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Abstract

Numerous models describing the human emotional states have been built by the psy-
chology community. Alongside, Deep Neural Networks (DNN) are reaching excellent
performances and are becoming interesting features extraction tools in many computer
vision tasks. Inspired by works from the psychology community, we first study the link
between the compact two-dimensional representation of the emotion known as arousal-
valence, and discrete emotion classes (e.g. anger, happiness, sadness, etc.) used in the
computer vision community. It enables to assess the benefits – in terms of discrete
emotion inference – of adding an extra dimension to arousal-valence (usually named
dominance). Building on these observations, we propose CAKE, a 3-dimensional rep-
resentation of emotion learned in a multi-domain fashion, achieving accurate emotion
recognition on several public datasets. Moreover, we visualize how emotions boundaries
are organized inside DNN representations and show that DNNs are implicitly learning
arousal-valence-like descriptions of emotions. Finally, we use the CAKE representation
to compare the quality of the annotations of different public datasets.

1 Introduction
Facial expression is one of the most used human means of communication after language.
Thus, the automated recognition of facial expressions – such as emotions – has a key role in
affective computing, and its development could benefit human-machine interactions.

Different models are used to represent human emotion states. Ekman et al. [6] propose
to classify the human facial expression resulting from an emotion into six classes (resp. hap-
piness, sadness, anger, disgust, surprise and fear) supposed to be independent across the
cultures. This model has the benefit of simplicity but could be not sufficient to address the
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Figure 1: Comparison of the discrete and
continuous (arousal-valence) representa-
tions using AffectNet’s annotations [17].

2 3 4 512

83

84

85

86

87

Representation Size

A
ff

ec
tN

et
V

al
id

at
io

n
A

cc
ur

ac
y

(%
)

Figure 2: Influence of adding supplemen-
tary dimensions to arousal-valence when
predicting emotion on AffectNet [17].

whole complexity of human affect. Moreover it suffers from serious intra-class variations
as, for instance, soft smile and laughing equally belong to happiness. That is why Ekman’s
emotion classes are sometimes assembled into compound emotions [5] (e.g. happily sur-
prised). Others have chosen to represent emotion with an n-dimensional continuous space,
as opposite to the Ekman’s discrete classes. Russel has built the Circumplex Model of Af-
fect [20] in which emotion states are described by two values: arousal and valence. Arousal
represents the excitation rate – the higher the arousal is, the more intense the emotion is –
and valence defines whether the emotion has a positive or a negative impact on the subject.
Russels suggests in [20] that all Ekman’s emotions [6] and compound emotions could be
mapped in the circumplex model of affect. Furthermore, this two-dimensional approach al-
lows a more accurate specification of the emotional state, especially by taking its intensity
into account.

A third dimension has been added by Mehrabian et al. [16] – the dominance – which
depends on the degree of control exerted by a stimulus. Last, Ekman and Friesen [7] have
come up with the Facial Action Code System (FACS) using anatomically based action units.
Developed for measuring facial movements, FACS is well suited for classifying facial ex-
pressions resulting from an affect.

Based on these emotion representations, several large databases of face images have been
collected and annotated according to emotion. EmotioNet [8] gathers faces annotated with
Action Units [7]; SFEW [4], FER-13 [9] and RAF [15] propose images in the wild annotated
in basic emotions; AffecNet [17] is a database annotated in both discrete emotion [6] and
arousal-valence [20].

The emergence of these large databases has allowed to develop automatic emotion recog-
nition systems, such as the recent approaches based on Deep Neural Networks (DNN). Af-
fectNet’s authors [17] use three AlexNet [13] to learn respectively emotion classes, arousal
and valence. In [18], the authors make use of transfer learning to counteract the smallness of
the SFEW [4] dataset, by pre-training their model on ImageNet [2] and FER [9]. In [1] au-
thors implement Covariance Pooling using second order statistics when training on emotion
recognition (on RAF [15] and SFEW [4]).

