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Abstract

This study investigates numerically the effects of wall radiation on Bénard cells in cavities
heated from below using Chebyshev spectral methods. Bifurcation theory is also used to describe
and analyse the cellular flow solutions obtained in a square and a rectangle cavities filled with air.

As wall radiation modifies the flow via the adiabatic vertical wall condition, the motionless
and thermally stratified solution no longer exists at low Rayleigh numbers and is replaced by a
very weak 2× 2 cellular solution. This 4-cell weak flow undergoes pitchfork bifurcations at higher
Rayleigh numbers: both perfect and imperfect pitchfork bifurcations are observed in the pres-
ence of wall radiation. Bifurcations to cellular flows with a reflection symmetry become imperfect
because the cellular flows with the opposite rotating directions are no more equivalent. There-
fore the resulting convective and radiative Nusselt numbers of the two bifurcated branches are no
longer the same on the top or bottom wall. Note also that Nusselt numbers (either convective or
radiative) of any bifurcated branch at one Rayleigh number are different on the bottom and top
walls with wall radiation. Results obtained are analysed and some recommendations are given to
describe Bénard flows with wall radiation.
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1 Introduction

Heat transfer in a cavity heated from below has been widely investigated [1]. Nevertheless, few
studies with wall radiation have been conducted and the effect of wall radiation is less understood
in the litterature. Mizushima et al. [4] used bifurcation diagrams to describe various thermal and
flow regimes in such a cavity without radiation. Such bifurcation analyses are not used in the past
studies with radiative walls.

In [5], Ridouane et al. describe various steady-state patterns and unsteady solutions in a
square cavity with radiative walls. They describe different flow solutions and heat regimes in
various nested tables. For instance, they analyse bi-cellular flow regimes ascending at the middle
of the cavity, but do not study the reverse solution descending at the middle. Also, the given
convective and radiative Nusselt numbers are not associated to the top or bottom walls. The
effect of vertical wall emissivity (0 6 εV 6 0.85) and of cavity aspect-ratio (1 6 AR 6 10) on
Rayleigh-Bénard convection is investigated in Gad and Balaji [1]. The numerical solutions are
computed using FLUENT to solve steady incompressible Navier-Stokes equations with radiative
walls and a transparent medium. They observe jumps from unicellular to bi-cellular flows at some
critical Rayleigh numbers, but they do not address the problem of multiple solutions nor the issue
of flow bifurcations. Some preliminary studies are presented by Xin et al. [6, 7, 3]: the coupling
of natural convection with surface radiation in a cavity using a Chebyshev spectral method is
presented and validated and the first bifurcation at low Rayleigh number is studied for a square
cavity and a twice longer cavity in [3].

The present study continues the work performed in [3], adopts bifurcation analyses used in [4]
and suggests, for wall radiation cases, that results of Nusselt numbers should be presented for
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both the top and bottom walls or at least for the specified wall (either top or bottom wall).
The paper is organized as follows. After recalling the governing equations of the cavity problem

with wall radiation, the bifurcation theory is first used to describe the different flow regimes. Heat
transfers at walls are therefore analyzed using Nusselt numbers. Some concluding remarks and
recommendations end the paper.

2 Governing equations

A cavity of length L and height H is heated from below with a constant high temperature Th at the
bottom wall and cooled from top with a constant low temperature Tc at the top wall (see Fig. 1).
Two aspect ratios are considered in this paper: a square cavity (L = H) and a rectangular cavity
(L = 2H).
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Figure 1: Geometry of the simulated cavity. Horizontal walls are isothermal and vertical walls are
adiabatic. Points A, B, C and D are located at ±0.1H from the corners.

The cavity is filled with air considered as a Newtonian transparent medium of density ρ,
kinematic viscosity ν, thermal conductivity k, specific heat cp, thermal diffusivity α = k/(ρcp) and
thermal dilatation coefficient β. In order to make comparisons with the results of Gad and Balaji
[1], the considered fluid properties are T0 = Tc+Th

2 = 309 K, g·β
ν·α = 8.0736 · 107 and Pr = ν

α = 0.71
with g = 9.81m · s−2. Natural convection flow in such a cavity is governed by the Navier-Stokes

equations and depends strongly on the Rayleigh number Ra = gβ∆TH3

να where ∆T = Th − Tc
is the differential temperature in the cavity. In presence of wall radiation, it also depends on a
radiation to conduction parameter Nr = σ(T 4

h −T 4
c ) ·H/(k∆T ) with σ = 5.67 · 10−8W ·m−2 ·K−4

being the Stefan-Boltzmann constant. The Rayleigh number is changed by varying ∆T with Nr '
4σT 3

