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Discrete mathematics is a recent field linked with Computer Science. We discuss its 
place in university mathematics curricula and in the particular case of France, where 
it has difficulties to find its place. We make explicit the didactical challenges posed 
by discrete mathematics at university level,  and present  DEMIPS network and its 
plans  to  tackle  them. Through two detailed  examples  we discuss  the  reasons  for 
teaching Discrete Mathematics at university level, and illustrate our conclusions.

Keywords:  teaching  and  learning  of  number  theory  and  discrete  mathematics, 
teaching and learning of mathematics in other fields, proof, algorithms. 

INTRODUCTION

This paper points out the current need for the construction of resources and debates 
regarding discrete mathematics at university level. We wish to emphasize the features 
of the French context, both from an educator’s and researcher’s point of view, at the 
intersection of didactics,  mathematics and computer science. Indeed, teaching and 
learning  discrete  mathematics  involves  mathematical  skills  and  heuristics  (e.g. 
different kinds of proofs and reasoning,  several ways of modelling etc.)1 and also 
develops  objects,  concepts,  methods  and  tools  that  are  necessary  for  computer 
science.  This  link  with  computer  science  brings  new  types  of  questions  to 
mathematics (for instance, regarding algorithmic complexity). Then, our aims are to 
design  original  situations  for  schools  and  at  university  level,  and  to  construct 
appropriate introductory situations for computer science and maths majors.

We propose an overview of discrete mathematics in mathematics education and make 
a focus on the interface between discrete mathematics and computer science. Then, 
after presenting our research group in France, we analyse two kinds of situations.

DISCRETE MATHEMATICS IN AND FOR MATHEMATICS EDUCATION

How to define discrete mathematics?

Several  mathematical  topics  are  often  gathered  under  the  blanket  term  discrete  
mathematics. A first step in contributing to a thorough didactical study of discrete 
mathematics is to provide a satisfactory definition, or at least delimitation, of what it  
refers to. Several definitions exist, which either attempt to provide a general common 
trait to the covered topics, such as “the mathematics of discrete sets”, or resort to an 
enumeration of objects, concepts or techniques most often associated with discrete 
mathematics. Most of these definitions include or are followed by a discussion on 
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some  typical  difficulties,  such  as  the  distinction  between  finite,  discrete  and 
continuous mathematics (e.g. Maurer, 1997). To clarify the distinction between finite 
and discrete  mathematics,  the  MAA (1992)  places  finite  mathematics  in  the  pre-
calculus category  and discrete mathematics in the same category as calculus.

We advocate that an interesting way to define discrete mathematics both for research 
and didactical perspectives (for the design of courses and of didactical engineering at 
university  level)  is  to  emphasize  the  features  of  the  modes  of  reasoning  that  are 
common  (or  specific)  to  the  various  topics  usually  recognized  as  discrete 
mathematics,  and  the  discrete  nature  of  the  structures  they involve.  Moreover,  a 
classification of problems is required in order to structure a didactical analysis of the 
field  of  discrete  mathematics.  Furthermore,  as  the  development  of  discrete 
mathematics has been strongly directed by the needs for computer science, the links 
with computer science must be explicitly explored.

In  1974,  Knuth,  a  pioneer  in  computer  science  and  its  teaching  made  a  similar  
analysis (Knuth, 1974, p. 329) : 

“The  most  surprising  thing  to  me,  in  my  own  experiences  with  applications  of 
mathematics to computer science, has been the fact so much of the mathematics has been 
of a particular discrete type [...]. Such mathematics was almost entirely absent from my 
own training, although I had a reasonably good undergraduate and graduate education in 
mathematics.  [...]  I  have  naturally  been  wondering  whether  or  not  the  traditional 
curriculum – the  calculus  courses,  etc.  –  should be revised to  include more of  these 
discrete mathematical manipulations, or whether computer science is exceptional in its 
frequent application of them.”

We  consider  that  these  questions  are  still  topical,  even  at  university  level,  and 
deserve a careful didactical analysis.

Where is discrete mathematics? What questions are relevant at university level?