Emotion labels, FACS and continuous representations have their own benefits – simplic-
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ity of the emotion classes, accuracy of the arousal-valence, objectivity of the FACS, etc. –
but also their own drawbacks – imprecision, complexity, ambiguity, etc. Therefore several
authors have tried to leverage the benefits of all these representations. Khorrami et al. [11]
first showed that neural networks trained for expression recognition implicitly learn facial
action units. Contributing to highlighting the close relation between emotion and Action
Units, Pons et al. [19] learned a multitask and multi-domain ResNet [10] on both discrete
emotion classes (SFEW [4]) and Action Units (EmotioNet [8]). Finally, Li et al. [15] pro-
posed a "Deep Locality-Preserving Learning" to handle the variability inside an emotion
class, by making classes as compact as possible.

In this context, this paper focuses on the links between arousal-valence and discrete
emotion representations for image-based emotion recognition. More specifically, the paper
proposes a methodology for learning very compact embedding, with not more than 3 di-
mensions, performing very well on emotion classification task, making the visualization of
emotions easy, and bearing similarity with the arousal-valence representation.

2 Learning Very Compact Emotion Embeddings

2.1 Some Intuitions About Emotion Representations
We first want to experimentally measure the dependence between emotion and arousal-
valence as yielded in [20]. We thus display each sample of the AffectNet [17] validation
subset in the arousal-valence space and color them according to their emotion label (Fig-
ure 1). For instance, a face image labelled as neutral with an arousal and a valence of zero is
located at the center of Figure 1 and colored in blue. It clearly appears that a strong depen-
dence exists between discrete emotion classes and arousal-valence. Obviously, it is due in
part to the annotations of the AffectNet [17] dataset, as the arousal-valence have been con-
strained to lie in a predefined confidence area based on the emotion annotation. Nevertheless,
this dependence agrees with the Circumplex Model of Affect [20].

To evaluate further how arousal-valence representation is linked to emotion labels, we
train a classifier made of one fully connected layer1 (fc-layer) to infer emotion classes from
arousal-valence values provided by AffectNet [17] dataset. We obtain the accuracy of 83%,
confirming that arousal-valence can be an excellent 2-d compact emotion representation.

This raises the question of the optimality of this 2-d representation. Would adding a
third dimension to arousal-valence make the classification performance better? To address
this question, we used the 512-d hidden representation of a ResNet-18 [10] trained to predict
discrete emotions on the AffectNet dataset [17]. This representation is then projected into a
more compact space using a fc-layer outputting k dimensions, which are concatenated with
the arousal-valence values. On top of this representation, we add another fc-layer predicting
emotion classes. The two fc-layers are finally trained using Adam optimizer [12]. Adding 1
dimension to arousal-valence gives a gain of +3 points on the accuracy. It agrees with the as-
sumption that a three-dimensional representation is more meaningful than a two-dimensional
one [16]. The benefit of adding more than 1 dimension is exponentially decreasing; with
+512 dimensions, the gain is only of +0.6 points compared to adding 1 dimension, as shown
in Figure 2.

From these observations, the use of a compact representation seems to be consistent with
discrete emotion classes, as it enables an accuracy of 83% and 86% – respectively for a 2-d

1By "fully connected layer" we denote a linear layer with biases and without activation function.
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Figure 3: Our approach’s overview. Left: we use a ResNet-18 previously trained for discrete
emotion recognition or arousal valence regression to extract 512-d hidden representations
from face images. Center: using these hidden representations, CAKE or AVk representations
(center) are learned to predict discrete emotions. Right: the learning process is multi-domain,
predicting emotions on three different datasets with three different classifiers. Gray blocks
are non-trainable weights while blue blocks are optimized weights.

and a 3-d representation – and it even may allow to describe affect states with more contrast
and accuracy. Even if arousal-valence is a good representation for emotion recognition,
the question of its optimality has not been answered by these preliminary experiments. In
other words, is it possible to learn 2-d (or 3-d) embedding better than those built on arousal-
valence? We positively answer this question in Section 2.2.

