
HAL Id: hal-01849543
https://hal.science/hal-01849543

Submitted on 26 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An empirical study of the understanding of formal
propositions about sequences, with a focus on infinite

limits
Renaud Chorlay

To cite this version:
Renaud Chorlay. An empirical study of the understanding of formal propositions about sequences,
with a focus on infinite limits. INDRUM 2018, INDRUM Network, University of Agder, Apr 2018,
Kristiansand, Norway. �hal-01849543�

https://hal.science/hal-01849543
https://hal.archives-ouvertes.fr


An empirical study of the understanding of formal propositions 

about sequences, with a focus on infinite limits 

 

Renaud Chorlay 

ESPE de Paris, Uni. Paris-Sorbonne, France & LDAR (EA4434) 

renaud.chorlay@espe-paris.fr 

 

In this paper, we analyze the answers of one group of high-school students and 

two groups of first-year University students to a questionnaire designed to test 

their level of recognition and understanding of the formal definition of the 

concept of infinite limit. Although this empirical study is ancillary to a larger 

project centered on didactic engineering, its analysis sheds light on the key issue 

of the logical prerequisites for the learning of the fundamental concepts of 

analysis. It also provides a new tool to investigate students’ concept-image of 

limits, and assess the impact of teaching contexts and teaching paths. 

Keywords: Teaching and learning of analysis and calculus, teaching and 

learning of logic, reasoning and proof, definitions, limits. 

CONTEXT AND RATIONALE 

At the INDRUM 2016 conference, Cécile Ouvrier-Buffet and Renaud Chorlay 

presented a poster outlining a medium-scale project on definitions in analysis 

(Chorlay & Ouvrier-Buffet, 2016), with a focus on the formal definition of the 

limit of a numerical sequence. This topic lied at the intersection of the research 

interests of the two researchers: Cécile Ouvrier-Buffet is a maths-education 

researcher with a strong epistemological background, whose work bears mainly 

on definitions, their use, and the conditions for their genesis in teaching-contexts 

(Ouvrier-Buffet 2011). Since most of her former work bore on discrete 

mathematics, she wanted to investigate the extent to which the theoretical tools 

she had developed in this context had to be adapted to deal with a teaching 

context with very different mathematical (continuous vs discrete) and didactical 

(transition from calculus to analysis) features. Renaud Chorlay is a historian of 

mathematics and teacher educator with a long-standing interest in the history 

(Chorlay, 2011) and didactics of analysis.  

We selected the topic of limits because we felt many years of didactical 

investigations had made it a mature topic; a topic about which knowledge has 

accumulated to form a sound and coherent body of knowledge. Indeed, we know 

a lot about limits in terms of conceptions and misconceptions (Robert, 1982); 

also in terms of obstacles (Sierpinska, 1985). As far as the genesis or 

rediscovery of the (or a) definition is concerned, many attempts have been made 

and reported upon in details, whether in the framework of didactic engineering
1
 

(Robert, 1983) (Bloch & Gibel, 2011) or with other research tool-boxes 

(Mamona-Downs, 2001) (Przenioslo, 2005) (Swinyard, 2011) (Lecorre, 2016) 
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(Roh & Lee, 2017).  The tricky logical aspects were studied, in particular, in 

(Arsac & Durand-Guerrier, 2005).  

On this solid basis, our work on the genesis and use of definitions has so far 

been engaged along three different lines of investigation; we will distinguish 

between ex-ante studies – before students’ first encounter with formal 

definitions of limits – and ex-post studies. 

 Ex-ante 1: For year 12 (final year of secondary education), the French 

curriculum requires that students majoring in mathematics and the 

sciences study a definition of limits (finite or infinite) of numerical 

sequences. Students are not really expected to use this definition on their 

own; rather, the teacher is expected to use these definitions on a few 

occasions, to show that some properties of limits can actually be proved 

mathematically (in particular: any unbounded and increasing sequence 

tends to +). The underlying idea is that early encounter with a few 

rigorous definitions and proofs should ease the transition between high-

school calculus – with its combination of algorithmic procedures and 

graphical intuition – and university analysis. This classroom work on the 

formal definition of limits is connected to another requirement of the 

current curriculum, namely that throughout high-school, the basic notions 

and the standard notations of mathematical logic be gradually made 

explicit. In this context, the discovery of a definition for limit, with its 

specific sequence of nested quantifiers, is supposed to be the culmination 

of this gradual process. In 2016, one of us (Chorlay) designed a teaching-

session in the spirit of didactic engineering, for students to gradually 

formulate a formal definition of the infinite limit. We will report on this in 

detail in another context. 