0H/k = 7.765 (i.e. H = 3.14cm to match [1] with Tc = T0 −∆T/2 and Th = T0 + ∆T/2). In
this study, Navier-Stokes equations of the incompressible flow under the Boussinesq approximation
are solved :
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A no-slip wall condition is forced at the walls (u = v = 0). The bottom and top walls of the
cavity are isothermal walls (T (y = −H/2) = Th and T (y = H/2) = Tc). The two vertical walls
are adiabatic in the sense that radiative transfer balances local heat conduction:

−k ∂T∂x︸ ︷︷ ︸
qc

+qr = 0 on left wall and −k ∂T∂x︸ ︷︷ ︸
qc

−qr = 0 on right wall (2)
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The radiative heat flux qr is positive when wall radiates more towards other walls than it is ir-
radiated. It is computed from radiosity J using a high-order method with integration by parts
proposed in [2]:

qr =
ε

1− ε
(σT 4 − J) (3)

The wall radiation coupled to natural convection is implemented using the Chebyshev colloca-
tion method and validated by Xin et al. [7, 2]. For the present Rayleigh-Bénard configurations,
the governing N-S equations are discretised on a 61× 61 grid for the square cavity and a 121× 61
grid for the rectangle cavity. This high-order coupling method allows to use in terms of wall
radiation a resolution of 20 points on the vertical wall without affecting the accuracy of results.
The use of spectral methods allowed us to check the amplitude of spectral coefficients and ensure
that the spatial resolution used is sufficient. In order to calculate unstable solutions and establish
bifurcation diagrams, a steady-state solver is also used [7].

3 results

To evidence the influence of wall radiation, simulations are carried out with and without wall
radiation in a cavity of aspect ratio AR=1 or 2. Without radiation, the presented results are
valid for any cavity height. In presence of wall radiation, the cavity has a height of 3.14cm, a
vertical wall emissivity εV = 0.10 and a horizontal wall emissivity εH = 0.85 and corresponds to
the configuration simulated by Gad & Balaji [1]. In the following, the results are presented in a
dimensionless way using the cavity height H as a reference length, ∆T as a reference temperature
and Uref = α · Ra1/2/H as a reference speed.

3.1 Flow regimes

Bifurcation diagrams established using the x-velocity near the top left cavity corner are presented
in Fig. 2 for both cavities. At small Rayleigh numbers without radiation, the well-known stable
case is obtained: the fluid is at rest and a stratification of temperature is observed. Wall radiation
induces a weak flow near the vertical walls with a 2 × 2 cell pattern. These solutions at low
Rayleigh are denoted S0. For larger Rayleigh number (up to Ra = 16000 for the square cavity and
8000 for the rectangle cavity), many flow patterns are found like mono-cellular up to 4-cell flows.
To make easier the following discussion, flow solutions are named S±

X where X is the number of
flow-cells and ± indicates the flow direction at point D (i.e. close to the top left corner).

When Rayleigh number increases gradually in a square cavity, the flow solution S0 undergoes a
perfect supercritical pitchfork bifurcation towards stable mono-cellular flows denoted S±

1 . Solution
S+

1 is ascending along the left wall whereas S−
1 is descending. Wall radiation delays the onset of

monocellular flows: a critical Rayleigh number of 2585 is observed without radiation while a value
of 2908 is obtained with wall radiation. In the rectangle cavity without radiation, S0 bifurcates
with a perfect pitchfork towards bi-cellular flows at Rac = 2013. With wall radiation, the pitchfork
bifurcation becomes imperfect and occurs at a slightly higher value of Rac = 2104. This means
that wall radiation keeps the flow symmetry of S0 (the 2×2 cell pattern observed at lower Rayleigh
number) and makes the solution S0 to bifurcate preferentially towards the ascending solution near
the vertical walls (S+

2 ) rather than the solution branch S−
2 .