2.2 Learning Compact and Accurate Representations of Emotions
Based on the previous observations, this section proposes a methodology for learning a com-
pact embedding for emotion recognition from images.

Features extraction The basic input of our model is an image containing one face display-
ing a given emotion. We first extract 512-d features specialized in emotion recognition. So
as to, we detect the face, align its landmarks by applying an affine transform and crop the
face region. The so-obtained face is then resized into 224×224 and fed to a ResNet-18 [10]
network (Figure 3, Features extraction). The face image is augmented (e.g. jittering, rota-
tion), mostly to take the face detector noise into account. We also use cutout [3] – consisting
in randomly cutting a 45×45 pixels sized patch from the image – to regularize and improve
the robustness of our model to facial occlusions. Our ResNet outputs 512-d features, on top
of which a fc-layer can be added. At training time, we also use dropout [21] regulariza-
tion. The neural network can be learned from scratch on two given tasks: discrete emotion
classification or arousal-valence regression.

Compact emotion encoding Compact embedding is obtained by projecting the 512-d fea-
tures provided by the ResNet-18 (pretrained on discrete emotion recognition) into smaller
k-dimensional spaces (Figure 3, Emotion Encoding) in which the final classification is done.
The k features may be seen as a compact representation of the emotion, and the performance
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of the classifier can be measured for different values of k. CAKE-2, CAKE-3, etc., denote
such classifiers with k = 2, k = 3, etc.

In the same fashion we can train the ResNet-18 using arousal-valence regression. In this
case, the so-obtained arousal-valence regressor can be used to infer arousal-valence values
from novel images and concatenate them to the k features of the embedding. Thus we repro-
duce here the exact experiment done in Section 2.1 in order to assess the benefit of a third
(or more) dimension. The difference is that arousal-valence are not ground truth values but
predicted ones. These methods are denoted as AV1, AV2, AV3, etc. for the different values
of k.

Domain independent embedding As we want to ensure a generic compact enough rep-
resentation, independent of the datasets, we learn the previously described model jointly on
several datasets, without any further fine-tuning.

Our corpus is composed of AffectNet [17], RAF [15] and SFEW [4], labelled with seven
discrete emotion classes: neutral, happiness, sad, surprise, fear, disgust and anger. Our
training subset is composed of those of AffectNet (283901 elts., 95.9% of total), RAF (11271
elts., 3.81% of total) and SFEW (871 elts., 0.29% of total). Our testing subset is composed
of the subsets commonly used for evaluation in the literature (validation of SFEW and Af-
fecNet, test of RAF).

To ease the multi-domain training, we first pre-train our features extractor model on
AffectNet and freeze its weights. Then we apply the same architectures as described before,
but duplicate the last fc-layer in charge of emotion classification in three dataset-specific
layers (Figure 3, multi-domain learning). The whole model loss is a modified softmax cross
entropy defined as follows:

Loss =
1
N

N

∑
i=1

3

∑
j=1

wi, j
classw

j
dataset E(yi, ŷi, j) (1)

where j is ranging in [AffectNet, RAF, SFEW], yi is the label of ith element, ŷi, j is the
prediction of the jth classifier on the ith element, E is the softmax cross entropy loss, N is
the number of elements in the batch, wi

class is a weight given to the ith element of the batch
depending on its emotion class and w j

dataset is a weight given to the jth classifier prediction.
Each sample of the multi-domain dataset is identified according to its original database,
allowing to choose the correct classifier’s output when computing the softmax cross entropy.

The wclass weight is defined as: wi, j
class =

N j
total

Ni, j
class×nbclass

where N j
total is the number of el-

ements in the jth dataset, Ni, j
class is the number of elements in the class of the ith element

of the jth dataset and nbclass is the number of classes (7 in our case). The goal here is to
fix the important class imbalance in the dataset by forcing to fit the uniform distribution, as
previously done by [17].

