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Suspensions of actively driven anisotropic objects exhibit distinc-
tively nonequilibrium behaviors, and current theories predict that
they are incapable of sustaining orientational order at high activ-
ity. By contrast, here we show that nematic suspensions on a
substrate can display order at arbitrarily high activity due to a pre-
viously unreported, potentially stabilizing active force. This force
moreover emerges inevitably in theories of active orientable flu-
ids under geometric confinement. The resulting nonequilibrium
ordered phase displays robust giant number fluctuations that can-
not be suppressed even by an incompressible solvent. Our results
apply to virtually all experimental assays used to investigate the
active nematic ordering of self-propelled colloids, bacterial sus-
pensions, and the cytoskeleton and have testable implications in
interpreting their nonequilibrium behaviors.

active matter | living liquid crystals | confined active nematics

L iving systems convert chemical energy into motion, thus vio-
lating detailed balance at the microscopic scale. Macroscop-

ically, these violations result in stresses and currents responsible
for intracellular flows leading to cellular motion (1), collec-
tive cell migration during embryonic development (2), and the
flocking of birds (3). Similar nonequilibrium currents arise in
nonliving systems such as chemotactic colloids (4) and vibrated
granular rods (5). These systems are often described by active
hydrodynamic theories, a class of continuum descriptions derived
from equilibrium theories of liquid crystals but supplemented
with extra “active” forces arising from microscopic driving (6–8).
These theories are tools of choice to study specifically nonequi-
librium features in the collective behaviors of fluid suspensions
of anisotropic active units such as cytoskeletal filaments (9, 10)
or bacteria (11).

A central issue in active hydrodynamics is to determine the
effects of activity on the dynamic stability and the robustness
against fluctuations of various types of orientational and trans-
lational order. Previous studies have shown that, due to the
interplay of active stress and solvent flow, nematic order in
incompressible active suspensions is always unstable beyond a
critical value of activity (7, 8, 12–14). This instability thresh-
old vanishes in the limit of infinite system size, implying that,
unlike their equilibrium counterparts, these systems are gener-
ically unstable. In 2D experimental realizations this instability
can, however, be suppressed by the friction of the fluid against a
substrate. Nevertheless, current theories predict that even under
these conditions instability always occurs at high enough activity
(15), which may be experimentally realized through an increase
of the density of myosin motors or bacteria or of the amount of
fuel available to them.

Another distinctive feature of active systems is the statis-
tics of their density fluctuations. In equilibrium systems away
from critical points and with finite-range interactions, a region
of space containing N particles on average will undergo fluc-
tuations of this number of order

√
N whether or not it is

embedded in an incompressible solvent. In contrast, active
hydrodynamic theories of systems without incompressibility dis-
play fluctuations of order greater than

√
N due to active mass

currents arising from orientation fluctuations (5, 7, 8, 16, 17).
While these so-called giant number fluctuations have clearly
been observed in solventless settings, little is known about their
form in the presence of an incompressible solvent (18), and
their observation in biological experiment has been difficult and
controversial (19).

To help interpret the rich dynamical behavior of typically
quasi-2D experiments on active systems (10, 11, 19, 20) here
we study theoretically the ordering and fluctuations of an apolar
active fluid in contact with a substrate. By reexamining the foun-
dation of active hydrodynamic theories in two dimensions, we
first find that the contact with a substrate allows an extra active
force with a distinct angular symmetry. This force does not con-
serve angular momentum, yet it exists even in achiral systems.
Contrary to common wisdom, increased activity in the presence
of this term can lead to a stabilization of nematic ordering. Here,
we first qualitatively discuss the geometrical meaning of this
extra force and derive its form from symmetry considerations in
a purely 2D system. We next show that giant number fluctua-
tions in the active nematic phase are robust to the introduction
of incompressible solvent as well as this active force. Finally,
we show that this potentially stabilizing active force emerges

Significance

Living systems differ from dead matter in one crucial aspect:
They are driven by internal engines. In anisotropic fluids, the
widely accepted framework of active matter theory predicts
that this necessarily leads to an instability from quiescence to
large-scale and eventually incoherent motion. Here we chal-
lenge this common wisdom by reexamining the symmetries
of the most ubiquitous experimental geometry for active sys-
tems. We uncover an additional coupling between activity and
motion that can make an active system even more stable than
its passive counterpart, while preserving other hallmarks of
nonequilibrium physics. Our results challenge common views
on active matter and clarify the interpretation of multiple
experiments.

