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Loop of formal diffeomorphisms and Fàa di Bruno coloop bialgebra

Introduction 1.Presentation and overview of the results

An affine proalgebraic group G is a representable functor in groups defined on the category of commutative associative algebras over a field F. The algebra representing G is the commutative Hopf algebra FrGs of regular functions. In this paper we consider two generalizations of proalgebraic groups, on one side to representable functors on categories of non-commutative algebras, on the other side to functors taking values in non-associative groups with divisions, that is, loops.

Our main motivation comes from two proalgebraic groups of formal series appearing in renormalization in quantum field theory: the group of invertible series with constant term equal to 1, represented by the Hopf algebra of symmetric functions, and that of formal diffeomorphisms tangent to the identity, represented by the Faà di Bruno Hopf algebra. Details on the role played by these series in quantum field theory are given in a separate section below.

Both types of series make sense with non-commutative coefficients, and both representative Hopf algebras admit a non-commutative version [START_REF] Ch | Non-commutative Hopf algebra of formal diffeomorphisms[END_REF]. We are interested in the relationship 1 between the non-commutative algebras and the sets of series. For this, we first consider generalizations of proalgebraic groups to categories of non-commutative algebras.

Functors in groups on general categories have been studied by algebraic topologists in the late 50's. D. Kan considered them on the category of groups [START_REF] Kan | On monoids and their dual[END_REF], and B. Eckmann and P. Hilton [START_REF] Eckmann | Group-like structures in general categories I, II, III[END_REF] introduced them on general categories. Their representative Hopf-type object is called a cogroup. In a category with coproduct > and initial object, a cogroup is an object H endowed with a comultiplication, a counit and an antipode satisfying the usual properties of Hopf algebras, where the comultiplication takes values in H > H instead of H b H (which is not necessarily defined). Cogroups are then generalizations of commutative Hopf algebras which, unlike quantum groups in the case of associative algebras, preserve the functorial properties and the adjoint constructions. They have proved to be very fruitful in homotopy theory, where they appear as special H-spaces [START_REF] Kan | A combinatorial definition of homotopy groups[END_REF], as shown by I. Berstein [START_REF] Berstein | On co-groups in the category of associative algebras[END_REF]. A comprehensive study of cogroups in many varieties of algebras can be found in G. Bergman and A. Hausknecht's book [START_REF] Bergman | Cogroups and co-rings in categories of associative algebras[END_REF].

Not all proalgebraic groups admit an extention to non-commutative algebras. For instance, while the group of invertible formal series naturally extends as a proalgebraic group to the category of associative algebras, the group of formal diffeomorphism does not. We show, on this example, that the extention of the functor is sometimes possible if we regard the original group as a loop.

Loops are multiplicative sets with unit and with a left and a right division instead of twosided inverses. They first appeared, with some extra properties, in the work of R. Moufang [START_REF] Moufang | Zur Struktur von Alternativkörpern[END_REF] on alternative rings, that is, rings where the associator pa, b, cq " pabqc´apbcq is skew-symmetric. For an excellent historical review on loops, see [START_REF] Pflugfelder | Historical notes on loop theory[END_REF]. Associative loops are groups. Similarly to Lie groups, the tangent space of a smooth loop carries a particular algebraic structure called a Sabinin algebra [START_REF] Sabinin | On the infinitesimal theory of local analytic loops[END_REF][START_REF] Mikheev | Quasigroups and differential geometry[END_REF], which reduces to a Mal'cev algebra [START_REF]Mal'cev, Analytic loops[END_REF] for smooth Moufang loops. The notion of universal enveloping algebra has been extended to Sabinin algebras by I. Shestakov, U. U. Umirbaev [START_REF] Shestakov | Free Akivis algebras, primitive elements, and hyperalgebras[END_REF] and J. Mostovoy, J. M. Pérez-Izquierdo [START_REF] Mostovoy | Formal multiplications, bialgebras of distributions and non-associative Lie theory[END_REF].

In this paper we consider functors in loops on a general category C with coproduct and initial object and call their representative objects coloops in C. We specialise C to be a variety of algebras over a field F to have a reasonable notion of generalized (pro)algebraic loop. The first simple example is the extention of the functors of invertible elements in a unital algebra and that of unitary elements in a unital involutive algebra. As expected, the largest category on which these functors are representable as loops turn out to be respectively that of alternative and of alternative involutive algebras (Prop. 3.1.4 and Prop. 3.2.4). We also show that the loop of unitary elements in the Cayley-Dickson extention of an involutive algebra is not representable on non-commutative algebras (Prop. 3.3.1), even if examples of such loops exist. Then we turn to loops of formal series with coefficients in a non-commutative algebra. First we consider the set of invertible series (with constant term equal to 1). The algebra of series with coefficients in an alternative algebra is alternative. Surprisingly, in contrast to the previous results, we find that the set of invertible series is a proalgebraic loop on all algebras, not necessarily alternative (Thm. 4.2.3). Finally, our main result concerns the natural loop of formal diffeomorphisms (tangent to the identity) with associative coefficients. We show that it is proalgebraic, and give the closed formulas of the codivisions on its representative Faà di Bruno coloop bialgebra (Def. 5.2.6 and Thm. 5.4.10). For this, we express the co-operations in terms of some recursive operators defined on any positively graded algebra (Thm. 5.3.14), which extend the natural pre-Lie product of the Witt Lie algebra (cf. [START_REF] Ch | Combinatorial Hopf algebras from renormalization[END_REF][START_REF] Frabetti | Five interpretations of Faà di Brunos formula[END_REF]) but not as a multibrace product (cf. [START_REF] Loday | Combinatorial Hopf algebras[END_REF]), and which turn out to be very rich in combinatorial properties. The coefficients appearing in the divisions show up sequences of integer numbers typical of the Lagrange inversion formula (as Catalan numbers) and some new ones, that we call (labeled) Lagrange coefficients (Def. 5.2.1 and 5.2.3). This result is a generalization of the Lagrange inversion formula to series with non-commutative coefficients, and gives a loop-theoretic explanation to the existence of the non-commutative Faà di Bruno Hopf algebra [START_REF] Ch | Non-commutative Hopf algebra of formal diffeomorphisms[END_REF].

Motivation: formal series in quantum field theory

The main object of study in perturbative quantum field theory are the correlation functions of the fields describing some elementary particles, from which one can compute the probability amplitude of any event involving the particles. These quantities are asymptotic series in the powers of a measurable parameter λ, such as the electric charge, called the coupling constant. For instance, for a self-interacting field φ with coupling λ and mass m, the k-point correlation function is a series G pkq px 1 , ..., x k q " xφpx 1 q ¨¨¨φpx k qy "

8 ÿ n"0 G pkq n px 1 , ..., x k ; m, q λ n
where the nth coefficient is a finite sum of amplitudes of suitable Feynman graphs with k fixed external legs, which depend on the mass m and on the Plank constant's , and n is related to the number of internal vertices of the graph. The computation of the correlation functions gives rise to some divergent integrals, or equivalently to the ill-defined product of singular distributions. Giving a meaning to such terms requires a renormalization procedure, which globally amounts to suitably multiplying and composing the correlation functions with some others series, called renormalization factors, obtained by assembling the counterterms needed to cure each divergence [START_REF] Dyson | The S matrix in quantum electrodynamics[END_REF], [START_REF] Itzykson | Quantum Field Theory[END_REF]. Given an ambient algebra A, typically C or the algebra Cppεqq of Laurent series in a regularization parameter ε, in renomalization theory there appear two groups of formal series in the variable λ and coefficients in A:

• the set InvpAq "

!

apλq " ÿ ně0 a n λ n | a 0 " 1, a n P A ) of invertible series, endowed with the pointwise multiplication pabqpλq " apλq bpλq and the unit 1pλq " 1, which represent the Green's functions (up to an invertible factor) and the renormalization factors;

• the set DiffpAq " ! apλq " ÿ ně0 a n λ n`1 | a 0 " 1, a n P A ) of formal diffeomorphisms, endowed with the composition law pa ˝bqpλq " a `bpλq ˘and the unit epλq " λ, which represent the bare coupling constants (i.e. the coupling constants before the renormalization is performed).

Dyson's renormalization formulas [START_REF] Dyson | The S matrix in quantum electrodynamics[END_REF] are modeled by the semi-direct product DiffpAq ˙InvpAq, endowed with the law pa 1 , b 1 q ¨pa 2 , b 2 q " `a1 ˝a2 , pb 1 ˝a2 q b 2 ˘,

where a 1 , a 2 P DiffpAq and b 1 , b 2 P InvpAq, which is well defined because formal diffeomorphisms act on invertible series from the right, by composition. These groups are proalgebraic on commutative algebras, so they are perfectly described by their re*resentative Hopf algebra. Physically, this means that the overall renormalization procedure (except the scheme which says how to compute the counterterms) is independent of the chosen field theory, whenever the latter leads to commutative amplitudes. The recent results on the Renormalization Hopf algebras, initiated by A. Connes and D. Kreimer [START_REF] Connes | Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem[END_REF][START_REF] Connes | Renormalization in quantum field theory and the Riemann-Hilbert problem. II. The β-function, diffeomorphisms and the renormalization group[END_REF], show even a stronger result: co-operations dual to the multiplication and the composition of series exist even on Hopf algebras generated by Feynman graphs, which contain the coordinate ring of the usual groups of power series. In other words, there exist proalgebraic groups of series expanded over Feynman graphs, or over various types of trees, which project onto the groups Inv qnd Diff and which turn out to be extremely efficient in handling the combinatorial content of renormalization procedures [START_REF] Ch | Renormalization of QED with planar binary trees[END_REF][START_REF] Ch | QED Hopf algebras on planar binary trees[END_REF][START_REF] Ch | Non-commutative Hopf algebra of formal diffeomorphisms[END_REF][START_REF] Van Suijlekom | Renormalization of gauge fields using Hopf algebras[END_REF][START_REF] Pinter | The Hopf Algebra Structure of Connes and Kreimer in Epstein-Glaser Renormalization[END_REF].

The toy model φ 3 theory used by Connes-Kreimer is a scalar field theory and leads to the commutative algebra A " C of amplitudes. However, interesting physical situations involve noncommutative algebras. In fact, Feynman amplitudes are complex numbers for single scalar fields, the coupling constants and the renormalization factors, but they are 4 ˆ4 complex matrices for the fermionic or bosonic fields, and may be represented by higher order matrices for theories involving several interacting fields. In this case, forcing the final counterterms to be scalar, as imposed by the fact that the renormalization factors act on the (scalar) Lagrangian, prevents us from describing the renormalization in a functorial way, as shown by the results in [START_REF] Van Suijlekom | Multiplicative renormalization and Hopf algebras[END_REF], where the Hopf algebra does not represent a functorial group on A " M 4 pCq. In order to preserve this functoriality, there is a need to understand Dyson's formulas for sets of series InvpAq and DiffpAq also when A is not a commutative algebra. This is the motivation for the present work.

Loops and coloops

Loops and functors in loops

A loop is a non-empty set Q endowed with a multiplication Q ˆQ ÝÑ Q, pa, bq Þ ÝÑ a ¨b, a (two-sided) unit 1 P Q, a left division z : Q ˆQ ÝÑ Q and a right division { : Q ˆQ ÝÑ Q satisfying the cancellation properties a ¨pazbq " b, azpa ¨bq " b, (2.1.1)
pa{bq ¨b " a, pa ¨bq{b " a.

(2.1.2)

Given two loops Q and Q 1 , a homomorphism of loops f : Q ÝÑ Q 1 is of course a map which preserves the multiplication, and therefore the unit and the divisions.

