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In this report, we share insights we have gained from developing an assessment for 

documenting students’ understanding of eigentheory. We explain the literature and 

theory that influenced the assessment’s development and share question examples. 

We frame our results in terms of three eigentheory settings (     ,           

and eigenspaces) and four interpretations (numeric, algebraic, geometric, and 

verbal). Results from our analysis include students’ reasoning being influenced by 

setting, insights into students’ struggle with understanding eigenspaces, and the 

importance of making connections between and across various interpretations.  

Keywords: Teaching and learning of linear and abstract algebra, teaching and 

learning of specific topics in university mathematics. 

INTRODUCTION 

Linear algebra is particularly useful to science, technology, engineering and 

mathematics (STEM) fields and has received increased attention by undergraduate 

mathematics education researchers in the past few decades (Dorier, 2000; Artigue, 

Batanero, & Kent, 2007; Rasmussen & Wawro, 2017). A specifically useful group of 

concepts in linear algebra is eigentheory, or the study of eigenvectors, eigenvalues, 

eigenspaces, and other related concepts. Eigentheory is important for many 

applications in STEM, such as studying Markov chains and modeling quantum 

mechanical systems; however, research specifically focused on the teaching and 

learning of eigentheory is a fairly recent endeavor and is far from exhausted.  

As part of our ongoing research program analyzing students’ understanding of 

eigentheory (e.g., Watson, Wawro, Zandieh, & Kerrigan, 2017; Wawro, Watson, & 

Christensen, 2017), we created an assessment instrument focused on the multifaceted 

and interconnected nature of eigentheory. The purpose of this paper is to describe 

insights have we gained about students’ conceptual understanding of eigentheory as a 

result of developing, using, and refining this assessment instrument.  

THEORY AND LITERATURE REVIEW 

We ground our work in the Emergent Perspective (Cobb & Yackel, 1996), which 

assumes that mathematical development is a process of active individual construction 

and mathematical enculturation. In this paper we focus on the former by analyzing 

mathematical conceptions that individual students bring to bear in their mathematical 

work (Rasmussen, Wawro, & Zandieh, 2015). The literature on the teaching and 
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learning of eigentheory points to several aspects important to students’ conceptual 

understanding. Here we summarize that literature by highlighting what we found to 

be important aspects for building a working model for understanding eigentheory. 

Literature on student understanding of eigentheory 

Thomas and Stewart (2011) found that students struggle to coordinate the two 

different mathematical processes (matrix multiplication versus scalar multiplication) 

captured in the equation       to make sense of equality as “yielding the same 

result,” an interpretation that is nontrivial or even novel to students (Henderson, 

Rasmussen, Sweeney, Wawro, & Zandieh, 2010). Furthermore, students have to keep 

track of multiple mathematical entities (matrices, vectors, and scalars) when working 

on eigentheory problems, all of which can be symbolized similarly. For instance, the 

zero in           refers to the zero vector, whereas the zero in             

is the number zero. This complexity of coordinating mathematical entities and their 

symbolization is something students have to grapple with when studying eigentheory.  

Thomas and Stewart (2011) also posit that this struggle to coordinate may prevent 

them from making the needed symbolic progression from       to         
 , which is central to determining the eigenvalues and eigenvectors of  . In their 

genetic decomposition of eigentheory concepts, Salgado and Trigueros (2015) posit 

that students need to interpret the procedure of finding eigenvectors and eigenvalues 

of   as determining the solution set of the homogeneous system of equations created 

by the matrix equation          . Harel (2000) posits that the interpretation of 

“solution” in this setting, the set of all vectors   that make the equation true, entails a 

new level of complexity beyond solving equations such as     , where    , and   

are real numbers. When considering the notion of eigenspace in particular, Salgado 

and Trigueros (2015) found that students struggle to coordinate the number of 

eigenvectors corresponding to a given eigenvalue with the dimension of the space 

spanned by the eigenvectors. Thus, understanding eigentheory not only involves 

coordinating mathematical processes and entities but also equations and solution sets. 

