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We use Hintikka’s analysis of the notion of inquiry to point out some obstacles that 
the implementation of inquiry-based learning might find, and to suggest a way to 
overcome these difficulties via the use of the Reference Epistemological Models deve-
loped in the framework of the Anthropological Theory of the Didactic.   
Keywords: inquiry-based learning; teacher’s and students’ practices; novel approa-
ches to teaching 
INQUIRY-BASED LEARNING 
Inquiry-based learning (IBL), roughly conceived as a teaching method in which stu-
dents are invited to learn in a way similar to that of a scientist or a mathematician,  
has been suggested, with different levels of precision, by several researchers, institu-
tions and pedagogical and didactic approaches. Artigue and Blomhøj (2013) include 
as instances of IBL the teaching proposals made from the following approaches in 
Mathematics Education: problem-solving, theory of didactical situations, realistic 
mathematics education, modelling perspectives, anthropological theory of the didac-
tic, and dialogical and critical approaches. For its part, European Union, through re-
ports prepared by experts (see, for instance, (Rocard, Csermely, Jorde, Lenzen, Wal-
berg-Henriksson, & Hemmo, 2007)) and projects (see, for instance, PRIMAS, http://
www.primas-project.eu), has supported also the implementation of IBL in educative 
european institutions.  
It would be incorrect to believe that these IBL proposals have been suggested as a 
means to reach the very same educational end. Let us mention some proposal aiming 
different ends. The Theory of Didactical Situations proposes the IBL, embodied in 
the notion of situation, as a means to achieve a real knowledge of mathematics 
(Brousseau, 1997, p. 22). For its part, the Anthropological Theory of the Didactic 
proposes the IBL, via the notion of Study and Research Path, as a means to transform 
the cognitive ethos of our society, that is to say, to provide new attitudes and habits 
with respect to the acquisition of knowledge (Chevallard, 2015). European Union, in 
reports and projects like the ones mentioned above, stands up for IBL as a means to 
remedy the declining interest of youth in science, confirmed by some OECD reports, 
and the subsequent lack of technological innovation in Europe. According to this 
point of view, IBL would contribute to change science and mathematics learning into 
a motivating activity. On the other hand, Europen Union also promotes IBL, for ins-
tance in the PRIMAS project, as a means to prepare students for a future in which “it 
is no longer sufficient (…) to learn facts” but “to be able to solve non-routine pro-
blems, to analyse data, to discuss with colleagues, to communicate their result and to 
work autonomously” (Maaß & Reitz-Koncebovski, 2013, p. 10). Therefore, the ends 
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to which different proposers aim to arrive through IBL are as varied as the very ends 
of regulated education: the acquisition of knowledge, habits, attitudes, values, etc. 
KINDS OF KNOWLEDGE 
To analyse possible uses of IBL in the acquisition of knowledge we have to wonder: 
are there different kinds of knowledge? In Epistemology it is customary to distin-
guish between three kinds of knowledge (Ichikawa, Steup, 2017; Fantl, 2017): know-
ledge by acquaintance, knowledge how and propositional knowledge. Knowledge by 
acquaintance is the kind of knowledge you have when you can identify something or 
someone (for instance, the label criterion of divisibility by 3) and the corresponding 
name, description, formulation, etc. (in this case: a natural number is divisible by 3 if 
and only if the result of adding all its digits is divisible by 3). Knowledge-how is the 
kind of knowledge you have when you carry out a series of intentional actions (for 
example, to apply the criterion of divisibility by 3) towards  the attainment of an end 
(to know whether a given number is divisible by 3, in this case). Finally, propositio-
nal knowledge is the kind of knowledge you have when you know why a certain pro-
position is true (for example, when you know why it is true the criterion of divisibilty 
by 3). Notice that in the knowledge by acquaintance you also seem to know the truth 
of a proposition (for instance, the proposition asserted by the statement “The criterion 
of divisibility by 3 is the statement A natural number is divisible by 3 if and only if 
the result of adding all its digits is divisible by 3”). But in this case this is just a con-
tingent truth, existing by convention. 
INQUIRY AND PROPOSITIONAL KNOWLEDGE 
In order to analyse possible obstacles to the implementation of IBL, we shall use a 
theoretical model of the notion of inquiry, namely, the one developed by the logician 
and philosopher Jakko Hintikka and collaborators in several works. Of course, one 
can also find other theoretical models of the notion of inquiry in some approaches to 
Mathematics Education. Anyway, here we choose the one provided by Hintikka due 
to its enlightening use of Logic, which seems to be an essential ingredient for a true 
comprehension of an inquiry process.  
Interrogative Model of Inquiry 
To get a better understanding of the concept inquiry, as claimed by Hintikka (1982),  

is not enough to study individual acts instantiating (…) whatever the concept in question 
may be. We also have to study the more complicated rule-governed behavioral complexes 
in which their “logical home” is. 