Author contributions: A.M., M.C.M., S.R., and M.L. designed research; A.M., P.S., J.S.L.,
S.R., and M.L. performed research; and A.M., P.S., M.C.M., J.S.L., S.R., and M.L. wrote the
paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Published under the PNAS license.
1 To whom correspondence may be addressed. Email: ananyo.maitra@u-psud.fr or
martin.lenz@u-psud.fr.y

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1720607115/-/DCSupplemental.

Published online June 18, 2018.

6934–6939 | PNAS | July 3, 2018 | vol. 115 | no. 27 www.pnas.org/cgi/doi/10.1073/pnas.1720607115

http://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:ananyo.maitra@u-psud.fr
mailto:martin.lenz@u-psud.fr
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720607115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720607115/-/DCSupplemental
http://www.pnas.org/cgi/doi/10.1073/pnas.1720607115
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1720607115&domain=pdf


A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

naturally from an accepted model of 3D active fluid under verti-
cal confinement and argue that it is the dominant active force in
a renormalized theory in the presence of noise. Our results offer
plausible explanations for the persistence of order at high activ-
ity, as well as the systematics of instabilities, in bacterial, living
liquid crystal, and cytoskeletal systems.

Qualitative Argument
The well-known destabilization of an active nematic is a result of
particles exerting dipolar force distributions of either sign on the
solvent surrounding them. As illustrated in Fig. 1 A and B, dipo-
lar force distributions of either sign always destabilize the ordered
state. The core of our argument consists of remarking that unlike
these dipolar distributions, force distributions of higher angular
symmetry do not generically destabilize the ordered phase. To see
this, consider the square shape with quadrupolar force distribu-
tion shown in Fig. 1C, which pulls fluid perpendicular to its faces
and pushes it out of its corners. Perturbing a perfectly aligned
row of particles exerting this more symmetric active force density
leads to a bunching of their corners in some locations, which rein-
forces their pushing of the fluid, and a spreading out in others. As
a result, fluid tends to flow from the spread-out to the bunched-up
regions, i.e., in the direction opposite to that pictured in Fig. 1A,
which pushes the particles back toward the perfectly aligned state.
Moreover, the fourfold symmetry of the particles prevents them
from distinguishing between splay and bend perturbations. As a
result, their activity—if of the right sign—always helps stabilize
the aligned state.

Beyond these schematic examples, the force distribution in an
active nematic generically has both dipolar and higher symme-
try contributions. However, in active systems such as suspended
films and 3D bulk fluids where momentum is conserved, all
higher symmetry contributions are subdominant to the dipolar
one at large scales. Here, we show that this is not the case in 2D
systems on a substrate as well as 3D fluids under vertical con-
finement. As a result, depending on its magnitude and sign the
higher angular symmetry active force can lead to an overall sta-
bilization of the active fluid, in contradiction with the widely held
view that incompressible active nematics are always unstable at
high activity.

Fig. 1. Active forces influence the stability of an orientable fluid. (A, Top)
A nematic “puller” aspirates the surrounding solvent along its long direc-
tion (blue arrows) to reject it along the short direction (red arrows). (A,
Bottom) The splayed configuration thus results in the solvent flows shown
by the thick arrows, which drag the particles along and thus accentuate
the original disturbance by rotating them as indicated by the thin arrows.
(B) “Pushers” with the opposite force dipole, while stable against splay,
are unstable when in a bend configuration. (C) The active force intro-
duced here is also present in nematic active systems, but is associated with
higher multipoles of the force density distributions. In the example shown
here, the resulting flow consistently stabilizes the ordered state of the par-
ticles. We show that for systems on a substrate this active stabilization
can overcome the well-characterized destabilization associated with the
dipolar terms.

