and then, provides a minimal set
of axioms constituting the mereological part on which the
rest of the theory relies [21]. This part will be substituted
in the present work by the mereology developed in subsection
II-A. Apart from this mereological part, Tarski takes sphere
(which will be called ball here) as the only primitive notion
that is specific to the geometry of solids. These notions are
sufficient to formulate a set of nine geometrical definitions
which constitutes the basis of mereogeometry.

Definition 2.1: The ball A is externally tangent to the ball
B if (i) the ball A is disjoint from the ball B and (ii) given
two balls X and Y containing as part the ball A and disjoint
from the ball B, at least one of them is part of the other.

Definition 2.2: The ball A is internally tangent to the ball
B if (i) the ball A is a proper part of the ball B and (ii) given
two balls X and Y containing the ball A as a part and forming
part of the ball B, at least one of them is a part of the other.

Definition 2.3: The balls A and B are externally diametri-
cally tangent to the ball C if (i) each of the balls A and B
is externally tangent to the ball C' and (ii) given two balls X
and Y disjoint from the ball C' and such that A is part of X
and B a part of Y, X is disjoint from Y.

Definition 2.4: The balls A and B are internally diametri-
cally tangent to the ball C' if (i) each of the balls A and B
is internally tangent to the ball C' and (ii) given two balls X
and Y disjoint from the ball C' and such that the ball A is
externally tangent to X and B to Y, X is disjoint from Y.

Definition 2.5: The ball A is concentric with the ball B if
one of the following conditions is satisfied: (i) the balls A and
B are identical, (ii) the ball A is a proper part of B and besides,
given two balls X and Y externally diametrically tangent
to A and internally tangent to B, these balls are internally
diametrically tangent to B and (iii) the ball B is a proper
part of A and besides, given two balls X and Y externally
diametrically tangent to B and internally tangent to A, these
balls are internally diametrically tangent to A.

Definition 2.6: A point is the class of all balls which are
concentric with a given ball.

Definition 2.7: The points A and B are equidistant from the
point C' if there exists a ball X which belongs as element to
the point C' and which satisfies the following condition: no
ball Y belonging as element to the point A or to the point B
is a part of X or is disjoint from X.

Definition 2.8: A solid is an arbitrary sum of balls.

Definition 2.9: The point P is an interior point of the solid
B if there exists a ball A which is at the same time an element
of the point P and a part of the solid B.

The 2D version of these definitions is illustrated in figure 1.



Ball A externally tangent to ball B

Balls A and B externally

Ball A internally tangent to ball B

diametrically tangent to ball C

Ball A is concentric with ball B

Ball A and B internally
diametrically tangent to ball C

Fig. 1. Tarski’s primitive definitions.

C. Some issues in Tarski’s Work

While in the sketchy paper of Tarski [21] the logical
background seems rather unclear [12], [5] we depart from
all approaches stemming from a set-based framework and
rather argue that an axiomatization of Tarski’s work based
solely on Lesniewski’s Mereology is more coherent. Instead
of introducing axioms for part-whole relations, we rather rely
on the Lesniewski’s mereology together with its set of axioms
and theorems (in fact Tarski applies Le$niewski’s mereology
and does not extend it).

As argued by the author, Tarski’s work can be given
a meaningful account to some otherwise logically unclear
parts of it, only if one assume a framework that is coherent
with Les$niewski’s logic. Henkin [13] was the first to imple-
ment Lesniewski’s ideas in a computational framework, i.e.,
Church’s type theory [7]. Therefore, using a type-theoretical
background for substituting protothetic in LeSniewski’s mere-
ology respects the original ideas. Being a “part of” is said to
be a primitive notion in Lesniewski’s Mereology, but sum is
not. We advocate that the references of Tarski to Le$niewski’s
work are syntactically exact (e.g., the word ”sum” in definition
8 refers to the definition of ’collection” in mereology [20]). We
advocate for a uniform modeling in which balls and solids are
names, and more precisely plurals in the sense of Lesniewski.
Such an assumption yields a quantification over variables that
are always of type IV (name) and avoids the issues concerning
the domain of discourse. In Lesniewski’s systems, collective
and distributive classes coexist [9]. It follows that instead
of expressing Tarski’s mereogeometry in a set-based frame-
work [12], a more coherent picture can be proposed using
Lesniewski’s axiomatization. Collective classes are addressed
with the K construct, while distributive classes require new
categories and definitions (in the form of equivalences). The

Russellian notion of class that appears in definition 6, is solved
using a definition in the sense of Lesniewski by constraining
the quantification through concentricity.

