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In this paper, we report findings from two studies of students' engagement in metatheoretical tasks drawn from a model of the reasoning requirements of a proof by contradiction. The studies aimed to explore students' engagement in the tasks, the extent to which they were successful, and the similarities and/or differences between students' and mathematicians' approaches. Findings indicate students tend towards syntactic, logical theory approaches while mathematicians gravitate towards semantic, mathematical theory approaches. Drawing on interview data, it is shown that students may use symbols to avoid employing fragile content knowledge, yet encounter further difficulties by viewing quantifiers as appended symbols.

interest, for it raises many questions: To what extent are novices successful when engaging in metatheoretical tasks? What approaches do they employ? Do their approaches differ from mathematicians'? The purpose of this paper is to take a preliminary step towards answering these questions. Specifically, we report on two studies of participants' responses to metatheoretical tasks drawn from a model of the reasoning requirements of a proof by contradiction, which is described below.

PROOF BY CONTRADICTION AND ITS REASONING REQUIREMENTS

In this section, our aim is to model the reasoning requirements of a proof by contradiction of a universally quantified conditional statement. To aid our discussion, we consider a specific example: Theorem 5. For all positive integers n, if n mod(3) º 2 then n is not a perfect square. To prove the theorem by contradiction, one must correctly negate the universally quantified conditional statement and take the resulting statement as one's primary assumption. Such actions require one accept (at least at an intuitive level) that for a conditional statement to be true universally, it must not be the case that there is some element in the universe of discourse for which the premise is true (has a truth-value of true) and the conclusion is false (has a truthvalue of false). In the case of our example, we assume "There exists a positive integer n, such that n mod(3) º 2 and n is a perfect square." As shown by Wu Yu, [START_REF] Wu Yu | Students' understanding of proof by contradiction[END_REF], this task is far from trivia for students 17-20 years of age. Moreover, as [START_REF] Antonini | Indirect Proof: What is specific to this way of proving?[END_REF] note, the validity of the work is determined by theorems that reside within the logical theory (i.e., the metatheory).

Having assumed the negation of the statement-to-prove, one must now explore the consequences of this assumption and identify a contradiction. Three aspects of this work are important. First, to carry out this work one must move back to the mathematical theory, for it is here that the contradiction will reside. Second, one's goal is open-ended, for one does not know in advance where one will find the contradiction. In fact, there may be many. Third, one must know one's commitments with regard to the mathematical theory. Otherwise, one will not have the means to recognize a contradiction. This point was made by [START_REF] Sierpinska | I need the teacher to tell me if I am right or wrong[END_REF] who argued, "sensitivity to contradictions in mathematics requires theoretical thinking … (thinking) concerned with internal coherence of conceptual systems" (p. 1-54). Once the contradiction is identified, one's work is not done. One must make sense of it.

In our example, we claimed that an integer existed but having produced a contradiction we now know that such a number cannot exist. Hence, one must conclude, i there exists no integer n, such that n mod(3) º 2 and n is a perfect square.

And it is at this point that one is faced with the very requirement that [START_REF] Antonini | Indirect Proof: What is specific to this way of proving?[END_REF] Fabio rejected; namely, seeing the proof of this statement as a proof of the statement-to-prove. In other words, having shown S*: There exists no integer n, such that n mod(3) º 2 and n is a perfect square, one must recognize (from a logical standpoint) that one has proven S: For all positive integers n, if n mod(3) º 2 then n is not a perfect square; that is, we must recognize S* implies S since S* is a non-identical but logically equivalent form of S. As [START_REF] Antonini | Indirect Proof: What is specific to this way of proving?[END_REF] note, this work relies on theorems in the logical theory rather than the mathematical theory; that is, it is metatheoretical. Thus, a proof by contradiction imposes two unique metatheoretical requirements. First, at the beginning, when one must produce the negation of a statement. Second, at the conclusion, when one must recognize that S* implies S. And, it is the latter requirement that is the focus of the reported studies.