Model for Active Nematic Suspension on a Substrate
We now offer a formal description of the dynamics of the local
orientation θ(r, t) and velocity v(r, t) of our nematically ordered
2D active suspension, as well as the concentration c(r, t) of its
active particles.

Dynamics of the Orientation Field. Considering small deviations
from a homogeneous state aligned along x̂, we write the linear
dynamical equations compatible with the symmetries of the
system in the long-wavelength (hydrodynamic) limit. The dynam-
ical equation for the angle field is

θ̇=
1−λ

2
∂xvy −

1 +λ

2
∂yvx −Γθ

δH
δθ

, [1]

where |λ|> 1 describes particles with a tendency to align under
a shear flow (e.g., cytoskeletal filaments) while |λ|< 1 denotes
flow tumbling (as in bacteria). Here we use the simplified one-
Frank-constant free-energy functional

H=

∫
d2r

[
K

2
(∇θ)2 + g(c)

]
, [2]

where K > 0 characterizes the tendency of the particles to align
and g(c) is an arbitrary function of the concentration.

Flow Field and Active Forces. Flow is driven by forces internal
to the fluid, and the presence of the substrate dictates Darcy
dynamics,

Γv =−∇Π + f p + f a , [3]

where Γ can be viewed as the friction coefficient against the sub-
strate. The pressure Π serves as a Lagrange multiplier enforcing
the incompressibility condition ∇· v = 0 for the suspension as
a whole, while still permitting fluctuations in the concentration
of suspended particles. We do not consider the case of a com-
pressible medium, which adds no physics of interest. Onsager
symmetry and Eq. 1 yield the density of passive (equilibrium)
forces

f p =−1 +λ

2
∂y

(
δH
δθ

)
x̂ +

1−λ
2

∂x

(
δH
δθ

)
ŷ. [4]

Beyond these standard equilibrium terms, the active force den-
sity f a depends on θ only through its gradient due to rotational
invariance. Combining this with the (x , y , θ)→ (x ,−y ,−θ)
reflection invariance of our achiral system dictates that to lowest
order in gradients

f ax = −(ζ1∆µ+ ζ2∆µ)∂yθ [5a]
f ay = −(ζ1∆µ− ζ2∆µ)∂xθ, [5b]

where ζ1 and ζ2 are two independent, a priori unknown phe-
nomenological constants, and ∆µ denotes the strength of the
overall activity in the system, e.g., the chemical potential differ-
ence between the cellular fuel ATP and its hydrolysis products.
We interpret the two components of fa in Fig. 2, with f ax induc-
ing a horizontal fluid flow in a splayed nematic while f ay drives a
vertical fluid flow in a bent nematic. An active force depending
on gradients of c is also allowed in fa , but does not significantly
modify our discussion (SI Appendix, IA. Dynamics on a Sub-
strate). While the active force proportional to ζ1 is standard in
active fluid theories, the present work introduces and explores
the effect of the solenoidal ζ2 force.

This force can be understood in simple terms by introducing
the nematic director n = (cos θ, sin θ). In momentum-conserving
systems, the active force can be only the divergence of a symmet-
ric stress, namely fa = ζ1 ∆µ∇· (nn) = ζ1∆µ[n(∇· n) + n ·∇n].
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A B

Fig. 2. The two components of the active force fa determine the stability of
the active nematic with respect to splay and bend. (A) A splay perturbation
∂yθ 6= 0 (black segments) induces an active force fa

x = a∂yθ which stabilizes
a flow-tumbling system if a< 0 (represented by the arrows). (B) A bend
perturbation ∂xθ 6= 0 produces an active force fa

y = b∂xθ which stabilizes a
flow-tumbling system if b> 0.