The wdataset weight permits to take the imbalance between dataset’s sizes into account.

w j
dataset =

{
1

logN j
total

sample ∈ jthdataset

0 sample /∈ jthdataset
(2)

We thus define a global loss enabling to optimize the last two layers of our model (namely
Emotion Encoding and Multi-domain Learning in Figure 3) on the three datasets at the same
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Figure 4: Influence of representation size on
the multi-domain F1 score.

Dataset Rep. & Dim. F1 Score

Affect
-Net

CAKE-3 3 58.1 ± 0.5
AV1 3 55.6 ± 0.5
AV 2 55.8 ± 0.0
CAKE-2 2 52.1 ± 0.4

SFEW
CAKE-3 3 34,1 ± 1.0
AV1 3 30.2 ± 0.8
AV 2 33.3 ± 0.1
CAKE-2 2 28.0 ± 0.8

RAF
CAKE-3 3 64.4 ± 0.5
AV1 3 63.0 ± 0.9
AV 2 61.2 ± 0.2
CAKE-2 2 60.6 ± 1.9

Table 1: Evaluation of compact represen-
tations on AffectNet, SFEW, RAF.

time. The dimension k (or k+ 2 in the case of the arousal-valence approach) can easily be
changed and help to evaluate the interest of supplementary dimensions for emotion repre-
sentation.

3 Experiments

3.1 Evaluation Metrics
We measure the classification performance with the accuracy and the macro F1 Score (3).
Accuracy measures the number of correctly classified samples. Instead of accuracy, we
prefer macro F1 score which gives the same importance to each class:

F1macro =
1

Nc

Nc

∑
i

F1i F1i = 2
preci · reci

preci + reci
preci =

t pi

t pi + f pi
reci =

t pi

t pi + f ni
(3)

where i is the class index; preci, reci and F1i are the precision, the recall and the F1-score of
class i; Nc is the number of classes; t p, f p and f n are the true positives, false positives and
false negatives rates. All scores are averaged on 10 runs, with different initializations, and
given with associated standard deviations, on our multi-domain testing subset.

3.2 Compactness of the Representation
We first evaluate the quality of the representations in a multi-domain setting. Table 1 reports
the F1-score of CAKE-2, AV, CAKE-3 and AV1 trained on three datasets with three different
classifiers, each one being specialized on a dataset as explained in Section 2. Among the 2-d
models (AV and CAKE-2), AV is better, taking benefits from the knowledge transferred from
the AffectNet dataset. This is not true anymore for the 3D models, where CAKE-3 is better
than AV1, probably because of its greater number of trainable parameters.

To validate the hypothesis of the important gain brought by adding a third dimension,
we run the "CAKE" and "AVk" experiments with different representation sizes. To simplify
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Rep. Dim. RAF [15] SFEW [4] AffectNet [17]

Covariance Pooling [1] 2000 79.4 - -
512 - 58.1 -

Deep Locality Preserving [15] 2000 74.2 51.0 -
Compact Model [14] 64 67.6 - -

VGG[15] 2000 58.2 - -
Transfer Learning [18] 4096 - 48.5 -

ours (CAKE-3) 3 68.9 44.7 58.2
ours (Baseline) 512 71.7 48.7 61.7

Table 2: Accuracy of our model regarding state-of-the-art methods. The size of the represen-
tation is taken into account. Metrics are the average of per class recall for RAF and accuracy
for SFEW and AffectNet.

the analysis of the results, we plot in Figure 4 a multi-domain F1-score, i.e. the weighted
average of the F1-scores according to the respective validation set sizes. We observe that the
gain in multi-domain F1-score is exponentially decreasing for both representations – note
that the representation size axis is in log scale – and thus the performance gap between a
representation of size 2 and size 3 is the more important. We also observe that "CAKE"
representations still seem to yield better results than "AVk" when the representation size is
greater than 2.