In addition, students have to make sense of instructors’ frequent movement between 

geometric, algebraic, and abstract modes of description, but this may be challenging 

(Hillel, 2000). In fact, Thomas and Stewart (2011) found that students in their study 

primarily thought of eigenvectors and eigenvalues symbolically and were confident 

in matrix-oriented algebraic procedures, but the majority had no geometric or 

embodied views. In contrast, other researchers have shown how exploration through 

dynamic geometry software (Çağlayan, 2015; Gol Tabaghi & Sinclair, 2013; Nyman, 

Lapp, St John, & Berry, 2010), geometric interpretations of a linear transformation 

(Zandieh, Wawro, & Rasmussen, 2017), or real-world contexts (Salgado & 

Trigueros, 2015) can help students develop conceptual understanding of eigentheory. 

We similarly agree on the importance of understanding eigentheory concepts in 

multiple ways and navigating between various interpretations, and we incorporate 

this complexity in our model of student understanding of eigentheory. 



  

Working Model of Understanding Eigentheory 

Regarding what it may mean to have a conceptual understanding of eigentheory, our 

current working model is a network of connections within and across three main 

settings of how eigentheory is framed. The three sets of relationships that are 

pertinent are: (1) relationships indicated by the eigen-equation      ; (2) 

relationships indicated by the homogeneous form of the eigen-equation         
 ; and (3) relationships indicated by a linear combination of eigenvectors. Within the 

first two settings, what is most frequently the focus of inquiry is one particular 

eigenvector   for either form of the eigen-equation. However, when considering the 

collection of all   that satisfy either eigen-equation, one arrives at the eigenspace of 

  associated with  . The relationships between vectors in the same eigenspace are the 

focus of the third setting. For instance, if    and    are eigenvectors of   with 

eigenvalue  , then all vectors that are a linear combination of    and    (i.e., 

                      for scalars    and   ) are also eigenvectors of   

associated with  . Furthermore, reasoning about relationships in this third setting 

almost certainly involves reasoning about either the first or second setting as well. 

Each of these settings includes entities and relationships between those entities that 

may be realized in various ways. We organize this variability in our model according 

to four main interpretations: graphical, numeric, symbolic, and verbal. 

THE EIGENTHEORY MCE ASSESSMENT 

The development of the Multiple Choice Extended (MCE) assessment instrument for 

eigentheory grows from our prior work in student understanding of span and linear 

independence in which we developed the MCE-style question format (Zandieh et al. 

2015); questions begin with a multiple-choice element and then prompt students to 

justify their answer by selecting all statements that could support their choice (see 

Figure 1). This format was inspired by existing conceptually-oriented assessment 

instruments in undergraduate mathematics and physics (e.g., Carlson, Oehrtman, & 

Engelke, 2010; Hestenes, Wells, & Swackhamer, 1992; Wilcox & Pollock, 2013).  

Development of the Eigentheory MCE involved multiple steps. First, we compiled a 

database of questions about eigenvectors, eigenvalues, and related concepts from 

research on student understanding of eigenvectors and eigenvalues (e.g., Gol Tabaghi 

& Sinclair, 2013; Salgado & Trigueros, 2015; Thomas & Stewart, 2011), online 

resources for clicker and classroom voting on linear algebra (Cline & Zullo, 2016), 

and previous linear algebra homework assignments, exams, and interview protocols 

used by research team members (e.g., Henderson et al., 2010). Second, we used 

research results regarding students’ understanding of eigentheory from the literature, 

as well as our own teaching experience and theoretical thinking, to determine which 

questions seemed to address important aspects of what it may mean to have a 

conceptual understanding of eigentheory. Third, the most promising questions were 

edited into the MCE format, which involved moulding the problem into a multiple-

choice question and developing six corresponding justification choices that required 



  

students to reason within and between various eigentheory settings and 

interpretations. Fourth, through multiple rounds of administering the assessment to 

students, analysing the data, and subsequent refinement, we arrived at the current 

Eigentheory MCE. It contains six questions, each with six justification choices; five 

questions are in Figure 1 (the sixth is omitted because of space limitations).  