The ζ2 force involves an exchange of angular momentum with
the substrate, and introducing it thus allows an active force with
different prefactors for the terms n(∇· n) and n ·∇n. The form
of active force density we propose also has the same symmetry
as the general flexoelectric polarization in nematic liquid crys-
tals, whereas ∇· (nn) is analogous to a more restricted case in
which the magnitudes of the polarization for a bend and a splay
deformation of equal strength are the same (21, 22). Since a local
polarization in a system out of equilibrium may be associated
with a local force density, this analogy provides a further heuristic
justification for Eq. 5.

Concentration Dynamics. The evolution of the concentration c
is governed by a conservation equation ∂tc =−∇ · (Jp + Ja),
where the passive particle current reads Jp =−Γc∇δH/δc. As
with fa , the active current Ja comprises two distinct θ-dependent
active terms a priori, but the term analogous to ζ2, being a curl,
drops out of the conservation equation, yielding

∂tc = Γc∇2 δH
δc

+ ζc∆µ∂x∂yθ, [6]

where the ζc∆µ active term couples orientation fluctuations with
concentration fluctuations and is featured in standard theories of
active nematics (7, 16).

Active Stabilization of the Ordered Phase
The active term ζ2∆µ has dramatic consequences for the lin-
ear stability of the active fluid. Consider the evolution of a
small perturbation θqe

iq·x with a wave vector q = q(cosφx̂ +
sinφŷ). Combining Eqs. 1–6 and eliminating pressure by pro-
jecting on the direction perpendicular to q, we find that
the dynamics are diffusive to leading order in q : ∂tθq =
−D(φ)q2θq, where the direction-dependent orientational diffu-
sivity is given by

D(φ) = ΓθK +
∆µ

2Γ
(1−λ cos 2φ)(−ζ1 cos 2φ+ ζ2). [7]

The system is thus linearly stable at small q if and only if D(φ)
is positive for all values of φ, i.e., if the second term in the right-
hand side of Eq. 7 is not so large as to overcome the stabilizing
effect of director relaxation through ΓθK . We now focus on this
second term, which dominates for high activity, i.e., large ∆µ.
The case of flow-tumbling (|λ|< 1) systems, where (1−λ cos 2φ)
is always positive, is easy to interpret as it is controlled by the
active force fa . As shown in Fig. 2, splay can be stabilized by
a force f ax that depends on ∂yθ only through a negative coef-
ficient, whereas bend stabilization requires f ay to depend on

∂xθ through a positive coefficient. As previous studies implicitly
assume ζ2 = 0, Eq. 5 clearly shows that they impose the equal-
ity of these two coefficients, implying a destabilization of either
bend or splay, depending on its sign. The introduction of the
active force (ζ2 6= 0) now offers the possibility for these coeffi-
cients to have opposite signs. For ζ2> |ζ1| this implies that the
stability of the system, i.e., a positive relaxation rate, increases
with increasing activity, as shown in Fig. 3A. By contrast, Fig.
3 shows that both flow-aligning (|λ|> 1) and ζ2< |ζ1| systems
remain generically unstable at high activity.

Giant Number Fluctuations
Having opened up the possibility of a stable homogeneous
nematic at high activity, we now examine the nature of concen-
tration fluctuations arising in such a state when nonconserving
and conserving noise sources are added to Eqs. 1 and 6, respec-
tively. We find that the giant number fluctuations persist despite
the long-range effects associated with the incompressible veloc-
ity field. This result, which is in clear contrast to the case of
incompressible active polar systems (23), can be seen with-
out a detailed calculation by examining the structure of Eqs.
6 and 7. Indeed, compared with compressible nematic systems,
incompressibility introduces only a nonsingular anisotropy in
the orientational relaxation rate Eq. 7, without modifying the
scaling with wavenumber. Since giant number fluctuations rely
solely on the wavenumber scaling of the orientational relaxation
rate and not on its anisotropy (16), they should be present in
our system as well. Specifically, simple power counting within a
linearized treatment demonstrates that, due to the active con-
centration current, concentration fluctuations δc = c−〈c〉 scale
with q in the same way as orientation fluctuations. Therefore,
the static structure factor Sq≡