AN OVERVIEW OF THE STUDIES

The reported studies examined students' engagement and extent of success in the metatheoretical reasoning requirements that arise at the conclusion of a proof by contradiction. All studies were conducted at a minority-serving university, where the majority of students qualify for need-based financial assistance and are firstgeneration university students. Study 1 explored the extent to which novices (i.e., students without prior logical training or who have limited training) are successful evaluating claims of the form S*implies S. Study 2 explored students' and mathematicians' approaches to and success with metatheoretical tasks. The aim of the combined studies was to explore the reasoning practices that may inhibit or support students' metatheoretical work and consequently, play a role in the extent to which students reach or fail to achieve cognitive unity in relation to indirect proofs.

Study 1 Methods and Findings

To explore novices' success with metatheoretical reasoning tasks prior to instruction, 46 university students were surveyed. The surveys were administered on the first day of a "Basic Set Theory and Logic" course that served as the universities' first logic course and their "Introduction to Proof" course. Prior to the course, students would have been enrolled in computation-focused courses on calculus and differential equations. Included on the survey were two tasks that asked students to compare a pair of statements and determine, "Can you prove Statement A by proving Statement B?" (Figure 1.) Task 1 involved a universally quantified statement and an incorrect alternative. Task 2 involved the same Statement A and a correct alternative. Survey results indicated that of the 46 students surveyed, 50% were successful at Task 1, 47.8% were successful at Task 2, and 24% were successful at both tasks.

Study 1 Discussion

The findings of Study 1 demonstrate that most of the students did not enter the Basic Set Theory and Logic course reasoning in ways aligned with the metatheoretical requirements of indirect proofs, as the rates were at or below guessing and less than a quarter successfully answered both questions. While the findings are not startling, they provide a warrant for further research. Indeed, prior to 1 there were no studies of novices' responses to such tasks prior to instruction. Thus, the findings warrant the following questions: Do novices' difficulties persist after instruction? Do students' and mathematicians' approaches differ?

Study 2 Methods

Study 2 aimed to explore university students' and mathematicians' extent of success and approaches to the metatheoretical task in Figure 2. Participants were 21 students drawn from the same student population as Study 1 and 6 mathematicians. However, the Study 2 students had completed the Basic Set Theory and Logic course. As the course focused on set theory and logic in the service of proof writing, the instruction on set theory and logic was limited to basic properties, terms, and definitions, as well as symbolizing practices, and then on specific proof techniques and/or strategies. All participants took part in video-recorded interviews during which the task was presented on a large piece of paper. The participants were given as much time as requested and then asked to explain their answer to the stated question.

Question: Can you prove Theorem 5 by proving Statement A? Theorem 5. For all positive integers n, if n mod(3) º 2 then n is not a perfect square. Statement A. There exists no positive integer n such that n mod(3) º 2 and n is a perfect square.

Figure 2. Study 2, Interview Task

To identify approaches the analysis focused on which theory (mathematical or logical) the participant worked in and how they engaged in that theory. Responses were considered mathematical theory approaches (MTA) if the participant was observed: (1) explicitly exploring mathematical statements, definitions and/or terms; and/or (2) constructing a proof of either statement. Responses were considered logical theory approaches (LTA) if the participant was observed: (1) posing explicit questions of equivalence; (2) constructing truth-tables and/or working with symbolic logic; and/or (3) citing logical theorems or practices. In addition to the approach, participants' responses were analysed for the form of engagement. Specifically, coding noted participants' use of syntactic and/or semantic reasoning, with semantic referring to reasoning that employs meanings and multiple representational systems and syntactic referring to rule-based reasoning within a representational system. ii