The multiplication in a loop Q is not necessarily associative, if it is associative then the loop is a group. Any element a in a loop Q has a right inverse 1{a and a left inverse az1, which do not necessarily coincide and do not necessarily determine the divisions, in the sense that they do not satisfy the identities paz1q ¨b " azb and b ¨p1{aq " b{a (2.1.3) for any a, b P Q, which hold in any group.

Examples of loops which are not groups are known since a long time, see for instance [START_REF] Bruck | A survey of binary systems[END_REF] or [START_REF] Pflugfelder | Quasigroups and Loops: Introduction[END_REF]. For finite loops, the multiplication table is a Latin square, and the number of non isomorphic loops is known up to order 11 (cf. [START_REF]Sequence A057771 in the On-line Encyclopedia of Integer Sequences[END_REF]). For instance, the subset t˘1, ˘i, ˘j, ˘ku of the hyperbolic quaternions [START_REF] Macfarlane | Principles of the Algebra of Physics[END_REF] (where i 2 " j 2 " k 2 " 1 and ij " k " ´ji, jk " i " ´kj, ki " j " ´ik) forms a finite loop. Among infinite loops, two well known examples are the set of invertible octonions and that of unitary octonions, which is homeomorphic to S 7 .

Denote by Loop the category of loops and let F : Loop ÝÑ Set ˚be the forgetful functor to the category of pointed sets. As for functors in groups, a functor Q : C ÝÑ Loop on a given category C is said to be representable if the composite functor F Q is representable, cf. [START_REF] Lane | Categories for the working mathematician[END_REF]. This means that Q is naturally isomorphic to a hom-set functor A Þ Ñ Hom C pH, Aq for a given object H in C, and implies that the loop operations on any loop QpAq are determined by dual co-operations on H, by convolution. Following an established terminology on cogroups, the representative object H can then be called a coloop in C. A reasonable notion of (pro)algebraic loop is obtained for C being a variety of algebras over a field F, its representative coloop then being a sort of bialgebra.

In this section we describe coloops in an axiomatic way. In the next sections we give some easy examples of algebraic and non-algebraic loops on associative and non-associative algebras, and then study extensively the loop of invertible series and that of formal diffeomorphisms.

Coloops in general categories

Given a category C, Yoneda Lemma says that the category of representable functors from C to Set, with natural transformations, is equivalent to C. The equivalence is realized by the contravariant Yoneda functor Y from C to the functor category Set C , defined on any object H in C by the functor Y pHq " Hom C pH, q, and on any map φ : H 1 Ñ H by the natural transformation Y pφq : Y pHq Ñ Y pH 1 q : α Þ Ñ α φ (cf. [START_REF] Lane | Categories for the working mathematician[END_REF] for details). In this section we characterise the subcategory of C equivalent to representable functors from C to Loop.

The cartesian product of two functors Y pH 1 q and Y pH 2 q is known to be represented by the categorical coproduct H 1 > H 2 , i.e. Y pH 1 q ˆY pH 2 q " Y pH 1 > H 2 q, and the constant functor to the base point is known to be represented by an initial object I, i.e. it is of the form Y pIq. We recall the categorical notations about the coproduct, the initial object and some related categorical maps we need to define coloops.

The coproduct in a category C is a bifunctor > defined on two objects A and B as the unique object A > B together with two maps i 1 : A Ñ A > B and i 2 : B Ñ A > B satisfying the following universal property: for any maps f : A Ñ C and g : B Ñ C, there exists a unique map xf, gy : A > B Ñ C such that xf, gy i 1 " f and xf, gy i 2 " g. On two maps f : A Ñ A 1 and g : B Ñ B 1 , the bifunctor is defined as the map f > g " xi 1 1 f, i 1 2 gy :

A > B Ñ A 1 > B 1
. The coproduct can be extended to several objects and maps with similar universal constructions, and turns out to be an associative bifunctor, in the sense that pA > Bq > C " A > pB > Cq " A > B > C for any three objects and pf > gq > h " f > pg > hq " f > g > h for any three maps in C.

An initial object in C is an object I together with a unique map u A : I Ñ A on any object, which commutes with any map f : A Ñ B, that is, f u A " u B . Then, there are canonical isomorphisms A > I -A -I > A given by the universal maps

ϕ 1 :" i 1 : A ÝÑ A > I with inverse ψ 1 " xid A , u A y : A > I ÝÑ A, ϕ 2 :" i 2 : A ÝÑ I > A with inverse ψ 2 " xu A , id A y : I > A ÝÑ A.
In particular, we have

I > I -I, xu A , u A y " u A and therefore also u A>B " u A > u B .
For any objects A and B, there is a canonical symmetry operator τ A,B " xi 2 , i 1 y :

A > B Ñ B > A such that τ ´1 A,B " τ B,A . Note that B > A " A > B
as objects in C, but the maps i 1 and i 2 are inverted. The twist τ is precisely the map which identifies A > B and B > A as universal objects. To sum up, pC, >, I, τ q is a strict symmetric monoidal category.

Furthermore, for any A, there exists a canonical folding map µ A " xid A , id A y : A > A Ñ A such that, for any maps f, g : A Ñ B, we have xf, gy " µ B pf > gq.

It follows that µ preserves the unit, i.e. µ A pu A > u A q " xu A , u A y " u A , that it is associative, i.e. µ A pµ A > id A q " µ A pid A > µ A q, and that it is commutative, i.e. µ A τ A,A " µ A . It also follows that µ commutes with any map f : A Ñ B in C, i.e. µ B pf > f q " f µ A . To sum up, we can say that any object pA, µ A , u A q is a commutative monoid in C, with respect to the monoidal product >, and that any map f : A Ñ B in C is a morphism of monoids. Finally, one can prove that the folding map on A > B is given by µ µ pS r > idq ∆ " u ε and µ pid > S l q ∆ " u ε.

A>B " pµ A > µ B q pid A > τ B,A > id B q. Definition 2.2.
(2.2.9)

These properties are easily verified. A proof using tangle diagrams is given in the Appendix.

Theorem 2.2.10 Let C be a category with coproduct and initial object. Then the Yoneda functor is a contravariant equivalence of categories from the category of coloops in C to that of covariant representable functors Q : C ÝÑ Loop.

Proof. We follow the ideas of Eckmann-Hilton [START_REF] Eckmann | Group-like structures in general categories I, II, III[END_REF], who characterized the subcategories of C equivalent to the category of representable functors from C respectively to the category Mag of unital multiplicative sets, called unital magmas in [START_REF] Serre | Lie Algebras and Lie Groups[END_REF][START_REF] Bourbaki | Algebra I: Chapters 13[END_REF], and to the category Grp of groups1 . Let us first prove that the Yoneda functor, applied to coloops in C, gives rise to a functor in loops. On a given coloop H, let us call Q " Y pHq. We define the multiplication and the divisions on each set QpAq " Hom C pH, Aq as usual convolution with the coproduct and the codivisions in H, namely

α ¨β " xα, βy ∆ " µ A pα > βq ∆ α{β " xα, βy δ r " µ A pα > βq δ r (2.2.11)
αzβ " xα, βy δ l " µ A pα > βq δ l , for any α, β P QpAq. The unit in QpAq is given, as usual, by the map 1 A " u A ε, and the left and right inverses of α are then easily described as αz1 " α S l and 1{α " α S r . Then, using the cocancellation identities (2.2.3) and (2.2.4), and because µ A is associative and commutes with C-maps, it is easy to verify that the divisions given by (2.2.11) satisfy the cancellation properties (2.1.2) and (2.1.1). Now fix a homomorphism of coloops φ : H 1 ÝÑ H, and call Q " Y pHq, Q 1 " Y pH 1 q and Φ " Y pφq. Yoneda Lemma tells us already that Φ is given on an object A by the map

Φ A : QpAq ÝÑ Q 1 pAq α Þ ÝÑ Φ A pαq " α φ,
and that, for any f : A Ñ B, Φ acts on the map Qpf q : QpAq Ñ QpBq given by Qpf qpαq " f α as a natural transformation, i.e.

Φ B `Qpf qpαq ˘" f α φ " Q 1 pf q `ΦA pαq ˘.
It is then easy to verify that Φ A is a homomorphism of loops, that is, for any α, β P QpAq, we have

Φ A pα ¨βq " Φ A pαq ¨ΦA pβq,
and similarly for the other co-operations. Viceversa, let us describe how a functor in loops Q gives rise to a coloop structure on its representative object H. Suppose that the covariant functor Q is represented by an object H, i.e. Q " Y pHq, that the set QpAq is a loop for any A in C, and that for any map f : A Ñ B the induced map Qpf q : QpAq Ñ QpBq given by α Þ Ñ Qpf qpαq " f α is a loop homomorphism. We use repeatedly the fact that, given α, β P QpAq, for the composite maps f pα ¨βq, f α, f β P QpBq we have f pα ¨βq " Qpf qpα ¨βq " Qpf qpαq ¨Qpf qpβq " pf αq ¨pf βq (2.2.12)

and similarly for the operations { and z. Seeing i 1 , i 2 : H Ñ H > H as elements of the loop QpH > Hq, we define the comultiplication and the codivisions on H by

∆ " i 1 ¨i2 , δ r " i 1 {i 2 , δ l " i 1 zi 2
and the counit ε as the unit 1 I in QpIq. It follows that the antipodes are the inverses of the identity map, S r " 1 H {id H and S l " id H z1 H . Let us show that these maps give a coloop structure to H, and that the functor Q Þ Ñ H is inverse to the Yoneda one, H Þ Ñ Q " Y pHq. For any α, β P QpAq, we apply (2.2.12) to A " H > H, B " A, f " xα, βy : H > H Ñ A and to the elements α " i 1 , β " i 2 of QpH > Hq, and get xα, βy ∆ " xα, βy pi 1 ¨i2 q " pxα, βy i 1 q ¨pxα, βy i 2 q " α ¨β (2.2.13) and similarly for the operations { and z. Now apply Q to a unit map u A : I Ñ A. Since Qpu A q : QpIq Ñ QpAq is a homomorphism of loops, it preserves the units, and therefore, for ε " 1 I P QpIq, we have

Qpu A qpεq " u A ε " 1 A .
In particular we have u H ε " 1 H , and therefore, using (2.2.13), we have

xu H ε, id H y ∆ " 1 H ¨id H " id H .
On the other side, we have

xu H ε, id H y ∆ " xu H , id H y pε > idq ∆ " ψ 2 pε > idq ∆,
and we obtain the equality ψ 2 pε > idq ∆ " id. Since ψ 2 is the inverse map to ϕ 2 , we obtain pε > idq ∆ " ϕ 2 , which proves (2.2.2). Let us show equalities (2.2.3). Firstly, we have trivially that pid > u H q i 1 " xi 1 , i 2 u H y i 1 " i 1 .

Secondly, note that δ r ¨i2 " pi 1 {i 2 q ¨i2 " i 1 , therefore pid > µq pδ r > idq ∆ " xi 1 , i 2 µy xi 1 δ r , i 2 y pi 1 ¨i2 q " xi 1 , i 2 µy pδ r ¨i2 q " xi 1 , i 2 µy i 1 " i 1 .

Finally, since xα, βypi 1 {i 2 q " α{β and pi 1 ¨i2 q{i 2 " i 1 , we also have

pid > µq p∆ > idq δ r " xi 1 , i 2 µy xi 1 ∆, i 2 y pi 1 {i 2 q " xi 1 , i 2 µy `pi 1 ¨i2 q{i 2 " xi 1 , i 2 µy i 1 " i 1 .
The same arguments apply to the left codivision. l

The relationship between coloops and cogroups is straightforward. As usual, a coloop

H is coassociative if p∆ > idq ∆ " pid > ∆q ∆, (2.2.14) 
and

H is cocommutative if τ ∆ " ∆.
We say that H has the left and right coinverse property if the codivisions are determined by the antipodes, that is, δ l " pS l > idq ∆. and δ r " pid > S r q ∆ (2.2.15)

These identities correspond to the analogues (2.1.3) in the loop Q " Y pHq.

