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Community detection in directed networks appears as one of the most relevant topics in the field of network analysis. One common theme in some formalizations is that flows should tend to stay within communities and could be centered round core nodes called "kernels". Hence, we expect triads to play an important role in the detection of that kind of community. Triads for directed graph are directed sub-graphs of 3 nodes involving at least 2 links between them. To identify communities in directed networks, this paper proposes an undirected edge-weighting scheme based on directed triads. We also propose a new metric on quality of the communities that is based on the triad density of communities. To validate our approach, an experiment was conducted on some networks which show that it has better performance on triad-based density over some state-of-the-art methods.

RÉSUMÉ.

La détection des communautés dans les graphes orientés constitue un domaine crucial de l'analyse des réseaux. Dans une communauté, les noeuds sont plus densément connectés entre eux, et peuvent être centrés autour d'autres noeuds "coeurs"appelés "Kernels". Nous estimons que les triades orientés sont d'un rôle capital dans la détection des communautés engendrées par un ensemble de noeuds. Une triade dans un graphe orienté est un sous-graphe de 3 noeuds impliqués dans au moins 2 liens. Afin d'extraire les communautés, nous proposons une méthode de transformation du graphe orienté en non orienté et valué, en se basant sur les triades orientées. Et nous proposons une nouvelle mesure de qualité basée sur la densité en triades dans les communautés. La validation de cette approche par des expérimentations sur des réseaux montre qu'elle découvre des communautés plus significatives, de densité en triades plus importantes que d'autres méthodes de l'état de l'art.

Introduction

A recurrent research theme in Network analysis is community detection. In directed networks, it appears as one of dominant research works, because of the direction of links that should be preserved. For instance, clusters in the directed hyperlink structure of the Web correspond to sets of web pages that share some common topics. Similarly, communities in a social network with non-symmetric links (e.g., twitter) correspond to individuals with common interests or friendship relationships. Fortunato [START_REF] Fortunato | Community detection in graphs[END_REF] extends communities definition to be considered as separate entities with their own autonomy. Community assignment methods for directed graphs [START_REF] Maliaros | Clustering and community detection in directed networks: A survey[END_REF] focus either on link structure or semantic properties to detect communities. The connectivity between nodes is often used alone to define metrics measuring the "quality "of the assigned groups. Common metrics measure either the density of links within a group through modularity or the density of triangles through Weighted Community Clustering (WCC). These techniques implemented for directed networks sometimes ignore link directionality during their clustering process [START_REF] Maliaros | Clustering and community detection in directed networks: A survey[END_REF]. In order to improve the segmentation quality, the generic weighting model that converts a directed graph into an undirected weighted graph and takes into account both density and semantic features, has been proposed in this work. This paper extends [START_REF] Gamgne | Finding directed community structures using triads[END_REF], in which we introduce the notion of Kernel Degree as a combination of Neighborhood Overlap (NO) and Triad Weight (TW). Our specific weighting scheme is based on extending the idea that, within "good"communities, information can be centralized by kernels and attainable in a community more easily than between communities. Therefore, our approach, considering semantic sight, is able to express the idea of detecting groups of nodes with homogeneous in-link structure (e.g., citation-based clusters) through triads, and give the possibility to kernel nodes to own more common neighbors. The main question to assess the performance of the proposed algorithm may arise such as: How can we profitably use triads to quantitatively discover communities in a directed networks ? What advantages does the development of a community discovery method based on kernel have over other methods?

The specific contributions of our paper are:

-We propose a pattern-based clustering scheme that points up triadic closure of structures.

-We introduce a new concept called Kernel Degree using information about directed triads to improve community detection in directed networks. The paper is organized as follows. Section 2, structured in two paragraphs, presents in the first one a brief list of applications related to directed network clustering and in the second one a detailed description of triad concept such as addressed by other methods with limits of their contributions, then, an introduction to related works on kernels community detection is exhibited. In Section 3, we formally introduce and define several concepts used into the proposed clustering method; therefore, a description of the proposed technique is detailed in three steps: preprocessing, extraction kernel and migration. To validate our approach and the choice of any concept pointed up into section 3, Section 4 is an experiment study through some metrics (d-modularity and triad density) that shows the performance of our method, over some other state-on-the-art methods. Section 5 concludes this work.

Related works 2.1. Community detection in directed networks

Finding clusters in directed networks is a challenging task with several important applications in a wide range of domains. Many methods and algorithms have been proposed by the wider research community to deal with the clustering in directed networks. Some of them include extensions of approaches that have been previously applied in undirected networks while others propose new ways as to how edge directionality can be utilized in the clustering task. The formers [START_REF] Satuluri | Symmetrizations for clustering directed graphs[END_REF][START_REF] Zhou | Semi-supervised learning on directed graphs[END_REF] convert a directed graph into bipartite, undirected and weighted one, this enabling to utilize the richness and complexity of existing methods to find communities in undirected graphs. Some hierarchical methods [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF][START_REF] Newman | Detecting community structure in networks[END_REF] based on the optimization of the so-called modularity measure [START_REF] Nicosia | Extending the definition of modularity to directed graphs with overlapping communities[END_REF] focus on the idea that networks with inherent community structure usually deviate from random graphs. Considering a specific partition of the network into clusters, modularity measures the number of edges that lie within a cluster compared to the expected number of edges of a null graph (or configuration model), i.e., a random graph with the same degree distribution [START_REF] Maliaros | Clustering and community detection in directed networks: A survey[END_REF]. The modularity measure in the case of directed networks has been many times extended and demonstrated in [START_REF] Nicosia | Extending the definition of modularity to directed graphs with overlapping communities[END_REF] to be expressed as:

Q d = 1 2m Σ ij (A ij - k out i k in j 2m )δ(c i , c j ) (1) 
Yet, Fortunato [START_REF] Fortunato | Community detection in graphs[END_REF] describes how this measure has a limit resolution, the difficulty for the measure to extract small scale communities. To make up for this limit, Gautier and Lancichinetti [START_REF] Krings | An upper bound on community size in scalable community detection[END_REF][START_REF] Lancichinetti | Community detection algorithms : a comparative analysis[END_REF] proposed to inform some parameters about either the number of communities or whether the method should extract small communities or not. These parameters can greatly affect the accuracy of an approach if the values provided by the user are incorrect. Moreover results could not be satisfactory in triad-based clustering from realworld networks, if the user parametrizes community size to 2 vertices. Malliaros et al. [START_REF] Maliaros | Clustering and community detection in directed networks: A survey[END_REF] describe some quality measures in detail and also present their extensions to directed networks (e.g. Q d ). They confirm that these techniques ignore important information about link direction and miss their semantic. In order to enhance one of the fundamental properties of real networks, namely homophily, which is the tendency of neighboring nodes to share the same centre of interest, some authors have focused on the triads.

Triad-based methods

Triads, initially studied by authors Wasserman and Faust in [START_REF] Wasserman | Social networks analysis : Methods and applications[END_REF] in social network analysis was introduced by Serrour B. et al. [START_REF] Serrour | Detecting communities of triangles in complex networks using spectral optimization[END_REF] to identify communities of different types. Triads are considered as wedges, i.e paths of length 2 by [START_REF] Klymko | Using Triangles to Improve Community Detection in Directed Networks[END_REF]. Thus, a triad can be integrated into a triangle. In [START_REF] Prat-Pérez | Shaping communities out of triangles[END_REF], the authors define a "good"community to be a group of nodes that is dense in terms of triangles through Weighted Community Clustering (WCC) measure. In directed graphs, the process of extracting semantic structures should take into account either "in"or "out"directionality of links for meaningful interpretation. Therefore, it becomes interesting to specify those of nodes centred around kernels (set of influential nodes inside a group) according to one direction. Then, kernel community detection methods are considered as seed-centric approaches [START_REF] Kanawati | Seed-centric approaches for community detection in complex networks[END_REF] because of the influence of nodes centralizing information. Using triads enlarges the possibility to consider low degree nodes instead of high degree nodes called "hub nodes". That way, low degree nodes will not yet be isolated or sparse at the end of the community detection process. In the same way, Tsourakakis in [START_REF] Tsourakakis | Fast counting of triangles in large real networks without counting: Algorithms and laws[END_REF] initiated the study of degree labelled triangle. He argues that low degree vertices form fewer triangles than higher degree vertices. At this stage, to make up this limit, the objective of this new approach is to cluster low degree nodes so that they should be more linked together around a kernel and could access more easily to central retained information. So it takes into account in-links to the kernel and vertices with low degree. Some methods, like Wang's approach [START_REF] Wang | Detecting Community Kernels in Large Social Networks[END_REF] explored the problem of detecting community kernels, in order to either exhibit different influence and different behaviour of vertices inside a structure for easily interpreting results, then uncovering the hidden community structure in large social networks. However, he does not consider topological criteria in their method. To make up for this limit, the proposed approach integrates topological structure based on triads and conducts to semantic community structures.

Unlike the modularity, the new Triad Density measure implemented in this work (see Definition 3) exhibits triad-based structure of the resulting partition. And we focus on kernels because they represent community core and lead to meaningful structures. In this paper, a triad is a set of 3 vertices linked through at least 2 edges. In undirected networks, there is only two types of triad, a path of length 2 and a triangle. In directed networks, there are many types as shown in Figure 1. This work focuses on in-seed-centric [START_REF] Kanawati | Seed-centric approaches for community detection in complex networks[END_REF] approach because of the influence of nodes centralizing information, a good pattern close relationship and ability to concentrate information between nodes. This is not the case for all types of directed triads. As an example, in a blog readership network, there are two types of "bloggers": "writers" who generate influential blogs read by many others, and "readers" who read a lot but seldom write anything for others to read.

Community detection method

This method makes use of centric-based approaches through extracting subgraphs induced by co-parent structures, called Kernel. Seed-Centric approaches for Community Detection in Complex Networks G = (V, E) generally follows these principal steps [START_REF] Kanawati | Seed-centric approaches for community detection in complex networks[END_REF].

-Seed computation;

-Seed local community computation; -Community computation out from the set of local communities computed in step 2.

The algorithm for finding structures we propose here makes use of an introduced centrality measure Kernel Degree based on triads cardinality, as described in the following section.

This method is structured in three steps: (i)Preprocessing step, (ii)Kernel extraction, (iii)Node migration and community computation. Before describing these steps, we define In this method, we consider a Community as a set of vertices centred round kernel, and accessing easily to the central information retained by that kernel. Otherwise, a community seems to be a subgraph yielded by kernel. Like this, we consider the number of communities as one of the metrics of quality partition evaluation in experiments.

Basic terminology and concepts

Considering a given directed graph G = (V, E) with n = |V | the number of vertices and m = |E| the number of edges. An edge e ij connects vertex v i with vertex v j . We now give some following useful definitions: Definition 1. . (The Kernel Degree). Let the kernel K be a set of central vertices. The Kernel degree of a pair of vertices v i and v j is:

K ij = |∆ij| |∆j| * |Γ in j ∩Γ in i | |Γ in j ∪Γ in i |-θ
Where Γ in i stands for the in-Neighbourhood set for a vertex v i . We use ∆ ij to represent a set of triad involving both v i and v j according to the scheme presented in Figure 3b, and ∆ j to represent a set of triad in which v j is involved. v j is the target vertex of links.

The first term is based on triads, and promotes the Triad Weight through a kernel; Given two vertices v i and v j , a standard way to compute the percentage of triads they form together is to compute the ratio between the total number of triads in which the pair of vertices is included (numerator) and the total number of triads in which vertex v i is contained (denominator).