 

Figure 1: Questions 1-5 from the Eigentheory MCE 

The MCE questions were created to elicit student thinking about eigentheory within 

and across the settings and interpretations within our working model of understanding 

eigentheory. For example, the stem of Question 1 is a numeric interpretation; its 

given justifications for students to choose as true and relevant, we see that 

justification (i) is a symbolic interpretation in the       setting, (iii) is a symbolic 

interpretation in the           setting, and (v) is a geometric interpretation in 

the       setting (Figure 1). As students choose justifications that support their 

answer to the main question, they are prompted to reason about eigenvectors and 

eigenvalues within and across multiple settings and interpretations.  

METHODS 

The Eigentheory MCE was given to two introductory linear algebra classes taught by 



  

the same instructor at a large, research-intensive public university in the United States 

at the end of Spring Semester 2016. The course utilized the Inquiry-Oriented Linear 

Algebra (http://iola.math.vt.edu) curricular materials and Lay (2012) as its textbook. 

One class (of 29 students) received the MCE with given closed-ended justifications 

(see Figure 1), and the other class (of 28 students) received an open-ended version 

where students had to write their own justifications for their multiple-choice answer; 

we refer to these as Class C and Class O, respectively. Students had 20-25 minutes to 

work on the assessment. All student work referred to in this paper is labelled “B#.”  

Analysis of the closed-ended MCE consisted of entering the data into spreadsheets 

and looking for trends such as: (a) common sets of justifications that students selected 

or did not select; (b) how selecting certain justifications may have influenced 

students’ multiple choice selection; and (c) instances in which we would have 

expected students to select what we viewed as related justifications, but they did not. 

We used Grounded Theory (Glaser & Strauss, 1967) to characterize the concepts 

students brought to bear in their justifications in the open-ended MCE, coding 

independently and discussing our results as a team to find emerging themes. Finally, 

we compared students’ responses across questions and across classes to discover 

further insight into student understanding of eigentheory.  

RESULTS 

We include four insights into student understanding of eigentheory discovered from 

our MCE data analysis. These selected results are organized by settings (sections 1-2) 

and interpretations (section 3) from our working model of understanding eigentheory. 

  

Figure 2: B65’s reasoning within the       setting. 

Reasoning about relationships within       or           

We found that as students respond to an MCE question, they seem to situate it within 

a particular setting, perhaps the setting they are most familiar or comfortable with, 

regardless of the setting in which the question was initially written. Furthermore, a 

student’s chosen setting can lead to different ways of reasoning about a problem. We 

present two illustrations of this from Class O: B65’s justifications for Q1 and Q2, and 

B66’s justifications for Q1 and Q3. First, in Figure 2, B65 seemed to situate both 

problems within the       setting. On Q1, B65 explained that multiplying the 

vector   
 
  by the matrix   resulted in six times that vector. On Q2, B65 explained that 



  

   needed to be a scalar multiple, and thus the only possible vector would be one 

along the same line as the vector  , namely the vector  . In both cases B65 

emphasized that for an eigenvector, multiplying by the matrix yields a multiple of the 

original vector, thus working within the       setting. 

Second, in Figure 3, B66 seemed to situate both problems in the           

setting. On Q1, we infer this student first found the matrix       , multiplied each 

vector from the MCE question by it, and chose the vector that was mapped to the zero 

vector. Then, on Q3, although what s/he actually writes is idiosyncratic, we can infer 

s/he was still reasoning with the homogeneous equation, imagining the vectors   and 

  being mapped to zero by the matrix       , and thus the vector   would also map 

to zero. In both Q1 and Q3, B66 emphasized an action on the eigenvectors to produce 

the zero vector, seemingly invoking the           setting. 

 

Figure 3: B66’s reasoning with the           setting. 

We note that the stems of Q1, Q2, and Q3 are not written so as to elicit student 

reasoning within a particular setting. This allows for use of the open-ended 

assessment to measure a student’s preferred setting or for the closed-ended 

assessment to measure whether students can interpret the problem in either setting 

Reasoning about Eigenspaces 

The previous section provides examples of the relationships involved in the first two 

settings:       to          . In this section we attend to the eigenspace 

setting, which focuses on the relationships involved with scalar multiples or linear 

combinations of eigenvectors. An eigenspace, like any vector space, is closed under 

addition and scalar multiplication; thus, a linear combination of vectors in an 

eigenspace is also an eigenvector with the same eigenvalue as the other vectors in 

that eigenspace. When asked about eigenspaces, students may draw on these facts 

and/or may work within one of the previous two settings to derive these principles.  