It is often stated that discrete mathematics can be a tool for improving reasoning and 
problem-solving  skills  (see  for  instance  Rosenstein,  Franzblau  & Roberts  (1997) 
who advocated an introduction of discrete mathematics in curricula, asked didactical 
questions,  and made propositions that  were taken into account for  Principles and 
Standards for School Mathematics  NCTM, 2000 for instance). Moreover, discrete 
mathematics is an active modern branch of contemporary mathematics with a wide 
range  of  applications  in  society,  which  is  a  very legitimate  reason  to  teach  it  at  
school, high school and college. In fact, discrete mathematics courses are relevant to 
a wide variety of majors at university level, including mathematics, number theory, 
computer science, and engineering: from an epistemological point of view, discrete 
mathematics  has  an  interdisciplinary  nature  and  can  provide  a  mathematical 
foundation  (with  specific  ways  of  reasoning  and  proving,  and  mathematical 
concepts) for computer science and engineering courses. By 1989, an MAA report 
(Ralston,  1989)  from  an  ad-hoc committee  consisting  of  mathematicians  and 
computer scientists recommended that “discrete mathematics should be part of the 



first  two  years  of  the  standard  mathematics  curriculum  at  all  colleges  and 
universities”. This report also emphasizes the notions of proof, recursion, induction, 
modelling,  and  algorithmic  thinking,  as  well  as  the  benefits  of  using  discrete 
mathematics  in  the  secondary  level  to  improve  problem-solving  skills  with  the 
transition to university level in mind (Ralston, 1989). Moreover, Epp (2016) points 
out the strong necessity of abstract  thinking for the course and its applications in 
computer  science.  She  underscores  that  it  is  done  in  the  frame  of  the  current 
curricular  recommendations,  prepared  by  The  Joint  Task  Force  on  Computing 
Curricula (2013) of the ACM and the IEEE Computer Society, which gives discrete 
mathematics as one of the two largest components in the “core body of knowledge” 
recommended for all computer science students. Besides, discrete mathematics is in 
close relationship with other mathematical areas: other fields of mathematics use its 
methods and results, and, are useful for solving some discrete mathematics problems.

What is currently the place of discrete mathematics and its links with other scientific  
fields  at  university  level?  In  several  countries  (Hungary,  USA,  Germany  for 
instance),  its  significance  in  university  programs  is  well-established  and 
acknowledged. That is  not  always the case in France where the status of discrete 
mathematics in the first  three university years is unclear,  at  least  in mathematical 
curricula.  However,  discrete  mathematics  appears  sporadically  in  few  parts  of 
mathematics curricula as probability theory (in particular combinatorics for discrete 
probability theory) or arithmetic. It sometimes appears in courses dedicated to the 
learning of proving, mathematical reasoning and problem solving, but we question 
whether  its  specificity  is  emphasized.  One  is  more  likely  to  find  courses  where 
discrete  mathematics  is  taught  for  itself  in  computer  science  or  mathematics  and 
computer  science  curricula,  where  there  exists  a  kind  of  common  basis  shared 
between teachers and including classical contents of discrete mathematics as can be 
seen abroad.  These reports and recommendations coming from academic societies 
and the above remarks underscore two key questions for mathematics education at 
university level, and more specifically in France:

 What are the place and role of discrete mathematics at university level? How 
to design curricula and didactical engineering for the first university years ? 

 What links are there between discrete mathematics and other areas (mainly of 
mathematics  and  computer  science) and  how  are  they  (or  should  they  be) 
practised / worked in the first university years?

These  questions  are  particularly crucial  for  countries  where  discrete  mathematics 
does not have a well-established status is the first university years.

What do we know from a didactical point of view? 