Study 2 Findings

In Table 2, we report the percentage of correct responses. The reader will notice that among the 21 students five types of responses were observed: yes, yes-no-yes, no-yesno, no, and don't know. Yes refers to students who, after a period of exploration, decided without hesitation that one can prove Theorem 5 by proving Statement A. Yes-no-yes refers to students who repeatedly switched answers, expressed hesitation and doubt, but ultimately choose "yes." No-yes-no were similar to yes-no-yes but were students who repeatedly switched answers and ultimately choose no. No refers to students who reached, with evident certainty, the decision you cannot prove Theorem 5 by proving Statement A. Uncertain refers to students who, after deliberation, responded to the prompt by remarking they "didn't know." Since findings that indicate the prevalence of difficulties are of little use without information on the nature of students' engagement, we turn to the analysis of participants' approaches. This analysis focused on the question of which theories the participant engaged with and their form of engagement (see Table 3). Looking at Table 3, the reader will notice that the majority of the students (18 of 21; 85.7%) engaged in a logical theory approach (LTA). For many this work occurred symbolically, with 15 of the 18 (LTA) students replacing the open sentences with the symbols (e.g., P, Q, ~P or ~Q or P(n), Q(n), etc.) and the phrases for all and there exists no with " and ∄, respectively. iii Indeed, except for one LTA-semantic (Don't know) and two LTA-syntactic (No-yes-no), the students worked symbolically. When asked about the use of symbols many students noted their discomfort with the content, "mod is really rough in my memory right now", and that "it's easier to work with symbols." Thus, the symbolic approaches enabled the students to avoid content for which they lacked confidence in their mathematical understandings.

For 3 of the LTA students their symbolic approach led to a quick and definitive yes, as shown Figure 3. The reader will notice the student initially focuses on the relationship between the quantifiers and then on how translating from ∄ to " requires one to act on the open sentences by negating a sentence of the form (PÙ ~Q). In contrast to those who readily replied yes, nearly half of the LTA students experienced a significant amount of hesitancy and doubt (Yes-no-yes; No-yes-no). Many of these students articulated difficulties with the phrase "there exists no" while, at the same time expressing certainty regarding the logical relationship between for all and there exists (i.e., they asserted the negation of one quantifier produced the other). Among these students, it was not uncommon for them to argue that there exists no means nothing and that, "nothing is the opposite of everything," a point which left many confused having already noted for all and there exist were "opposites" in logic. For nearly a third of the students (6 total) recognizing there exists no as the opposite of for all and the open sentence "n mod(3) º 2 and n is a perfect square" as the negation of "if n mod(3) º 2 then n is not a perfect square" led to the conclusion Statement A is the negation of Theorem 5, as illustrated in Figure 4.

Two aspects of this approach are important to note. First, the student compares the quantifiers (for all and none) and then compares the open sentences. Hence, the quantifiers are not seen as variable-binding operators that act on open sentences but rather as appended symbols. Such reasoning enables the student to translate ∄ into its "opposite" " independently of translating PÙ ~Q into its "opposite" PÞQ.

Second, such reasoning relies on the student incorrectly viewing ∄ (PÙ ~Q) as being of the form (~$) (PÙ~Q) rather than as of the form ~[($) (PÙ~Q)]. As seen in Table 4, the mathematicians' responses were quite different, with all but one engaging in an MTA. Though not shown, it is important to note that in three of the five MTA-semantic responses, the mathematician spent the majority of the time proving (or considering how they would prove) Theorem 5.

Faculty Response Category (n = 6)

Mathematical Theory Approach (MTA) Logical Theory Approach (LTA) Response Type Semantic Syntactic Semantic Syntactic Yes 5 1

Table 5: Faculty Response by Type and Form

This work lead all three to realized they would use a proof by contradiction and in so doing, prove Statement A to prove Theorem 5. In the other two MTA-semantic responses, the mathematicians repeatedly rephrased the statements, while explicitly noting the everyday meanings of the words, until they had convinced themselves that the statements were "essentially the same.' This work was often well-situated in the mathematical theory, as seen in the transcript below where the mathematician speaks of "turning around" Statement A and "running through" sets of numbers.