Furthermore, an antipode on H is a map S : H Ñ H satisfying the 5-terms identity

µ pS > idq ∆ " µ pid > Sq ∆ " u ε. (2.2.16)
This can happen if and only if S r " S l ": S. Note that the unicity of the antipode satisfying (2.2.16) does not imply that the coinverse properties (2.2.15) are verified. A counterexample is given by the coloop of formal diffeomorphisms, cf. Section 5.

A cogroup in a category C is an object H endowed with a coassociative comultiplication ∆, a counit ε satisfying the counitary property (2.2.2) and an antipode S satisfying the 5-terms identity (2.2.16), cf. [START_REF] Berstein | On co-groups in the category of associative algebras[END_REF]. It follows from the dual statement on loops and groups (cf. [START_REF] Bruck | A survey of binary systems[END_REF]), that Proposition 2.2.17 If H is a coassociative coloop, then it is a cogroup.

In the Appendix we prove with tangles that coassociativity implies that the left and the right antipodes coincide, and therefore H has an antipode satisfying the coinverse property.

(Pro)algebraic loops

Let A be a variety of unital algebras over a field F, that is, the subcategory of vector spaces over F which collects all algebras of a certain type, given by a set of operations of various arities, including the unit of arity 0, defined by a set of identities (cf. [START_REF] Lane | Categories for the working mathematician[END_REF] ch. V). For instance, A can be the category of P-algebras, where P is an algebraic operad with Pp0q " t unit map u (cf. [START_REF] Loday | Algebraic operads[END_REF]).

Then, A has a coproduct and an initial object (cf. [START_REF] Lane | Categories for the working mathematician[END_REF] ch. IX), therefore we can apply to A the results of the previous section. More precisely, the initial object is given by the trivial unital algebra F. Suppose that in A there are operations p of arity n ą 0, and let Ā denote the subalgebra of an algebra A determined by such operations. Then, given two algebras A and B in A, the coproduct A > B is the quotient of the free algebra Ap Ā ' Bq (which always exists, cf. [START_REF] Lane | Categories for the working mathematician[END_REF] ch. V) by the ideal generated by the identities p ApA'Bq pa 1 , ..., a n q " p A pa 1 , ..., a n q P Ā, for any a 1 , ..., a n P Ā p ApA'Bq pb 1 , ..., b n q " p B pb 1 , ..., b n q P B, for any b 1 , ..., b n P B (2.3.1)

1 A " 1 B " 1 ApA'Bq ,
for all the operations p admitted in A. The universal properties of > follow from the universal properties of the free algebra Ap Ā ' Bq.

Examples 2.3.2 1. In the category Com F of unital commutative and associative algebras over F, the free algebra Com F pV q on a vector space V is the symmetric algebra SpV q, and the coproduct of two algebras A and B is the tensor product A b B.

In the category

As F of unital associative algebras over F, the free algebra As F pV q is the tensor algebra T pV q, and the coproduct2 A > B of two algebras A and B is the tensor algebra T p Ā ' Bq modulo relations (2.3.1), which mean that a b a 1 " a a whenever a and a 1 are both in Ā or both in B. As a vector space, we then have

A > B " F ' à ně1 " Ā b B b Ā b ¨¨l ooooooooomooooooooon n ' B b Ā b B b ¨¨l ooooooooomooooooooon n ı ,
and the multiplication in A > B is given by the concatenation modulo the above relations.

For instance, if we denote the multiplication in A > B by ', we have

pb b aq ' pb 1 b a 1 b b 2 q " b b a b b 1 b a 1 b b 2 pb b aq ' pa 1 b b 1 b a 2 q " b b pa a 1 q b b 1 b a 2 .
3. Let Alg F be the category of unital algebras (not necessarily associative, also called magmatic) over F. The free unital algebra on a vector space V is the tensor algebra with parenthesizing T tV u, and the coproduct A > B of two algebras A and B is the quotient of T t Ā ' Bu modulo relations (2.3.1), which again mean that a b a 1 " a a whenever a and a 1 are both in Ā or both in B. The multiplication in A > B is the concatenation with parenthesis.

4. An alternative algebra is an algebra A such that the associator pa, b, cq " pabqc ´apbcq is skew-symmetric, that is pb, a, cq " ´pa, b, cq and pa, c, bq " ´pa, b, cq

(2.3.3)
for any a, b, c P A. This is equivalent to requiring that pabqb " apbbq and paaqb " apabq for any a, b P A. Unital alternative algebras over a field F form a subcategory of Alg F , denoted by Alt F , which is a variety with initial object F. The coproduct A > B of two unital alternative algebras is the quotient of the coproduct in Alg F by the relations (2.3.3). For details see [START_REF] Zhevlakov | Rings that are nearly associative[END_REF] or [START_REF] Kuz'min | Nonassociative structures[END_REF].

5. In a category A, an (anti) involution is a unary linear operation ˚: A ÝÑ A such that pa ˚q˚" a and pa 1 a 2 q ˚" a 2 a 1 , (2.3.4)

for any a, a 1 , a 2 P A. Each of the four previous categories of algebras can be considered with involution, and denote by A ˚. For such algebras, the initial object and the coproduct are the same as in A, the involution on A > B is automatically defined from the involutions on A and B by properties (2.3.4). Note that, in Alg F and in Alt F , the parenthesizing of a word a 1 b ¨¨¨b a n is inverted from left to right by the involution, together with the single letters of the word.

Definition 2.3.5 A coloop H in a variety of unital algebras A is called a coloop A-bialgebra.
Its associated functor in loops Q " Y pHq is then called an algebraic loop on A if H is a finitely generated algebra, and a proalgebraic loop on A if H is not finitely generated. In this case, it is an inductive limit of finitely generated coloop A-bialgebras.

There are not many known examples of algebraic loops on non-commutative algebras, but some of them are quite special. In section 3, we give two easy examples of algebraic groups on commutative algebras which can be extended as groups to associative algebras (the groups of invertible elements and that of unitary ones), and another one which can not be extended to a functor on associative algebras even as a loop (the Cayley-Dickson loop). Viceversa, in section 5 we give the example of a proalgebraic group which can be extended to associative algebras only as a proalgebraic loop (the loop of formal diffeomorphisms).

Finally, the two groups of invertible and unitary elements can be extended to alternative algebras if we regard them as algebraic loops, and in section 4 we also give an example of an algebraic group which can be extended to all associative algebras as a group, and to nonassociative algebras as a loop (the loop of invertible series).

While the functoriality of the first examples is straightforward, for the two loops of formal series it is not. The group of formal diffeomorphisms is a local approximation of the most simple group of smooth diffeomorphisms on a manifold, and the existence of a proalgebraic version on associative algebras is a new step in the study of non-commutative geometry. In particular, its existence as a proalgebraic loop allows us to consider a physical "renormalization loop" to replace the standard group [START_REF] Itzykson | Quantum Field Theory[END_REF], which could be applied in any perturbative theory when the function rings have to be replaced by tensor algebras, as in [START_REF] Herscovich | Renormalization in Quantum Field Theory (after R.Borcherds)[END_REF].

Remark 2.3.6

All known examples of algebraic groups and loops on non-commutative algebras have free underlying algebra structure. The fact that this should hold in any category (under certain completeness hypothesis) has not been proved, but it was proved for cogroups in several categories: by D. Kan [START_REF] Kan | On monoids and their dual[END_REF] in the category of groups, by I. Berstein [START_REF] Berstein | On co-groups in the category of associative algebras[END_REF] (and later reproved by J. Zhang in [START_REF] Zhang | H-algebras[END_REF]) in the category of graded connected associative algebras, and by B. Fresse [START_REF] Fresse | Cogroups in algebras over an operad are free algebras[END_REF] in the category of complete algebras over any operad. For coloops, this result is proved by G. Bergman and A.O. Hausknecht [START_REF] Bergman | Cogroups and co-rings in categories of associative algebras[END_REF] in the category of graded connected associative rings.

Before giving the examples, we mention two maps which allow us to compare coloop and cogroup bialgebras to usual Hopf algebras. A coloop A-bialgebra has the operations p : H b n ÝÑ H from A, and the categorical folding map µ : H >H Ñ H needed to describe the coloop axioms, which can be iterated on n copies of H. In general, there is no relationship between these two types of operations, since H b n need not be an algebra in A.

Assume that A is a category of algebras such that, for any A-algebras A and B, the tensor product A b B is again an A-algebra with componentwise operations

p pnq AbB pa 1 b b 1 , ¨¨¨, a n b b n q " p pnq A pa 1 , ¨¨¨, a n q b p pnq B pb 1 , ¨¨¨, b n q and unit 1 AbB " 1 A b 1 B .
Definition 2.3.7 For any n ě 2 and for any n algebras A k , with k " 1, ..., n, we call canonical projection of

A 1 > ¨¨¨> A n onto A 1 b ¨¨¨b A n the algebra homomorphism π :" xj 1 , ..., j n y : A 1 > ¨¨¨> A n ÝÑ A 1 b ¨¨¨b A n induced by the injective algebra maps j k : A k Ñ A 1 b ¨¨¨b A n given by j k pa k q " 1 A 1 b ¨¨¨b a k b ¨¨¨b 1 An .
The map π reorders the elements of A 1 > ¨¨¨> A n and then multiplies them within each A k to get elements in A 1 b ¨¨¨b A n . For instance, if we denote by a pkq an element a P A k seen in the coproduct

A 1 > ¨¨¨> A n , we have π `ap1q b p2q c p1q d p2q ˘" pacq b pbdq. This map is surjective, because a preimage of any a 1 b a 2 b ¨¨¨b a n P A 1 b ¨¨¨b A n by π is given by a p1q 1 a p2q 2 ¨¨¨a pnq n P A 1 > ¨¨¨> A n .
Note that, when all A k coincide and we are given an operation p of arity n, the map p π : A >n ÝÑ A is not, in general, an algebra homomorphism (because p is not), and therefore it surely differs from the folding map µ " xid A , ..., id A y. In fact, µ multiplies the elements of A in the order they appear in A >n (it is a concatenation), while p π first reorders the factors in A >n with π, as explained above, then multiplies them (it is a componentwise operation). Definition 2.3.8 On the other side, for any n ě 2 and for any n algebras A k , with k " 1, ..., n, there are categorical maps i k :

A k Ñ A 1 > ¨¨¨> A n . For any operation p of arity n in A, we call canonical inclusion of A 1 b ¨¨¨b A n in A 1 > ¨¨¨> A n the linear map ι p : A 1 b ¨¨¨b A n ÝÑ A 1 > ¨¨¨> A n defined by ι p pa 1 b ¨¨¨b a n q :" p > `i1 pa 1 q, ..., i n pa n q ˘,
where

p > : pA 1 > ¨¨¨> A n q b n Ñ A 1 > ¨¨¨> A n denotes the operation p on the coproduct algebra A 1 > ¨¨¨> A n .
It follows from the definition of > that this map is injective. Note that ι p is not, in general, an algebra homomorphism, because the operation p in A is not. However, when all A k coincide (say, with A), the map ι p allows us to recover the operation p A : A b n Ñ A from the folding map µ, in the sense that µ ι p " p A , because µ p > `i1 pa 1 q, ..., i n pa n q ˘" p A pa 1 , ..., a n q for any a 1 , ..., a n P A.

Proposition 2.3.9 When the map ι p is well defined, we have π ι p " id A 1 b¨¨¨bAn .

