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Research has reported on the difficulties engineering students face in relating the 

content of their mathematics courses to what is taught in their professional courses. 

One way to address these difficulties is by better understanding how mathematical 

notions are used in professional engineering courses. This paper analyses how the 

notion of first moment of an area – which is defined as an integral – is used in civil 

engineering courses. Basing our analysis on elements from the anthropological 

theory of the didactic, we are currently analysing a classic Mechanics of Materials 

book. Our findings indicate that although first moments are introduced as an 

integral, the textbook’s tasks do not require students to use techniques typically 

introduced in a traditional calculus course. 

Keywords: Mathematics for engineers, teaching and learning of analysis and 

calculus, textbooks, anthropological theory of the didactic, first moment of an area. 

INTRODUCTION 

Engineering courses are usually organized into two groups: basic science courses 

(which are taught in the first two years, including foundational skills in mathematics 

and physics), and technical courses (which appear later in the programme and are 

more specific to each field of engineering). However, research in engineering 

education and mathematics education indicates that engineering students encounter 

many difficulties in their mathematics courses in the first years of study, which can 

lead to high failure rates, and in many cases, result in students dropping out of 

engineering programmes (Ellis, Kelton, & Rasmussen, 2014). In this sense, “poor 

mathematics skills are a major obstacle to completing […] engineering programs” 

(Fadali, Johnson, Mortensen, & McGough, 2000, p. S2D-19). 

Researchers have identified some negative situations for students who pass these 

mathematics courses. One situation is that these students often find it difficult to 

relate the learned mathematical content to the content of the professional courses. 

For Flegg, Mallet, and Lupton (2011, p. 718) “without the explicit connection 

between theory and practice, the mathematical content of engineering programs may 

not be seen by students as relevant”. Another situation is that in spite of having 

passed the mathematics courses (with a rather rigid structure and rare concrete 

applications relevant to engineering), students must apply mathematics in their 

engineering courses, where many new mathematical notions appear without having 

been encountered in the previous mathematics courses (Hochmuth, Biehler, & 



  

Schreiber, 2014, p. 694). Faced with these problems, the mathematics and 

engineering education communities have been engaged in research and discussion on 

“how to improve engineering students’ mathematics learning, and hence their service 

teaching” (Bingolbali, Monaghan, & Roper, 2007, p. 764). 

Our current research program investigates how calculus notions are used in 

engineering courses, aiming at identifying possible ruptures between how notions are 

first introduced and used in calculus, and how they are later used in professional 

courses. First, we analyse how engineering textbooks present these notions, working 

under the principle that most tertiary instructors organise their teaching using 

textbooks as an important resource (e.g., Mesa & Griffiths, 2012). The manner in 

which mathematics notions are used in professional courses has not been the subject 

of much research. However, we believe this type of research could help bridge the 

gap between two communities. On the one hand, mathematics lecturers in 

engineering programs could benefit from knowing how their course content is used 

in professional courses; on the other hand, professional course instructors could 

benefit from a critical analysis of their use of mathematics, to help their students 

make connections between the content of mathematics and professional courses. For 

example, our analysis of the way integrals are used to define bending moments for 

beams in strength of materials textbooks for civil engineering reveals different uses 

of “the same” object (González-Martín & Hernandes Gomes, 2017a). Although 

bending moments are defined as an integral, the tasks, techniques, and justifications 

used in calculus courses are very different from the ones presented in professional 

engineering courses; this may result in students not recognising “the same” object in 

two different courses, and they may question the relevance of integration techniques 

that are not used in tasks concerning bending moments. In this paper we develop the 

content of González-Martín & Hernandes-Gomes (2017b) as we explore the use of 

integrals to introduce another engineering notion: first moment of an area. We aim to 

address two questions: how is the content related to integrals used in engineering to 

work with first moments of an area, and how does this use relate to the content in 

calculus courses? 

Defining first moment of an area 

Moments of areas are topics commonly taught in engineering courses that cover 

strength of materials. Due to space limitations, in this paper we focus on the first 

moment of an area. In civil engineering, for example, to solve bending problems one 

must take into account some specific geometrical characteristics of cross-sections of 

a bar, which is the general term for structures that include beams (Feodosyev, 1973). 