ITI. FORMALIZING TARSKI’S MEREOGEOMETRY
A. From Protothetic to Type Theory

The wunderlying idea holds in the specification of
Lesniewski’s theory with the purpose of handling requests
exactly as proofs through the use of a theorem prover. In
order to reach our objectives, we substitute protothetic with
a more computable logic based on A-calculus as developed by
Church in its Simple Type Theory. The seminal works of [13]
and Andrews [!], [2] have stated the basic lines of this logic
under the name Q0. All Le$niewski’s definitions are replaced
with variable introduction and the A-abstractor [13].

B. Expressing Definitions of Mereogeometry in Higher-order
Logic

The first commitment concerns balls? and solids which are
considered as constant plurals, since (i) they denote a constant
plurality and (ii) they refer to collections of objects. In other
words, they are instances of names (V) which are constrained
to appear as the right argument of the copula (¢). In LO,
constant plurals (e.g., “empty name” or “universal name”) are
defined in a similar way: their category must be defined first
(i.e., N) and then, a definition explains their property using an
equivalence. Since “balls” is a primitive, no specific property
is required. Alternatively, a solid does not refer to a primitive
name. As a consequence, it belongs to the category N and
is defined as a particular collection of balls (see definition 8
below).

Variable balls : N.
Variable solids :N.

2Called spheres in Tarski’s paper.



In such a way the domain of discourse is that of truth
values and names (basic categories) with a restriction to
balls and solids. Notice that the restrictions are not given
by specifying appropriate types but rather by theorems which
directly constrain their use. Using the e pt construct, the four
axioms of mereology and derived theorems, then it is easy to
prove that the relation ¢ el is a partial order.

We first introduce the short-hand symbols < and < which
stand respectively for ¢ el and ¢ pt . Then, several relations
among balls are defined such as concentricity, relying on the
intended interpretation of the primitives. Points are defined
as (mereological) collections of concentric balls. Equidistance
among points makes use of properties of concentric balls
while Euclidean axioms are able to constrain equidistance. We
introduce successively:

Variable et N — N.
Variable it :N — N.
Variable edt :N -+ N — N.
Variable idt :N —- N — N.
Variable con :N — N.
Variable point :N — N.
Variable equid N > N — N.
Variable ipoint N — N.

The relations of external tangency (e et), internal tangency
(e it), external diametricity (¢ edt), internal diametricity (e idt),
concentricity (¢ con), point (point), equidistance (¢ equi) and
interior point (¢ jpoint) are defined using the already defined

name functors.
Definition 1: external tangency.

Variable ET :VAB,Ac et B= (A ¢ balls \ B ¢ balls \
Aeext BAY XY, (X € balls NY € balls \
A<XANXeextBNALYAYeextB) —
X<YVY<X).

Definition 2: internal tangency.

Variable IT :VAB,Ac it B= (A € balls \ B € balls N\
A<BAYXY, (X € balls NY € balls \
ALSXANXESBANALYANY LB —

X <YVY<X).

Definition 3: external diametrical tangency.

Variable EDT :YVAB C,A¢ edt BC = (A ¢ balls A
Beballs N Ceballs N\BesetANCeetAAN
VXY (Xeballs NY ¢ balls N\B<X A
XeextANCLKYANYeextA) > XeextY).

Definition 4: internal diametrical tangency.

Variable IDT :VABC,Acidt BC = (A ¢ balls \
Beballs NCeballs N\BeitANCeitAA
VXY, (Xeballs NY € balls N X € ext A A
YeextANBeextXNCeextY) —
Xeext?).

Definition 5: concentric balls.

Variable CON : VA B, AeconB = (A ¢ balls \
B € balls N singular_equality ABV (A < B A
VXY, Xeballs NYeballs NAecedt XY N
XeitBAYcitB) — Beidt XY)V
B<ANANYXY, (X e balls NY € balls \
BeedtXYANXcecitANYeitA) —
A e idt X Y)).

Definition 6: point.

Variable POINT :V P B, Pe (point By=(Pec P A
B € balls NV B’, B’ € balls N\ B’ con B).

In other words, a point stands for the set of all those
balls that are concentric with a given ball. Definition 7:
equidistance.