Proof. Denote by p b the operation p on the tensor algebra A 1 b ¨¨¨b A n . Since π is an algebra homomorphism, for any a k P A k , with k " 1, ..., n, we have π ι p pa 1 b ¨¨¨b a n q " π p > `i1 pa 1 q, ..., i n pa n q ˘" p b ´π`i 1 pa 1 q ˘, ..., π `in pa n q ˘" p b ´xj 1 , ..., j n y `i1 paq ˘, ..., xj 1 , ..., j n y `in pa n q ˘" p b ´j1 pa 1 q, ..., j n pa n q " a 1 b ¨¨¨b a n . l Remark 2.3.10 These maps allow us in particular to compare the coloop bialgebra representing some loop to other types of bialgebras related to it which appear in the literature. In particular, the universal enveloping algebra of the Sabinin algebra associated to the loop has been studied in [START_REF] Pérez-Izquierdo | Algebras, hyperalgebras, nonassociative bialgebras and loops[END_REF][START_REF] Mostovoy | Formal multiplications, bialgebras of distributions and non-associative Lie theory[END_REF][START_REF] Mostovoy | Hopf algebras in non-associative Lie theory[END_REF]. Because of the axioms, it is clear that the graded dual of this universal enveloping algebra does not coincide with the bialgebra H b induced by a coloop bialgebra H, nor in Alg F nor in As F .

Finally, let us use these maps to compare associative coloop bialgebras and Hopf algebras. Let H be a coloop bialgebra in As F . Denote by H b the algebra H endowed with the usual co-operations 

∆ b " π ∆, δ b r " π δ r , δ b l " π δ r : H b ÝÑ H b b H b , the counit ε
H > H > H ÝÑ H b H b H. Therefore ∆ b is coassociative.
For any a P H, the term δ r paq P H p1q > H p2q is a finite sum of products of elements of H p1q and of H p2q in alternative order. The right antipode Spaq r " pε > idq δ r paq turns all the factors belonging to H p1q into scalars, which can then be positioned on the lefthand side of all the remaining elements belonging to H p2q . Therefore the result is the same that we obtain if we first reorder the factors in H p1q all at the leftmost position by applying δ r paq b . Same with S l by putting all the scalars on the rightmost position. l

Note however that S r and S l do not necessarily satisfy the left and right 5-terms identities for ∆ b on H b , because

m pS r b idq ∆ b " m π pS r > idq i ∆ b " µ ι π pS r > idq ι π ∆
and ι π is not the identity map on H > H. Therefore, even if H is a cogroup bialgebra, H b is not necessarily a Hopf algebra.

3 Coloops of invertible and unitary elements

Loop of invertible elements

In this section we give an example of an abelian algebraic group which can be extended to associative algebras as a group, to alternative algebras as a loop, but not to non-associative algebras, even as a loop.

Let F be a field. For any unital commutative algebra A over F, the set IpAq " ta P A | a admits an inverse a ´1 u is the abelian group of invertible elements in A. The functor I is represented on Com F by the commutative (and cocommutative) Hopf algebra of Laurent polynomials H I " Frx, x ´1s, with co-operations ∆pxq " x b x, εpxq " 1, Spxq " x ´1.

In fact, elements a P IpAq are in bijection with algebra homomorphisms α : H I Ñ A such that αpxq " a and αpx ´1q " a ´1. Then, if α and β give respectively the elements a and b, their convolution product coincides with the product in A, because we have

pα ¨βqpxq " µ A pα b βq∆pxq " αpxqβpxq " ab, α ´1pxq " αSpxq " αpx ´1q " a ´1.
We show that the functor I admits an extention to associative algebras as a group, and that it admits an extention to non-associative algebras, as a loop, only on alternative algebras.

Definition 3.1.1 We call invertible coloop bialgebra on F the associative algebra H > I " Frx, x ´1s endowed with the following co-operations with values in the coproduct H > I > H > I of the category As F : ∆pxq " x p1q x p2q ∆px ´1q " px ´1q p2q px ´1q p1q , ǫpxq " 1 ǫpx ´1q " 1, δ r pxq " x p1q px ´1q p2q δ r px ´1q " x p2q px ´1q p1q , δ l pxq " px ´1q p1q x p2q δ l px ´1q " px ´1q p2q x p1q , where x pkq " i k pxq is the generator x seen in the kth copy of H > I of the coproduct algebra

H > I > H > I , for k " 1, 2
, and similarly for px ´1q pkq " i k ppx ´1q pkq q. It follows that there is a two-sided antipode given by Spxq " x ´1 and Spx ´1q " x. Proof. The axioms of a coloop bialgebra for the codivisions are easily verified. For instance, the computations pid > µqpδ r > idq∆pxq " pid > µqpδ r > idqpx p1q x p2q q " pid > µqpx p1q px ´1q p2q x p3q q " x p1q px ´1q p2q x p2q " x p1q " i 1 pxq pid > µqp∆ > idqδ r pxq " pid > µqp∆ > idqpx p1q px ´1q p2q q " pid > µqpx p1q x p2q px ´1q p3q q " x p1q x p2q px ´1q p2q " x p1q " i 1 pxq and the analogue computations for x ´1 prove the cocancellation (2.2.3) for δ r . The first claim is then ensured by the fact that ∆ is coassociative. In fact, p∆ > idq∆pxq " x p1q x p2q x p3q " pid > ∆q∆pxq, and similarly for x ´1. Thus, IpAq is a group by Theorem 2.2.10 and Proposition 2.2.17.

The fact that the group IpAq is abelian if A is commutative is less evident because ∆ is not cocommutative. In fact, we have τ ∆pxq " τ px p1q x p2q q " x p2q x p1q ‰ x p1q x p2q " ∆pxq.

It is however true because the generators x and x ´1 are group-like, and therefore the commutativity of the convolution product only depends on that of the multiplication in A. l Example 3.1.3 The group IpAq is the simplest algebraic group at all: it describes invertible elements in an associative algebra A whatever is the nature of A, that is, without making use of any internal structure of A. The simplest non-trivial example is the group IpM n pFqq " GL n pFq, which is recovered as the set of M n pFq-valued algebra homomorphisms on H I without using the non-homogeneous relation detpAq ‰ 0 which defines invertible matrices (or, more precisely, the relation detpAq " t where t determines a new scalar invertible generator of the coordinate ring).

Proposition 3.1.4 The algebraic group I can be extended as a loop to a variety of algebras A Ă Alg F if A is a subcategory of alternative algebras Alt F admitting coproduct and initial object. In particular, it is an algebraic loop on Alt F .

Proof. If I could be extended as an algebraic loop to Alg, its representative coloop bialgebra should be the algebra H > I " Frx, x ´1s with co-operations defined on generators as in Def. 3.1.1 but taking values in the coproduct H > I > H > I of the category Alg. This algebra is not a coloop bialgebra in Alg, because the codivisions do not satisfy the cocancelation properties (2.2.4) and (2.2.3). In fact, the element pid > µq pδ r > idq ∆pxq " `xp1q px ´1q p2q ˘xp2q can not coincide with i 1 pxq " x p1q in H > I > H > I . However, the conditions under which the cocancellation properties hold, all similar to the one above, are guaranteed in the category of alternative algebras, where pabqb ´1 " a " b ´1pbaq for any a and any invertible b (cf. [START_REF] Zhevlakov | Rings that are nearly associative[END_REF] Examples 3.2.3 For F " R, this functor allows us to describe several groups of unitary matrices.

1. Applied to the algebra M n pRq, if we take the transposition of matrices as involution, it gives U pRq " t1, ´1u, and the orthogonal group U `Mn pRq ˘" Opnq for n ą 1.

2. On M n pCq, we take as involution the complex conjugate of the transposition. Then U pCq " U p1q -S 1 and U `Mn pCq ˘" U pnq is the unitary group.

3. Let H be the algebra of quaternions, spanned over R by 1 and by three imaginary units i, j, k which anticommute with each other. The conjugate of a quaternion q " a `b i `c j `d k is the quaternion q ˚" a ´b i ´c j ´d k. The conjugation is an involution, and the real number }q} " ? qq ˚" ? q ˚q " ? a 2 `b2 `c2 `d2 defines a multiplicative norm on H. Then, the functor U applied to H gives the subgroup U pHq -Spp1q -SU p2q -S 3 of IpHq consisting of unit norm quaternions.

On the set of matrices M n pHq, we take as involution the quaternionic conjugate of the transposition. Then U `Mn pHq ˘-U pn, Hq -Sppnq is the compact symplectic group, also called the hyperunitary group.

Again exactly as for the invertible coloop bialgebra, one can prove the next result. Proposition 3.2.4 The algebraic group U can be extended as a loop to a variety of algebras A Ă Alg F if A is a subcategory of involutive alternative algebras Alt F admitting coproduct and initial object. In particular, U is an algebraic loop on Alt F. Example 3.2.5 An alternative algebra of octonions O " Opα, β, γq is spanned over a field F of characteristic not 2 by e 0 " 1 and by seven imaginary units e i , for i " 1, ..., 7, with an involved table of multiplication (cf. [START_REF] Bruck | A survey of binary systems[END_REF], [50, Ch.2], [START_REF] Kuz'min | Nonassociative structures[END_REF]). Over the field R there are two nonisomorphic octonion algebras: the classical division Cayley octonions O and the split matrix Cayley-Dickson algebra ZornpRq [START_REF] Bruck | A survey of binary systems[END_REF], also known as the Zorn vector-matrix algebra [START_REF] Paige | A class of simple Moufang loops[END_REF]. The last one may be defined over an arbitrary commutative ring. The conjugate of an octonion q " ř 7 i"0 a i e i is the octonion q ˚" a 0 e 0 ´ř7 i"1 a i e i . Again, the conjugation is an involution, and the scalar npqq " qq ˚" q ˚q defines a multiplicative norm on O (and an isotropic quadratic form on ZornpRq).

Then, for the classical Cayley octonions O, the set U pOq is the Moufang subloop of the loop IpOq consisting of unit norm octonions, which is homeomorphic to the sphere S 7 , while for the matrix Cayley-Dickson algebra ZornpRq the loop U pZornpRqq is not compact. The loops U pOq and U pZornpRqq can be compared to the groups U pHq -S 3 and U pPq -SL 2 pRq obtained respectively for division quaternions H and for split quaternions P.

Unitary Cayley-Dickson loops

In this section we give an example of a loop which is not algebraic on associative algebras.

Let F be a field and j denote an imaginary unit. For any involutive commutative algebra A over F, the set

U CD pAq " ta `b j P A `A j | a a ˚`b b ˚" 1u
gives the group of unitary elements in the Cayley-Dickson algebra A `A j with multiplication pa `b jq pc `djq " pac ´d˚b q `pda `bc ˚q j, unit 1, and involution pa `b jq ˚" a ˚´b j.

The functor A Þ ÝÑ U CD pAq is representable on Com F, by the commutative Hopf algebra

H UCD " Frx, x ˚, y, y ˚| x x ˚`y y ˚" 1s with co-operations ∆pxq " x b x ´y b y ˚∆pyq " x b y `y b x ˚,
εpxq " 1 εpxq " 0, Spxq " x ˚Spyq " ´y.

Proposition 3.3.1 The algebraic group U CD can not be extended as an algebraic loop to the category of involutive associative algebras.