In this situation, the notion of first moment of an area is used to calculate the 

centroid of an area and the shearing stresses in transverse bending. The centroid of 

an area A is its geometrical barycentre and is the point C of coordinates  and  such 

that the following relationships hold true: xAdAx
A

    and yAdAy
A

   . 



  

Let A be an area situated in the xy plane (Figure 1), using x 

and y as the coordinates of an element of area dA. 

According to Beer, Johnston, DeWolf, and Mazurek 

(2012, p. A2), the first moment of an area A with respect 

to the x axis (resp. y axis) is mathematically defined as the 

integral  A
x dAyQ    (resp.  A

y dAxQ   ). In both integrals, 

the index A in the integral sign indicates that the integral is 

calculated over the whole cross-sectional area. Both 

integrals characterize the sum of the products of each 

element of area dA and its distance to the respective axis 

(x or y) and are measured in cubic units (Beer et al., 2012). 

When an area possesses an axis of symmetry, the first moment with respect to that 

axis is zero, since every element of area dA of abscissa x (resp. ordinate y) 

corresponds to an element of area dA’ of abscissa –x (resp. ordinate –y). This implies 

that when an area possesses an axis of symmetry, its centroid is located on that axis. 

For instance, in a rectangular cross-section (two axes of symmetry), its centroid C 

coincides with its geometric centre. Determining the position of the centroid is 

important, since several forces in a bar pass through its centroid. 

To illustrate these definitions and their calculation with an 

example, let us consider the case of a bar with a 

rectangular cross-section (Figure 2). If we consider the 

expression above,  A
x dAyQ   , we can take dA as the area 

of the grey rectangle, whose dimensions are b and dy. 

Substituting dA in the integral, we have that 

 
AA

x dybydAyQ      . Calculating this integral throughout 

all the vertical extension of the rectangular cross section, 

we obtain: 
h

x dybyQ
 

0 
   . Calculating the integral, we 

obtain: 
2

0

22

22

0

2

b
h

b
y

bQ

h

x  , therefore 
2

2h
bQx  . 

THEORETICAL FRAMEWORK 

As stated above, we are interested in analysing how calculus notions are used in 

professional engineering courses, aiming at identifying possible breaks from the 

content in calculus courses. For our research, we use tools from the anthropological 

theory of the didactic (ATD – Chevallard, 1999) because it considers human 

activities as institutionally situated. In this sense, knowledge about these activities 

and their raison d’être is also institutionally situated (Castela, 2016, p. 420). In 

particular, ATD offers a general epistemological model of mathematical knowledge, 

 

Figure 1: General area 

A with infinitesimal area 

dA in the xy plane (Beer 

et al., 2012, p. A2). 

 

Figure 2: Determination 

of the first moment with 

respect to the x-axis of 

an area with rectangular 

cross-section. 



  

where mathematics is seen as a human activity through which various types of 

problems are studied (Barbé, Bosch, Espinoza, & Gascón, 2005, p. 236). 

The key element we use in our analysis is the notion of praxeology (or, in our case, 

mathematical organisation or mathematical praxeology – MO hereinafter), which is 

formed by a quadruplet [T/τ/θ/Θ] consisting of a type of task T to perform, a 

technique τ which allows the task to be completed, a discourse (technology) θ that 

explains and justifies the technique, and a theory Θ that includes the discourse. The 

first two elements [T/τ] are the practical block (or know-how), whereas the 

knowledge block [θ/Θ] describes, explains, and justifies what is done. These two 

blocks are important elements of the ATD model of mathematical activity that can be 

used to describe mathematical knowledge. Furthermore, ATD distinguishes different 

types of MO: punctual, which are associated with a specific type of task; local, which 

integrate multiple punctual MOs that can be explained using the same technological 

discourse; and regional, which integrate local MOs that accept the same theoretical 

discourse (Barbé et al., 2005, pp. 237-238). 

Praxeologies, like knowledge in general, may move from the institution where they 

emerge to other institutions that find them useful (Castela & Romo Vázquez, 2011). 