And the second term promotes the Neighbourhood Overlap of v i and v j vertices. It concerns a Jaccard Index variant [START_REF] Tan | Introduction to Data Mining[END_REF], which consists in measuring neighbourhood similarity of two vertices so that they could belong to the same kernel. Unlike the Jaccard Index which does not consider the connectivity between the nodes because it just computes the common neighbours of 2 vertices v i and v j , Neighbouhood overlap integrates the fact that there could be or not an edge between v i and v j . The numerator of the ratio is computed by intersecting their adjacency in-neighbour lists in order to count the number of their common neighbours. That is why we use the θ parameter in the denominator for comparison of 2 similar kinds of neighbor sets. In fact, in the numerator, one vertex can belong to the in-neighbourhood of another, and vice versa. θ can take different values 0, 1 and 2, depending on the connectivity of v i and v j vertices. Intuitively, Kernel degree measures the strength or weight of the kernel vertex similarity.

-θ = 0 if (v i , v j ) / ∈ E and (v j , v i ) / ∈ E -θ = 1 if (v i , v j ) ∈ E and (v j , v i ) / ∈ E -θ = 2 if (v i , v j ) ∈ E and (v j , v i ) ∈ E Definition 2. (Kernel).
Kernel is a set of vertices with the same neighbourhood, such as these neighbours expand inward the kernel, according to the Kernel Degree K ij gradually until a threshold.

The Kernel is formally defined as

-K = {v 1 , ..., v i , ..., v |K| }, v i ∈ V -∀v i , v j ∈ K , Γ in i ≃ Γ in j , -∀i = j\v i , v j ∈ K, K ij > σ.
The threshold value σ is expressed in the section 3.3 below.

Definition 3. . (Triad Density) The Triad Density of a partition is a ratio that conceals difference between real number of triads in that partition and maximal possible number of triads in the whole graph.

T riadDens =

Σ n i |∆C i | ( 3 |V | )
Where the numerator expresses the number of triads from the overall communities, and the denominator denotes that combination value equals to

|V |! (|V |-3)!3! , with |∆ Ci |
being the number of triads in the community C i and n, the number of communities. T riadDens = 0 if vertices are isolated or if |V | < 3. Otherwise, T riadDens = 1 if the graph is complete, i.e there is bidirectional edge between every pair of vertices.

Preprocessing

It consists in transforming the directed graph into an undirected and weighted graph. It spreads out into two subtasks: Computing a pruned central list of vertex degree, and computing kernel matrix corresponding to the undirected and weighted graph.

In-degree central list computing

This step consists in determining a set, which is a list of vertex in-degree centralities, and put it in decreasing order; that list is called Centralities List (CL). So that those with maximal in-degree are more eligible than those with a fair in-degree. Then, pruning from the list in-pendant and in-isolated vertices i.e. those of nodes with an in -degree below the in-degree graph average, as inspired by Steven L. and al. [START_REF] Steven | Close communities in social networks: boroughs and 2-clubs[END_REF] who defined a pendant as vertex with a single neighbour which has degree 1. This filtering step improves performance and allows simplifying assumptions later when deciding whether to include a vertex into a kernel. For instance, in a citation network, an in-pendant or in-isolated vertex corresponds to an author whose the area search does not interest other researchers, so removing these nodes with an in-degree below 2 improves the processing speed and produces more semantic results later. For illustration, we will use an extract for Twitter social network [START_REF] Wang | Detecting Community Kernels in Large Social Networks[END_REF], as shown in Figure 3a. Its contains 14 nodes and 32 edges. The number of communities is visibly 2. The CL contents is: CL = [ ′ AlGore ′ , ′ BarackObama ′ , ′ AshtonKutcher ′ , ′ DemiM oore ′ , ′ OprahW inf rey ′ ] because they have an in-degree above 2.

Kernel Matrix computing

This step consists firstly in computing kernel degree values for every pair (v i , v j ) ∈ CL (See def.1 above). Figure 3b clearly presents vertices v i and v j involved in a closed triad. Secondly, it consists in constructing a Kernel Degree square matrix K of K ij with n lines and n columns, where n = |CL| is the CL pruned list size, i.e deprived of nodes with in-degree below the in-degreeaverage. The matrix K = (K ij ). Network on Figure 3a shows values of K as: 

K =       0 1.
     
.

The computed matrix is represented through a structure called Kernel Dictionary (KDict), that would be used in the kernel extracting approach as defined in the next section. The size of KDict is (n * n)-n 2 . The parameter n is removed because the K ii diagonal values are null and the valuation is divided by 2 because of the symmetric matrix (K ij = K ji ). KDict is in decreasing order of K ij and its computation materializes the end of the preprocessing. Formally, KDict = [((v i , v j ), K ij )]. The kernel dictionary formed from network in Figure 3a is the list of sorted items from triangular matrix K. KDict = [(('DemiMoore', 'OprahWinfrey '), 1.6), (('AlGore ', 'BarackObama '), 0.595 ), (('AshtonKutcher ', 'OprahWinfrey '), 0.32 ), (('AshtonKutcher ', 'DemiMoore '),0.267), (('BarackObama ', 'DemiMoore '), 0.0635 ), (('AlGore ', 'DemiMoore '), 0.057 ), (('Barack-Obama ', 'OprahWinfrey '), 0.0158 ), (('AlGore ', 'OprahWinfrey '), 0.0143 ), (('Barack-Obama ', 'AshtonKutcher '), 0.013 ), (('AlGore ', 'AshtonKutcher '), 0.012 )].

Kernel extracting approach

Let us remember that a kernel in this paper is a set of nodes owning a common central in-degree overlapping neighbourhood. This task of extracting kernels focuses first on determining those of nodes more eligible to belong to kernel via interclass inertia, and thereafter, on constructing kernels via a threshold computation.