Mathematician a: I tend to take statements like that [Statement A] and try to rephrase them, so … for me, I would say, what does that actually say? It says that, umm, whenever, umm, a positive integer n is congruent to, umm, is congruent to 2 mod 3 then n cannot be a perfect square … like I … I try to turn it around … I'm sitting here almost hesitant about whether or not I've even done it correctly. But let me think … so, umm, let's see, so there exists no positive integer n such that these two things are true … so that's … what is that the same thing as saying, it's saying that, umm, if you ran over the positive integers n which were congruent to 2 modulo 3 you are never going to hit a perfect square but then that's what this is saying (point to Theorem 5), umm, if I think of for all positive integers n and this part is true, that n is congruent to two modulo three, then I am never going to hit a perfect square. So, … umm, actually, I think, umm, I would almost rephrase these things as being equivalent but I am feeling a little bit hesitant about that.

Here, it is important to note that in addition to Mathematician a, three other mathematicians expressed hesitancy with regard to their own reasoning; e.g., Dr. b remarked "just doubting myself for some reason." In each case, the mathematician was asked "Do you have some doubts about your answer?" and all responded "No." Thus, the participants appeared to be applying inferences with a high degree of (perhaps intuitive) certainty, while also doubting their own judgements of those inferences. Finally, two other observations are of note. First, like the students, one mathematician translated the statements into symbols. However, they immediately pushed the paper away saying, "I am not going to do that." Second, in the case of the LTA-semantic approach, the mathematician translated both statements into Venn diagrams (Figure 5) and then, by comparing the diagrams, reasoned through the task.

Dr. b: 3) is 2 expressed then … this will be expressed as a containment and ….it's not a perfect square … perfect square is on the outside …….. and, umm, let's see, if-then means that ….(long pause) that that set is inside that set or is it the other way … that implies that …(long pause). Yeah, it looks like it (laughs quietly). Study 2 aimed to explore students' and mathematicians' success with and approaches to a metatheoretical task. The data demonstrate that post-instruction, novices continued to struggle with the metatheoretical requirements of proof by contradiction and gravitated towards syntactic-LTA approaches, while the mathematicians tended towards semantic-MTA approaches. Furthermore, students' remarks indicated their use of syntactic-LTA approaches enabled them to avoid perceived content knowledge weaknesses, whereas the mathematicians drew heavily on this knowledge to produce proofs and explore concepts. The study also revealed a tendency among students who struggled with the tasks; namely, a tendency to view quantifiers as appended symbols rather than as variable-binding operators that act on open-sentences. Though far from providing definitive evidence, the study contributes to the literature by highlighting the logical complexities novices may encounter when producing or comprehending proofs by contradiction, given the approaches they gravitate towards.

CONCLUDING REMARKS

One question raised by the studies is, why didn't the students' reasoning progress, even after completing the Basic Set Theory and Logic course? Certainly, the lack of progress may be due to poor instruction, an insufficient curricular treatment, or the cognitive demand of the tasks. Turning to the curricular materials used, Chartrand, Polimeni, and Zhang's (2008) Mathematical Proofs: A Transition to Advanced Mathematics, one finds little in the ways of support for the metatheoretical tasks studied. This text includes an introductory chapter on logic with two subsections on quantifiers. In these subsections, the quantifiers for all and there exists are defined and discussed with regard to the variations of these phrases used in mathematics (e.g., for some; at least one, etc.). Neither are quantifiers discussed as variable-binding operators nor is the phrase "there exists no" or the symbol ∄ mentioned. The same is true in a latter chapter focused on proof by contradiction, where emphasis is placed on moving from "for all" to "there exists" when proving by contradiction without mention of what one must do once one determines something "does not exist." Thus, the lack of progress may be tied to an insufficient curricular treatment of the topic.

Turning to the mathematicians' responses an alternative rationale for students' persistent difficulties becomes evident. As discussed, most of the mathematicians in Study 2 expressed a lack of confidence in their own reasoning, while none wished to change their answer due to an intuition (i.e., "gut feeling"). Hence, it seems reasonable to conclude that the task was cognitively demanding. Consequently, even with instruction, we might expect low success rates among undergraduates, who are at the early stages of the education and lack the content knowledge experts employed.