In mathematics education, various research regarding the teaching and learning of 
discrete mathematics exist, focusing mainly on the primary and the secondary levels 
(ZDM (2004), Hart & Sandefur (in press) propose overviews). This research meets 
general  approval,  and points  out  epistemological  features  of  discrete  mathematics 



such as: discrete problems bring out different ways of proving (Grenier & Payan, 
1998); discrete structures enable work on the construction of mathematical models, 
optimization,  operational  research  and  experimental  mathematics  (e.g.  Grenier  & 
Payan, 1998; Maurer, 1997); discrete concepts are accessible and problems are easy 
to  understand  (Grenier  & Payan,  1998;  De  Bellis  & Rosenstein,  2004);  discrete 
concepts  have  different  kinds  of  definitions  and  representations  (Ouvrier-Buffet, 
2006, 2011); some discrete problems are real world problems developing and using 
techniques from mathematics and computer science (Schuster, 2004), etc. Discrete 
mathematics  problems  are  also  a  frame for  developing  and  teaching  algorithms; 
conversely,  the  study  of  algorithms  requires  a  lot  of  discrete  mathematics,  and 
studying algorithms and programming can be a good way to justify the introduction 
of discrete mathematics contents (e.g. Modeste, 2012 & 2016). In all this research, 
discrete mathematics seems to be a powerful source of problems for teaching and 
learning  mathematical  proofs  and  processes  and  engaging  students  in  developing 
new ways of thinking (such as recursive thinking), heuristics and problem-solving 
skills from primary school to university. Besides, some researchers point out that its 
teaching  provides  opportunities  to  bypass  some  of  the  sources  of  commonly-
occurring negative affect in students (e.g. Goldin, 2016).

It appears that the features of discrete mathematics clearly represent challenges for 
university mathematics, in particular in France.

THE  “DEMIPS”  NETWORK  –  A  WAY  TO  FEDERATE  DISCRETE 
MATHEMATICS EDUCATION

Presentation of the DEMIPS network

In  the  French  framework  of  mathematics  education,  there  is  a  need  to  federate 
(isolated) research in university mathematics. Following the INDRUM momentum, 
the national network DEMIPS2 supports the development of new research programs. 
DEMIPS’s  research  involves  around  40  researchers  in  mathematics,  mathematics 
education,  physics  education,  computer  science,  and epistemology and history  of 
mathematics  and  sciences,  and  is  concerned  with  five  main  topics:  three  topics 
dealing  with mathematical  contents  (analysis;  linear  algebra  and abstract  algebra; 
arithmetic, discrete mathematics and algorithmics) at the secondary – post secondary 
transition and at university level (the links with physics and computer science are 
questioned);  a  transversal  topic  (logic,  language,  reasoning,  proofs  -  from both  a 
mathematics and computer science point of view); and a specific topic dealing with 
the practices of teachers and teachers-researchers at university level (in mathematics, 
computer science and physics).

We (the authors of this paper) organize federative research in the fields of arithmetic,  
discrete mathematics and algorithms. The members of  our group are mathematics 
educators  (didacticians)  with specific  skills  in  teaching and learning at  university 
level, mathematicians, and researchers in computer science. We choose to study the 
parts  of  mathematics  which lie  at  the intersection  of  “classical”  mathematics  and 



theoretical  computer  science  (for  instance  discrete  mathematics,  arithmetic,  and 
algorithms), which interact and complement each other.  As  theoretical background 
we will follow Brousseau’s theory of  didactical  situations (Brousseau, 1998) for its 
notion of didactical engineering, and the notion of scheme (Vergnaud, 1990) in order 
to structure our analysis of mathematical concepts. We organize our questions around 
key axes regarding the French university level:

 What are the epistemological features of concepts and reasoning in arithmetic, 
discrete mathematics and algorithms? How do they interact? (And then, how 
can these interactions be used to enrich the way these concepts are taught?) 

 What kind of situations can one design in these mathematical  areas for the 
university level and for pre-service and in-service teacher training? What for?

 What kind of  curricula  are there for  this  kind of  mathematics  at  university 
level? What can be said about the design of these curricula? 

Our research questions try to break down the barriers between scientific disciplines 
involving discrete mathematics. They also underline typical situations and questions 
common  to  mathematics  and  computer  science,  and  try  to  put  to  use  didactical 
analysis techniques to cast a new light on the way these questions are, or could be,  
tackled at university level. We develop below two examples to illustrate our work,  
and elaborateon the place and role of discrete mathematics at university level.