These first experiment shows that a very compact representation can yield good per-
formances for emotion recognition. It also is in line with the "dominance" dimension hy-
pothesis, as a third dimension brought the more significant gain in performance. After 3
dimensions, the gain is much less significant.

3.3 Accuracy of the Representation
To evaluate the efficiency of the CAKE-3 compact representation, we compare its accuracy
with state-of-the-art approaches (Table 2) on the public datasets commonly used in the lit-
erature for evaluation (validation of SFEW and AffecNet, test of RAF). In order to get a
fair comparison, we add a "Rep. Dim." column corresponding to the size of the last hidden
representation – concretely, we take the penultimate fully connected output size. We report
the scores under the literature’s metrics, namely the mean of the per class recall for RAF [15]
and the accuracy for SFEW [4] and AffectNet [17]. To the best of the author’s knowledge
no other model has been evaluated before on the AffectNet’s seven classes.

CAKE-3 is outperformed by Covariance Pooling [1] and Deep Locality Preserving [15].
Nevertheless, it is still competitive as the emotion representation is far more compact – 3-d
versus 2000-d – and learned in a multi-domain fashion. Moreover, we gain 1 point on RAF
when we compare to models of same size (2 millions parameters), e.g. Compact Model [14].
These results support the conclusion made in 3.2, as we show that a compact representation
of the emotion learned by small models is competitive with larger representations. This
finally underlines that facial expressions may be encoded efficiently into a 3-d vector and
that using a large embedding on small datasets may lead to exploit biases of the dataset more
than to learn emotion recognition.

Our experiments also allow to perform a cross-database study as done in [15]. This
study consists in evaluating a model trained on dataset B on a dataset A. Thereby we obtain
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Dataset
AffectNet SFEW RAF

Classifier
AffectNet 58.1 (± 0.5) 27.6 (± 2.6) 53.8 (± 0.6)
SFEW 35.1 (± 2.1) 34.1 (± 1.0) 47.3 (± 1.2)
RAF 51.8 (± 0.4) 31.5 (± 1.7) 64.4 (± 0.6)

Table 3: Cross-database evaluation on CAKE-3 model (F1-Score).

Table 3 with the evaluation of each classifier on each dataset. Results on SFEW [4] – trained
or evaluated – are constantly lower than others, with a higher standard deviation. This could
be due to the insufficient number of samples in the SFEW training set or more probably to the
possible ambiguity in the annotation of SFEW compared to AffectNet and RAF. Confirming
this last hypothesis, the RAF classifier has the better generalization among the datasets. It
is in line with the claim of Li et al. [15] that RAF has a really reliable annotation with a
large consensus between different annotators. Finally, it also underlines the difficulty to find
a reliable evaluation of an emotion recognition system because of the important differences
between datasets annotations.

3.4 Visualizing Emotion Maps
Visualizations are essential to better appreciate how DNN performs classifications, as well
as to visualize emotion boundaries and their variations across datasets. Our visualization
method consists in densely sampling the compact representation space – 2-d or 3-d – into a
mesh grid, and feeding it to a formerly trained model – AV, CAKE-2 or CAKE-3 – in order
to compute a dense map of the predicted emotions. Not all the coordinates of the mesh grid
belong to real emotions and some of them would never happen in real applications.

The construction of the mesh grid depends on the model to be used. For the AV and
the CAKE-2 models, we have simply built it using 2d vectors with all values ranging in
intervals containing maximum and minimum values of the coordinates observed with real
images. As the CAKE-3 model is dealing with a three-dimensional representation, it is not
possible to visualize it directly on a plane figure. To overcome this issue we modify CAKE-3
into a CAKE-3-Norm representation where all the coordinates are constrained to be on the
surface of the unit sphere, and visualize spherical coordinates. Even if CAKE-3-Norm shows
lower performances (about 2 points less than CAKE-3), the visualization is still interesting,
bringing some incentives about what has really been learned.