Proof. If U CD could be extended to an algebraic loop to As F, its representative coloop bialgebra H > UCD should be an associative algebra generated by x, x ˚, y and y ˚submitted to conditions which give x x ˚`y y ˚" 1 if the variables commute. The co-operations should then be defined on generators exactly as in the commutative case, but taking values in the coproduct H > UCD > H > UCD of the category As F. The conditions x x ˚" x ˚x and x x ˚`y ˚y " 1 are enough to guarantee that the algebra H > UCD has a well defined comultiplication, a counit and an antipode satisfying the 5-terms relations. However, the codivisions, defined according to the coinverse properties (2.2.15) as δ r pxq " x p1q px ˚qp2q `py ˚qp2q y p1q δ r pyq " ´yp2q x p1q `yp1q x p2q δ l pxq " px ˚qp1q x p2q `py ˚qp2q y p1q δ l pyq " y p2q px ˚qp1q ´yp1q px ˚qp2q , satisfy the cocancellation identities (2.2.3) and (2.2.4) if and only if

x p1q px ˚xq p2q " px ˚xq p2q x p1q and y p1q py ˚yq p2q " py ˚yq p2q y p1q in H > UCD > H > UCD . This could happen for two reasons. The first is that the map n :

H > UCD ÝÑ H >
UCD given by npaq " aa ˚" a ˚a has scalar values, i.e. its image is in upFq Ă H > UCD . This is the case if H > UCD is a composition algebra, cf. [START_REF] Albert | Quadratic forms permitting composition[END_REF]. But composition algebras do not have a categorical coproduct. The second possibility to verify these conditions is that the identity a p1q b p2q " b p2q a p1q holds in H > UCD > H > UCD for any elements a, b P H > UCD . This means that > " b and therefore it is only possible in the category Com F. l

Examples 3.3.2 In agreement with this result, namely that the construction U CD is not functorial on associative algebras, there are few examples of loops arising as sets of unitary elements in the Cayley-Dickson algebra constructed on an associative algebra. For instance, we can consider the associative algebras of matrices A " M n pKq with entries in involutive algebras K over the field F " R, with involution given by the transposition of the matrices plus the involution of their matrix elements. The unitary elements in A `Aj are preserved by divisions if A is a composition algebra, and matrix algebras, in general, are not. So, in general, U CD pAq is not a loop. There are few exceptions:

1. The set U CD pM n pRqq is a loop for n " 1, 2. For n " 1 (when A " R is commutative) it is an abelian group U CD pRq " U pCq -S 1 , and for n " 2 the loop U CD pM 2 pRqq coincides with the loop U pZornpRqq from Example 3.2.5, since M 2 pRq `M2 pRqj -ZornpRq is a matrix Cayley-Dickson algebra.

2. The set U CD pM n pCqq is a loop for n " 1, 2. For n " 1 (when A " C is commutative) it is a group U CD pCq " U pHq -S 3 , and for n " 2 the loop U CD pM 2 pCqq coincides with the loop U pZornpCqq of unital elements in the split matrix Cayley-Dickson algebra over the complex numbers C.

3. The set U CD pM n pHqq is a Moufang loop only for n " 1, and we have U CD pHq -U pOq -S 7 .

For n ą 1, the set U CD pM n pHqq is not a loop because M n pHq is not a composition algebra.

Coloop of invertible series

The group of invertible series (with constant term equal to 1), is the set of formal series

InvpAq " ! apλq " ÿ ně0 a n λ n | a 0 " 1, a n P A )
with coefficients a n taken in a commutative algebra A, endowed with the pointwise multiplication pabqpλq " apλq bpλq, unit 1pλq " 1, and where the inverse of a series apλq is found by recursion.

It is an abelian proalgebraic group on Com, represented by the cocommutative Hopf algebra

H inv " Frx n , n ě 1s px 0 " 1q ∆ inv px n q " n ÿ m"0
x m b x n´m known as Hopf algebra of symmetric functions [START_REF] Geissinger | Hopf algebras of symmetric functions and class functions[END_REF]. The functor Inv admits an evident extention to associative algebras as a functor in groups (but not abelian), represented by the cogroup bialgebra [START_REF] Ch | Non-commutative Hopf algebra of formal diffeomorphisms[END_REF] H inv " Fxx n , n ě 1y px 0 " 1q

∆ inv px n q " n ÿ m"0 x p1q m x p2q n´m
with antipode defined recursively. The projection of this bialgebra by the canonical map π given in Def. 2.3.7 coincides with the Hopf algebra of non-commutative symmetric functions (cf. [START_REF] Gelfand | Non-commutative symmetric functions[END_REF]).

In this section we show that the functor Inv can be extended to non-associative algebras, as a proalgebraic loop. and the unit e given by e 0 " 1 and e n " 0 for all n ą 1. For instance,

Loop of invertible series

pa ¨bq 1 " a 1 `b1 , pa ¨bq 2 " a 2 `a1 b 1 `b2 , pa ¨bq 3 " a 3 `a2 b 1 `a1 b 2 `b3 .
Proposition 4.1.2 For any unital algebra A, the set of invertible series InvpAq is a loop.

Proof. It is clear that the series e is a unit for the given multiplication, so we only have to show that there exist a left and a right divisions satisfying the cancellation properties (2.1.2) and (2.1.1). Since the multiplication is completely symmetric in the the two variables, the proof for the two divisions is exactly the same. We do it for the right division. Given two series a " ř a n λ n and b " ř b n λ n , we define the right division a{b " ř pa{bq n λ n so that pa{bq 9

b " a, that is

n ÿ m"0
pa{bq m b n´m " a n for any n ě 0.

These equations are solved recusively from pa{bq 0 " 1, and give the nth term

pa{bq n " a n ´n´1 ÿ m"0 pa{bq m b n´m .
Let us then prove by induction that pa ¨bq{b " a, that is, `pa ¨bq{b ˘n " a n for any n ě 0. We have `pa ¨bq{b ˘0 " a 0 " 1 and, for any n ě 1,

`pa ¨bq{b ˘n " pa ¨bq n ´n´1 ÿ m"0 pa ¨bq m b n´m " a n `n´1 ÿ m"0
`am ´pa ¨bq m ˘bn´m , so if we suppose that `pa ¨bq{b ˘m " a m for any m ě n ´1, we have `pa ¨bq{b ˘n " a n . l

For instance, for the right division we find

pa{bq 1 " a 1 ´b1 , pa{bq 2 " a 2 ´a1 b 1 ´b2 `b1 b 1 , pa{bq 3 " a 3 ´pa 1 b 2 `a2 b 1 q `pa 1 b 1 qb 1 ´b3 `pb 1 b 2 `b2 b 1 q ´pb 1 b 1 qb 1 ,
and for the left division we find

pazbq 1 " b 1 ´a1 , pazbq 2 " b 2 ´a1 b 1 ´a2 `a1 a 1 ,
pazbq 3 " b 3 ´pa 1 b 2 `a2 b 1 q `a1 pa 1 b 1 q ´b3 `pa 1 a 2 `a2 a 1 q ´a1 pa 1 a 1 q.

Coloop bialgebra of invertible series

For any n ě 1, let x n be a graded variable of degree n. For X " Span F tx n , n ě 1u, the tensor algebra H " T pXq can be seen as the set of non-commutative polynomials in the variables x 1 , x 2 , ..., that we denote by Fxx n , n ě 1y. It is then useful to denote the unit 1 of H by x 0 . The unital associative coproduct algebra H > H is then the tensor algebra T pX p1q ' X p2q q on two identical sets of variables, and similarly H > H > H " T pX p1q ' X p2q ' X p3q q. To simplify the notations, in this section we denote by x n " x p1q n , y n " x p2q n and z n " x p3q n the generators taken in the different copies of X in a coproduct algebra.

For any integer n ě 1 and any 1 ď ℓ ď n, let C ℓ n denote the set of compositions of n of length ℓ, that is, the set of ordered sequences n " pn 1 , ..., n ℓ q such that n 1 `¨¨¨`n ℓ " n, and n 1 , ..., n ℓ ě 1. (4.2.1)

For instance, for ℓ " 1, 2, 3, we have 

C 1 1 " p1q ( , C 1 
H > inv " T tx n | n ě 1u
with the following graded co-operations:

• comultiplication ∆ > inv : H > inv ÝÑ H > inv > H > inv given by ∆ > inv px n q " n ÿ m"0
x m y n´m ;

• counit ε : H > inv ÝÑ F given by εpx n q " δ n,0 ;

• right codivision δ r :

H > inv ÝÑ H > inv > H > inv given by δ r px n q " x n ´yn `n´1 ÿ ℓ"1 p´1q ℓ ÿ nP C ℓ`1 n
´`ppx n 1 ´yn 1 q y n 2 q y n 3 ˘¨¨¨¯y n ℓ`1 ,

where C ℓ`1 n is the set of compositions of n of length ℓ `1, cf. (4.2.1);

• left codivision δ l : H > inv ÝÑ H > inv > H > inv given by δ l px n q " y n ´xn `n´1 ÿ ℓ"1 p´1q ℓ ÿ nP C ℓ`1 n x n 1 ´¨¨¨`x n 2 px n ℓ py n ℓ`1 ´xn ℓ`1 qq ˘¯. Theorem 4.2.3
The algebra H > inv is a coloop bialgebra and represents the loop of invertible series as a functor Inv : Alg ÝÑ Loop.

As a consequence, given an algebra A, a series a " ř ně0 a n λ n P InvpAq can be seen as an algebra homomorphism a : H > inv ÝÑ A defined on the generators of H > inv by apx n q " a n , and the right and left division a{b and azb are given at any order n by the following closed formulas:

pa{bq n " µ A pa > bq δ r px n q " a n ´bn `n´1 ÿ ℓ"1 p´1q ℓ ÿ nP C ℓ`1 n ´`ppa n 1 ´bn 1 qb n 2 qb n 3 ˘¨¨¨¯b n ℓ`1 , pazbq n " µ A pa > bq δ l px n q " b n ´an `n´1 ÿ ℓ"1 p´1q ℓ ÿ nP C ℓ`1 n a n 1 ´¨¨¨`a n 2 pa n ℓ pb n ℓ`1 ´an ℓ`1 qq ˘¯.
Proof. The algebra H > inv clearly represents the functor Inv with values in sets, and the comultiplication ∆ > inv represents the pointwise multiplication of series. The only thing which should be proved is that H > inv is a coloop bialgebra with the given codivisions. The formulas for the left and for the right codivisions are perfectly symmetric, in the sense that δ l " τ δ r , so it suffices to give the details for one codivision. Let us then show that the right codivision satisfies the two equations (2.2.3).

Concerning the first one, we have

pδ r > idq∆ > inv px n q " δ r px n q `zn `n´1 ÿ m"1 δ r px m q z n´m ,
which is an element of H > inv > H > inv > H > inv , and since id > µ :

H > inv > H > inv > H > inv ÝÑ H > inv > H > inv
multiplies the variables y and z (in the order they appear) and puts the result in the right-hand side copy of

H > inv in H > inv > H > inv , we have pid > µqpδ r > idq∆ > inv px n q " δ r px n q `yn `n´1 ÿ m"1 δ r px m q y n´m " x n ´yn `n´1 ÿ ℓ"1 p´1q ℓ ÿ nP C ℓ`1 n
´`pu n 1 y n 2 q y n 3 ˘¨¨¨¯y n ℓ`1 `yn

`n´1 ÿ m"1 u m y n´m `n´1 ÿ m"1 m´1 ÿ λ"1 p´1q λ ÿ mP C λ`1 m
´`pu m 1 y m 2 q ¨¨¨˘y m λ`1 ¯yn´m

where we set u n :" x n ´yn and therefore we have

n´1 ÿ m"1 u m y n´m " ÿ nP C 2 n u n 1 y n 2 .
Setting ℓ " λ `1 in the last sum, we have 2 ď ℓ ď n ´1 and ℓ ď m ď n ´1 with

n´1 ď m"λ C ℓ m ˆC1 n´m " C ℓ`1 n , therefore n´1 ÿ m"1 m´1 ÿ λ"1 p´1q λ ÿ mP C λ`1 m ´`pu m 1 y m 2 q ¨¨¨˘y m λ`1 ¯yn´m " n´1 ÿ ℓ"2 p´1q ℓ ÿ nP C ℓ`1 n
´`pu n 1 y n 2 q y n 3 ˘¨¨¨¯y n ℓ`1 .