Figure 2 also shows unstable flows obtained by the steady-state solver. In the square cavity
without radiation, the unstable solution S0 bifurcates around Ra = 6743 towards unstable bi-
cellular solution S±

2 with a perfect pitchfork bifurcation. Wall radiation makes again imperfect
this pitchfork bifurcation at Ra = 7142. Solutions S±

2 then become stable after a perfect subcritical
pitchfork bifurcation at Ra = 11290 without radiation. In the case with wall radiation S2 solutions
bifurcate respectively at Ra = 11817 and 11844 for the S+

2 and S−
2 branches. This difference of
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Fig. 2a Square cavity, no radiation Fig. 2b Rectangle cavity, no radiation
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Fig. 2c Square cavity, wall radiation Fig. 2d Rectangle cavity, wall radiation
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Figure 2: Influence of the aspect ratio and wall radiation illustrated by the bifurcation diagrams using
the x−velocity at point D in the cavity (H = 3.14cm). Some flow patterns are shown (isotherms in
black, streamlines in red and blue).

the lower and upper branches comes from the fact that S+
2 and S−

2 are no longer equivalent after
the imperfect bifurcation.

The aspect ratio modifies flow solutions. A greater number of flow patterns is found in the
rectangle cavity. Without wall radiation the first bifurcation of S0 branch is a perfect supercritical
pitchfork type and the bifurcated solutions S±

1 possess two cells. While with wall radiation the
first bifurcation of S0 branch is an imperfect pitchfork type. In both cases, unstable S0 solutions
undergo other bifurcations at higher Rayleigh numbers. At Ra = 16000, flows with one, two or
three vertical cells are found in the cavity (S±

1 , S±
2 , S++

3 and S−−
3 ).

It is seen that wall radiation keeps almost the same bifurcation diagrams as those observed in
the case without radiation and that in the case of wall radiation the bifurcations take place at
slightly higher critical Rayleigh numbers. Nevertheless, it should be noted that all the pitchfork
bifurcations are perfect and supercritical without radiation and that the pitchfork bifurcations
linking S0-S±

2 , S±
0 -S±

4 , etc. are made imperfect by wall radiation.
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3.2 Heat transfer

The heat flux crossing the cavity walls is characterised by radiative and convective Nusselt numbers
averaged over the bottom and top walls:

NuC =
qc

k∆T
H

with qc =
1

L

∫ L

0
qc dx (4a)

NuR =
qr

k∆T
H

with qr =

{
1
L

∫ L
0 qr dx at bottom wall

1
L

∫ L
0 (−qr) dx at top wall

(4b)

The reference heat transfer used for both convection and radiation is pure a conductive flux.
Fig. 3 plots the bifurcation diagrams using the convective Nusselt numbers for both cavities

without radiation. Convective Nusselt numbers are the same on the top and bottom walls. The
heat transfer rate of one bifurcated branch is the same as the other one.

Fig. 3a Square cavity Fig. 3b Rectangle cavity
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Figure 3: Convective Nusselt number at the bottom wall of a cavity without radiation. Some stable
flow patterns are represented.

Fig. 4 shows averaged convective Nusselt numbers in the presence of wall radiation on both the
top and bottom walls. It depicts that the bifurcated branches related to any imperfect pitchfork
bifurcation (branches S±

2 and S±
4 for example) are no longer equivalent and that the averaged

convective Nusselt numbers are not the same on the same wall. On the branches bifurcated from
a perfect pitchfork bifurcation (branches S±

1 and S±
3 for example) convective Nusselt numbers are

the same on the same wall. The convective Nusselt numbers on the bottom wall of a square cavity
presented in Fig. 4a are in good agreement with the results of [1]. To reach this agreement, the
cavity height was set to 3.14cm (i.e. Nr ' 7.765). The radiation to conduction parameter was
not explicitly provided by [1], but it is was deduced from other parameters in the article. Also, it
is guessed that their Nusselts are given at the bottom wall because the agreement would be less
satisfactory at the top wall.

Radiative Nusselt numbers are represented at the bottom wall in Fig. 5. As stated before,
radiative Nusselt numbers on the bifurcated branches related to an imperfect pitchfork birfurcation
are different on the same wall. This is the case for S±

2 and S±
4 , while on those related to a perfect

pitchfork birfurcation (S±
1 and S±+

3 ) the same radiative Nusselt is observed.
Values of convective and radiative Nusselt numbers of stable flows at Ra = 2000 and 16000 for

the square cavity with wall radiation are given in Table 1. Stable solutions are given at Ra = 2000
or 8000 for the rectangle cavity. The table highlights that convective or radiative Nusselt numbers
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Fig. 4a Square cavity: bottom wall Fig. 4b Rectangle cavity: bottom wall

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 2000 4000 6000 8000 10000 12000 14000 16000

stable

unstable

Gad & Balaji 2010

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 1000 2000 3000 4000 5000 6000 7000 8000

stable

unstable

Fig. 4c Square cavity: top wall Fig. 4d Rectangle cavity: top wall
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Figure 4: Convective Nusselt numbers on the cavity walls with wall radiation.