 Ex-post 1: in 2015-2016 we studied how – if at all – prospective maths-

teachers made use of the definition of limits in order to identify and 

analyze vague, informal or erroneous statements regarding limits. We 

reported on this in a poster presented at the INDRUM 2016 conference. 

 Ex-post 2: in 2016-2017 we designed a questionnaire in order to assess the 

level of recognition and understanding of the formal definition of the 

infinite limit. This questionnaire, and the answers collected with three 

groups of students are be the topic of this paper. 

QUESTIONNAIRE - DATA COLLECTION 

The questionnaire was of the True/False type, divided in two parts. We give 

below an English translation, along with indications on the correct answers. 

Part I. For each one of the implications below, circle either “True” or “False”. If 

you circle “False”, justify your answer. 



#1 If     lim un = +    then     A  R     nA  N   such that      
  A 

T - F Justification (if “False”): 

#2 If    lim un = +    then       A  R     n  N    un  A 

T - F  

#3 If   lim un = +    then     A  R     nA  N   such that       
  A 

T - F  

#4 If    lim un = +    then      A  R     n  N ,   un  A 

T - F  

#5 If lim un = + then     A  R     nA  N such that for any integer 

n greater than nA           A 

T - F  

Correct answers: 

#1 True: Here the consequent means “not bounded above”. 

#2 False: Here the consequent is a property which never holds; hence the 

implication is always invalid. 

#3 True: Here the consequent is always valid, hence the implication is always 

valid. 

#4 True: Here the consequent means “bounded below”. 

#5 True: Here the consequent is the definition, worded semi-formally. 

Part II. The four implications below are taken from part I. For each one of them, 

first state its converse, then circle “True” or “False” regarding the converse. 

Justify if “False”. 

#1 If     lim un = +    then     A  R     nA  N   such that      
  A 

Converse : 

T - F Justification (if “False”): 

#3 If   lim un = +    then     A  R     nA  N   such that       
  A 

Converse : 

T - F  

#4 If    lim un = +    then      A  R     n  N ,   un  A 

Converse : 

T - F  

#5 If lim un = + then     A  R     nA  N such that for any integer 

n greater than nA           A 

Converse: 

T - F  

 

Conv. of #1 False: standard counter-examples are      ,         … 

C of #3 False: the antecedent being always true while the consequent can be 

false, the implication is invalid. 

C of #4 False: being bounded below does not imply lim = +.  



C of #5 True: definition. 

The specific form of the questionnaire derives from its original intended use. It 

was first designed to assess the didactic engineering, which focused on the 

formal definition of the infinite limit. Other forms of assessment of the ability to 

recognize, and of the level of understanding of the formal definition were ruled 

out, in particular interviews (as in (Robert, 1982)) or proof-writing (as in (Roh 

& Lee, 2017)). We felt this questionnaire would give us feedback regarding two 

key features of the engineering, namely (1) the role of logic, hence the flood of 

formulae with nested quantifiers in this questionnaire; (2) the fact that “not 

bounded above” is a necessary condition for lim un = + but not a sufficient 

condition, hence the importance of item #1 and its converse.  

We did not ask for justifications when the item was deemed “True” by the 

students, mainly to save time and keep the questionnaire feasible in about 20 

minutes. In addition, the justificatory task for True statements could vary a lot 

across teaching-contexts and would not easily lend itself to comparison. For 

instance, considering item #4 (if lim un = + then the sequence is bounded 

below): in some contexts citing a theorem studied in class would suffice whereas 

in other contexts students would have to devise and write a non trivial proof. We 

also chose to drop the converse of item #2, since the fact that an implication 

whose antecedent is False is considered valid is a purely logical matter. 