For this, Hintikka has developed a game-theoretical model, the so-called Interrogati-
ve Model of Inquiry (IMI), which presents a formal approach to inquiry. A good refe-
rence for this model, which has been explained here and there, is (Hintikka,   Halo-
nen, & Mutanenet, 2002). In few words, inquiry is regarded as a game with two pla-
yers: Inquirer and Nature. The game starts with a pair, (T, Q), where T is a given 
theoretical premise, and Q is a question. The game finishes when the Inquirer finds 



an answer to Q. Along the game the Inquirer is allowed to make two kinds of moves: 
questions to Nature, and deductions. The only moves of Nature are answers to Inqui-
rer’s questions. We will not explain here all the details of Hintikka’s IMI, but at least 
we will point out two of its main features:  
1) The principal goal of an inquiry is the acquisition of propositional knowledge. 
2) Inquiry is a process in which a complex dialectics between deductions and ques-

tions takes place. 
We emphasize here these two aspects because, as we hope to show below, they seem 
to be crucial for practical didactic considerations about IBL.  
The goal of inquiry is to acquire propositional knowledge 
The inquiry finishes if we can deduce (based on the premise and on Nature’s answers 
to our questions) an answer A to the initial question Q (Hintikka et al., 2002, Theo-
rem 1). Of course, the deduction procedure, which is carried out through a series of 
familiar rules (Hintikka et al., 2002, § 2), has to do with semantics. Indeed, these ru-
les are such that if the premise T and Nature’s answers are true in a given model M, 
then the answer A is also true in this model M. This is why we can read in (Hintikka, 
1996, p. 38) that what the winning of an “interrogative game” shows is “knowledge 
of truths”.  
Later, we will speak of the implications of the presence of the model M in the use of 
IBL for teaching. For the moment, I would like to stress the fact that, according to 
Hintikka’s IMI, the result of an inquiry is a proposition. Inquiry is a quest for propo-
sitional knowledge, which is the kind of knowledge linked to non-contingent truth 
and falsehood. This does not prevent, in the course of an inquiry, the acquisition of 
knowledge-how and knowledge by acquaintance. But we would not consider an in-
quiry finished if, along this inquiry, we would have found a successful technique 
(knowledge-how), whose success remains unexplained. In other words, in the course 
of an inquiry we can get knowledge-how, but we then would pursue the correspon-
ding propositional knowledge able to explain the success (and even its limitations, 
portability to other contexts, etc.) of this knowledge-how. 
Dialectics between deductions and questions 
In a game of inquiry not all the questions can be asked at any moment. On the con-
trary, one is forced to pay attention to the presuppositions of that questions. As ex-
plained by Cross and Roelofsen (2016), there are different logical kinds of questions: 
whether-questions, which-questions, why-questions, etc. Each kind of questions de-
termines its own kind of presuppositions. For example, the presuppositions of which-
questions (e.g., “Which is the smallest prime number bigger than 7?”) are existential 
statements (e.g., “There exists a smallest prime number bigger than 7”). 
According to Genot and Gulz (2015), based in turn on (Hintikka & Hintikka, 1989), 
the Inquirer’s range of attention, at a given moment of inquiry, is the set of questions 
such that: 



- The corresponding presuppositions are already available or can be obtained by a 
deduction move. 

- Inquirer is aware of those presuppositions. 
The main problem of interrogative inquiry is the mismatch between Inquirer’s range 
of attention and available Nature’s answers, since sometimes Inquirer might ask a 
question which has no answer, or fails to ask a relevant question whose answer is 
available.  
In the literature on IBL it is usual to distinguish between several kinds of inquiries 
depending on two parameters: how open is the initial question Q, and how guided is 
the inquiry (PRIMAS, 2011, pp. 11-12). 
Concerning the first parameter, a serious study of types of questions and degrees of 
openness in relation to the development of the subsequent inquiry is still to be done. 
Our point is that IMI provides a suitable theoretical framework to carry out such a 
study.  
Concerning the second parameter, we refer to (Hintikka, 1982) in order to learn about 
all the possible moves the teacher can do in a game broader than an inquiry-game, in 
which the Student-Inquirer and Nature are but two players among many others (the 
Teacher being one of them). In particular, a kind of move the Teacher can do in order 
to guide the inquiry is to manipulate Inquirer’s range of attention so that to avoid the 
mentioned mismatch. Among the possible kinds of manipulation one finds: to ask 
whether we can deduce a certain proposition from the available information (in order 
to use it further as a presupposition of a question), to attract attention to a certain (al-
ready proved) proposition and to incite to consider it as a presupposition of a ques-
tion, etc. One might wonder to what extent the Teacher can avoid this manipulation in 
a IBL process channeled to the acquisition of some propositional knowledge. Con-
cerning this, Genot and Gulz (2015) proved that “a trade-off between success [of the 
inquiry] and autonomy is unavoidable” (p. 1). Indeed, in one hand, with no manipula-
tion of Inquirer’s range of attention success might not be achieved. On the other hand  