Thus, we finally obtain pδ r > idq∆ > inv px n q " x n .

For the second identity, we rewrite the comultiplication as

∆ > inv px n q " x n `yn `ÿ nP C 2 n
x n 1 y n 2 and using the fact that

C ℓ`1 n " n´1 ď m"1 C 1 m ˆCℓ n´m ,
and setting λ " ℓ, we rewrite the right codivision as

δ r px n q " u n `n´1 ÿ m"1 n´m ÿ λ"1 p´1q λ ÿ kP C λ n´m
´`pu m y k 1 q y k 2 ˘¨¨¨¯y k λ .

We then have

p∆ > inv > idqδ r px n q " ∆ > inv px n q ´zn `n´1 ÿ m"1 n´m ÿ λ"1 p´1q λ ÿ kP C λ n´m ´`p∆ > inv px m q ´zm q z k 1 ˘¨¨¨¯z k λ " x n `yn `ÿ nP C 2 n x n 1 y n 2 `n´1 ÿ m"1 n´m ÿ λ"1 p´1q λ ÿ kP C λ n´m `px m z k 1 q ¨¨¨˘z k λ ´zn `n´1 ÿ m"1 n´m ÿ λ"1 p´1q λ ÿ kP C λ n´m `py m z k 1 q ¨¨¨˘z k λ `n´1 ÿ m"1 ÿ mP C 2 m n´m ÿ λ"1 p´1q λ ÿ kP C λ n´m ´`px m 1 y m 2 q z k 1 ˘¨¨¨¯z k λ ´n´1 ÿ m"1 n´m ÿ λ"1 p´1q λ ÿ kP C λ n´m `pz m z k 1 q ¨¨¨˘z k λ .
When we then apply id > µ, we identify z m " y m and z k i " y k i for i " 1, ..., λ, and therefore we have

pid > µqp∆ > inv > idqδ r px n q " x n `ÿ nP C 2 n x n 1 y n 2 `n´1 ÿ m"1 n´m ÿ λ"1 p´1q λ ÿ kP C λ n´m `px m y k 1 q ¨¨¨˘y k λ `n´1 ÿ m"1 ÿ mP C 2 m n´m ÿ λ"1 p´1q λ ÿ kP C λ n´m ´`px m 1 y m 2 q y k 1 ˘¨¨¨¯y k λ where n´1 ÿ m"1 n´m ÿ λ"1 p´1q λ ÿ kP C λ n´m `px m y k 1 q ¨¨¨˘y k λ " n´1 ÿ ℓ"1 p´1q ℓ ÿ nP C ℓ`1 n `px n 1 y n 2 q ¨¨¨˘y n ℓ`1 ,
and

ÿ nP C 2 n x n 1 y n 2 `n´1 ÿ m"1 ÿ mP C 2 m n´m ÿ λ"1 p´1q λ ÿ kP C λ n´m ´`px m 1 y m 2 q y k 1 ˘¨¨¨¯y k λ " ´ÿ nP C 1`1 n p´1q 1 x n 1 y n 1`1 ´n´1 ÿ ℓ"2 p´1q ℓ ÿ nP C ℓ`1 n `px n 1 y n 2 q ¨¨¨˘y n ℓ`1 .
This we finally have pid > µqp∆ > inv > idqδ r px n q " x n . l

Properties of the loop of invertible series

Loops satisfying weak versions of associativity have many applications, for instance in Blaschke's Web Geometry through nets [START_REF] Blaschke | Geometrie der Gewebe[END_REF]. It is therefore interesting to ask what kind of identities are satisfied by the loops InvpAq of invertible series. Proof. Roughly speaking, this result follows from the fact that the comultiplication ∆ > inv is linear on both sides on generators. More precisely, if in the identity p˚q the operators u and v are multilinear, the implication "p˚q on A ñ p˚q on InvpAq" is proved by direct inspection, and the opposite implication is proved by considering series of the form a " 1 `a1 λ, b " 1 `b1 λ,..., c " 1 `c1 λ.

If in the identity p˚q the operators u and v are not multilinear, for instance the element a appears k times, it suffices to linearize them, by considering the sum a " a 1 `¨¨¨`a k of k different elements. l

In particular, this result implies that InvpAq is a Moufang loop if and only if A is alternative, that InvpAq is a group if and only if A is associative, and that InvpAq is an abelian group if and only if A is commutative and associative.

We give below counterexamples to some interesting properties of loops which fail on the loops InvpAq for associative algebras A, which can be deduced by the coloop bialgebra H > inv .

Example 4.3.2 The left and the right inverses of any a P InvpAq do not coincide, that is aze ‰ e{a.

In fact, the left and right inverses in InvpAq coincide if and only if the left antipode S l and the right antipode S r of H > inv coincide. Applying equations (2.2.8), we find S r px n q :" pε > idq δ r px n q " ´xn ´n´1 ÿ

ℓ"1

p´1q ℓ ÿ nP C ℓ`1 n
´`px n 1 x n 2 q x n 3 ˘¨¨¨¯x n ℓ`1 and S l px n q :" pid > εq δ l px n q " ´xn ´n´1 ÿ

ℓ"1

p´1q ℓ ÿ nP C ℓ`1 n x n 1 ´¨¨¨`x n 2 px n ℓ x n ℓ`1 q ˘¯,
therefore the two antipodes do not coincide. For instance, for a series a " 1 `a1 λ, we have e{a :" a S r " 1 ´a1 λ `a1 a 1 λ 2 ´pa 1 a 1 qa 1 λ 3 ``pa 1 a 1 qa 1 ˘a1 λ 4 `¨¨ä ze :" a S l " 1 ´a1 λ `a1 a 1 λ 2 ´a1 pa 1 a 1 q λ 3 `a1 `a1 pa 1 a 1 q ˘λ4 `¨¨T o have a counterexample to the equality e{a " aze, take for A the algebra of 2 ˆ2 matrices over the sedenions, spanned by 1 and by the imaginary units e i for i " 1, ..., 15. If a " 1 `a1 λ is the series with coefficient a 1 " ˆe1 `e10 e 5 `e14 0 1

˙,

we have e{a ´aze " ˆ0 ´2pe 5 `e14 q 0 0 ˙λ3 `Opλ 4 q. In fact, to show that a{b ‰ a pe{bq and azb ‰ pazeq b in the loop InvpAq is equivalent to show that δ r ‰ pid > S r q ∆ > inv and δ l ‰ pS l > idq ∆ > inv in the coloop bialgebra H > inv . Let us show it for the right codivision. For any generator x n , we have pid > S r q ∆ > inv px n q " x n `Sr py n q `n´1 ÿ m"1

x m S r py n´m q " x n ´yn ´n´1 ÿ

ℓ"1

p´1q ℓ ÿ nP C ℓ`1 n `py n 1 y n 2 q ¨¨¨˘y n ℓ`1 ´n´1 ÿ m"1 x m y n´m ´n´1 ÿ m"1 n´m´1 ÿ λ"1 p´1q λ ÿ kP C λ`1 n´m x m ´`py k 1 y k 2 q ¨¨¨˘y k λ`1 ¯.
Writing the last two sums in terms of compositions of n yields

pid > S r q ∆ > inv px n q " u n `n´1 ÿ ℓ"1 p´1q ℓ ÿ nP C ℓ`1 n `xn 1 ``py n 2 y n 3 q ¨¨¨˘y n ℓ`1 ˘´`p y n 1 y n 2 q ¨¨¨˘y n ℓ`1 ˘,
which is clearly different from the expression of δ r px n q.

Example 4.3.4 A loop Q is left alternative if apabq " paaqb for any a, b P Q, and it is right alternative if pabqb " apbbq. The proalgebraic loop Inv on the category Alg is not left nor right alternative.

For this, it suffices to show that the coloop bialgebra H > inv is not right coalternative, that is pid > µq K ‰ 0, where K " p∆ > inv > idq ∆ > inv pid > ∆ > inv q ∆ > inv is the coassociator. The first deviation from right alternativity appears on the generator x 3 , since we have Kpx 3 q " px 1 y 1 qz 1 ´x1 py 1 z 1 q pid > µq Kpx 3 q " px 1 y 1 qy 1 ´x1 py 1 y 1 q ‰ 0.

For instance, if A is the algebra of sedenions, the deviation from right alternativity can be seen comparing pabqb and apbbq for the two series a " 1 `pe 1 `e10 qλ and b " 1 `pe 5 `e14 qλ because pe 1 `e10 qpe 5 `e14 q " 0 and therefore pabqb ´apbbq " ´pe 1 `e10 qpe 5 `e14 q 2 λ 3 " 2pe 1 `e10 q λ 3 .

Example 4.3.5 A loop Q is power associative if every element of the loop generates an abelian subgroup. The proalgebraic loop Inv on the category Alg is not power associative.

In particular, power associativity requires the associativity paaqa " apaaq for any element. Therefore, it suffices to show that µ pid > µq Kpx 3 q " px 1 x 1 qx 1 ´x1 px 1 x 1 q ‰ 0.

For instance, if we take A to be the algebra of 2 ˆ2 matrices with coefficients in the sedenion algebra, for the series a " 1 `a1 λ of Example 4.3.3 with a 1 " ˆe1 `e10 e 5 `e14 0 1 ẇe have a 2 1 a 1 " ˆ´2pe 1 `e10 q ´pe 5 `e14 q 0 1 ˙and a 1 a 2 1 " ˆ´2pe 1 `e10 q e 5 `e14 0 1 ȧnd therefore paaqa ´apaaq " ˆ0 ´2pe 5 `e14 q 0 0 ˙λ3 .

Coloop of formal diffeomorphisms

The group of formal diffeomorphisms (tangent to the identity) is the set of series DiffpAq "

! a " ÿ ně0 a n λ n`1 | a 0 " 1, a n P A )
with coefficients a n taken in a commutative algebra A, endowed with the composition law pa ˝bqpλq " a `bpλq ˘, unit epλq " λ, and where the inverse of a series apλq is given by the Lagrange inversion formula [START_REF] Lagrange | Nouvelle méthode pour résoudre les équations littérales par le moyen des séries[END_REF]. It is a proalgebraic group on Com, represented by the Faà di Bruno Hopf algebra [START_REF] Doubilet | A Hopf algebra arising from the lattice of partitions of a set[END_REF], [START_REF] Joni | Coalgebras and bialgebras in combinatorics[END_REF] H FdB " Frx n , n ě 1s px 0 " 1q

∆ FdB px n q " n ÿ m"0 x m b ÿ ppq pm `1q! p 0 !p 1 ! ¨¨¨p n ! x p 1 1 ¨¨¨x pn n
where the sum is done over the set of tuples pp 0 , p 1 , p 2 , ..., p n q of non-negative integers such that p 0 `p1 `p2 `¨¨¨`p n " m `1 and p 1 `2p 2 `¨¨¨`np n " n ´m. In this section we show that this group can be extended as a proalgebraic loop to the category As.