This is the case, for instance, of mathematical notions that are used to solve 

engineering problems. In this process, there are transposition effects on the 

concerned praxeologies (Castela & Romo Vázquez, 2011; Chevallard, 1999). We 

consider the work of Castela (2016), who identified that “when a fragment of social 

knowledge, produced within a given institution I, moves to another one IU in order to 

be used, the ATD’s epistemological hypothesis states that such boundary crossing 

most likely results in some transformations of knowledge, called transpositive 

effects” (p. 420). In this boundary-crossing process, some (or all) elements of the 

original praxeology may evolve. Therefore, it is important to analyse the types of 

tasks and techniques as well as the discourses and theories employed. To that end, 

our research identifies specific local MOs present in professional courses; we analyse 

how calculus notions are used (practical block) and whether this use relates to the 

way the notions are usually presented in calculus courses (knowledge block). 

METHODOLOGY 

It is worth noting that, in order to understand how calculus notions are used in 

engineering courses, we have had several exchanges with an engineering teacher 

holding bachelor’s and master’s degrees in civil engineering, with more than 28 

years of experience teaching a variety of professional engineering courses at 

Brazilian universities. This teacher has explained notions related to his field and has 

helped us identify course content in which first-year calculus notions are used. 

At this teacher’s university, first moments of area are introduced during the third 

semester of the programme (second year), in the Strength of Materials for Civil 

Engineering course (students take calculus in their first two semesters). The course’s 



  

reference book is Beer et al. (2012). First moments are initially cited in chapter 4 

(4.2. Stresses and deformations in the elastic range). We proceeded in two stages: 

 First, we analysed the general structure of the content related to integrals in the 

calculus courses. We identified the main tasks proposed to students, grouping 

them according to the technological elements needed, identifying therefore the 

main local MOs that structure this content. 

 Second, we started our analyses of the reference book for the Strength of 

Materials course. We identified all instances where first moments appear in the 

book (using key words to search in an electronic version of this book). For 

each occurrence of this notion, we are currently analysing the tasks presented 

in the book where first moments are used. For each task, we are analysing the 

techniques and discourses (technologies) the textbook uses. As the notion of 

first moment is used in different chapters of the book, where different 

professional notions are introduced and explained, the technological 

discourses are quite varied, giving place to various MOs. The next section 

provides specific details of our analysis. 

DATA ANALYSIS AND DISCUSSION 

Calculus is taught in the first year of the program over two semesters in two courses: 

Calculus I and Calculus II. Up until a few years ago, integrals appeared only in 

Calculus II, but some content was moved to Calculus I because Physics II (a course 

in the second semester) requires a knowledge of integrals. Integrals appear towards 

the end of the first course and are the main topic in the second course (the second 

author of this paper has taught Calculus I for 15 years and Calculus II for two years). 

The content covers indefinite integral (antiderivative of f), Riemann sum and definite 

integral, applications for the calculation of areas, integration by substitution, 

volumes (Calculus I), and integration techniques, improper integrals, and arc length 

(Calculus II). The main source for the calculus courses is the classic book by Stewart 

(2012). The content concerning integrals is basically structured using two local MOs. 

The first, MOM1, introduces techniques for calculating indefinite integrals 

(immediate integration to begin with, followed by various integration techniques); 

however, theoretical elements justifying the different integration methods are mostly 

absent and those present are explained without a proof. The second MO, MOM2, 

introduces Riemann sums to formally define integrals and interpret them as areas, 

and leads to the Fundamental Theorem of Calculus and the calculation of definite 

integrals using Barrow’s rule; this leads to some applications of the integral (area, 

volume …). Many of the techniques used in MOM2 are derived from MOM1. 

We are currently analysing the use of first moments and centroids in the engineering 

textbook (Beer et al., 2012), which numbers more than 800 pages. So far, our first 

analyses indicate that although this content is introduced as an integral, the 



  

techniques employed do not call for integration. Our ongoing analyses of the use of 

first moments in the textbook are summarised in Figure 3. 

Description of use Terms used Chapter – Sections 

The term appears in a theoretical 

explanation. It appears with an 

expression using the integral sign, 

but no calculation is required. 

First moment; 

First moment 

of an area; Q; 

centroid 

4.2 (p. 245); 4.2 (p. 245); 4.4 (p. 262); 4.6 (p. 274) 

6.1 (p. 421); 6.1 (p. 421); 6.3 (p. 437) 

The term appears in a theoretical 

explanation. It appears without an 

expression using the integral sign. 