are not the same on the bottom wall nor on the top wall in presence of wall radiation. For
comparison, convective Nusselt numbers are equal to 1, 2.46 and 2.0346 for respectively S0, S±

1

and S±
2 in the square cavity without radiation. They are equal to 1, 1.8699, 2.2467 and 2.0803 for

S0, S±
1 , S±

2 and S±±
3 solutions in the rectangle cavity without radiation. These values indicate

that wall radiation decreases convective Nusselt numbers except for S0 and S−
2 solution. The total

heat transfer is of course enhanced by wall radiation. It can be checked that the total heat transfer
is the same at the top and bottom walls:

Nubottom
C + Nubottom

R = Nutop
C + Nutop

R (5)

The sum of convective and radiative Nusselt numbers are null on the left and right walls since
they are imposed by the adiabatic condition. Note also that radiative Nusselt numbers are not
equivalent for S+

2 and S−
2 whereas those of S+

1 and S++
3 are equivalent to those of S−

1 and S−−
3 .
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Fig. 5a Square cavity Fig. 5b Rectangle cavity
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Figure 5: Radiative Nusselt number on the cavity bottom wall.

Table 1: Convective and radiative Nusselt numbers of stable solutions with wall radiation (S0 solutions
are given for Ra = 2000 and other solutions S±

i are given at Ra = 16000 for the square cavity and 8000
for the rectangle cavity).

case Nuleft
C Nuleft

R Nuright
C Nuright

R Nutop
C Nutop

R Nubottom
C Nubottom

R

A
R

=
1

S0 -3.9·10−4 3.9·10−4 -3.9·10−4 3.9·10−4 1.0817 4.2666 1.0810 4.2674
S+

1 0.1153 -0.1153 -0.1220 0.1220 2.4176 4.2717 2.4108 4.2784
S−

1 -0.1220 0.1220 0.1153 -0.1153 2.4176 4.2717 2.4108 4.2784
S+

2 0.0801 -0.0801 0.0801 -0.0801 1.9507 4.3534 2.1109 4.1932
S−

2 -0.0868 0.0868 -0.0868 0.0868 2.1128 4.1866 1.9391 4.3603

A
R

=
2

S0 -1.3·10−4 1.3·10−4 -1.3·10−4 1.3·10−4 1.0484 4.8695 1.0483 4.8696
S+

1 0.1194 -0.1194 -0.1214 0.1214 1.8192 4.8699 1.8182 4.8709
S−

1 -0.1214 0.1214 0.1194 -0.1194 1.8192 4.8699 1.8182 4.8709
S+

2 0.1122 -0.1122 0.1122 -0.1122 2.1771 4.9274 2.2893 4.8152
S−

2 -0.1155 0.1155 -0.1155 0.1155 2.2896 4.8136 2.1741 4.9291
S++

3 0.0971 -0.0971 -0.1002 0.1002 2.0777 4.8703 2.0762 4.8719
S−−

3 -0.1002 0.1002 0.0971 -0.0971 2.0777 4.8703 2.0762 4.8719

4 Conclusions

Simulations have been conducted in a square and a rectangle cavity to investigate the effect of wall
radiation on Rayleigh-Bénard convection and heat transfer. Both the cases with wall radiation and
without radiation have been investigated and the bifurcation diagrams were established. In both
cases many cellular flow branches are encountered at moderate Rayleigh numbers (Ra 6 16000
for the square cavity and Ra 6 8000 for the rectangle cavity). Weak cellular flows are observed
even at very low Rayleigh numbers with wall radiation.

It is observed that the bifurcation diagrams are only slightly modified by wall radiation: the
corresponding critical Rayleigh numbers increase slightly. Wall radiation makes that convective
(and radiative) Nusselt numbers are different on the top and bottom walls. In terms of bifurcation
nature, wall radiation introduces a new phenomenon as it makes certain pitchfork bifurcations
imperfect. In these cases, the bifurcated branches are no longer equivalent in terms of flow and
heat transfer: convective (and radiative) Nusselt numbers are no longer the same on the same
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cavity wall.
The present work leads to the following recommendations to describe Bénard convection with

wall radiation and more generally natural convection with wall radiation:

- a radiation to conduction parameter (or the cavity height) should always be given since wall
radiation depends on the cavity length;

- convective and radiative Nusselt numbers should always be associated to a wall because they
are different on the top and bottom walls;

- they should also be associated to a solution branch as the bifurcated branches can be not
equivalent.
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