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Abstract

A new Bayesian model of visual word recognition is used to
simulate neighborhood frequency effects in lexical decision.
These effects have been reported as being either facilitatory or
inhibitory in behavioral experiments. Our model manages to
simulate the apparently contradictory findings. Indeed, study-
ing the dynamic time course of information accumulation in
the model shows that effects are facilitatory early, and become
inhibitory at later stages. The model provides new insights on
the mechanisms at play and their dynamics, leading to better
understand the experimental conditions that should yield a fa-
cilitatory or an inhibitory neighborhood frequency effect.

Keywords: Visual word recognition; Lexical decision; Visual
attention; Bayesian algorithmic modeling.

Introduction

Identifying the processes involved in the recognition of
printed words and their time course is critical for word recog-
nition models. The lexical decision task is commonly used in
behavioral experiments to investigate this issue. In this task,
participants have to indicate whether a printed stimulus is a
real word (YES response) or not. A standard finding is that
high frequency words are processed faster than low frequency
words. The frequency effect on response latency is massive
for high frequency words but for medium and low frequency
words, other effects further modulate performance. Among
these effects, a poorly understood and highly controversial
effect is the neighborhood frequency effect. Latency on YES
responses in lexical decision is modulated by the existence
of higher frequency orthographic neighbors, namely the ex-
istence of at least one word of higher frequency that differs
from the target word by a single letter (e.g., LIKE is a higher
frequency neighbor of the target word BIKE).

Some empirical studies report an inhibitory effect (Car-
reiras, Perea, & Grainger, 1997; Forster & Shen, 1996;
Grainger, 1990; Grainger, O’Regan, Jacobs, & Segui, 1989;
Grainger & Segui, 1990; Perea & Pollatsek, 1998) while
others report a facilitatory effect (Sears, Hino, & Lupker,
1995; Siakaluk, Sears, & Lupker, 2002), that is to say, re-
spectively lower vs. higher latency for low frequency words
with higher frequency neighborhood. Two models of visual
word recognition effectively addressed the neighborhood fre-
quency effect, but none of them could account for conflicting
experimental results and provide explanations to accommo-
date these results. The MROM model (Grainger & Jacobs,

Lexical membership
model

Figure 1: Graphical representation of the structure of the
BRAID model. Modules are represented as colored blocks,
and group together variables of the model (nodes). The de-
pendency structure of the model is represented by arrows.

1996) is sensitive to the presence of a high frequency neigh-
bor which produces a strong inhibitory effect on visual word
recognition. On the other hand, in the Bayesian reader (Nor-
ris, 2006), word recognition is facilitated by neighborhood
density regardless of their frequencies.

In this paper, we use a new model of visual word recog-
nition and lexical decision, called BRAID (for “Bayesian
word Recognition with Attention, Interference and Dynam-
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ics”, illustrated Figure 1). It is a structured and hierarchi-
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cal Bayesian model that includes, on top of a classical three-
layer architecture, an additional attention layer, an interfer-
ence mechanism between adjacent letters, and dynamic mod-
els of the temporal evolution of its variables. The model was
previously defined and calibrated, and simulations carried out
to account for a large number of classical effects, including
the frequency effect, the word superiority effect, and the op-
timal viewing position effect in word recognition (Phénix,
2018). It was also used to simulate word length and letter
transposition effects in lexical decision (Ginestet, Phénix, Di-
ard, & Valdois, submitted). Here, the model is used to ac-
count for reference studies of the neighborhood frequency ef-
fect in lexical decision.

The rest of this paper is structured as follows. Since a com-
plete mathematical description of BRAID is beyond the scope
of the current paper, we first describe the main features of the
model, detailing its general structure and providing a short
description of its main modules. We then show how Bayesian
inference solves the lexical decision task in the model. We
then present reference experiments about the neighborhood
frequency effects that we aim to replicate, and compare our
simulation results with the behavioral findings using the same
set of stimuli.