Variable EQUID : YV ABC, A ¢ equid B C = (A € balls A
B e balls N\ C € balls N 3 X, (X € balls N\
XeconAN—3Y, Y € balls A
Ye(unionBC) ANY <X VY e extX)).

Definition 8: solids.

Variable TarskiD8 : ¥V A, A ¢ solids = 3 B, (Be B N\

B ¢ coll balls N A € subcoll B).

Definition 9: interior point.

Variable IPOINT : ¥V P X C, P ¢ ipoint X = (X € solids N

Pepoint CNIA, (A" eballs NA" e P A
A’ < X)).

C. The Axiom System

The axiom system of Tarski for the geometry of solid
can be broadly divided in three parts, (i) axioms stating
the existence of a correspondence between notions of the
geometry of solids and notions of ordinary point geometry, (ii)
two axioms establishing a correspondence between notions of
the geometry of solids and topology and (iii) internal axioms
that are derivable from Le$niewski’s mereology. Axioms of
the former part are:

Axiom 1: The notions of point and equidistance of two

points to a third satisfy all axioms of ordinary Euclidean
geometry of three dimensions.
More specifically, this axiom states that (i) points as they are
introduced in definition 6 correspond to points of an ordinary
point-based geometry and (ii) the relation EQUID corresponds
to an ordinary equidistance relation. With II standing for
mereogeometrical points, the structure (IT, EQUID) is a Pieri’s
structure [21]. Then, it can be proved that (II, EQUID) is
isomorphic to ordinary Euclidian geometry (R?, EQUIDR3>
(see [12] p 500).

Axiom 2: If A is a solid, the class « of all interior points
of A is a non-empty regular open set.

Axiom 3: If the class « of points is a non-empty regular

open set, there exists a solid A such that « is the class of all
its interior points.
The second axiomatic part relies on the structure (IT, EQUID).
It follows that we are able to define the family of open balls
Obry in it and then introduce in II the family Op of open
sets together with appropriate topological operations of closure
and openness such that (IT, Or) is a topological space. If
in (II, Op), we introduce the family Or} of all regular
open sets excluding the empty set, then it can be proved
that (Or}y, Obr, C) is isomorphic to (Ords, Obgs, C) (see
[12] for more details). It follows that the resulting axiom
system provides a minimal system that can serve as a basis
for constructing spatial theories.

IV. APPLICATIONS OF MEREOGEOMETRY

Qualitative representations for cognitive systems are inde-
pendent of specific values and granularities of representation.
In such a way they allow for fast reasoning processes. Further-
more, qualitative knowledge should be robust under transfor-
mations. Using Tarki’s mereogeometry (which itself includes
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Fig. 2. An excerpt of the 19 line-region situations from the Egenhofer model.

Lesniewski’s theories) it is possible to develop expressive and
sound mereogeometries [6], [4], [12]. A point F' is a fringe
point relative to a solid A if no ball in F' is either an element
of or is exterior to A. With the notion of fringe point [12] and
from definitions of Tarski’s mereogeometry, we may simply
introduce the connection relation as follows: solids A and B
are connected iff they share at least a common fringe point.

Variable FringePt : ¥V B F A, F € Fringe A = (A € solids N\
B ¢ balls N\ F € (point B) A =(B < A) A
—(B € ext A)).

Variable C:V A B, Connect A B = (A € solids N\ B ¢ solids N\
3 P, (P € Fringe A A\ P ¢ Fringe B)).

Fig. 3. A Fringe point.

where Fringe and Connect respectively belong to the cate-
gories N — N and N — N — S, < denotes the element-of
relation, while ext refers to a mereological definition whose
meaning is “external to”. The connection function which
requires the concept of point, is defined within mereogeom-
etry and not in mereology as in usual mereotopologies. The
between (bet) definition provides the required property that
holds when a given ball B stands between balls A and B
[6].

Variable BTW :YVABC,B e bet AC = (A € balls \
B e balls N C € balls N3A” B’ C’, A’ € balls N\
B’ € balls N C’ € balls NA’ € con A N B’ € con BN\
C’'cconCAB egedtA’ C)).
We introduce then the notion of maximal ball in 2D solids.
A ball B in a solid A is said to be maximal if there does not
exist any other ball B’ of which it is part.