Interclass inertia computation

Given that the clustering main goal is to form homogeneous groups together, the measure used here is Inter-class Inertia, and the list of the inter-class inertia values is named I. This list is based on KDict vector. In fact, high inter-class inertia values indicate that objects tend to be more dissimilar, and consequently should belong to distinct groups. So, it divides objects into two groups, those eligible to belong to a kernel and those not eligible. The delimitation of two groups is done by a comparison of values from Inter-class Inertia List with a computed Standard Deviation σ on I. This way, vertex pairs (i, j) whose Inter-class Inertia value is larger than σ are more eligible to belong to kernels. The Inter-class Inertia between 2 sub-groups G 1 and G 2 is expressed as

I(G 1 , G 2 ) = |G 1 |(µ 1 -µ) 2 + |G 2 |(µ 2 -µ) 2 (2) 
|G 1 | and |G 2 | are respectively the number of edges in groups G 1 and G 2 . µ 1 , µ 2 , and µ are respectively the Kernel Degree average for G 1 , G 2 and G. Figure 3a Network presents distinct groups G 1 and G 2 respectively as the following, and the corresponding Inter-class Inertia of KDict as : for G 1 = {(DemiMoore, OprahWinfrey)} and G 2 = {(AlGore, BarackObama), (AshtonKutcher, OprahWinfrey), (AshtonKutcher, Demi-Moore), (BarackObama, DemiMoore), (AlGore, DemiMoore), (BarackObama, Oprah), (AlGore, OprahWinfrey), (BarackObama, AshtonKutcher), (AlGore, AshtonKutcher)}, the Inter-class Inertia for these groups is 1.987. Then, the following pair of nodes in KDict list moves from G 2 to G 1 , and their contents become: G 1 = {(DemiMoore, Oprah-Winfrey), (AlGore, BarackObama)} and G 2 = {(AshtonKutcher, OprahWinfrey), (Ash-tonKutcher, DemiMoore), (BarackObama, DemiMoore), (AlGore, DemiMoore), (Barack-Obama, Oprah), (AlGore, OprahWinfrey), (BarackObama, AshtonKutcher), (AlGore, Ash-tonKutcher)}, and the Inter-class Inertia for these groups is 1.705. We change the G 1 and G 2 contents and so on; this leading to the Inter-class Inertia list I = [ 1.987, 1.705, 1.359, 1.162, 0.844, 0.627, 0.439, 0.297, 0.186, 0.131]. This step concludes by computing a threshold helpful for kernel extraction process, as detailed in the next section.

Kernel extraction

To compute Kernels, we focus on a threshold, which is the standard deviation from interclass inertia list. So, each vertex must decide if it could belong to the key membership (the kernel initiator vertex belonging to the pair with the highest corresponding Inter-class Inertia). Inspired by properties of real-life networks [START_REF] Kanawati | Détection de communautés dans les grands graphes d'interactions (multiplexes): Etat de l'art[END_REF] based on a power-law degree distribution, the basic idea behind the metric is that within a community, vertices should have a high concentration of triads among themselves, than with vertices outside of the community.

To select kernel nodes through this second phase, some metric inherent to vertex centrality have been studied: Common neighbours [START_REF] Xu | A novel disjoint community detection algorithm for social networks based on backbone degree and expansion[END_REF], Distance (Cosinus, Euclidian...), Jaccard Index [START_REF] Steinhaeuser | Community detection in a large real-world social network[END_REF], geodesic (short path) [START_REF] Newman | Detecting community structure in networks[END_REF], Clustering Coefficient [START_REF] Latapy | Basic notions for the analysis of large two-mode networks[END_REF]. The retained metrics in this paper combined through Kernel Degree to strengthen the similarity of kernel vertices are: the "common neighbours" corresponding to triads in which many nodes are involve and the "Jaccard Index" variant (which are Triad Weight, and the Neighbourhood Overlap, the left term and right term respectively of the Kernel Degree formula in Definition 1). Their combination leads to scalable results. Because our empiric tests on metric taken separately show the superiority of Kernel Degree on various networks, as evaluated in section 4.2. Besides, at the bottom of Section 3.3.3, it is demonstrated that the proposed metric is a function of clustering coefficient and interpretations are described.

The phase begins by initiating kernels with distinct pair of vertices possessing highest corresponding Inter-class Inertia, through the mileage of the KDict list. Given that an initiating kernel vertex r of a kernel t between the initiating pair of vertices {r, u}. If a vertex p in KDict is coupled to another one q with whom the Kernel Degree K pq is lower than its Kernel Degree K pr with the initiating kernel vertex r, it immediately migrates to that kernel t. So the kernel t will be made of {r, u, p}. Then those already belonging to the kernel will not be treated in the future steps. The vertices belonging to the kernel own the almost same neighbours. The approach proposed here makes use of a new concept Kernel Degree K ij as defined in Definition 1, that measures the strength of a kernel gradually from a threshold. This concept is based on the triadic membership for emphasis the semantic proximity that links kernel members conducting to efficient centralization of information over the network. We focus on triads cardinality that is the number of neighbours two nodes own. Instead of optimizing the partition quality of the whole graph, we focus on Kernel computation that is based on Kernel Degree maximization, a local mean to judge a kernel partition quality.

We require that the kernel fulfils the following properties: 1) Every kernel contains distinct pair of vertices with inter-class inertia upper than a threshold.

2) The kernel vertices have higher Kernel Degree values, proportionally to the degree distribution of the graph.

3) Given an initiating pair (i, j) and a border vertex k in a kernel, the neighbourhood overlap cardinality of (i, j) must be higher than the neighbourhood overlap cardinality of any neighbour t of (i, j, k). Formally, Given ∀(i, j)\i, j ∈ CL, and k ∈ K,

| Γ i,j ∩ Γ k |≥| Γ i,j ∩ Γ t |, where Γ i,j = Γ i ∩ Γ j .

Standard deviation σ.