Summary of the BRAID model

The general structure of the BRAID model is illustrated in
Figure 1. First, we assume that word recognition relies on
three levels of processing as featured in most previous word
recognition models. The first level, called the letter sen-
sory sub-model, implements low-level visual mechanisms in-
volved in letter identification and letter position coding (De-
haene, Cohen, Sigman, & Vinckier, 2005; Grainger, Dufau,
& Ziegler, 2016). Feature extraction is parallel over the in-
put string but the model further implements an acuity gra-
dient, so that lesser information is extracted from letters as
distance from fixation increases. As in Whitney (2001), acu-
ity is symmetric around fixation and by default, gaze position
is located at word center. Following Gomez, Ratcliff, and
Perea (2008) and Davis (2010), location is distributed in the
sense that information about the features of one letter extends
into adjacent letter positions. This mechanism implements
lateral interference between letters. The second level, called
the letter perceptual sub-model, implements how information
extracted from the sensory input accumulates gradually over
time to create a percept, i.e. an internal representation of the
input letter string. The third level, called the lexical knowl-
edge sub-model, implements knowledge about the 40.481 En-
glish words of the British Lexicon Project (Keuleers, Lacey,
Rastle, & Brysbaert, 2012). The probability to recognize a
word is modulated by its frequency.

One major originality of BRAID is to assume the existence
of a fourth level, called the visual attentional sub-model, that
implements an attentional filtering mechanism between the
letter sensory sub-model and the letter perceptual sub-model.
The transfer of information between these two submodels is

modulated by the amount of attention allocated to each letter
position. The distribution of attention over the letter string
is Gaussian. The peak of the distribution is aligned on gaze
position, so that more information on letter identity is trans-
ferred for creation of the letter percept at this position. The
further the letter from the attention peak, the less attention it
receives and hence, the less information is transferred.

BRAID further includes a fifth level, called the lexical
membership sub-model, that implements a mechanism to de-
cide whether or not the input letter-string is a known word.
This submodel is critical to simulate lexical decision. It can
be viewed as an “error model”. Assuming the sensory input is
a word, all the letter percepts should match an existing word
of the lexical knowledge submodel. If the input is not a word,
matching should fail on at least one position.

Information propagates dynamically from sensory input,
through perceptual representation, to the lexical submodels.
Technically, this propagation of information is carried out
using “coherence variables™ (A variables in Figure 1, white
nodes), which can be interpreted as information switches
(Bessiere, Mazer, Ahuactzin, & Mekhnacha, 2013). Depend-
ing on their state (open/closed or unspecified), the coherence
variables allow or do not allow propagation of information
between adjacent submodels. In that sense, they allow to con-
nect or disconnect portions of the model. Propagation is bidi-
rectional between the lexical knowledge and the letter percep-
tual submodel.

Task simulation by Bayesian inference in BRAID

Mathematically, the BRAID model is defined by a joint prob-
ability distribution over the high-dimensional state space over
all variables appearing in Figure 1. Then, using Bayesian
inference, that is to say, applying the rules of probabilistic
calculus in the model, mathematical expressions correspond-
ing to letter recognition, word recognition and lexical de-
cision are automatically obtained. Mathematical definitions
and derivations cannot be provided here in full, due to lack
of space. Instead, we will describe how the model simulates
letter recognition, word recognition and lexical decision. The
lexical decision task is the task of interest here, but since it in-
volves the two previous ones, we describe them in their nest-
ing order, for clarity purpose.

Letter identification The first task we consider is letter
identification, that is, the process of sensory evidence accu-
mulation, from a given stimulus, to perceptual letter identity.
This is modeled by the term:

Qpy = P(B] | sik ey = i 0T ¢"T) . (D)

We note with uppercase letters probabilistic variables, that is,
sets of possible values, and with lowercase letters, specific
values (e.g., s{:1, is a shorthand for [S}:T = s]T]). 0pl is
the probability distribution over the letter of interest (P!, at
time 7 and position n, a discrete variable with 26 possible
values), given a presented letter stimulus (S{K,), given atten-

tion distribution (characterized by yl‘:T,G/k:T) and gaze posi-
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tion (¢"7), and given that information propagates through the
model from the sensory level to the letter perceptual model
only at position n (the only “closed” switch is kp,l,:T), and not
beyond.

Computing Qp! involves two main components. The first
component is the dynamical evolution of knowledge about
the perceived letter identity, in which the knowledge about
letters at previous time step is combined with an information
decay term such that, in the absence of stimulus, the probabil-
ity distribution over letters decays towards its initial state, that
is, a uniform distribution, representing lack of information.

The second component describes sensory evidence accu-
mulation. It relies on the extraction of information from stim-
ulus s]T: n performed by the letter sensory model. Details are
not provided here, but this term features effects of interfer-
ence from neighbor stimuli, if any, and loss of performance,
due to the acuity gradient, when gaze position is not located
on the letter under process.