For Q3, only six (of 28) students in Class O circled the correct answer (a) that   is an 

eigenvector with eigenvalue 2, five chose (b) an eigenvalue of 5, and 16 chose (c) 

that   was not an eigenvector. Approximately half the students in each group used the 

phrase “ is a linear combination of” as part of their justification (3 for (a), 3 for (b), 7 

for (c)). Sample justifications using “is a linear combination of” are given in Figure 4. 

v is a linear combination of y & z 

Since the value 2 already causes y & z to equal 0, adding a multiple to it 

will not change that  



  

Figure 4. Example of four students’ open-ended justifications for Question 3 

 

Very few students in Class O gave justifications that brought in the relationship 

between eigenvectors and eigenvalues described in the first two settings. One such 

student was B66, described in the above section. In Class C, however, 13 (of 29) 

students chose justification (iv) (symbolic      ), 11 of which correctly selected 

answer (a). Because a much higher percentage of Class C circled (a) than in Class O, 

it is possible that this justification served as a hint that helped some students choose 

the correct answer. On the other hand, this MCE option allowed us to test whether 

students recognized the relevance of this set of relationships for the given question.  

Although some students who answered (c) used the phrasing “linear combination,” 

their arguments focused more on the linear independence of the vectors. The answers 

students gave for (c) include: “Eigenvectors must be linearly independent from each 

other so if   is a linear combination of   and   then it cannot be an eigenvector,” 

[B58], and “Because they all correspond to the same eigenvalue they all must have 

unique eigenvectors and   is a linear combination of   and   and therefore not unique 

and not an eigenvector of  ” [B79]. These answers focus on eigenvectors as 

necessarily being linearly independent or unique. This focus may come from students 

remembering that eigenvectors of distinct eigenvalues are linearly independent or that 

textbook solutions often give an eigenspace basis as the final answer, which may 

explain students thinking there are only finitely many eigenvectors for an eigenspace. 

In Q5, eigenspaces were represented geometrically, and students who completed it 

were rather successful in selecting the correct multiple-choice answer (14/21 in Class 

C and 21/26 in Class O). However, many students still focused on finite numbers of 

vectors. On Q5, reasons given by some students to support the correct choice (b) 

similarly focused on finite numbers of eigenvectors: “Matrix   already has 3 

eigenvectors so there’s no room for a 4
th
” [B59], and “  is a linear combination of   

and  , and there are already 3 eigenvectors for 3 dimensions, so   cannot be an 

eigenvector of  ” [B66]. We conjecture these students may have been conflating the 

total number of possible eigenvectors (infinite) for a 3x3 matrix with the number of 

linearly independent vectors needed to create the bases for the 1- and 2-dimensional 

eigenspaces. Alternatively, B58’s justification for Q5 focuses on dimension: “In a 

3x3 matrix there can only be 3 dimensions to the eigenspace.    and    together span 

the entire space of    so there cannot be another eigenvector of   besides    and 

  .” We conjecture grasping the difference between finiteness of dimensions and 

infiniteness of eigenvectors may be particularly vital for understanding eigenspaces. 

Justification given 

with choosing (a) 

Justification given 

with choosing (c) 

Justification given 

with choosing (b) 

Justification given 

with choosing (b) 

  is a linear combination 

of   and   which have 

the same eigenvalue.  
 

No, because   is a 

linear combination 

of the two vectors.  

  is a linear combination of   and    Both 

   and    are scalar multiples of their 

previous form so the resultant vector will 

be an eigenvector as well 

Since it is a linear 

combination of the other 

eigenvectors, it would also 

be an eigenvector. 

NOTE: Typed versions are used here to improve readability of students’ handwritten justifications 



  

Reasoning Across Interpretations 

We conclude our results by discussing various aspects of students reasoning across 

interpretations and the ways in which the MCE afforded that. In particular, we focus 

on symbolic versus geometric interpretations of eigentheory. On Q1, as noted in the 

previous section, a majority of students in Class O wrote at least one equation 

(symbolic interpretation), but none wrote anything geometric in their justifications. 