Unlike the well-known meaning of the standard deviation, we could make the analysis that the higher the standard deviation σ computed from a set nodes, the more likely they possess the almost common neighbourhood. As a matter of fact, as illustrated in Figure 6, a lower standard deviation indicates that these vertices have a quasi-null commonneighbourhood cardinality. Because of the power-law degree distribution in real-life networks, very little nodes get a high in-degree widely above the in-degree average. We make the assumption that according to [START_REF] Leskovec | Graphs over time: densification laws, shrinking diameters and possible explanations[END_REF], there tend to be a few "hub"vertices with a very high degree and great number of vertices with a much lower degree. In the case of directed graphs, the concept of hub vertices depend on the in-degree or the out-degree value. This paper stresses on in-degree vertices, meaning that they receive more information from the other vertices than "non-hub"vertices. The standard deviation is expressed as

σ = 1 n Σ n i=1 (x 2 i ) -µ 2 (3) 
where µ = 1 n Σ n i=1 x i indicates s i average (or mean), and x i indicates every element of the interclass inertia array. A kernel is initially structured by a pair of vertices, and expands progressively. During this phase, vertices which are in the neighbourhood of kernel members with a Kernel Degree value above σ, are associated to the kernel. This leading to an expansion of the starting kernel. Their impact to the remaining of the entire graph is null, because they would not belong to others communities. We make use of a denoted Key-vertex which is the first vertex in each pair of KDict. In fact, each eligible key-vertex is integrated into a new kernel, after consulting its non-existence anywhere in the list of kernel vertices. This merging step improves performance and allows simplifying assumptions later when deciding whether to choose the favourite kernel by a non-kernel vertex (the kernel not belonging to a kernel).

The first kernel from Figure 3a network will be extended by 'Ashton Kutcher'because it is in the neighbourhood of the other nodes with corresponding inertia of 1.359, 1.162 respectively above the threshold σ. Now the first kernel becomes compounded of 'Demi Moore', 'Oprah Winfrey'and ' Ashton Kutcher'while the second kernel remains the same.

Relationship between the clustering coefficient and Kernel Degree. Clustering coefficient studied by Latapy M. [START_REF] Latapy | Basic notions for the analysis of large two-mode networks[END_REF] is a measure of the degree to which nodes in graph tend to cluster together. Two versions of this measure exist: the global and the local. The Kernel Degree metric focus on the second one. Thus, the local clustering coefficient for directed graphs is given as

C i = |{e jk : v j , v k ∈ Γ in i , e jk ∈ E}| k i (k i -1) (4) 
Where k i is the number of neighbours of a vertex v i . Let | Γ in i |, the numerator of the fraction in Equation 5, be the number of links between the vertices (pointing to v i ) within the neighbourhood of v i . Let |∆ i | the denominator of the fraction be the number of triads involving v i (the number of subgraphs with 2 edges and 3 vertices, one of which is v i and such that the other points to v i ). Then we can also define the clustering coefficient as

C i = |Γ in i | |∆ i | (5) 
This equation is a rewrite of the previous one.

Then we can deduce

|∆ j | = |Γ in j |
Ci . From the Kernel Degree definition shown in the definition 1, we have the following equivalence:

|∆ ij | = |Γ in j ∩ Γ in i |.
According to the equation 5, we deduce that

1 |∆j | = Cj |Γ in j | .
Thus, replace every term in the formula of the Kernel Degree to obtain the following equation:

K ij = C j ( 1 |Γ in j | * |Γ in j ∩ Γ in i | 2 |Γ in j ∪ Γ in i | -θ ) (6) 
This function indicates that the Kernel Degree tightly depends on clustering coefficient of a central vertex v j , this, being the central vertex of the eligible vertices list. Thus, it favours the optimal value of Kernel Degree, otherwise it improves the degree of clustering nodes into the kernel. This formula clearly illustrates the neighbour-based similarity of nodes of a kernel.

The implementation for kernel communities is presented in Algorithm 1, which extracts a list of kernels named ListK, from the overall nodes of the graph. .

Algorithm 1 Kernels extraction

Require: Directed graph G = (V, E) Require: KDict vector of vertex pairs associated to their kernel degree Require: I inter-class inertia vector //corresponding to the vector I in the explanation //above. Ensure: Structured-by-key Kernels set called ListK (p, q) ←pair of vertices corresponding to the item u in KDict //p = (vi, vj ) //and q = Kij in accordance with description of KDict in Section 3.2.2

4:

Key ←-{} Let us illustrate this idea through an example. Consider the network in Figure 3a. The standard deviation value for that network is σ = 0.62. It is the threshold on which kernels are to be built. The model computes the first kernel K 1 initialized by nodes 'Demi Moore'and 'Oprah Winfrey'for which the associated inertia in I is 1.987 ≥ 0.62; thereafter, the vertex 'Ashton Kutcher'integrates K 1 , inducing like this a kernel of 3 vertices; the second kernel K 2 is initialized by 'Al Gore 'and 'Barack Obama 'for which the associated inertia in I is 1.705 ≥ 0.62. The process is repeated on the other i values in I for which I[i] ≥ σ; and if the corresponding KDict[i] pair nodes are already keys or associated values of keys, they are just omitted.

Community computing process

After extracting kernels, the other nodes not into the kernels, called non-kernels vertices, remain. The process of generating global communities (communities containing both kernels and non-kernels vertices) consists in migrating non-kernels vertices to the kernel with whom they have a maximal number of links, as defined in the Formula (7). It is an iterative optimization process of the number of connection each non-kernel vertex owns with the kernel.

Node Community Index (NCI). This measure we defined corresponds to an extent membership function. It consists in determining the membership of a vertex, according to its maximum number of "in-connections" (incoming edges) to the kernel or "outconnections" (outgoing edges from x) and the number of nodes in the kernel.