First moment; 

First moment 

of an area; Q; 

centroid 

4.3 (p. 262) 

6.1C (p. 424); 6.1C (p. 424); 6.4 (p. 440); 6.6 (p. 454;    pp. 459-460); 

Review (p. 467) 

8.1 (p. 559); Review (p. 591) 

9.5A (p. 651); 9.5A (p. 651); 9.5A (p. 654); 9.5A (p. 654); 9.6B (p. 666) 

Concept application: It is 

involved in some calculations, but 

no calculation of integrals is 

required. 

First moment; 

First moment 

of an area; Q; 

centroid 

4.2 (p. 247; p. 248) 

6.1 (p. 422); 6.1 (p. 422); 6.3 (p. 438); 6.6 (pp. 456-457) 

8.3 (pp. 577-578) 

9.5A (p. 652); 9.5A (p. 653); 9.5A (p. 655); 9.5A (p. 656);                

9.6B (p. 667); 9.6C (p. 669) 

Sample problem: It is involved in 

some calculations, but no 

calculation of integrals is required 

First moment; 

Q; centroid 

4.3 (p. 251); 4.5 (p. 265); 4.10 (p. 326) 

6.2 (p. 429); 6.5 (pp. 443-446); 6.6 (p. 462) 

8.3 (p. 583) 

Figure 3: Synthesis of uses of first moments in Beer et al. (2012). 

Here, due to space limitations, we describe our analysis of two MOs present in the 

textbook at points where first moments come into play. It is worth noting the book 

advises students that they should already have completed a course in statics, that the 

properties of moments and centroids are explained in Appendix A, and that this 

material can be used to reinforce the discussion of the determination of normal and 

shearing stresses in beams in chapters 4, 5, and 6 (Preface, p. x). 

First case: MOE1 

The initial use of first moments, MOE1, concerns stresses and deformations in the 

elastic range (section 4.2 of the book). Its aim is to calculate the maximum stress that 

beams can resist, resulting in some recommendations about the size and shape of 

beams. Using some formulae, the book arrives at   0ydA  and concludes: “This 

equation shows that the first moment of the cross section about its neutral axis must 

be zero. Thus, for a member subjected to pure bending and as long as the stresses 

remain in the elastic range, the neutral axis passes through the centroid of the 

section” (p. 245, italics in the original). This is the first apparition of first moments in 

the book; however, they are not explained and the authors refer readers to Appendix 

A. In Appendix A, first moments and their link with the centroid are introduced in a 

similar manner as in this paper, using implicitly theoretical elements from MOM2 

(namely, the interpretation of an integral). However, the book makes the connection 

with the centroid and deduces many integrals using geometric considerations (and 

the properties of the centroid), and adds “Centroids of common geometric shapes are 

given in a table inside the back cover” (p. A3). Therefore, this content is justified 

vaguely through some basic integral content (present in MOM2), but mostly by using 

geometric considerations. The tasks in MOE1 calculate stresses and bending moments  



  

in known geometrical shapes. In 

the case of a rectangle (Figure 4-

left), the coordinates of the 

centroid are deduced using 

geometry (and not techniques 

derived from MOM1 or MOM2); the 

same approach is used in the case 

of a semicircular cross-section 

(Figure 4-right).  

Thus, although the notions of first 

moment and centroid are necessary 

to solve tasks in MOE1, the 

techniques employed are not based 

on elements derived from MOM1 or MOM2. Students can solve the tasks present in 

this MOE1 without using any of the techniques learned in MOM1 or MOM2, or hardly 

any of the technological elements present in them. 

Second case: MOE2 

First moments and centroids are also used in chapter 6. In section 6.1A, Shear on the 

horizontal face of a beam element, MOE2 seeks to determine the horizontal shear per 

unit length (or shear flow) on a beam. Defining Δx as the length of a section of the 

beam, V as the shear force, ΔH as the horizontal shearing force exerted on the lower 

face of the element, Q as the first moment, and I as the centroidal moment of inertia, 

and using techniques and technological elements covered in this and previous 

chapters, the horizontal shear per unit length (q) is deduced as: q = 
I

VQ

x

H





. It is 

worth noting that the techniques used to arrive at this expression involve integrals, 

but they are referred to in terms of notions belonging to MOE2. The above expression 

is used to solve tasks such as the 

one in Figure 5. 