Loop of formal diffeomorphisms

Definition 5.1.1 Let A be a unital associative algebra, non necessarily commutative, and let λ be a formal variable. We call formal diffeomorphisms in λ with coefficients in A the formal series in the set DiffpAq "

! a " ÿ ně0 a n λ n`1 | a 0 " 1, a n P A ) ,
endowed with the composition law

a ˝b " ÿ ně0 n ÿ m"0 ÿ k 0 `¨¨¨`km"n´m k 0 ,...,kmě0 a m b k 0 ¨¨¨b km λ n`1 " ÿ ně0 ¨an `bn `n´1 ÿ m"1 a m n ÿ l"1 ˆm `1 l ˙ÿ k 1 `¨¨¨`km"n´m k 1 ,...,kmě1 b k 1 ¨¨¨b km ‹ ‹ ' λ n`1
and the unit e given by e 0 " 1 and e n " 0 for all n ą 1. For instance,

pa ˝bq 1 " a 1 `b1 , pa ˝bq 2 " a 2 `2a 1 b 1 `b2 , pa ˝bq 3 " a 3 `3a 2 b 1 `a1 p2b 2 `b2 1 q `b3 .
The indeterminate λ is not necessary to define the loop law, but helps to keep track of the degree of the terms in the sum.

Proposition 5.1.2 For any unital associative algebra A, the set DiffpAq is a loop.

Proof. It is clear that the composition is a well-defined operation, and that e is a unit. Let us show that the left and right divisions exist.

i) Let us prove that there exists a right division { satisfying the two equations (2.1.2). Given two series a " ř a n λ n`1 and b " ř b n λ n`1 , let us define the series a{b " ř pa{bq n λ n`1 so that pa{bq ˝b " a, that is

n ÿ m"0 ÿ k 0 `¨¨¨`km"n´m k 0 ,...,kmě0
pa{bq m b k 0 ¨¨¨b km " a n for any n ě 0.

From now on, in the sum over the integers k 0 , ..., k p we omit to write that all integers can be zero. These equations are solved recursively, starting from pa{bq 0 " a 0 " 1. The nth term is given by

pa{bq n " a n ´n´1 ÿ m"0 ÿ k 0 `¨¨¨`km"n´m pa{bq m b k 0 ¨¨¨b km .
To prove that pa ˝bq{b " a, i.e. that ´pa ˝bq{b ¯n " a n for any n ě 0, we proceed by induction.

We have ´pa ˝bq{b ¯0 " pa ˝bq 0 " 1, therefore ´pa ˝bq{b ¯1 " pa ˝bq 1 ´´pa ˝bq{b ¯0b 1 " a 1 `b1 ´b1 " a 1 and ´pa ˝bq{b ¯n " pa ˝bq n ´n´1 ÿ m"0

ÿ k 0 `¨¨¨`km"n´m ´pa ˝bq{b ¯m b k 0 ¨¨¨b km " n ÿ m"0 ÿ k 0 `¨¨¨`km"n´m a p b k 0 ¨¨¨b km ´n´1 ÿ m"0 ÿ k 0 `¨¨¨`km"n´m ´pa ˝bq{b ¯m b k 0 ¨¨¨b km " a n `n´1 ÿ m"0 ÿ k 0 `¨¨¨`km"n´m ´am ´´pa ˝bq{b ¯m¯b k 0 ¨¨¨b km ,
so, if we suppose that ´pa ˝bq{b ¯m " a m for any m ď n ´1, we have ´pa ˝bq{b ¯n " a n .

ii) To prove the existence of the left division we proceed in the same way: the series azb that satisfies the identity a ˝pazbq " b of equations (2.1.1), that is,

n ÿ m"0 ÿ k 0 `¨¨¨`km"n´m
a m pazbq k 0 ¨¨¨pazbq km " b n for any n ě 0, is given recursively by pazbq 0 " 1 and

pazbq n " b n ´n ÿ m"1 ÿ k 0 `¨¨¨`km"n´m a m pazbq k 0 ¨¨¨pazbq km .
The identity azpa ˝bq " b means that, for any n ě 0, we have ´azpa ˝bq ¯n " b n . This is proved by induction. We have ´azpa ˝bq ¯0 " 1, therefore ´azpa ˝bq ¯1 " pa ˝bq 1 ´a1 ´azpa ˝bq ¯0´a zpa ˝bq ¯0 " a 1 `b1 ´a1 " b 1 and ´azpa ˝bq ¯n " pa ˝bq n ´n ÿ For instance, the first terms of the right division are

m"1 ÿ k 0 `¨¨¨`km"n´m a m ´azpa ˝bq ¯k0 ¨¨¨´azpa ˝bq ¯km " n ÿ m"0 ÿ k 0 `¨¨¨`km"n´m a m b k 0 ¨¨¨b km ´n ÿ m"1 ÿ k 0 `¨¨¨`km"n´m a m ´azpa ˝bq ¯k0 ¨¨¨´azpa ˝bq ¯km " a 0 b n `n ÿ m"1 ÿ k 0 `¨¨¨`km"n´m
pa{bq 1 " a 1 ´b1 , pa{bq 2 " a 2 ´"b 2 `2pa{bq 1 b 1 ı " a 2 ´2a 1 b 1 ´pb 2 ´2b 2 1 q, pa{bq 3 " a 3 ´"b 3 `pa{bq 1 p2b 2 `b2 1 q `3pa{bq 2 b 1 ı " a 3 ´`2a 1 b 2 `3a 2 b 1 ˘`5a 1 b 2 1 ´"b 3 ´p2b 1 b 2 `3b 2 b 1 q `5b 3 1 ‰ ,
and the first terms of the left division are

pazbq 1 " b 1 ´a1 , pazbq 2 " b 2 ´"2a 1 pazbq 1 `a2 ı " b 2 ´2a 1 b 1 ´pa 2 ´2a 2 1 q, pazbq 3 " b 3 ´"a 1 p2pazbq 2 `pazbq 2 1 q `a2 p3pazbq 1 q `a3 ı " b 3 ´`2a 1 b 2 `3a 2 b 1 ˘``5 a 2 1 b 1 `a1 b 1 a 1 ´a1 b 2 1 ˘´" a 3 ´p2a 1 a 2 `3a 2 a 1 q `5a 3 1 ‰ .
We now prove that the loop of formal diffeomorphism is proalgebraic over associative algebras, and give its representative coloop bialgebra.

Faà di Bruno coloop bialgebra

As in Section 4.2, let X " Span F tx n , n ě 1u be the set of graded variables x n of degree n, and identify the tensor algebra T pXq " Fxx n , n ě 1y with the set of non-commutative polynomials Fxx n , n ě 1y. We endow this algebra with the structure of a coloop biagebra which represents the loop Diff.

As before, to simplify the notations, we denote by x n " x p1q n and y n " x p2q n the generators taken in the two copies of X in T pXq > T pXq -T pX p1q ' X p2q q.

To describe the codivisions we need to introduce some sets of sequences and two types of related integer coefficients. Definition 5.2.1 For any ℓ ě 1, let M ℓ denote the set of sequences m " pm 1 , ..., m ℓ q such that m 1 `¨¨¨`m ℓ " ℓ, and m 1 `¨¨¨`m j ě j for j " 1, ..., ℓ ´1.

(

For instance, for ℓ " 1, 2, 3, we have

M 1 " p1q ( , M 2 " p2, 0q, p1, 1q ( , M 3 " p3, 0, 0q, p2, 1, 0q, p2, 0, 1q, p1 , 2, 0q, p1, 1, 1q ( . 
For any ℓ ě 1 and any sequence pn 1 , ..., n ℓ`1 q of positive integers, we call Lagrange coefficient3 the number

d ℓ pn 1 , ..., n ℓ q " ÿ mP M ℓ ˆn1 `1 m 1 ˙¨¨¨ˆn ℓ `1 m ℓ ˙.
For ℓ " 0, M 0 is empty and we set d 0 " 1. For instance, for ℓ " 1, 2, 3, we have

d 1 pn 1 q " ˆn1 `1 1 ˙, d 2 pn 1 , n 2 q " ˆn1 `1 2 
˙`ˆn 1 `1 1 ˙ˆn 2 `1 1 
˙, d 3 pn 1 , n 2 , n 3 q " ˆn1 `1 3 
˙`ˆn 1 `1 2 ˙ˆn 2 `1 1 
˙`ˆn 1 `1 2 ˙ˆn 3 `1 1 ṅ1 `1 1 ˙ˆn 2 `1 2 
˙`ˆn 1 `1 1 ˙ˆn 2 `1 1 ˙ˆn 3 `1 1 ˙.
Definition 5.2.3 For any ℓ ě 1, let E ℓ be the set of sequences e " pe 1 , ..., e ℓ q of bits e i P t1, 2u.

For any e P E ℓ , let M e ℓ be the set of sequences m " pm 1 , ..., m ℓ q P M ℓ such that

m i " 0 if e i " 2, for i " 2, ..., ℓ.
The bits e i will be used in Eq. (5.2.7) to label the generators x i of the coloop bialgebra in order to determine to which copy of the coproduct algebra the variables x pe i q i belong. To simplify the final formulas for the codivisions, we chose for e i the bits 1 and 2, even if, for the present discussion, the bits 1 and 0 would be more appropriate.

In particular, if e " p1, 1, ..., 1q then M e ℓ " M ℓ . If e starts with the bit e 1 " 2, then M e ℓ is empty, because the condition (5.2.2) implies that m 1 ě 1. If e starts with the bit e 1 " 1 and contains at least a bit value 2, then the set M e ℓ is a proper subset of M ℓ obtained by keeping only those sequences m which have the value 0 in all the positions where the bit value of e is 2.

For instance, M p1q 1 " M 1 " tp1qu and for ℓ " 2 we have

M p1,1q 2 " M 2 " tp2, 0q, p1, 1qu, M p1,2q 2 
" tp2, 0qu.

(5.2.4)

For ℓ " 3, we have

M p1,1,1q 3 
" M 3 " p3, 0, 0q, p2, 1, 0q, p2, 0, 1q, p1, 2, 0q, p1,

" tp3, 0, 0q, p2,

" tp3, 0, 0q, p2, 0, 1qu (5.2.5)

M p1,2,2q 3 
" tp3, 0, 0qu.

For any ℓ ě 1, any sequence e P E ℓ and any sequence pn 1 , ..., n ℓ`1 q of positive integers, we call labeled Lagrange coefficient the number

d e ℓ pn 1 , ..., n ℓ q " ÿ mP M e ℓ ˆn1 `1 m 1 ˙¨¨¨ˆn ℓ `1 m ℓ ˙.
For ℓ " 0, M 0 and E 0 are empty and we set d e 0 " d 0 1. Of course, if e " p1, 1, ..., 1q then d e ℓ pn 1 , ..., n ℓ q " d ℓ pn 1 , ..., n ℓ q, if e starts by 2 then d e ℓ " 0, and if e starts by 1 and contains some bit values equal to 2, then d e ℓ pn 1 , ..., n ℓ q ă d ℓ pn 1 , ..., n ℓ q. Here are the values of d e ℓ for ℓ " 1, 2, 3, obtained by summing the patterns according to the labeled sequences given in (5.2.4) and (5.2.5):

d p1q 1 pn 1 q " d 1 pn 1 q " ˆn1 `1 1 ˙, d p1,1q 2 
pn 1 , n 2 q " d 2 pn 1 , n 2 q " ˆn1 `1 2 
˙`ˆn 1 `1 1 ˙ˆn 2 `1 1 
˙, d p1,2q 2 pn 1 , n 2 q " ˆn1 `1 2 ˙,
where the term `n1

`1 1 ˘`n 2 `1
1 ˘disappears because it corresponds to the sequence m " p1, 1q which does not have the value 0 in the same position as the bit 2 in e " p1, 2q,

d p1,1,1q 3 pn 1 , n 2 , n 3 q " d 3 pn 1 , n 2 , n 3 q " ˆn1 `1 3 
˙`ˆn 1 `1 2 ˙ˆn 2 `1 1 
˙`ˆn 1 `1 2 ˙ˆn 3 `1 1 ṅ1 `1 1 ˙ˆn 2 `1 2 
˙`ˆn 1 `1 1 ˙ˆn 2 `1 1 
˙ˆn 3 `1 1 ˙, d p1,1,2q 3 pn 1 , n 2 , n 3 q " ˆn1 `1 3 
˙`ˆn 1 `1 2 ˙ˆn 2 `1 1 
˙`ˆn 1 `1 1 ˙ˆn 2 `1 2 ˙, d p1,2,1q 3 
pn 1 , n 2 , n 3 q " ˆn1 `1 3 
˙`ˆn 1 `1 2 ˙ˆn 3 `1 1 ˙, d p1,2,2q 3 
pn 1 , n 2 , n 3 q " ˆn1 `1 3 
˙.