This could be an indication that students might favour algebraic reasoning over 

geometric reasoning when justifying their answers to eigentheory questions, even 

though the classes used the IOLA curriculum which specifically introduces 

eigenvectors and eigenvalues geometrically. On the other hand, it could be that the 

numeric interpretation that Q1 was written in did not elicit geometric interpretations 

from students in their open-ended justifications, or that students see symbolic 

justifications as more acceptable to the teacher or the broader math community than 

geometric ones. In a more direct way of assessing students’ ability to see connections 

to the geometric interpretation, the closed-ended MCE gives students the geometric 

justification choice (v) on Q1, and roughly half (14/29) of the students in Class C 

selected it. Furthermore, over 80% of the total students from both classes answered 

the multiple choice stem of Q1 and Q2 correctly (48/57 and 51/57 respectively), 

demonstrating some ability to reason both numerically and geometrically about 

eigenvectors and eigenvalues. Because the wording of the MCE questions and 

justifications makes use of the four different interpretations from our working model, 

we are better able to assess students’ understanding of the symbolic, numeric, 

geometric, and verbal interpretations in eigentheory, both within and cross settings. 

DISCUSSION 

Research on student thinking often relies on students’ written work on mathematics 

problems as evidence of how students make sense of or reason about particular 

content. Our research here is no exception, with student work on the MCE revealing a 

variety of ways that students understand aspects of eigentheory. However, the MCE’s 

closed-ended justifications extend a written question’s ability to examine connections 

between settings and interpretations that students might not have initially considered 

or felt the need to include in their justifications. For instance on Q1 in Class O, four 

students wrote some form of           as part of their justification, ten wrote 

some form of      , four wrote some form of both equations, and ten students did 

not write either equation. In contrast, on Q1 in Class C, 23 students selected both 

justifications (i) (symbolic      ) and (iii) (symbolic          ), and only 

one student selected neither. Hence, when students were forced to consider the two 

eigentheory settings (i) and (iii), the large majority was able to see both as true and 

relevant. As other researchers have pointed out the importance of understanding both 

equations in eigentheory, it is significant that the MCE may give new insight in 

students’ understanding of connections between these two settings. 

We do see some potential limitations of the MCE. First, it is more time consuming to 



  

take than a simple multiple-choice test, and this affects the number of questions that 

can be asked. The MCE can also be cognitively taxing because students must 

consider each justification to determine its truth and relevance. Third, scoring MCE 

results can be complicated. We hope that further refinement and use of the MCE, as 

well as developing possible scoring systems, will continue to broaden and deepen the 

mathematical community’s understanding of how students reason about eigentheory. 

REFERENCES 

Artigue, M., Batanero, C., & Kent, P. (2007). Mathematics thinking and learning at 

post-secondary level. In F. K. Lester Jr. (Ed.), Second handbook of research on 

mathematics teaching and learning (pp. 1011–1050). Reston, VA: NCTM. 

Çağlayan, G. (2015). Making sense of eigenvalue-eigenvector relationships: Math 

majors' linear algebra–geometry connections in a dynamic environment. Journal of 

Mathematical Behavior, 40, 131–153.  

Carlson, M., Oehrtman, M., & Engelke, N. (2010). The precalculus concept 

assessment: A tool for assessing students’ reasoning abilities and understandings. 

Cognition and Instruction, 28(2), 113–145. 

Cline, K., & Zullo, H. (2016). MathQUEST/MathVote. Retrieved from 

http://mathquest.carroll.edu/ 

Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and sociocultural 

perspectives in the context of developmental research. Educational Psychologist, 

31, 175–190. 

Dorier, J.-L. (Ed.) (2000). On the teaching of linear algebra. Dordrecht, The 

Netherlands: Kluwer Academic. 

Gol Tabaghi, S., & Sinclair, N. (2013). Using dynamic geometry software to explore 

eigenvectors: The emergence of dynamic-synthetic-geometric thinking. 

Technology, Knowledge and Learning, 18(3), 149–164. 