A vertex x migrates to kernel K if K = argmax l (N CI(x, K l )) where l is a kernel number; then N CI is defined as N CI : x × K -→ R + such as:

N CI(x, K) = m out (x, K) min(m out (x), n K ) (7) 
where m out (x, K) is the number of outgoing edges from x pointing to a kernel K, m out (x) is the total number of outgoing edges from x or its out-neighbourhood cardinality, and n K is the kernel size, i.e the number of vertices in the kernel. The pseudo-code of this migration approach is described in the following algorithm Compute N CI(x, Gi) for each Gi 4:

G * ←argmax(N CI(x, Gi))

5:

G * ←-G * ∪ {x} 6: end for 7: Return GK Non-kernel vertices for the Figure 3a Network are listed below: shallowend, abhubbu,ryzgo, 106andpark, 3atma, brycob, 303nomad, ritajohnsonn,BizPlanUSA.

As far as the complexity of the method is concerned, in view of the size of the graph with n the number of vertices and m the number of edges, the task for extracting kernel in Algorithm 1 is theoretically analyzed as following: The preprocessing step complexity is linear, i.e O(m). The data structures implemented in the work require respectively the following space complexity: KDict requires in the worst case O(m) if the graph is complete, while K matrix computation requires O(n 2 ). Like this, the global space complexity is in O(n 2 + m). The time complexity required to find one kernel is O(nm) and to find the set of global kernels is O(nm 2 ). The migration step running and time complexity are both in O(n). Like that, we estimate the overall approach complexity to O(nm 2 ).

Empirical evaluation and Experiments

In this section, we show experiment results. We evaluate a variety of models on two main tasks: Triad density of the partition and modularity evaluation. In order to evaluate kernels, the study of the kernel degree measure will be made on the illustration on Figure 3a network as shown in Figure 6, and testified through some criteria as described in Sect. 4.1 below; and the experiments wouldn't focus on Kernel Degree metric, but on three criteria : partition Triad Density referenced by T riadDens, partition quality through In term of software, we used Python 7.1 for the implementation of our solution and Gephi 0.9.1 1 [25] and R 2 [START_REF] Team | R: A language and environment for statistical computing[END_REF] for visualization of graph structures. We start by describing the four datasets from real life graphs used in the experiments.

Datasets

In the following experiments, we have used neural network, blog network and two paper citation networks. Information about each graph can be found in Table 1.

Celegansneural network. The file celegansneural.gml describes a weighted, directed network representing the neural network of C. Elegans. The weighted parameter is not taken into account in this work. There are 297 nodes and by 2, 345 links. This dataset possesses 5 communities as obtained by Tianbao [START_REF] Tianbao | Directed network community detection: A popularity and productivity link model[END_REF].

Political Blog Network. This is a directed and unconnected network of hyperlinks between a set of weblogs about US politics, recorded by Adamic and Glance [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF]. In this network, there are totally 1, 490 nodes and 19, 090 links. Seeing that the new approach is based on connected networks, the largest connected subgraph with highest number of links and nodes is the one taken into account throughout the execution of the approach.

Paper Citation Networks. We use the Cora paper citation network and the Citeseer paper citation network processed by Getoor et al 3 . There are totally 2, 708 nodes and 5, 429 links in Cora network, and 3, 327 nodes and 4, 732 links in Citeseer network.

Phenomenon described by these datasets follow a power-law in-degree distribution except the in-degree distribution in Cora network. The scatter plots for in-degree valuation of nodes are presented in Figure 5. In fact, a small number of vertices possess a high in-degree value, implying that a small amount of nodes have high quasi-common neighbourhood cardinality, while larger nodes have less common nodes. Yet, the in-degree in Cora dataset follows a rather uniform distribution with in-degree no larger than 5. We suspect such a distribution is due to the small scale of the Cora dataset which leads to many references, and therefore inlinks, to be inside the dataset.

The goal of experiments is to demonstrate the robustness and the scalability of the method as the numbers of authors quoting an article favours to delimit a topic area through a pioneer area (the centre node or set of nodes). In other words, our goal is to evaluate if our new Kernel Degree based metric yields the link semantic of communities in directed networks, in accordance with triad-based community definition. The empirical evaluation of the new approach, for showing its performance, is compared to some of the other stateof-the-art methods: Walktrap [START_REF] Pons | Computing communities in large networks using random walks[END_REF], Edge Betweenness [START_REF] Newman | Detecting community structure in networks[END_REF], Label Propagation [START_REF] Raghavan | Near linear time algorithm to detect community structures in large-scale networks[END_REF] and Louvain [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF]. Their Igraph R package implementation were used. 3a network. To illustrate the results of new approach, based on Figure 3a Network, Table 4 shows some results and compares them to Kernel Degree based approach. Thus the Kernel Degree approach and Walktrap method present the same results on the triad density and the modularity with the same number of communities, contrary to Louvain method, although detecting 2 communities, computes a modularity of 0.395. Label and Edge Betweenness methods compute respectively 5 and 7 communities with lowest triad density and modularity values. Visibly, our approach extracts better and expected structure on this Figure 3a illustration, than the other methods, as pointed up in Figure 4.