SITUATIONS  AND  IMPLEMENTATIONS  AT  UNIVERSITY  LEVEL  - 
EXAMPLES FROM DEMIPS’ WORKSHOPS

We develop here two examples to illustrate the potentialities of discrete mathematics 
to engage students in learning modelling, proving, and mathematical reasoning and 
also to underscore the validity and the interest of keeping in mind the algorithmic 
point of view and the connections with computer science. These examples emphasize 
new perspectives for the teaching and learning of mathematics. The first  example 
explore the links between mathematics and computer science in a problem-solving 
context and the second deals with a classical “divide and conquer”-type algorithm.

Example 1 – Discrete lines

The  mathematical  object  concerned  here  is  the  discrete  straight  line  (colouring 
squares, or “pixels”, on a regular rectangular grid, in order to give the best possible 
visual  impression of a straight  line). The (real) straight  line can act as a referent.  
Discrete straight  lines are accessible  through their representations (e.g. perceptive 
and analytical  aspects  of  geometry)  and their  definitions  and properties  are  non-
institutionalized (a concept is institutionalized if it has a place in a classically taught  
content).  Computer  programmers  are  familiar  with  this  concept.  Professional 
researchers in discrete geometry (both mathematicians and computer scientists) use 
several  definitions,  but  the  proof  of  the  equivalence  of  these  definitions  remains 



worth  considering.  The  complexity  of  the  underlying  axiomatization  of  discrete 
geometrical concepts is actually an open and interesting problem. 

Ouvrier-Buffet  (2006)  has  analysed the evolution  potential  of  zero-definitions  (in 
Lakatos’ sense, zero-definitions act as working definitions) of the concept “discrete 
straight  line” in a defining situation implemented with freshmen. She underscores 
several approaches dealing with this concept, namely “real straight line” (What is the 
“nearest” pixel to a real line? What kind of modelling should be used?), “regularity” 
(What are the properties of the sequence of stages (called  chaincode string)?), and 
“axiomatization”  (What  about  the  existence  of  the  intersection  of  two  discrete 
straight lines? Is a discrete straight line unique?). Each point of view brings about  
several  zero-definitions.  To  engage  into  an  axiomatic  perspective  carries  great 
difficulty. This approach deals with both the perceptive aspect of a straight line and 
the  axiomatic  perspective.  We  are  here  confronted  with  two  markedly  different 
defining styles: a local one and a global-theoretical one, the latter mobilizing some 
implicit skills and knowledge in students (e.g. building a theory and choosing among 
competing definitions). The main results of this experiment underscore the ability of 
students  to  engage  in  a  defining  activity  with  a  “neutral”  but  complex  concept. 
Students do not assume an axiomatic perspective but mobilize reasoning involving 
approximate methods close to those used for real straight lines (and then arithmetic 
tools) and also the characterization of the sequence of stages of pixels (how can we 
modify a sequence to obtain a better regularity?) that involves recursive arguments. 

From a didactical  point  of  view, this research requires the development of a new 
theoretical background in order to model the defining process. From a mathematical 
point  of view,  the discrete  geometrical  objects,  and more specifically the discrete 
straight lines can be approached in several ways: differential discrete analysis, the 
Bresenham  algorithm,  algorithms  involving  combinatorial  analysis,  several 
discretizations  using  algorithms which  generate  and study errors  (Greene  & Yao, 
Freeman & Pham, Rosenfeld), and the introduction by Reveillès of the arithmetical 
definition  of  a  discrete  straight  line  (1991).  For  instance,  the  approach  to  the 
discretization  of  a  real  straight  line  by  checking  linearity  conditions  is  directly 
related to number theoretical issues in the approximation of real numbers by rational 
numbers.  These  linearity  conditions  can  be  checked  incrementally,  leading  to  a 
decomposition of arbitrary strings into straight substrings (Wu, 1982). The ongoing 
mathematical  problems in discrete geometry are intimately related to questions  in 
other  fields  of  mathematics  and  computer  science.  The  construction  and  the 
manipulation of algorithms are important for this purpose.