The IMI [Interrogative Model of Inquiry] does however warrant the following conclu-
sion: a guaranty that an inquiry learner will be able to solve interrogatively a problem can 
always be obtained by manipulating the learner’s range of attention. (Genot & Gulz, 
2015, p. 18) 

OBSTACLES TO IBL 
Admittidly, to plan for and support IBL is difficult due to the presence of obstacles of 
different nature: political, cultural, concerning teacher’s view of her own profession, 
concerning teacher’s training, epistemological, etc. Let us use the IMI as a microsco-
pe to inspect here two of them. 
Propositional knowledge and models 
According to (PRIMAS, 2011, p. 22): 



(…) many teachers find that IBL comes into conflict with the way they learnt science and 
mathematics in school and at the university, and even with the way they have been tea-
ching science and mathematics for many years. That is, with their beliefs about the nature 
of mathematics/science and/or their beliefs about teaching of mathematics/science. Pro-
bably this will be one of major obstacle you will find. 

This is strongly related to the fact that content taught in formal education is, typically, 
knowledge by acquaintance and knowledge-how, with a bleak lack of genuine propo-
sitional knowledge. Therefore, in agreement with the analysis of inquiry previously 
exposed, this content, not being propositional knowledge, can not be learnt through a 
proper inquiry. This is the case of the knowledge by acquaintance consisting in kno-
wing the statement of theorems (Pythagorean theorem, Thales theorem, etc.) without 
proof. It is also the case of the following examples of knowledge-how, which lives 
just in the realm of syntax, of manipulation of symbols, without being supported by 
meanings: all kind of algorithms of addition, subtraction, multiplication and division 
of several kind of numbers, algorithms to calculate the greatest common divisor and 
least common multiple, divisibility criteria for natural numbers, etc. Summarizing, for 
a piece of mathematics to be learnt in an inquiry-based fashion, it must be presented 
as propositional knowledge and, insofar as this kind of knowledge is concerned with 
true propositions, the presence of models fixing meanings and guiding the inquiry is 
unavoidable. In other words, without models there are no meanings, without mea-
nings there are no truths, without truths there is no propositional knowledge, and so 
there is no inquiry. 
One might argue that, after all, these mathematical objects do have a meaning. For 
instance, the fraction 2/3, applied to an object, refers to any portion of this object 
equivalent (with respect to a certain, previously fixed, magnitude: volume, mass, 
area, etc.) to the one obtained after performing the following steps: 
i) Split this object into three parts so that they were equivalent with respect to the 

fixed magnitude. 
ii) Take any two of these three parts. 
We would eventually agree that some objects, like natural numbers, positive frac-
tions, etc., are attached to a meaning in regular teaching. But I claim that this mea-
ning is not used later to support techniques. This makes the difference: whereas an 
unexplained technique (for example, to multiply fractions) is just mechanical know-
ledge-how, a justified one becomes propositional knowledge. Let us illustrate my 
claim with the case of the product of fractions. 
Typically, we say that the product of two fractions, a/b and c/d, is the fraction (a·c)/
(b·d), whose numerator (respectively, denominator) is the product of the two numera-
tors (respectively, denominators). Notice that this mirrors the common definition in 
formal mathematics, where a fraction is defined as an ordered pair (a, b) of integers, 
with b different from zero, and the product of two fractions, (a, b) and (c, d), is (a·c, 
b·d). This formal definition, taking part in the praiseworthy human enterprise of 



founding Mathematics in Set Theory, does not need any further proof. Actually, being 
a definition, it can not be proved. But, for the existence of a proof, there is a more 
important obstacle other than the fact that it is a definition: there is no model-inter-
pretation neither of the term fraction nor of the term product referring to fractions. 
Concerning this we would like to underly two points:  
- Once you have a model-interpretation of these terms you can (at least) try ‘to prove 

your definition’, namely, you can try to ask the question “Is it true that, according 
to the fixed meaning of the terms fraction and product, the product of two fractions 
is calculated by following the former procedure?” 