∫
r〈δc(0)δc(r)〉 exp(−iq · r)/〈c〉

of concentration fluctuations scales as 1/q2. Equivalently, in a
region containing on average N particles, the SD in the number
scales linearly with N in two dimensions. Only the form of the
predicted anisotropy of Sq is modified (SI Appendix, IA. Dynam-
ics on a Substrate) with respect to that in ref. 16, due to the factor
D(φ) in Eq. 7. Our conclusions remain valid even upon inclusion
of more general symmetry-allowed active and passive terms (SI
Appendix, IA. Dynamics on a Substrate).

Emergence of the Additional Active Force in Confined Active
Nematics
To further elucidate the physical origin of our active force,
we consider the dynamics of a 3D active suspension of lateral

A B

−

−

−

−

−
−
−
−

Fig. 3. Regions of stability of the ordered phase as given by the sign of
D(φ) in Eq. 7 as a function of the flow-alignment parameter λ, the ratio
ζ1/ζ2 of the two active forces, and the overall magnitude of activity rela-
tive to passive friction ∆µ̃= ζ2∆µ/2KΓΓθ . (A) For ∆µ̃ > 0, the region of
linear stability of the ordered phase (shades of blue) shrinks with increasing
activity, yet the central dark blue square is stable for arbitrary high activ-
ity. (B) For ∆µ̃ < 0, stability is abolished for large enough activity, namely
∆µ̃ <−1.
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dimension L confined over a length scale h�L in the z direction
and project it onto a 2D xy plane. To perform this opera-
tion, we use a standard lubrication approximation correct in the
limit of small h/L (24, 25). This approximation is based on a
separation of scale between the gradients and velocities within
and perpendicular to the xy plane, namely ∂̄z � (∂̄x , ∂̄y) and
v̄z � (v̄x , v̄y), where the bar denotes 3D variables and opera-
tors. The 2D flow equations are then obtained by averaging each
term in the 3D flow equations over the thickness of the confined
fluid. We illustrate this procedure by averaging the 3D viscous
force density ∇̄2v̄ found in both the standard Navier–Stokes
equation and the flow equation for a full 3D active fluid. We
consider a simple Poiseuille profile v̄⊥(x , y , z ) = (4/h2)z (h −
z )v̄0(x , y) for the vertical structure of the flow, where v̄⊥=
(v̄x , v̄y) is the projection of the 3D velocity vector in the xy
plane, v̄0(x , y) is its value in the midplane, and where a no-
slip condition is imposed on the bounding surfaces at z = 0
and z = h . Denoting by v(x , y) = (2/3)v̄0(x , y) the z -averaged
velocity we find that the thickness-averaged viscous force
density reads

1

h

∫ h

0

η̄∇̄2v̄⊥dz =−12η̄

h2
v +O

[(
h

L

)2]
, [8]

which gives rise to the left-hand side of Eq. 3 with Γ = 12η̄/h2.
Crucially for our subsequent discussion, we note that this aver-
aged, 2D viscous force density is of zeroth order in gradient
despite the fact that its 3D counterpart is proportional to ∇̄2.
Indeed, in the process of averaging each vertical gradient ∂̄z is
effectively replaced by a factor proportional to 1/h , and the hor-
izontal gradients drop out because they are subdominant in the
h�L limit. Although the prefactor of Eq. 8 assumes a Poiseuille
profile for the flow, only the numerical coefficient in its right-
hand side and thus the definition of Γ change if other kinds of
flows are considered.

In 3D active fluids, this viscous force density is balanced by the
divergence of active stresses. This divergence can be expressed in
terms of 3D nematic order parameter Q̄(r̄, t) as

∇̄ · σ̄= ∇̄ ·
(
ζ̄0∆µ Ī− ζ̄1∆µ Q̄− ζ̄2∆µ

{
∇̄
[
Q̄ ·
(
∇̄ · Q̄

)]}S)
.