In the spring of 2017, the questionnaire was administered to three groups of 

students: Group 1 is one of the two French Year-12 classes which had 

experienced the engineering; Group 2 and 3 are first-year university students in 

Mons University (Belgium), with high-achieving maths majors in Group 2 and 

medium-achieving
2
 computer science majors in Group 3. In all three cases, the 

questionnaire was given several months after the course on limits had been 

taught, and students had not been asked to revise anything in particular. They 

were told the questionnaire was given for research purposes, and would not be 

graded. They were given between 20 and 30 minutes. The number of students 

was: 31 (group 1), 50 (group 2), and 17 (group 3). 

We originally hoped a comparison between the three groups would enable us to 

study the effects of three teaching units: our engineering (group 1), a “standard” 

maths-lecturer course (group 2), and Robert’s engineering (group 3, as reported 

upon in (Bridoux, 2016)). Unfortunately, we were not able to do that, since other 

factors seemed to have had a more significant impact.  

FINDINGS 

Result #1 

A first result is that this questionnaire is not unfeasible. In group 2, 14 of the 50 

questionnaires were answered perfectly correctly, with relevant counter-

examples for the False statements. Some of these counter-examples had been 



studied in class (such as         for the converse of #1); in these cases, 

students managed to interpret “ A  R     nA  N      
  A” as “not bounded 

above” and selected a relevant counter-example in a memorized repertoire. In 

other cases, counter-examples had not been studied in the course on limits – 

because they had nothing to do with limits – and students crafted ad-hoc 

counter-examples, displaying some command of logic (for instance, to prove 

that the negation of “ A  R     nA  N       
  A” always holds).  

Result #2 

A second set of results sheds light on the role of an explicit teaching of logic. 

When we collected the data we first engaged in quantitative analysis, and were 

pretty unhappy about the following result: in group 1 (our engineering), only 

26% of the students considered #4 to be “True”, compared to 86% in group 2 

and 71% in group 3. A closer look at the answers showed that in group 1, a 

significant number of students had actually engaged in another task than the 

prescribed task. In Fig. 1 and 2 we translated extracts of answer-sheets from 

group 1: 

 

Figure 1. Student 29 of group 1 

 

Figure 2. Student 3 of group 1 

In these answer-sheets, the students did not engage in an assessment of the 

logical implications but in a comparison between the formal statements given as 

consequents (in part I) and the definition of lim un = +. In these examples the 

comparison can be clumsy (as for #2 for student 29, or the “and  A” for student 

3). Nevertheless, it rests on the fact that the definition is known (correct answers 

for #5 and its converse), and is seen as the relevant template against which other 

quantified formulae ought to be contrasted. Moreover, the comparison is not 

purely syntactical: in her assessment of #4, student 29 did not only spot that “ 



A  R     n  N ,   un  A” is not the definition, but also elicited in her own 

words why it could not be, namely “ n  N    un  A” does not capture “beyond 

a certain rank”, which is a key element of the definition. The reinterpretation of 

the prescribed task is typical of at least one third of the questionnaires from 

group 1.  

By contrast, only one of the 67 students from Mons University reinterpreted the 

implication-assessment task as a comparison-with-the-definition task. A key 

difference between group 1, on the one hand, and groups 2 and 3, on the other 

hand, is that at Mons University students had studied logic in the first term, 

whereas the French high-school students had only occasionally been exposed to 

logic. The French students were familiar with the notion of converse, and had 

some knowledge of the meaning of quantifiers  and , but were not familiar 

with sequences of quantifiers; much less with the negation of such sequences. 

These formal aspects were not problematic for a large majority of the Mons 

students. This does not mean that all the logical aspects were mastered by the 

Mons students. In particular, when it came to proving that some formal 

statement was valid, many answer-sheets showed misconceptions regarding the 

use of  and . 