Propagation of sensory information from stimulus to let-
ter percepts is modulated by the visual attention submodel,
and, more precisely, by attention allocation. Attention affects
the balance between the two components, respectively infor-
mation decay and sensory evidence accumulation. In other
words, at spatial positions that receive sufficient attentional
resources to counterbalance information decay, sensory ev-
idence propagates efficiently from the sensory model to the
perceptual model, and the probability distribution over let-
ters acquires information. Over time, the probability distri-
bution Qp,{ converges, so that its maximum probability des-
ignates the letter recognized from the stimulus (which, pro-
vided enough attention, and except for pathological cases, is
the correct letter).

Word identification In asimilar fashion as in isolated letter
recognition above, we model word recognition by computing:

Ow' =PWT | Moy =" o)), @

with ¢’ = sy [Ap|.y = 1] ¢'. That is, we compute the prob-
ability distribution over words W7, given the same stimulus,
gaze and attention characteristics as when computing Qp”,
but we allow information to propagate further in the model,
to the lexical knowledge model, by setting [Az | = 1].

Once more, a classical “dynamical system simulation / per-
ceptual evidence simulation” structure is obtained. First, in-
formation about words gradually decays, in the absence of
sensory information, towards its initial state, which, here, rep-
resents word frequency. Second, sensory evidence accumula-
tion is based on the probabilistic comparison between a letter
sequence memorized in lexical knowledge and the perceived
letter identity, as computed by letter recognition Qp,{. This
comparison, in BRAID, is influenced by the similarity be-
tween the letters of the stimulus and all words of the lexicon,
so that similar (neighbor) words compete with each other for
recognition.

Lexical decision The final task we describe here is our task
of interest, lexical decision. It is modeled by computing:

Qp" =P(D" [T oy =1mT 7))

It is a variant of previous questions: here, we allow infor-
mation to propagate throughout the whole model, by setting
[Api % = 1], and the target variable is DT, which is a Boolean
variable that represents lexical membership (i.e., it is true
when the stimulus is perceived to be a known word).

Here, Bayesian inference is more complex, and is best ex-
plained by considering, in turn, the two Boolean cases that
compete at each time step. First, consider the hypothesis that
the stimulus indeed is a word (the DT = true case): as before,
a dynamical decay of stored information (toward an initial
state which is a uniform probability distribution) competes
with sensory evidence accumulation. Sensory evidence, here,
is the whole process of word recognition. In other words,
lexical decision proceeds by accumulating evidence from the
observation of the lexical knowledge submodel, so that when
a word is reliably identified from the stimulus, or when a set
of orthographically similar words is activated enough, then
the probability that DT = true is high.

Consider now the hypothesis that the stimulus is not a word
(the DT = false case): this is a variant of the previous case
where accumulating evidence from the probability distribu-
tion over words relies under the assumption that there would
be one error in the stimulus, compared to known word forms.
All possible positions for this error are enumerated, and, for
a given error position, word recognition proceeds with the in-
put stimulus in all other positions, and alternative letters in
this position. In other words, the stimulus is likely not to be a
word if changing a letter in the stimulus is required to match
it to a known word. Lexical decision results from the compe-
tition of the two processes that accumulate information over
time in support of a word (DT = true) or against (DT = false).

Simulations

We now describe two experiments that are representative of
the inconsistency of observed behavioral outcomes about the
neighborhood frequency effect, and how we simulate them
with the BRAID model. Experiment A (Perea & Pollatsek,
1998, experiment 1) shows an inhibitory frequency neighbor-
hood effect, whereas Experiment B (Siakaluk et al., 2002, ex-
periment 2) reveals a facilitatory effect.

Behavioral experiments

Design and material The two experiments manipulate
neighborhood frequency using quite similar material. In both
experiments, the words are English words that have at least
one higher frequency neighbor (1HF) or none (OHF). All
words are of low-to-medium frequency, except for half of
the words that are of very low frequency in Experiment A.
Neighborhood density (the number of orthographic neighbors
of words) is controlled. All words of Experiment A and half
the words of Experiment B have small neighborhood density;
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Figure 2: Behavioral data and simulation results. On the
left, Experiment A (Perea & Pollatsek, 1998, experiment 1)
and on the right, Experiment B (Siakaluk et al., 2002, experi-
ment 2). Behavioral data (yellow) and corresponding simula-
tion results (blue) are presented jointly for each experimental
condition.

the other half of words in Experiment B have large neighbor-
hood density. Ninety-two lowercase 5-to-6 letter words are
used in Experiment A, 60 uppercase 4-to-5 letter words in
Experiment B and as many legal and pronounceable pseudo-
words.