Glaser, B., & Strauss, A. (1967). The discovery of grounded theory: Strategies for 

qualitative research. Chicago, IL: Aldine Publishing Company. 

Harel, G. (2000). Three principles of learning and teaching mathematics. In J.-L. 

Dorier (Ed.), On the teaching of linear algebra. Dordrecht, The Netherlands: 

Kluwer Academic Publishers. 

Henderson, F., Rasmussen, C., Sweeney, G., Wawro, M, & Zandieh, M. (2010). 

Symbol sense in linear algebra. Proceedings of the 13
th
 Annual Conference on 

Research in Undergraduate Mathematics Education, Raleigh, NC.  

Hestenes, D., Wells, M., & Swackhammer, G. (1992). Force concept inventory. The 

Physics Teacher, 30, 141–158. 

Hillel, J. (2000). Modes of description and the problem of representation in linear 

algebra. In J.-L. Dorier (Ed.), On the teaching of linear algebra (pp. 191–207). 

http://mathquest.carroll.edu/


  

Dordrecht, Netherlands: Kluwer. 

Lay, D. C. (2012). Linear algebra and its applications (Fourth ed.). Boston, MA: 

Pearson. 

Nyman, M. A., Lapp, D. A., St John, D., & Berry, J. S. (2010). Those do what? 

Connecting eigenvectors and eigenvalues to the rest of linear algebra: Using visual 

enhancements to help students connect eigenvectors to the rest of linear algebra. 

International Journal for Technology in Mathematics Education, 17(1). 

Rasmussen, C., & Wawro, M. (2017). Post-calculus research in undergraduate 

mathematics education. In J. Cai, (Ed.), The compendium for research in 

mathematics education (pp. 551-579). Reston VA: NCTM. 

Rasmussen, C., Wawro, M. & Zandieh, M. (2015). Examining individual and 

collective level mathematical progress. Education Studies in Mathematics, 88(2), 

259-281. 

Salgado, H., & Trigueros, M. (2015). Teaching eigenvalues and eigenvectors using 

models and APOS Theory. The Journal of Mathematical Behavior, 39, 100–120.  

Thomas, M. O. J., & Stewart, S. (2011). Eigenvalues and eigenvectors: Embodied, 

symbolic and formal thinking. Mathematics Education Research Journal, 23(3), 

275–296. 

Watson, K., Wawro, M., Zandieh, M., & Kerrigan, S. (2017). Knowledge about 

student understanding of eigentheory: Information gained from multiple choice 

extended assessment. In A. Weinberg, C. Rasmussen, J. Rabin, M. Wawro, and S. 

Brown (Eds.), Proceedings of the 20
th
 Annual Conference on Research in 

Undergraduate Mathematics Education (pp. 311-325), San Diego, CA. 

Wawro, M., Watson, K., & Christensen, W. (2017). Meta-representational 

competence with linear algebra in quantum mechanics. In A. Weinberg, C. 

Rasmussen, J. Rabin, M. Wawro, and S. Brown (Eds.), Proceedings of the 20
th
 

Annual Conference on Research in Undergraduate Mathematics Education (pp. 

326-337), San Diego, CA. 

Wilcox, B., & Pollock, S. (2013). Multiple choice assessment for upper-division 

electricity and magnetism. In P. V. Engelhardt, A. D. Churukian, & D. L. Jones 

(Eds.), 2013 PERC Proceedings (pp. 365–368). 

Zandieh, M., Plaxco, D., Wawro, M., Rasmussen, C., Milbourne, H., & Czeranko, K. 

(2015). Extending multiple choice format to document student thinking. In T. 

Fukawa-Connelly, N. Infante, K. Keene, and M. Zandieh (Eds.), Proceedings of 

the 18
th
 Annual Conference on Research in Undergraduate Mathematics 

Education (pp. 1094-1100), Pittsburgh, PA. 

Zandieh, M., Wawro, M., & Rasmussen, C. (2017). An example of inquiry in linear 

algebra: The roles of symbolizing and brokering. PRIMUS: Problems, Resources, 

and Issues in Mathematics Undergraduate Studies, 27(1), 96–124.  