Figure 5 shows the visualization results for CAKE-3-Norm, AV and CAKE-2 represen-
tations (resp. from top to down). Each dot is located by the coordinates of its compact
representation – (arousal,valence) for AV, (k1,k2) for CAKE-2 and spherical coordinates
(φ and θ ) for CAKE-3-Norm – and colored according to the classifier prediction. The per
class macro F1-score is displayed inside each emotion area.

First, each compact representation – CAKE-2, CAKE-3-Norm and AV – exhibits a strong
consistency across the datasets (in Figure 5, compare visualizations on the same row). In-
deed, the three classifiers show a very similar organization of the emotion classes, which is
demonstrating the reliability of the learned representation. Thereby, the neutral class – in
blue – is always placed at the origin and tends to neighbor all other classes. It is in line with
the idea of neutral as an emotion with a very low intensity. Nevertheless, we can witness
small inter-dataset variations, especially on SFEW [4] (in Figure 5, middle column) with
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disgust and fear – resp. brown and purple – which are almost missing. This underlines the
disparities of annotations across the datasets and confirms the need of multi-domain frame-
works when wishing to achieve a more general emotion recognition model.

Second, we can analyze variations between the different representations for a given
dataset (in Figure 5, compare visualizations on the same column). As AV is based on arousal-
valence, we observe the same emotion organization as in Figure 1. Especially, as the majority
of the AffectNet’s training (and validation) samples have a positive arousal, the classifier do
not use the whole space (in Figure 5, second row: see green, blue and orange areas) unlike
CAKE-2 and CAKE-3 which are not constrained by arousal-valence.

We can find many similarities between these three representations, but the most impres-
sive come across when comparing CAKE-2 and AV. Despite the inequality of scaling – which
causes the neutral area (blue) to be smaller in CAKE-2 – AV and CAKE-2 compact represen-
tations are very close. Indeed, the area classes are organized exactly in the same fashion. The
only difference is that for AV they are disposed in a clockwise order around neutral whereas
for CAKE-2 they are disposed in an anticlockwise order. This observation shows that a DNN
trained on the emotion recognition classification is able to learn an arousal-valence-like rep-
resentation of the emotion. It contributes – along with Khorrami [11] who points that DNNs
trained to recognize emotions are learning action units [7] – to bring the dependence across
the emotion representations in the forefront.
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Figure 5: Visualization of CAKE-3-Norm, AV and CAKE-2. Rows indicate evaluated rep-
resentation – resp. from top to down: CAKE-3-Norm, AV, CAKE-2 – and columns indicate
datasets – resp. from left to right: AffectNet [17], SFEW [4] and RAF [15].
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4 Conclusion
This work proposes a comprehensive analyze on how a DNN can describe emotional states.
To this purpose, we first studied how many dimensions are sufficient to accurately repre-
sent an emotion resulting from a facial expression. We then conclude that three dimensions
are a good trade-off between accuracy and compactness, agreeing with the arousal-valence-
dominance [20][16] psychologist model. Thereby, we came up with a DNN providing a
3-dimensional compact representation of emotion, learned in a multi-domain fashion on
RAF [15], SFEW [4] and AffecNet [17]. We set up a comparison with the state-of-the-
arts and showed that our model can compete with models having much larger feature sizes.
It proves that bigger representations are not necessary for emotion recognition. In addition,
we implemented a visualization process enabling to qualitatively evaluate the consistency of
the compact features extracted from emotion faces by our model. We thus showed that DNN
trained on emotion recognition are naturally learning an arousal-valence-like [20] encoding
of the emotion. As a future work we plan to also apply state-of-the-art techniques – as Deep
Locality Preserving Loss [15] or Covariance Pooling [1] – to enhance our compact repre-
sentation. In addition, nothing warranty that the learned CAKE bears the same semantic
meanings as arousal-valence-dominance does: further interpreting the perceived semantic of
the dimensions would therefore be an interesting piece of work.
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