Variable MB :V B S, B € maxBall S = (S ¢ solids N
B e balls N\B< SNV B’, (B’ ¢ balls A\
B’ < S A B < B’) — singular-equality B B’)

We can next introduce the notion of 1D solid as follows:

Variable S1D :V A, A € solid_ID =V B, (B € Fringe A \
B ¢ ipoint A).

As an application example, we show how to describe natural
language based situations when a line “intersects” a given
region in a geographic setting [18]. Different possibilities
are summarized in figure 2. Each situation must involve a
combination of the basic relations that have been described so
far.

Situation LR11: the line is external to the region.

Variable LR11:VAB,Aelril B= (A ¢ solid_ID N\
B ¢ solids N\ A € ext B)

Situation LR12: the external line touches the region in two
extremal points.

Variable LR12:VAB,Acliri2 B= (A € solid_1D A
B ¢ solids N A F F’, (F € Fringe A\ F ¢ Fringe B N\
F’ ¢ Fringe A N F’ € Fringe By AN Y P, (P € Fringe A N\
P e Fringe By - PeconF Vv PeconF’) A
3P, P’ cipoint AN P’ € extB)

Situation LR13: the external line touches the region in a
single extremal point.

Variable LR13:VAB,Aclri3 B = (A ¢ solid_1D A
B ¢ solids N A F, (F € Fringe A \ F € Fringe B) \
¥ P, (P ¢ Fringe A\ P ¢ Fringe By — P ¢ con F)

Situation LR22: the line is a part of the border of the
region.
Variable LR22:VY AB,A ¢ lr22 B= (A ¢ solid_ID A
B ¢ solids NV F, (F € Fringe A \ F ¢ Fringe B))

Situation LR31: the line touches the region on a part of its
border.

Variable LR31:YAB,A e lr3]l B= (A € solid_1D N\
B ¢ solids N\ A F, (F € Fringe A \ F ¢ Fringe B))

Situation LR42: line internal to the region with two contact
points on the border.

Variable LR42 :V AB,A e lr42 B = (A ¢ solid-1D A
B e solids N 3 F F’, (F € Fringe A\ F € Fringe B N\
F’ ¢ Fringe A\ F’ ¢ Fringe BAY P, (P € Fringe A \
P e Fringe By - PeconFV PeconF’) A
YV P, (P ¢ ipoint AN P < B)V P ¢ Fringe B)

Situation LR44: line internal to the region.
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Fig. 4. Overview of the proposed architecture.

Variable LR44 : Y A B, A ¢ lr44 B = (A € solid_1D N
B ¢ solids N A < B)
Situation LR46: line internal to the region with one contact
point on the border.

Variable LR46 : VY A B, A € r46 B = (A € solid_ID N\
B ¢ solids N\ A F, (F € Fringe A\ F ¢ Fringe B N\
¥V P, (P e Fringe A\ P ¢ Fringe By — P ¢ con F) A
Y P, (P ¢ ipoint AN\ P < B)V P ¢ Fringe B)

Based on previous works, we specify the semantics of
spatial relations in natural language in a two-step process (see
fig. 4. In the first part, all possible sentences which characterize
formal spatial relations which might apply to the spatial
setting are stored in a file. The first step involves an efficient
algorithm for sentence similarity [15] whose purpose is to
address the problem of vagueness inherent in natural language.
The sentence-similarity algorithm has been implemented with
very low computing time (j to 1ms for two sentences of about
20 words). The best score resulting from the algorithm extracts
one of the relations described above in a second step. Then
this relation can be inserted in an automated theorem prover
for further reasoning.

V. CONCLUSION

Generalizing solids to spatial regions, geometrical theories
based on mereology present an appealing impact on spatial
theories. The theory of Tarski, has been proved to be se-
mantically complete with regards to the models expressed in
terms of R™ and has been axiomatized by Bennett [4] using
a set-based interpretation. We have shown in [I1] that this
assumption (i.e., interpreting A ¢ pt B as A C B) considerably
weakens the logical power of Le$niewski’s framework. We
have set a logical foundation for qualitative spatial represen-
tation with the following properties: (i) the proposed set of
structures featuring geometrical entities and relations relies on
Tarski’s mereogeometry, (ii) it has a model in ordinary three-
dimensional Euclidian geometry [22], (iii) it is coherent with
Lesniewski’s mereology and does not suffer the defects cited
in [5] and (iv) it will serve as a basis for spatial reasoning with
full compliance with Le$niewski’s systems. Further works will
focus on automated reasoning with the set of spatial relations.
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