Procedure The two behavioral experiments follow very
similar experimental designs. At each trial, a fixation point is
presented at the center of the computer screen, followed by a
letter-string displayed until the participant responds. Partici-
pants have to indicate as quickly and as accurately as possible
whether the letter-string is a real word or not by pressing one
of two response buttons, for the YES and NO response re-
spectively. Latency (time between the onset of stimulus pre-
sentation and the motor response) for the YES responses is
the dependent variable.

Experimental results As shown in Figure 2, a significant
neighborhood frequency effect is reported in Experiment A
but only for the low frequency words. This effect is in-
hibitory. In contrast, Experiment B reports a facilitatory
neighborhood frequency effect for low-to-medium frequency
words, which is significant for the two conditions of small
and large density.

Simulations with BRAID

Material The stimuli used in the simulations are the same
as in the behavioral experiments, with one exception: the
word CASINO used in Experiment A was removed because
it was not part of the British Lexicon Project (BLP; Keuleers
et al., 2012) used to identify parameters of the lexical knowl-
edge submodel of BRAID.

Procedure The task simulated by BRAID is the lexical de-
cision task computed by Eq. (3), using default values for all

A: Perea and Pollatsek (1998)
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Figure 3: Simulation of the neighborhood frequency ef-
fect in a lexical decision task. The x-axis represents sim-
ulation time steps and the y-axis the probability of YES re-
sponse. The dashed line represents the decision threshold
used to compare the behavioral and the simulated results.

parameters (Phénix, 2018). For each stimulus, BRAID pro-
vides the full time course of evidence accumulation about
whether or not the input string is a known word. We first
simulate this process for 1,000 iterations. The words that did
not reach 0.97 identification probability after 1,000 iterations
were removed, resulting in an error rate of 1% and 2.5% for
the stimuli used in Simulation A and B, respectively. Then,
we reverse each curve to get the number of iterations required
for the model to reach a given decision threshold. Finally, for
each time step, the average YES response probability is cal-
culated by averaging over all stimuli. Simulation results are
shown in Figure 3.

For comparison of the simulation results with the behav-
ioral data, we first align simulation results with the data in
the first condition of the behavioral experiment and select
the decision threshold that minimizes root-mean-square er-
ror (RMSE), so that the remaining three conditions are pre-
dicted by the model. The resulting threshold value was found
similar in the two Simulations (set at 0.78). Note that the
same threshold was adopted for the two conditions of large
and small density in Simulation B despite the fact that the
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items were presented by blocks in the behavioral experiment
which may have induced different decision threshold.

Simulated results Figure 2 provides a comparison of the
behavioral and the simulated data, scaling simulated reaction
times by a multiplicative factor to align them on the first con-
dition. In Simulation A, the simulated data well fits the hu-
man data in showing an inhibitory effect. Words with a higher
frequency neighbor are processed more slowly than words
with no higher frequency neighbors but only when they are
of low frequency. The frequency neighborhood effect is also
well captured in Simulation B for the two conditions of neigh-
borhood density. The effect is facilitatory. However, while fa-
cilitatory effects of similar size are behaviorally reported, the
effect is weaker for words with small neighborhood density
in the simulations.

The dynamic curves provide relevant information on the
simulated effects (see Figure 3). Exploration of the dynamics
of processing time course reveals an inversion of the neigh-
borhood frequency effect with time. The existence of a higher
frequency neighbor is facilitatory at the beginning of process-
ing but turns to inhibitory over time. Although it is observed
for all the experimental conditions in Simulation A and Sim-
ulation B, the variation of the effect from facilitatory to in-
hibitory is modulated by the target word relative frequency
and its neighborhood density. The pattern inversion occurs
earlier for the low frequency words (iteration 188; thresh-
old value=0.68) than for the medium frequency words (iter-
ation 213; threshold value=0.81), and earlier for the words
that have a small vs. large neighborhood density (iteration
217 vs. 239; threshold value = 0.81 vs. 0.85). As shown on
Figure 3 panel B, a slightly lower decision threshold in Sim-
ulation B would provide a better fit to the data for the large
density condition of Siakaluk et al. (2002).