The resolution of the task is 

based on the determination, via 

different expressions, of Q and I 

(since V = 500N is provided) to 

find the horizontal force exerted 

on the lower face of the upper 

plank. For the first moment, Q, 

the following technique is 

presented: “Recalling that the 

first element of an area with 

respect to a given axis is equal to 

the product of the area and of the 

  

Figure 4: Left: The centroid is placed calculating 

the half measure of each side of the rectangle 

(Beer et al., 2012, p. 247). Right: The centroid is 

placed using geometric formulae (p. 248). 

A beam is made of three planks, 20 by 100 mm in cross-

section, and nailed together. Knowing that the spacing 

between nails is 25 mm and the vertical shear in the beam 

is V = 500N, determine the shearing force in each nail. 

  

Figure 5: Task and diagrams used concerning 

horizontal shear (Beer et al., 2012, p. 422). 



  

distance from its centroid to the axis, Q = A y ” (p. 422). The area of the cross-section 

of the upper plank is calculated as 0.020m × 0.1m, and the coordinate of the centroid 

of this horizontal plank with respect to the axis of symmetry of the cross-section is 

0.05m + 0.01m (that is, half the measure of the central plank, plus half the measure 

of the horizontal plank). Q is thus obtained as: Q = A y  = (0.020m × 

0.100m)(0.060m) = 120 × 10
-6

m
3
. We see that, once more, the tasks to solve in this 

MOE2 involve cross-sections with geometrical shapes that make use of geometrical 

considerations, thus avoiding techniques belonging to MOM1 or MOM2. 

Although the technological elements of MOE2 refer to elements that imply the use of 

integrals, tasks are presented in such a way that previously deduced formulae can be 

used and magnitudes can be deduced using these formulae and geometrical 

considerations. The book later provides a table with values (Figure 6). Therefore, it 

is possible for students to simply memorise the formulae or use the tables to solve 

the given tasks without actually using any technical or technological element derived 

from MOM1 or MOM2. 

 

Figure 6: Areas and centroids of common shapes (Beer et al., 2012, p. 654). 

FINAL CONSIDERATIONS 

The data presented here, together with the data from González-Martín & Hernandes 

Gomes (2017a), indicate that two notions used in civil engineering (bending moment 

and first moment) are defined as integrals. This may often be used to justify the fact 

that “engineers need to learn integrals”. However, our analyses show that the types 

of tasks and the techniques developed are not actually derived from praxeologies 

explored in a calculus course. In the two cases presented in this paper, both MOE1 

and MOE2 have their own set of tasks and techniques, and both develop their own 

technological discourse, which uses the notion of integral to define their own notions 

and deduce properties. As Figure 3 shows, this seems to be the general situation 

throughout the textbook. 

As Castela (2016) states, when a fragment of knowledge (in this case, the notion of 

integral) produced within a given institution moves to and is used by another 



  

institution, this process results in a transformation of knowledge. In the case 

analysed here, it is clear that all the technological discourse proper to a calculus (or 

even an analysis) course pertaining to the notion of integral is transformed when it is 

used to define first moments (and centroid) in a professional course, where 

explanations mostly rely on basic geometric considerations. In this case, it seems that 

the transpositive effects cause the notion of integral to be used very differently in 

both courses. The techniques presented in the Strength of Materials course make use 

of given formulae and geometric considerations, rendering the techniques introduced 

in the calculus course irrelevant for the use of first moments in MOE1 and MOE2. This 

may result in students not recognising the object “integral” when they move from 

MOM1 and MOM2 to MOE1 and MOE2. Students may encounter many difficulties in 

learning MOM1 and MOM2, but this knowledge is not necessary to solve tasks in 

engineering courses, so students may question the need to learn these MOs. 

It is therefore important that mathematics lecturers in engineering programs become 

aware of how the notions they teach are used in professional courses. Once they 

develop a better understanding of the techniques and tasks used in professional 

courses, mathematics instructors may be prompted to reflect on the mathematical 

praxeologies developed in their own courses and make stronger connections with the 

techniques used in professional courses. This could help students transition from 

mathematics courses to professional courses, enabling them to relate mathematical 

content to the content of their professional courses and better understand its 

relevance (Flegg et al., 2011). 

We plan to continue analysing the use of integrals in professional courses in 

engineering. This will be the source of future papers. 
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