[9]

Here the superscript S denotes the symmetric part of a tensor
and Ī denotes the unit tensor. While the two first terms in the
right-hand side of Eq. 9 are standard, the last term would be
disregarded in a gradient-expansion treatment of an unconfined
3D fluid. Indeed, while the former are of first order in the 3D
gradient ∇̄, the latter is of order three. However, similar to the
thickness-averaged viscous force density of Eq. 8, its thickness-
averaged counterpart gives rise to lower (first)-order terms in
horizontal gradient and thus cannot be neglected. This term thus
gives rise to the second activity constant ζ2 discussed in previous
sections. To see this more clearly, note that one of the terms aris-

ing from the force ∇̄j

{
∇̄i

[
Q̄ ·
(
∇̄ · Q̄

)]
j

}S
is ∇̄2

[
Q̄ ·
(
∇̄ · Q̄

)]
≈

∂̄2
z

{
Q̄ ·
(
∇̄ · Q̄

)}
. To average this and other terms, we supple-

ment the standard procedure described for the viscous force
density with a mean-field treatment whereby the z average of a
product of two fields is approximated by the product of their indi-
vidual z averages (SI Appendix, II. Derivation of Effective Two-
Dimensional Equations of Motion from Three-Dimensional Equa-
tions for Active Fluids Confined in One Direction). Denoting the
z -averaged projection of the apolar order parameter onto the xy
plane as

Q(x, t) =
S

2

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
, [10]

the vertical average of the divergence of the third term in the
right-hand-side of Eq. 9 contributes a 2D force density of the
form Q · (∇·Q) to the thickness-averaged force balance equa-
tion. As this contribution is of the same order in 2D gradient
as the standard active force density ∇· (ζ̄1∆µQ), it must be
retained in a 2D description.

Performing this averaging procedure on the evolution equa-
tion for the 3D nematic order parameter as well as the force
balance equation (SI Appendix, II. Derivation of Effective Two-
Dimensional Equations of Motion from Three-Dimensional Equa-
tions for Active Fluids Confined in One Direction), we obtain the
full thickness-averaged 2D dynamical equations

∂tQ = −v ·∇Q +ω ·Q−Q ·ω−λU−ΓθH, [11a]

Γv = −∇Π−λ∇·H− 2∇· (QH)A,

−ζ1∆µ∇·Q− 2ζ2∆µQ · (∇·Q), [11b]

where ζ1 = ζ̄1 and ζ2 = 9ζ̄2/h
2. The thickness-averaged dynam-

ics of the concentration field are described by Eq. 6. These
equations reduce to Eqs. 1–5 deep in the ordered phase where S
relaxes within a microscopic time to its steady-state value, which
we set to 1 without loss of generality. In Eq. 11 H is the molecular
field conjugate to Q, the superscript A denotes the antisymmetric
part of a tensor, andω and U are, respectively, the antisymmetric
and symmetric parts of the tensor ∇v. The pressure Π imposes
incompressibility as in Eq. 3. Eq. 11 demonstrates that the force
∝ ζ2 previously introduced through general symmetry arguments
is a natural emergent feature of confined 3D active dynamics.
Note that while we have included only one term of order ∇̄2

in Eq. 9 for clarity, other O(∇̄n≥2) terms also contribute both
to this extra ζ2 active force and to the usual ζ1 one upon thick-
ness averaging and do not introduce any qualitatively new term.
Dimensionally, each additional factor of∇ in the 3D theory must
be accompanied by a prefactor of order `, a length scale given by
the size of the suspended particles. Meanwhile, similar to Eq. 8
each vertically averaged gradient yields a factor 1/h . We thus
expect ζ2/ζ1∼ (`/h)2. As a result, in closely confined suspen-
sions with h ∼ ` the coefficients ζ2 and ζ1 should be comparable
in magnitude.