Illustration from Figure

Kernel degree metric and threshold σ evaluation

To appreciate the powerfulness of the Kernel Degree formula, lets consider for example two networks to make this idea more concrete: Looking at Figure 3a Network and Celegansneural network, for better visualization of results, Kernel Degree computes the similarity strength between kernel vertices; in other words, it determines the kernel power. Both Triad Weight and Neighbourhood Overlap (Definition 1) are associated to reinforce this similarity. Because, when taken separately, the expected results are not purchased, as presented in the Table 2. In fact, for the Figure 3a Network, results are the same regardless of the criteria (2 communities with the same triad density and same modularity). But for the Celegansneural network, using separately Neighbourhood Overlap or Triad Weight leads to results (91 and 73 communities respectively) far from expected one as demonstrated by Klymko and Tianbao [START_REF] Klymko | Using Triangles to Improve Community Detection in Directed Networks[END_REF][START_REF] Tianbao | Directed network community detection: A popularity and productivity link model[END_REF] who also detect 5 communities. Furthermore, taken separately, they lead to a computation of weak values of triad density, contrary to the new composite kernel degree metric which computes a better triad density of 0.711, which is closed to triad density value of 0.78 obtained by Klymko. As far as the threshold σ is concerned, the empirical experiments show that when taking values of the interclass inertia less than σ, expected results are not purchased. For illustration, as can be seen from the Table 3, our approach performs the best in both datasets. The Figure 3a Network, for the first case (I[e ij ] > σ) contains 2 communities with a triad density of 0.6428, and Celegansneural 5 communities with a high value of triad density equals to 0.711; contrary to the second case ( I[e ij ] < σ ) for which Figure 3a Network just contains 1 community with a low triad density of 0.417 and Celegansneural 103 communities with 0.065 triad density value. This result means that the Figure 3a Network partition is not well structured for this second case. Figure 4 illustrates the comparison of these both σ considerations. Higher inter-class inertia values indicate better kernel based-triad structures and therefore, finding vertices with similar neighbours whose inter-class inertia values are upper than threshold provides a method for extracting the underlying kernel structure. The Figure 6 shows the analysis made on the idea according to which the more the inter-class inertia is upper than a threshold σ, the more the kernel degree values are large, meaning better triad-based structures.

Performance on Community Detection

The community detection performances for different models on the four datasets are given in Tables 5,6, 7 and 8. The Figure 3a Network contains visibly 2 communities as shown on the Figure 4; Celegans dataset is used to illustrate the new approach methodology and its hidden idea. In fact, with this dataset, the expected number of communities and T riadDens metrics are evaluated, based on 5 communities and 0.78 for triad density obtained from Klymko's results [START_REF] Klymko | Using Triangles to Improve Community Detection in Directed Networks[END_REF]. Contrary to the other models, the kernel degree based-model confirms the 5 communities detected by [START_REF] Klymko | Using Triangles to Improve Community Detection in Directed Networks[END_REF], with a higher T riadDens (0.711) almost the same like the triad density of partition of Klymko which is equals to 0.689; likewise, the higher modularity (0.393) proves its performance on the partition quality.

As far as Label Propagation method is concerned, a node moves from one community to another if, its neighbours belong to that community. Hence, for the polblogs network, it computes the high community number (244) with the weakest T riadDens (0.0026). Walktrap and Kernel-degree methods perform in all of the criteria: they produce small communities (12 and 34 respectively), with high T riadDens of (0.67 and 0.5732 respectively) and the best modularity value of 0.4302 and 0.429 respectively as shown in the Table 6. This result indicates that models of "what is a growing-community" is somehow in agreement with the notion of kernel optimization of Kernel-degree measure. But Walktrap performs the best, because partition is structured as unconnected modules, indicating that it captures the so-called "outliers" by [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF], which are anomalous nodes (belonging to none communities). Meanwhile Louvain method results are not so interesting with a T riadDens of 0.0085.

In the Table 7, through results presented for Citeseer dataset, Kernel degree basedmodel produces higher values of modularity and triad density. As shown in Figure 7, Citeseer dataset presents higher modularity, thus underwriting that this kind of network with a power-law distribution is characterized by better link density, one of the criteria of the kernel degree-based approach. Its second criteria, triad density, is underlined in Figure 8. There, Citeseer dataset presents a good exponential progression on its triad density and indicates that for the kernel degree-based approach, triad density is upper, contrary to the other datasets and other approaches.

The null modularity values for the other methods in the table 7 illustrates more the kind of scorpus that our method performs on. In fact, contrary to the other datasets, Citeseer follows the best power law distribution, because it possesses hub node(node with a higher degree distant from the other node degree), as presented in citeseer subfigure of Figure 5. Tsourakakis [START_REF] Tsourakakis | Fast counting of triangles in large real networks without counting: Algorithms and laws[END_REF] confirms the plausibility of these results by its argumentation that low degree nodes form fewer triangles than higher degree nodes; and according to Durak [START_REF] Durak | Degree relations of triangles in real-world networks and graph models[END_REF], citation networks are dominated by heterogeneous triangles; like this, triads are included into triangle. So results on Citeseer, a citation network type, seem to be valid for these both precedent demonstrations. For Cora network, results shown in Table 8 guarantee that the new scheme is based on power-law distribution in datasets, as the type of graph taken into account here, based on the in-degree value of nodes. As Cora follows a uniform in-degree distribution, results do not perform well; label propagation method fails on this dataset, indicating the fact that nodes already belong to communities containing their whole neighbours, thus most of these vertices do not need to move from one community to another; in the same way, the kernel degree-based approach produces weak results, denoting the kind of graphs its performs on, those characterized by power-law distribution.

These weak results for Louvain method compared with the proposed approach on the overall of datasets indicates that it focuses only on density of links in the community without no interest on the topology or semantic based on triads into the communities. The Kernel degree based approach performs the best in all the cases except on the triad density for Cora network. These results also illustrate that most of the time, it is beneficial to use both triad weight and neighbourhood overlap measures simultaneously, establishing Kernel Degree formula, to valorize the similarity kernel vertices in a directed network.

Furthermore, an efficient report made from table of results is that the more the number of communities is low the more triad density and modularity values are great. In our future studies, we will show the relative effects of metrics on the number of communities or vice versa.

Conclusion and Future Work

This paper has described a simple kernel scheme to improve the detection of communities in directed networks, through triad density. It focuses on kernels which are seed nodes centralizing information through their in-degree valuation. Based on the definition of community as a subgraph induced by kernel vertices, the new scheme basis are triads, based on the semantic relationship between kernel nodes with their neighbours. Thus, we have defined a metric called Kernel Degree, for computing the similarity between kernel nodes. When the new metric is used, we obtained better triad density and modularity values on some datasets, those following the power-law degree distribution of nodes. Our model captures semantic communities based on both criteria: density of links and topology of vertices in the graph meaning communities with higher triad density. We compared the modularity values for each model on the result partition, and we find a substantial improvement in the triad density measure, with appreciable changes in the traditional community detection metrics such as modularity.