Example 2 – Exponentiation by squaring

A classic algorithmic problem is that of computing for some natural n the n-th power  
an of real number a. A naïve solution is, starting with value 1, to multiply n times this 
value by a. The final value one obtains is indeed the expected result, which is not  
very difficult to establish. The fact that this algorithm terminates is also trivially true 
since  it  contains  a  single  bounded  repetition.  Finally,  the  complexity  of  this 



computation is clearly in Θ(n) (i.e. asymptotically bounded above and below by n), 
counting for instance the number of multiplications performed, and assuming that 
multiplication by a is an elementary operation. 

This  algorithm is  not  very efficient,  considering  that  its  running  time is  actually 
exponential  in the representation size of n (which is of the order of log(n)). A more 
efficient  technique  relies  on the observation  that  an=(a2)n/2 if  n  is  even,  otherwise 
an=a.(a2)(n-1)/2. Written as a recursive Python function, this algorithm reads as follows3:

def power(a, n):
   if n == 0:
       return 1
   elif n % 2 == 0:
       return power(a * a, n // 2)
   else:
       return a * power(a * a, n // 2)

We will  now study a few common questions  asked about  algorithms,  which will 
allow us to illustrate examples of mathematical techniques relevant to the analysis of, 
and discussion about, algorithms. In the following, typewriter face (as in n) will be 
used for formal parameters, and italic (as in n) to denote actual values.

Termination.  A first  question  when  it  comes  to  analysing  an  algorithm  is  to 
determine whether or not it terminates, i.e. whether its execution on any instance of 
the problem (i.e. any pair (a, n)) yields a result after a finite number of execution 
steps or elementary operations. A standard technique used to prove this kind of result 
in non-trivial cases is the following. Assume here that there exist a0 and n0 such that 
power(a0, n0) performs infinitely many recursive calls. Call n i the value of parameter 
n on the i-th recursive call.  The sequence of naturals  (n i)i≥0 is  strictly decreasing, 
because whenever ni>0, ni+1 is the quotient of ni by 2, rounded down. This contradicts 
the  fact  that  infinitely  many  calls  are  made,  which  means  that  the  value  of  n 
eventually has to reach 0 and the function must terminate for all values of a and n.

Correctness. It remains to prove that the result is indeed correct for any instance of 
the problem. This is often done using some form of induction due to the intrinsically  
discrete and recursive or iterative nature of algorithms. In our case, we will establish 
that the value returned by a call to power(a, n) is indeed an, via a simple recurrence 
on the call depth, which is the maximal number, say k, of generated nested calls. The 
base case (k=0) is obvious: since there is no recursive call it must mean that n=0 and 
the returned is indeed 1 = an. In the inductive case, assume the property holds for call 
depth k and consider a call of maximal depth k+1. Necessarily n must be greater than 
0.  If  n  is  even,  n//2  evaluates  to  n/2,  a  single  nested  call  power(a*a,  n//2)  is 
performed and the obtained value is returned directly. This call itself has call depth 
exactly k, therefore by induction hypothesis its return value is (a2)n/2=an. Similarly if 
n  is  odd,  n//2  evaluates  to  (n-1)/2,  the  value  returned by power(a*a,  n//2)  is,  by 
induction  hypothesis,  (a2)(n-1)/2=an-1,  and  the  value  returned  by  the  main  call  is 



a*power(a*a, n//2), which evaluates to an. Therefore by the recurrence principle, the 
function returns the correct value whatever the initial value of its parameters.