Discussion

Our purpose in the current study was to provide new insights
on the origin of the inconsistent findings reported in the be-
havioral studies on the neighborhood frequency effect, which
was found inhibitory in some experiments (Carreiras et al.,
1997; Forster & Shen, 1996; Grainger, 1990; Grainger et al.,
1989; Grainger & Segui, 1990; Perea & Pollatsek, 1998) but
facilitatory in others (Sears et al., 1995; Siakaluk et al., 2002).
For this purpose, two experiments that report opposite in-
hibitory and facilitatory effects were selected and the BRAID
model was used to simulate processing latencies for the same
set of words in the lexical decision task. The results nicely
mirror the high frequency neighborhood effect in successfully
simulating the inhibitory effect for low frequency condition,
as reported in Experiment A (Perea & Pollatsek, 1998) and
the facilitatory effect reported in Experiment B whatever the
density condition (Siakaluk et al., 2002). Inspection of the
processing time course further provides an elegant account of
the apparently inconsistent findings reported in the behavioral
studies. In the two experiments, the neighborhood frequency
effect that starts facilitatory turns to inhibitory later on during

processing.

What do we learn from these simulation results? Simu-
lation A shows that the degree of low frequency of the tar-
get words modulates the apparition of the inhibitory effect.
This effect occurs earlier during processing for the words of
lower frequency. Simulation B shows that the amplitude of
the facilitatory neighborhood frequency effect is higher for
words with a large density neighborhood than for words with
a small density neighborhood. The facilitatory effect extends
over a longer period of time from the beginning of processing
when the words have a high density neighborhood, which in-
creases the probability to obtain a facilitatory effect on these
words as compared to words with a low density neighbor-
hood. Thus, the degree of low frequency of words and their
neighborhood density are factors that modulate the probabil-
ity of the neighborhood frequency effect to be either facilita-
tory or inhibitory.

Simulation results further show that the decision thresh-
old is a critical factor. In both Simulation A and B, differ-
ent neighborhood frequency effects — inhibitory, facilitatory
or null — could be obtained, depending on decision thresh-
old. Decreasing the threshold would favor the occurrence
of a facilitatory effect while increasing the threshold would
increase the probability of an inhibitory effect. The model
thus predicts that the effects would be either facilitatory or
inhibitory depending on task demand. A facilitatory effect
is predicted for the less-demanding task conditions that trig-
ger rapid responses, thus in conditions that emphasize speed
over accuracy, or use less word-like pseudowords. In con-
trast, the effect should turn to inhibitory when stressing accu-
racy over speed, or when using more word-like pseudowords.
These predictions are well in line with previous reports of
inhibitory effects in perceptual identification paradigms that
stress accuracy and encourage unique word identification
(Carreiras et al., 1997) and with evidence for modulations of
the inhibitory-facilitatory effects depending on task instruc-
tion and on the pseudoword characteristics (Grainger & Ja-
cobs, 1996).

BRAID is the first computational model that provides an
account of such opposite effects. It is noteworthy that these
opposite effects were here generated while using the model
default parameters, thus the same set of parameters in the two
experiments.

Inhibitory neighborhood frequency effects have been sim-
ulated within the IA framework (Jacobs & Grainger, 1992)
and within the Multiple Read-Out model (MROM; Grainger
& Jacobs, 1996) but a facilitatory effect could only be simu-
lated at the cost of high error rate (Siakaluk et al., 2002). Op-
posite effects are simulated in BRAID while keeping the error
rate low, depending on the time-course of the two processes
that generate the YES and NO responses in lexical decision.
The former process accumulates information from the lexi-
cal knowledge sub-model, based on similarity with the per-
ceived letters. The later generates the NO response by inte-
grating into the similarity calculation an error-seeking model,
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based on detection of a single letter difference between the
perceived letters and known words. The presence of at least
one more frequent neighbor influences both processes. At the
beginning of processing, noisy information from perceived
letters matches with both the target word and its higher fre-
quency neighbor, so that the later contributes to increasing
lexical contribution in favor of a YES response, which re-
sults in a facilitatory effect of neighbourhood frequency. Over
time, more and more information on perceived letters accu-
mulates, increasing the probability to detect a mismatch and
yielding competition between the target word and its higher
frequency neighbor, which results in an inhibitory neighbour-
hood frequency effect.

The overall findings demonstrate the capacity of BRAID
to handle the opposite neighborhood frequency effects that
remained unexplained in the last three decades. The simula-
tion results demonstrate that facilitatory and inhibitory neigh-
borhood frequency effects are inherent to the time course of
processing in lexical decision, which provides support to the
apparently contradictory findings reported in the behavioral
studies. The probability to observe a facilitatory or inhibitory
effect is further modulated by the target word relative fre-
quency and its number of orthographic neighbors, so that
subtle differences in task demand and material characteristics
may have yielded contradictory and sometimes confusing be-
havioral results.
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