Lastly, in an interesting study of effective proof comprehension strategies, [START_REF] Weber | Effective proof reading strategies for comprehending mathematical proofs[END_REF] found mathematicians preferred students, "rephrase theorems in their own words" and that students not use the strategy, "rewrite the theorem in first-order logic." These views reflect the practices of the mathematicians in Study 2, for none used the latter strategy, while nearly all used the former. However, their rephrasing of the statements relied on their extensive content knowledge; namely, as a tool for inferring meanings. Hence, the findings raise questions regarding whether or not the mathematicians would use these approaches if they were working with unfamiliar (or difficult) content. Indeed, it seems that we must be careful inferring instructional recommendations from the mathematicians' practices. Many appeared to generate inferences automatically -a practice that seemed to inhibit them from rationalizing their judgements; as illustrated by the mathematicians' repeated expressions of hesitancy.
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 1 Figure 1. Study 1's Task 1 and Task 2

  Student A: Yes, you can prove Theorem 5 by proving Statement A … because when you say there exists no that implies ... well that's a for all statement and then you have to negate the umm … the umm … (writes PÙ ~Q).

Figure 3 :

 3 Figure 3: Student A's (Correct) Syntactic-LTA Response

  Student B: they're opposites […] this (Statement A) is the negation of Theorem 5 …it's saying for all of them, it's saying none of them [...] Yeah, (writes "(PÞQ)) and (writes ~ symbol before "(PÞQ))) is (writes ∄ (PÙ ~Q)).

Figure 4 :

 4 Figure 4: Student B's (Incorrect) Syntactic-LTA ResponseIn addition to the LTA responses, two MTA responses were observed. In the MTAsemantic response, the student spent his time considering numbers that satisfy n(mod 3)º2 and trying to understand the structure of a number that would disprove Theorem 5 or Statement A. Eventually, this student decided Statement A was false and, therefore, could not be used to prove Theorem 5. In the MTA-syntactic response, the student immediately remarked, "it's by contradiction." The student then proceeded to determine if Statement A provided the needed claims for such a proof: Student C: by contradiction […] he's claiming that there is no positive integer n, … such that (points to Statement A's open sentences) […] so, he's saying there is no positive integer n here so you can use that argument (points to open sentences again) and … so, yeah, you can put those together and prove it.

I

  'm going to draw some sets. … Statement A says to me the sets of n mod(3) … congruent to 2 and perfect squares … (long pause)… are disjoint. Right. There exists no positive integer … so this says for all positive integers if n mod(

Figure

  Figure 4: A Mathematician's (Correct) Semantic-LTA Response Study 2 Discussion

  For every integer n, if n is a perfect square, then n has an even number of factors. Statement B. There exists no integer n such that n has an even number of factors and n is not a perfect square. ☐ Yes, you can prove Statement A by proving Statement B.

	Task 1.
	Statement A.

☐ No, you cannot prove Statement A by proving Statement B. Task 2. Statement A. For every integer n, if n is a perfect square, then n has an even number of factors. Statement B. There exists no integer n such that n is a perfect square and n has an odd number of factors. ☐ Yes, you can prove Statement A by proving Statement B. ☐ No, you cannot prove Statement A by proving Statement B.

Table 2 : Student and Faculty Response by Category
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As seen in Table

2

, less than one-third of the students (28.6%) who had completed the Basic Set Theory and Logic course stated with certainty, yes one could prove Theorem 5 by proving Statement A. And, nearly as many (23.8%) reached this conclusion with significant hesitation (Yes-no-yes). Furthermore, 42.8% argued either with certainty (No) or with hesitation (No-yes-no) that you cannot prove Theorem 5 by proving Statement A. These findings indicate instruction had little impact on the students' success with the metatheoretical requirements of a proof by contradiction. In contrast, (without surprise) all of the mathematicians replied yes.

Table 3 : Student and Faculty Response by Type and Form *(NE is no evidence)
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	Student Response By Type and Form