Complexity. In the study of termination, we observed that in a call power(a, n), the 
value of n for the next call (if there is one) is divided by two (rounded down). One 
may observe  the  successive  values  of  n  more easily  when  it  is  written  down  in 
binary.  Indeed,  the  operation  of  dividing  a  number  by  two  and  rounding  down 
corresponds, in binary representation, to erasing its rightmost digit. The algorithm 
stops when n is 0, and performs one recursive call otherwise, modifying its value as 
we just saw. The number of nested calls for some initial value of n is therefore equal 
to the length, say k, of its binary representation, in other words its number of digits.  
Moreover, when n is even, exactly one multiplication is performed in the current call, 
two when it is odd. Therefore, denoting by m the number of digits equal to 1 in the 
binary  representation  of  n,  the  total  number  of  multiplications  performed by the 
power(a, n) is exactly k+m, which is asymptotically bounded above by log2(n).

Summary. We chose  this  example to  illustrate,  on a simple problem, the type of 
questions which can be asked about algorithms and the methods which are likely to 
be used to answer them. Note that in this simple case, all three properties could have 
been proven simultaneously using a complete recurrence on n. For our purpose, we 
chose a more basic and detailed approach. It would have been interesting to show 
how these proofs could be rephrased in the context  of an iterative function.  This 
example also tries to advocate the necessity for students in mathematics, computer 
science and related topics to have at least a basic understanding of various flavours 
of recursion and induction (including basic properties of orderings),  to be able to 
present  rigorous  proof  arguments  (at  least  informally),  and  to  possess  minimal 
fluency in arithmetic,  in order to be able to envision algorithms as objects  worth 
studying in their own right. It is moreover often the case that the study of algorithms 
provides insight on related mathematical objects (here, the relationship between the 
value of a number and the length of its binary representation). Finally, this example 
illustrates a typical preoccupation of algorithmics, which is to provide more efficient, 
sometimes even optimal, algorithmic solutions to problems.

DISCUSSION AND CONCLUSIONS

Discrete mathematics is now considered as an entire field of mathematics, with many 
links  to  computer  science.  While  it  has  entered  university  curricula  in  many 
countries, its status and contour are not always clear, and there are countries (such as  
France)  where  it  has  difficulties  finding  a  legitimate  place.  Through  the  two 
examples we have developed (the discrete line and exponentiation by squaring), we 
have illustrated that it is legitimate to question the place that discrete mathematics 
occupies in university mathematics, for different reasons:

 it  allows  to  develop  situations  for  mathematical  reasoning,  mathematical 
heuristics,  and  problem  solving  (by  its  nature,  but  also  by  contrast  with 
traditional continuous mathematics),



 many objects and techniques of discrete mathematics are required knowledge 
for computer science curricula; these contents must be identified and analysed 
from a didactical point of view, to design appropriate activities and situations,

 discrete mathematics involves specific questions and types of problems (such 
as complexity questions, combinatorial problems, etc.) that must be studied in 
order to understand their place in university curricula.

The DEMIPS network, through the topic group arithmetic, discrete mathematics and  
algorithmics,  aims at  addressing these questions.  We pointed out  the necessity to 
develop a didactical research on the topic of discrete mathematics at university level 
and  its  articulation  with  other  fields  of  mathematics  and  other  disciplines.  This 
didactical  research  must  rely  on  an  institutional  analysis  of  the  situation  in 
universities, and most importantly on a thorough epistemological study of discrete 
mathematics  and  its  specific  branches.  It  also  requires  to  select  and  develop 
appropriate theoretical frameworks. Such work, started in the DEMIPS topic group, 
requires  a  plurality  of  viewpoints  and  interactions  between  (discrete) 
mathematicians, computer scientists, and didacticians of mathematics.

NOTES

1. Problems that can be identified as belonging to discrete mathematics can be found in many books 
aiming at developing “mathematical thinking”, such as (Mason, Burton & Kaye, 1985).

2.  Didactique  et  Epistémologie  des  Mathématiques,  et  liens  Informatique  et  Physique  dans  le 
Supérieur:  Didactics  and  Epistemology of  Mathematics,  and  links  with  Computer  Science  and 
Physics in University Mathematics - with the support of CNRS.

3. Here a is assumed to range over floats, and n over positive integers. Note that in Python 3, n//2  
computes the quotient of n by 2, whose value is n/2 if n is even and (n-1)/2 otherwise.
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