Dominance and Generality of the Extra Active Force
Beyond these microscopic considerations, we predict that the
ζ2 force will dominate over the old ζ1 force in a renormal-
ized theory in the presence of noise. Indeed, according to Eqs.
10 and 11b the latter reads ∇·Q = cos 2θ(∂yθx̂ + ∂xθŷ) in the
ordered phase, while the former takes the form 2Q · (∇·Q) =
∂yθx̂ − ∂xθŷ that does not involve the anisotropic factor cos 2θ.
Since active nematics have only quasi–long-range order, all
anisotropic terms average to zero at large scales due to rota-
tion invariance (17), implying that 〈cos 2θ〉 decays as a power
of system size with a typically small exponent. Therefore, for
large systems, the isotropic ζ2 active force does not vanish with
diverging system size (SI Appendix, III. Beyond Linear Theory:
Scaling of Active Force with Distance) and thus dominates over
the ζ1 force.

In addition to its role in nematic and polar systems, the active
force introduced here is the key to characterizing activity in
higher-symmetry active systems, including tetractic (5) and hex-
atic (26, 27) phases, as expected from the schematic of Fig. 1C.
In these systems symmetry imposes that ζ1, ζc , and λ in Eqs.
1–6 all vanish, implying that our ζ2 term is the only possible
source of active instabilities. It arises through an antisymmet-
ric piece of the active stress, proportional in two dimensions
to θε in the θ� 1 limit, where the pseudoscalar angle field
θ is the broken-symmetry mode and ε is the 2D Levi–Civita
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tensor. While this does not give rise to a generic instability,
these active p-atics on substrates are nevertheless unstable for
ζ2∆µ<−2ΓΓθK irrespective of the presence of an incompress-
ible solvent. In addition, the aforementioned pure-curl character
of the ζ2 term means that they do not contribute to mass cur-
rents. Active tetratics and hexatics thus have normal (nongiant)
number fluctuations.

Dynamics of Defects
Beyond linear stability analysis, activity in orientable fluids also
modifies the dynamics of defects. In nematics, the most abundant
defects have charges +1/2 and −1/2. It is well known that +1/2
defects are motile in active nematics (5, 28–30). The ζ2 active
force does not lead to any additional propulsion of these defects.
Indeed, the force density generated by this term is isotropic,
(ζ2∆µ/2r)r̂ , and thus cannot lead to defect propulsion. Simi-
larly, in systems with higher symmetry where only the ζ2 term
is allowed, defects parameterized as θ=±nψ in polar coordi-
nates (r ,ψ) (with n = 1/4 for tetratics and n = 1/6 for hexatics)
lead only to an isotropic active force density. Therefore, bal-
listic motion of defects is impossible in such higher symmetry
systems.

Experimental Consequences and Discussion
The presence of the ζ2 active term has measurable implications
for current experiments on biological active matter. First and
foremost, we predict the existence of stable states for arbitrarily
high values of the activity parameter ∆µ. This helps rational-
ize the recent observation of highly ordered apolar nematic
phases in confined suspensions of Escherichia coli bacteria (19).
The absence of bacterial turbulence in these systems would
have been a puzzle in a treatment with a single activity param-
eter ζ1. Indeed, the experiments use a nontumbling mutant,
i.e., a system with a highly reduced Γθ in Eq. 7, which should
favor instability. The resolution could well lie in our mecha-
nism involving a second activity parameter with a possibly stabi-
lizing effect.