This sheds some light on the standard but thorny issue of prerequisites: since the 

formal definition of limits involves a sequence of nested quantifiers, how much 

logic should be taught (either beforehand or along the way) for students to be 

able to do anything with it? Our results suggest that the answer depends on how 

“do” something with a definition is construed. Using the formal definition to 

design and write proofs probably requires some know-how regarding the 

interpretation of hitherto unknown sequences of quantifiers, and the negation of 

such sequences; for a significant proportion of the French student, their 

occasional and in-context encounters with logical notations did not allow them 

to acquire such know-how. However, if “do” is taken to mean “remember the 

definition” and even “understand the definition”, then for a large majority of the 

French students, their command of logic was adequate. For instance, we 

consider the work of student 29 of group 1 (fig.1) to display some degree of 

conceptual understanding of definition, namely some understanding of the 

specific role of each of the three quantifiers. Student 3 is clearly able to interpret 

“ A  R     n  N   un  A”. This understanding does not rest on a general 

ability to make sense of and formally manipulate logical formulae, but is limited 

to the context of the definition of limits. Since it relies on the specific 

connections between the concept-image and concept-definition of “limit” 

targeted (and, apparently, stabilized) in the didactically engineered teaching-

session, this understanding is probably not only context-dependent but also path-

dependent.  



Result #3. 

In the a priori analysis for the engineering, we studied the relations between 

three mathematical properties of numerical sequences:  

(1) lim un = +

un) is not bounded above;  

(3) un) is strictly increasing, at least from a certain rank onward.  

Our hypothesis was that properties (2) and (3) were part of the concept-image of 

(1) for most students; of a concept-image
2
 in which all three properties are 

considered to “go together”, without any specific and explicit logical 

connections being part of the cognitive structure. This hypothesis was based on 

the didactical literature (Robert 1982) (Mamona-Downs 2001) (Swinyard 2011), 

and was perfectly confirmed during the two implementations of the engineering. 

For this reason, our design aimed for conceptual differentiation, to be achieved 

first through the study a few well-chosen sequences, and then through the formal 

explicitation of the logical connections between (1), (2), and (3). Consequently, 

we wanted our post-experiment questionnaire to help us assess to what extent 

students knew that (1)  (2) is valid, while its converse is not.  

Due to the significant level of reinterpretation of the prescribed task in group 1, 

the data gathered do not easily lend themselves to quantitative comparison. 

However, the fact that “not bounded above” (2) is a key component of the 

concept image of  lim un = + (1) is again confirmed beyond doubt. Let us first 

compare groups 2 and 3. In group 3 – the medium-achieving computer science 

majors – all 17 students deemed the converse of #1 to be True. Leaving out 3 

students whose answer-sheets show an inadequate command of the logical 

aspects, it seems that Aline Robert’s engineering (which targeted the definition 

of finite limits) had no impact on the belief that if a sequence (un) takes on 

arbitrarily large values, then lim un = +. In group 2, that of high-achieving 

maths majors, the results were not as striking; they were telling just as well. 

Among the 50 answer-sheets, let us focus on the subpopulation of those for 

which all the answers to part I were correct (including relevant counter-

examples for #2), and all the converses were stated correctly. Among these 33 

students, 17 deemed the converse of #1 to be False – which is the correct answer 

– and all but one provided a relevant counter-example (usually          

which – as the lecturer confirmed – had been studied in detail). Student 25 even 

wrote: “ A  R     nA  N   such that      
  A means that the sequence is not 

bounded above, but it doesn’t mean it tends to +, it may oscillate. Let’s 

consider         (…)”. However, the other 16 students ticked “True” for the 

converse of #1. The resistance of this belief, even among students with a 

reasonable command of logic, who know the definition of lim un = +(item #5 

and its converse), and who had been exposed to a teaching which explicitly 

tackled this issue suggest that the conflation of (1) and (2) is an epistemological 



obstacle (Chorlay & de Hosson, 2016). It is probably not independent from the 

belief that all sequences are monotonous, at least after a certain rank (Robert 

1982), but our questionnaire offers no new insight as to this. 

This confirms – in hindsight – that we were justified to take (2) into account 

when designing a teaching-session on the formal definition of (1). However, it 

does not tell us whether targeting the formulation of the definition of (1) through 

a process fostering the conceptual differentiation between (1) and (2) was 

didactically relevant – as standard constructivist tenets suggest – or just 

foolhardy.  