- The way you answer the question strongly relies on the model-interpretation of the 
terms. 

Imagine, for instance, that your interpretation of the term fraction is the one above: 
the denominator indicates the number of equivalent (according to a fixed magnitude) 
parts into which a given object has been split, and the numerator indicates the number 
of these parts you are considering. You still have to give an interpretation of the term 
product. This is a hard task. To beging with, we can say that a product is the result of 
a multiplication. Now, what is a multiplication? In natural numbers, a multiplication 
is what we do to calculate an amount of magnitude which has been expressed as a 
whole amount of a whole amount, for instance, to calculate the cardinal of a set which 
results from the union of 27 sets, each of which has 63 elements. Similarly, we can 
say that the multiplication of fractions is what we do to calculate an amount of mag-
nitude which has been expressed as a fraction amount of a fraction amount. For ins-
tance, to know which is the total fraction we are considering when we calculate 2/3 of 
4/5 of some amount of a given magnitude? I would know how to answer it if I knew 
how to answer in the case of 1/3 of 4/5. Similarly, this will not be a problem if I knew 
how to calculate 1/3 of 1/5. But it is not difficult to calculate that if each of the 5 
fifths were divided into 3 parts, then the initial amount would be divided into 15 
parts. Thus, 1/3 of 1/5 is 1/15. Now, since 1/3 of 4/5 is 1/3 of 4 times 1/5, we get 4 
times 1/15, which is 4/15. And 2/3 of 4/5 is 2 times 1/3 of 4/5, that is to say, 2 times 
4/15, which is 8/15. One can see, in this and other examples, that the numerator (res-
pectively, the denominator) of the final fraction can be directly obtained from the first 
two fractions just by multiplying their numerators (respectively, denominators). 
These considerations show that only after having an interpretation of the term product 
(again, it is the result of a multiplication, and a multiplication is what you do to calcu-
late an amount of magnitude which has been expressed as a fraction amount of a 
fraction amount) you can prove the truth of the following proposition: “the product of 
the fractions a/b and c/d is (a·c)/(b·d)”. The good news is that models allow to go 
from knowledge-how to propositional knowledge. The bad news is that the acquisi-
tion of this propositional knowledge strongly relies on the chosen model. This is not a 
minor issue. What to do if we have many possible interpretations of our theoretical 
terms? Which of them should be considered? Is there any didactic criterion (for ins-



tance, to overcome some learning obstacle) to choose among the different possible 
interpretations? For instance, the interpretation given above to the term fraction is the 
most usual, but it is not the only one. Should we also consider the others interpreta-
tions of the term fraction? If so, how to prove the multiplication formula for these in-
terpretations? We face the problem to choose criteria for attaching meanings such 
that: 1) they help us to fight against undesirable didactic phenomena specific to the 
usual teaching of fractions; 2) they are compatible with the meanings attached to ot-
her numerical fields, like negative or real numbers. 
How to plan and support inquiries for students? 
Even if all the questions raised in the previous paragraph about the implementation of 
semantics in mathematics syntax are answered, we still have to deal with further dif-
ficult problems. 
A very first one is: what could be the initial question Q of the inquiry? This question 
seems to be very difficult to find as it is intended to initiate an inquiry through which 
many kinds of mathematic entities would appear. Among them, notably, concepts. In 
this direction, we find the following teacher’s claim which figures in (Maaß & Reitz-
Koncebovski, 2013, p. 12): 

What about conceptual knowledge -surely students cannot be expected to reinvent mat-
hematical or scientific concepts for themselves? 

In terms of Hintikka’s IMI, to search for Q amounts to looking for a question such 
that, together with the premises T (student’s previous knowledge) and Nature’s ans-
wers (derived from mathematical examples possibly examined by students), allows to 
deduce (as a final product but also as something obtained in the course of inquiry) the 
aimed mathematical propositions. 
But still, even if Q is already clear, as it is said in Anderson’s study (as cited in PRI-
MAS, 2011, p. 20), teachers have difficulties with managing “the challenges of new 
teacher roles and new student roles”. According to Walker’s work (cited in PRIMAS, 
2011, pp. 20 - 22),  

Teacher loses control: although it depends on the degree of freedom teacher gives to stu-
dents, it is clear that in IBL students should take control of the lesson.  

Also, although the next quotation refers to IBL of science, it is perfectly translatable 
to mathematics: 

Inquiry based lessons might not “work”: there is the risk that experiments do not work, 
that students collect wrong data and that they will get a wrong idea. In the classical use of 
experiments, these are carefully planned so that they always work and offer the right 
exemplification of the phenomena that is at stake.  