While this qualitative prediction helps explain the persistence
of stable states in situations with high activity or low dissipa-
tion, it is not sufficient to determine whether the aligned state
in a given experiment is stable due to our mechanism or because
the largest experimentally accessible ∆µ is simply too small. To
discriminate between these two possibilities, we note that in a
noisy environment the stabilizing influence of the ζ2 active term
on the diffusivity D(φ) given in Eq. 7 is directly reflected in
the magnitude of the angular fluctuations even within a stable
aligned state. Considering an angular noise strength 2TΓθ , our
theory thus predicts that the equal-time correlator for angular
fluctuations reads

〈θq(t)θ−q(t)〉= TΓθ

D(φ)q2
. [12]

In a theory including only the old ζ1 active term, an increase
of the ratio ∆µ/Γ (e.g., through an increase of the amount of
ATP available in a cytoskeletal assay) should lead to a decrease
of this correlator along certain directions φ and an increase
along others. By contrast, in the presence of the stabilization
mechanism discussed here (i.e., for ζ2> |ζ1|), this correlator will
decrease along all directions φ, providing a quantitative test for
the existence of the ζ2 stabilization.

Our linear stability analysis also helps to heuristically under-
stand pattern formation in bacterial and cytoskeletal active flu-
ids (10, 11, 31, 32). The anisotropy of D(φ) in Eq. 7 implies
that the ordered phase is destabilized when it first becomes
negative for any angle φu . In this case, bands with the nor-
mal vector oriented along φu are likely to form whose length
scale can be obtained simply by extending, to fourth order in

the wavenumber q , the 2D mode analysis that led to Eq. 7.
The resulting dynamics read ∂tδθq =−[D(φ)q2 +Kr (φ)q4]δθq,
where the stabilizing coefficient Kr (φ) = (K/4Γ)(1−λ cos 2φ)2

arises simply from Frank elasticity and thus accounts for
patterns with size ≈

√
Kr (φu)/|D(φu)| without resorting to

previously invoked ad hoc high-order gradient expansions
(11, 32, 33). Moreover, when the effective 2D dynamics are
those of a confined 3D fluid as discussed above, Γ∝ 1/h2

so that Kr dominates over such ad hoc terms by a factor
O(h/`)2, which can be large depending on the scale of the
confinement.

Beyond these applications, this order-q4 theory can be
extended to explain ordering and pattern formation in novel “liv-
ing liquid crystals,” namely passive nematic liquid crystals with
well-characterized physical properties perfused with small quan-
tities of bacteria. Because of the small amount of active bacteria
in them, these systems share most of their passive properties
with the embedding, often well-characterized liquid crystal. This
offers unprecedented opportunities to quantitatively test our and
other theoretical predictions. The detailed connection between
these systems and the current study is discussed in SI Appendix,
IV. Living Liquid Crystals, where we introduce two coupled angle
fields for the local alignment of the passive liquid crystalline par-
ticles and active bacterial ones. Our approach accounts for activ-
ity without the need for previously introduced ad hoc Onsager
symmetry-breaking orientational couplings between these two
angular fields (20) and leads to a stability criterion identical to
that of Eq. 7. As a quantity analogous to λ can be quantita-
tively tuned by modifying the passive properties of the liquid
crystal, our stability prediction is directly testable, and we pre-
dict the appearance of patterns with a similarly tunable length
scale. Changing the embedding liquid crystal, the viscosity of the
solvent, or the scale of the confinement should also enable mod-
ifications of the parameters analogous to K , Γ, and Γθ in Eq. 7
and allow direct tests of whether a flow-tumbling system with a
large and positive ζ2 remains stable when ∆µ/(KΓΓθ)> 2, as we
predict.

Finally, our approach suggests an explanation for the recent
observation (34) that the transition to activity-driven turbulence
in extensile microtubule–kinesin systems confined in a channel is
controlled by the aspect ratio of the transverse cross-section of
this channel. Averaging the dynamics over the z direction in a
channel with a rectangular Ly × h cross-section, we look at the
longest wavelength splay fluctuations in the y direction, while
noting that extensile particles imply ζ̄1> 0, which stabilizes splay
fluctuations. Assuming a destabilizing ζ̄2< 0, we predict that the
system should become unstable as h is decreased and the ratio
ζ2/ζ1 ∝ 1/h2 subsequently increases. We therefore predict that
ζ2 active force plays a destabilizing role in microtubule–kinesin
systems.
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