The model complexity constitutes a main criteria of effectiveness for any method. With the increasing ways on information access by the era of digital, it becomes important to extend this method to parallel processing, in order to manipulate very large-scale real networks. Likewise, it is possible to apply weighted graphs to reinforce the strength of the kernel, for more community detection results near the real life, as we will study in our future works.
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 1 Figure 1: Basic structures of our kernel community model, opened triads.
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 2 Figure 2: General architecture of the proposed approach. some basic concepts in Section 3.1. An overview of its general architecture is presented in Figure 2.

  (a) Extract for Twitter social network [15]. (b) Example of triads in which there is an edge between kernel vertices v i and v j (c) Example of a citation pattern
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 3 Figure 3: Examples of structures expressing triads
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 1 Initialisation : S k = σ , ListK = ∅; 2: for each item u ∈ I do 3:
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 4 Figure 4: Graphical visualization of datasets on threshold evaluation for Figure 3a Network. On the left, the first case (I[eij] < σ) produces one community, on the right, the second case (I[eij] > σ) produces two communities
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 5 Figure 5: In-degree distribution on dataset nodes.
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 a Threshold based on Figure 3a network (b) Threshold based on Celegansneural network (c) Threshold based on Extract from Polblog network
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 6 Figure 6: Standard deviation distribution
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 7 Figure 7: Link Density (modularity) as a criteria of network type.
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 8 Figure 8: Triad Density as a metric of partition evaluation.

  2. It presents in line 1 the initialization of Communities named G i by their corresponding kernel K i computed in the preceding kernel extraction step (see Section 3.3.2). From line 2 to line 6, the method computes for each non-kernel node its Node Community Index (NCI) and puts it in the kernel (or growing community) whose N CI is maximal. In line 7, results which are global communities (communities not growing, but definitely computed) are produced.

	Algorithm 2 Algorithm implementation for non-kernels vertices migration

Require: Communities Kernels ListK = {K1, K2, ..., Kt} Require: N onKernelSet = {G.nodes\ ∪ Ki} //nodes x of G not belonging to any Ki Ensure: Global Communities GK = {G1, G2, ..., Gt} 1: ∀i ∈ {1, ..., t} , Gi ←-Ki 2: for x ∈ NonKernelSet do 3:

Table 1 :

 1 Characteristics of the test graphs Q d defined in Formula (1) and the number of communities each partition of experimented datasets get. Experiments were performed on a DELL Computer with Windows 8.1 OS 64 bytes, Intel Pentium Core Duo CPU of 4.2Ghz and 7G o of RAM .

	Networks	Nodes edges Comm
	Celegansneural	297	2,345	5
	Polblogs	1,490 19,090	-
	Citeseer	3,327	4,732	-
	Cora	2,708	5,429	-
	d-modularity			

Table 2 :

 2 Using metric Comparison.

	Metric	Figure 3a Network	Celegansneural
		#Comm T riadDens #Comm T riadDens
	Kernel-degree	2	0.64	5	0.711
	Neighbourhood Overlap	2	0.64	91	0.20
	Triad Weight	2	0.64	73	0.254

Table 3 :

 3 σ choice evaluation.

	Inertia Criteria	Figure 3a Network	Celegansneural
		#Comm T riadDens #Comm T riadDens
	I[e ij ] > σ	2	0.6428	5	0.711
	I[e ij ] < σ	1	0.417	103	0.065

Table 4 :

 4 Community detection performance on the Twitter illustration dataset, where the best performances are in bold.

	Model	T riadDens Modularity # of Communities
	Edge-Betweenness	0.0857	0.187	7
	Walktrap	0.6428	0.410	2
	Label Propagation	0.34	0.306	5
	Louvain	0.6428	0.395	2
	Kernel Approach	0.6428	0.410	2

Table 5 :

 5 Community detection performance on the Celegansneural dataset, where the best performances are in bold.

	Model	T riadDens Modularity #of Communities
	Edge-Betweenness	0.0004	0.081	194
	Walktrap	0.0458	0.363	21
	Label Propagation	0.0135	0.0027	29
	Louvain	0.608	0.379	6
	Kernel Approach	0.711	0.393	5
	For the Celegansneural network (see		

Table 5 )

 5 : Edge Betweenness approach focus on links between nodes by searching the central edge (geodesic) meaning the bridge linking two communities. It detects 194 communities, with the weakest T riadDens (0.0857).

Table 6 :

 6 Community detection performance on the Polblogs dataset, where the best performances are in bold.

	Model	T riadDens Modularity #of Communities
	Edge-Betweenness	0.0064	0.1872	55
	Walktrap	0.67	0.4302	12
	Label Propagation	0.0026	0.386	244
	Louvain	0.0085	0.427	274
	Kernel Approach	0.5732	0.429	

Table 7 :

 7 Community detection performance on the Citeseer dataset, where the best performances are in bold.

	Model	TriadDens Modularity #of Communities
	Edge-Betweenness	0.0	0.5344	738
	Walktrap	0.0	0.811	593
	Label Propagation	0.0	0.491	842
	Louvain	0.079	0.886	466
	Kernel Approach	0.407	0.8907	121

Table 8 :

 8 Community detection performance on the Cora dataset, where the best performances are in bold.

	Model	T riadDens Modularity #of Communities
	Edge-Betweenness	0.0516	0.3999	1028
	Walktrap	0.2131	0.756	265
	Label Propagation	-	-	-
	Louvain	0.313	0.808	100
	Kernel Approach	0.0853	0.212	1107