Therefore, teachers have questions concerning their role in and control of students’ 
inquiries. In terms of Hintikka’s IMI, the question is: which would be the dialectics 
between deductions and questions in the expected inquiry? To have this dialectics re-
latively planned contributes to prepare the teacher in her duty of manipulating stu-



dent’s range of attention, which, in turn, grants the success of the inquiry in order to 
provide the acquisition of the aimed propositional knowledge. 
PROPOSAL FOR TEACHING IBL TO PRE-SERVICE TEACHERS 
In order to solve the problem of finding, given a piece of mathematics to be taught, a 
good model for the theoretical terms of this content, a good initial question Q and a 
way to handle the corresponding inquiry, PRIMAS has the so-called professional de-
velopment modules [1]. There is, for instance, a module with examples of questions 
to initiate an inquiry. There is a module with strategies to promote students’ questio-
ning. There is, also, a module with examples of ways of acquiring concepts. But still 
there is a need of complete examples, including all together an initial question, the 
relevant moves students should do in the corresponding inquiry game, and moments 
in which the teacher could manipulate well enough student’s range of attention in this 
very game. 
As we said at the beginning of this work, the Anthropological Theory of the Didactic  
(ATD) is one of the proposers of IBL. ATD suggests the implementation of the so-ca-
lled paradigm of questioning the world (Chevallard, 2015). According to it, formal 
education would be carried out by means of study and research paths (SRP). Succin-
ctly, a SRP is the process you follow to find the answer A to a question Q. ATD emp-
hasizes that, along this process, you are involved in different kinds of activities: stud-
ying possible (perhaps partial) answers to Q, formulating new auxiliar questions, etc. 
Although less philosophically informed, ATD’s analysis of the notion of inquiry, via 
the notion of SRP, runs almost parallel with that of Hintikka, via the IMI. 
There is a continuous spectrum of types of SRP, the extremes of which are what we 
could call open and closed SRP. The open ones are those in which the teacher is not 
specially interested in leading the students towards a particular piece of knowledge 
O. In contrast, the closed ones are those in which the question has been selected with 
the intention of leading to the natural emergence, in the course of the SRP, of a cer-
tain piece of knowledge O previously selected. 
In formal mathematics this knowledge O is not expressed as the output of an inquiry, 
but as a series of axioms, definitions, theorems, examples and standard techniques. 
Therefore, closed SRP demand, at least, to reorganise the piece of knowledge O to be 
found along the inquiry. The corresponding reorganisations are what ATD calls Refe-
rence Epistemological Models (REM) (see, for instance, Sierra, 2006). 
Typically a REM is expressed in terms of praxeologies (Chevallard, 2006), that is to 
say, in terms of: types of tasks, techniques devoted to face these types of tasks, a te-
chno-logical considerations about each technique (a detailed description, a justifica-
tion, a study of its scope and reliability, possible enhacements) and, possibly, also 
some theoretical considerations about the situations under study (our metaphysical 
description of them: basic entities, basic properties, etc.). It is a key feature of a REM 
that essentially everything in it appears motivated by the study of the types of tasks.    
It is worth mentioning that normally the construction of a REM on a piece of know-



ledge O is not only guided by the aim of using it as a basis of a SRP, but also by the 
intention of counteracting some undesirable didactic phenomena specific to the usual 
teaching of O (Gascón, Nicolás, in press). 
It is still an open question, but our point is that each REM [2] implicitly provides a 
complete example of a possible inquiry, and so a solution to the obstacles to the im-
plemenation of the IBL previously mentioned, namely, the need of interpretations-
meanings, the need of a good initial question and the need of knowledge about when 
and how to guide the students in their inquiry. More precisely, we think each REM 
implicitly proposes: a model for the theoretical terms and syntax appearing in the 
mathematical content O to be studied, a question Q to initiate an inquiry, a proof (ba-
sed on Logic and Game Theory) of the fact that the corresponding inquiry would fu-
lly cover O, and a set of moments of the inquiry at which teacher should evaluate, and 
possibly manipulate, Inquirer’s range of attention. In future works we will try to pro-
vide evidences for this point via a logical analysis (IMI-like, in terms of deductions, 
questions and answers) of some of the published REM.  
NOTES 
1. Available at http://www.primas-project.eu/artikel/en/1221/Professional+development+modules/

view.do 

2. For the moment, there are, among others, published REM on natural numbers, integer numbers, 
decimal numbers, proportionality, algebra and differential calculus. See http://www.atd-tad.org/
grupo-tad/ 
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