The results of group 1 allow us to be cautiously optimistic. From a purely 

quantitative viewpoint, 58% of the students of group 1 deemed the converse of 

#1 to be “False” – which is the correct answer – but no conclusions can be 

drawn from this fact beyond that this 58% stands in sharp contrast with the 0% 

of “False” on the subpopulation of OK-answer-sheets of group 3. In group 1, for 

instance, the third of the students who clearly reinterpreted the task as “compare 

with the definition” ticked “False”, but this does not indicate that they are aware 

of the connections between properties (1) and (2), or that they were able to 

reformulate “ A  R     nA  N   such that      
  A” as “not bounded 

above”.  Answer-sheet 30 of group 1 shows, again, that some conceptual 

understanding can be achieved in a formal context in spite of a poor level of 

command of symbolic logic. This student systematically stated BA as 

converse of AB; hence one has to study her assessment of the converse of #4 

– instead of #1 – to see if she mistakes (2) for (1); which she does not, actually. 

Of the 31 students of group 1, only two interpreted the task correctly and 

provided relevant correct answers for the converse of #1, either with a formulaic 

counter-example        or with a graphical counter-example (of the   
       type). However, about one fourth of the students deemed the converse of 

#1 to be false, interpreted the task as “assess the implications” and provided 

arguments which we could be indicative of some conceptual understanding. In 

these cases, they justified their assessment not by displaying a counter-example, 

but by explaining why the antecedent was not strong enough to warrant the 

consequent: under the hypothesis “ A  R     nA  N   such that      
  A”, 

the sequence can oscillate; or: the antecedent does not imply that the sequence is 

increasing. Our empirical data does not enable us to tell which of the following 

is the case: either, students argue on the basis of the fact that if a sequence is 

increasing and not-bounded above then it tends toward + (a theorem they are 

familiar with); or, students conflate (1) and (3). 

CONCLUSIONS AND RESEARCH PERSPECTIVES 

While the questionnaire studied in this paper was originally designed to compare 

the effectiveness of three teaching-modules on the definition of limits of 

sequences, it turned out that they could not serve that purpose due to the 



decisive impact of another factor, namely the level of familiarity with predicate 

calculus – both in terms of syntactic command, and in terms of ability to make 

sense of logical formulae involving nested quantifiers. Nevertheless, we claim 

that meaningful conclusions or insights can be gained from the analysis of our 

empirical results.  

For students with some command of logic – a command which cannot be gained 

through an occasional and in-context use of logical formalism – this 

questionnaire does provide insight into the connections between concept-image 

and concept-definition for limits, thus providing a new investigative tool to 

study this issue; a tool which does not involve conducting interviews or studying 

students ability to use the definition in proofs. As far as students are concerned, 

the comparison between group 2 and group 3 suggest that not all teachings on 

limits are equivalent in this respect; the case of group 2 shows that – under 

circumstances which call for further investigation – first-year university students 

can display a reasonable command of the concept of limit.  

As far as group 1 is concerned, the result show that the prerequisites in logic 

may not be as high as one might expect, if what is targeted is the ability to 

memorize the formal definition, and the ability to display understanding of some 

key features of the concept. As far as our didactic engineering is concerned, 

these results show that (1) it was not a complete failure, (2) some of its guiding 

principles – such as the importance of the conceptual differentiation between 

infinite-limit and not-bounded-above, or the use of logical formalism – seem 

relevant. However, in this context, this questionnaire is probably not the best 

tool for a fine-grained assessment of what the actual impact of this engineering 

is.  

1. For introduction to didactic engineering as task-design oriented research method, see (Bosch & Barquero 

2015). 

2. This assessment of the overall level of the groups is that of the team of maths lecturers at Mons University, as 

communicated to us by Stéphanie Bridoux, who is both a member of that team and a mathematics education 

researcher (LDAR). Many thanks to her for her collaboration on this project. 

3. D. Tall and S. Vinner introduced the distinction between the image and the definition of a concept to stress the 

difference between mathematics as a mental activity and as a formal system. “We shall use the term concept 

image to describe the total cognitive structure that is associated with the concept, which includes all the mental 

pictures and associated properties and processes. (…) it needs not be coherent (…).” (Quoted in (Tall 1991, 7)). 
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