Definition 5.2.6 We call Faà di Bruno coloop bialgebra the free unital associative algebra

H > FdB " Fxx n , n ě 1y, x 0 " 1
of non-commutative polynomials in the graded variables x n , with the following graded cooperations:

• comultiplication ∆ > FdB : H > FdB ÝÑ H > FdB > H > FdB given by ∆ > FdB px n q " x n `yn `n´1 ÿ ℓ"1 ÿ nP C ℓ`1 n ˆn1 `1 ℓ ˙xn 1 y n 2 ¨¨¨y n ℓ`1 ,
where C ℓ`1 n is the set of compositions of n of length ℓ `1, cf. (4.2.1);

• counit ε : H > FdB ÝÑ F given by εpx n q " δ n,0 ;

• right codivision δ r :

H > FdB ÝÑ H > FdB > H > FdB given by δ r px n q " n´1 ÿ ℓ"0 p´1q ℓ ÿ nP C ℓ`1 n d ℓ pn 1 , ..., n ℓ q px n 1 ´yn 1 q y n 2 ¨¨¨y n ℓ`1 ,
where the Lagrange coefficients d ℓ are given in Def. 5.2.1;

• left codivision δ l : H > FdB ÝÑ H > FdB > H > FdB given by δ l px n q " n´1 ÿ ℓ"0 p´1q ℓ ÿ nP C ℓ`1 n ÿ eP E ℓ p´1q e d e ℓ pn 1 , ..., n ℓ q x pe 1 q n 1 x pe 2 q n 2 ¨¨¨x pe ℓ q n ℓ py n ℓ`1 ´xn ℓ`1 q
where the set of sequences E ℓ and the labeled Lagrange coefficients d e ℓ are given in Def. 5.2.3, and where we set p´1q e " p´1q e 1 `¨¨¨`e ℓ ´ℓ and, according to the previous convention, we set

x pe i q n " " x n if e i " 1 y n if e i " 2 . ( 5.2.7) 
In particular, since d e ℓ " 0 if e 1 " 2, the first variable is always x

pe 1 q n 1 " x n 1 .
For instance, on the first five generators, the comultiplication is

∆ > FdB px 1 q " x 1 `y1 ∆ > FdB px 2 q " x 2 `y2 `2x 1 y 1 ∆ > FdB px 3 q " x 3 `y3 ``2x 1 y 2 `3x 2 y 1 ˘`x 1 y 2 1 ∆ > FdB px 4 q " x 4 `y4 ``2x 1 y 3 `3x 2 y 2 `4x 3 y 1 ˘``x 1 py 1 y 2 `y2 y 1 q `3x 2 y 2 1

∆>

FdB px 5 q " x 5 `y5 ``2x 1 y 4 `3x 2 y 3 `4x 3 y 2 `5x 4 y 1 x1 py 1 y 3 `y2 2 `y3 y 1 q `3x 2 py 1 y 2 `y2 y 1 q `6x 3 y 2 1 ˘`x 2 y 3 1 the right codivision, with u n " x n ´yn , is δ r px 1 q " u 1 δ r px 2 q " u 2 ´2u 1 y 1 δ r px 3 q " u 3 ´`2u 1 y 2 `3u 2 y 1 ˘`5u 1 y 2 1 δ r px 4 q " u 4 ´`2u 1 y 3 `3u 2 y 2 `4u 3 y 1 ˘``5 u 1 y 1 y 2 `7u 1 y 2 y 1 `9u 2 y 2 1 ˘´14u 1 y 3 1 δ r px 5 q " u 5 ´`2u 1 y 4 `3u 2 y 3 `4u 3 y 2 `5u 4 y 1 5u

1 y 1 y 3 `7u 1 y 2 2 `9u 1 y 3 y 1 `9u 2 y 1 y 2 `12u 2 y 2 y 1 `14u and the left codivision has additional terms which contain both variables x and y in alternative order beside the first position which is always x, and last position which is always v n " y n ´xn :

δ l px 1 q " v 1 δ l px 2 q " v 2 ´2x 1 v 1 δ l px 3 q " v 3 ´`2x 1 v 2 `3x 2 v 1 ˘`5x 2 1 v 1 ´x1 y 1 v 1 δ l px 4 q " v 4 ´`2x 1 v 3 `3x 2 v 2 `4x 3 v 1 ˘``5 x 2 1 v 2 `7x 1 x 2 v 1 `9x 2 x 1 v 1 ˘´14x 3 1 v 1 ´`x 1 y 1 v 2 `x1 y 2 v 1 `3x 2 y 1 v 1 ˘``4 x 2 1 y 1 v 1 `2x 1 y 1 x 1 v 1 δl px 5 q " v 5 ´`2x 1 v 4 `3x 2 v 3 `4x 3 v 2 `5x 4 v 1 5x 2 1 v 3 `7x 1 x 2 v 2 `9x 1 x 3 v 1 `9x 2 x 1 v 2 `12x 2 2 v 1 `14x 3 x 1 v 1 14x 3 1 v 2 `19x 2 1 x 2 v 1 `23x 1 x 2 x 1 v 1 `28x 2 x 2 1 v 1 ˘`42x 4 1 v 1 ´`x 1 y 1 v 3 `x1 y 2 v 2 `x1 y 3 v 1 `3x 2 y 1 v 2 `3x 2 y 2 v 1 `6x 3 y 1 v 1 4x 2 1 y 1 v 2 `4x 2 1 y 2 v 1 `9x 1 x 2 y 1 v 1 `10x 2 x 1 y 1 v 1 `2x 1 y 1 x 1 v 2 `3x 1 y 1 x 2 v 1 `2x 1 y 2 x 1 v 1 `7x 2 y 1 x 1 v 1 ´x2 y 2 1 v 1 14x 3 1 y 1 v 1 `9x 2 1 y 1 x 1 v 1 `5x 1 y 1 x 2 1 v 1 ´x2 1 y 2 1 v 1 ´x1 y 1 x 1 y 1 v 1 ˘.
We now want to prove that the algebra given above is indeed a coloop bialgebra. The only difficulty is to prove that the codivisions satisfy the cocancellation properties (2.2.4) and (2.2.3), which are equivalent to some recurrence relations on the Lagrange coefficients d ℓ and d e ℓ . We prove in fact a stronger result, namely, that there exist some operators R ℓ and R e ℓ defined on the tensor space T pAq over any positively graded algebra A, which produce the Lagrange coefficients and which satisfy the wished recurrence relations. These operators provide an alternative definition of the Faà di Bruno codivisions when applied to the non-unital associative coproduct algebra A " H > FdB > H > FdB " T pX p1q ' X p2q q.

Faà di Bruno co-operations in terms of recursive operators

Let A " ' ně1 A n be a positively graded associative algebra over a field F, and let us denote by |a| the degree of an element a P A, that is, the integer n such that a P A n . The tensor algebra T pAq " À ℓě0 A b ℓ is then bigraded, on one side by the tensor power ℓ, that we call length, and on the other side by the grading induced by that of A, that we call degree,

|a 1 b a 2 b ¨¨¨b a ℓ | " ℓ ÿ i"1 |a i |.
A multi-monomial is a homogeneous element of T pAq with respect to the length, that is, an element of the form a 1 b a 2 b ¨¨¨b a ℓ for some ℓ ě 1. Then T pAq can be decomposed into the following direct sum with respect to the degree4 :

T pAq " F ' à ně1 ¨n à ℓ"1 à nP C ℓ n A n 1 b ¨¨¨b A n ℓ ',
where the compositions n P C ℓ n are defined by eq. (4.2.1).

Definition 5.3.1 Let us define a graded linear operation

⊲ : T pAq b T pAq ÝÑ F ' A by setting a ⊲ pb 1 b ¨¨¨b b ℓ q " ˆ|a| `1 ℓ ˙a b 1 ¨¨¨b ℓ pa 1 b ¨¨¨b a ℓ 1 q ⊲ pb 1 b ¨¨¨b b ℓ 2 q " a 1 ⊲ pa 2 b ¨¨¨b a ℓ 1 b b 1 b ¨¨¨b b ℓ 2 q " ˆ|a 1 | `1 ℓ 1 `ℓ2 ´1˙a 1 ¨¨¨a ℓ 1 b 1 ¨¨¨b ℓ 2
where the expressions on the right-hand side mean the product in the algebra A.

In particular, if we apply these rules to 1 P F " A b 0 , we have

1 ⊲ 1 " 1 1 ⊲ b " b 1 ⊲ pb 1 b ¨¨¨b b ℓ q " 0 if ℓ ą 1 a ⊲ 1 " a pa 1 b ¨¨¨b a ℓ q ⊲ 1 " ˆ|a 1 | `1 ℓ´1
˙a1 ¨¨¨a ℓ .

Remark 5.3.2 The restriction ⊲ : A b T pAq ÝÑ A is a brace product on A which is symmetric if A is commutative and generalises the natural pre-Lie product of the Lie subalgebra of strictly positive generators in the Witt algebra (cf. [START_REF] Ch | Combinatorial Hopf algebras from renormalization[END_REF][START_REF] Frabetti | Five interpretations of Faà di Brunos formula[END_REF]). Note however that ⊲ on T pAq b T pAq is not a multibrace product (cf. Definition 5.3.3 We call left recursive operator L : T pAq ÝÑ T pAq the collection L " tL ℓ , ℓ ě 0u of (non homogeneous) linear operators L 0 " id : F ÝÑ F and

L ℓ : A b ℓ ÝÑ ℓ à λ"1 A b λ , ℓ ě 1
defined recursively by L ℓ pa 1 , ..., a ℓ q " ℓ´1 ÿ i"0 p´1q ℓ´1´i ´Li pa 1 , ..., a i q ⊲ a i`1 ¯b a i`2 b ¨¨¨b a ℓ , where we denote L ℓ pa 1 , ..., a ℓ q :" L ℓ pa 1 b ¨¨¨b a ℓ q and L 0 is understood as acting on 1.

The first left operators give

L 1 paq " L 0 p1q ⊲ a " 1 ⊲ a " a, L 2 pa, bq " ´pL 0 p1q ⊲ aq b b `L1 paq ⊲ b " ´a b b `a ⊲ b " ´a b b `ˆ|a|`1 1 ˙ab, L 3 pa, b, cq " pL 0 p1q ⊲ aq b b b c ´pL 1 paq ⊲ bq b c `L2 pa, bq ⊲ c " a b b b c ´pa ⊲ bq b c ´pa b bq ⊲ c `pa ⊲ bq ⊲ c " a b b b c ´ˆ|a|`1 1 ˙ab b c `´ˆ| a|`1 1 ˙ˆ|a|`|b|`1 1 ˙´ˆ| a|`1 2 
˙¯abc.

The left operators L ℓ can be easily described in a closed way.

Lemma 5.3.4 For any ℓ ě 2 and any a 1 , ..., a ℓ P A we have L ℓ pa 1 , ..., a ℓ q " L ℓ´1 pa 1 , ..., a ℓ´1 q ⊲ a ℓ ´Lℓ´1 pa 1 , ..., a ℓ´1 q b a ℓ .

As a consequence, L ℓ pa 1 , ..., a ℓ q is the sum of the 2 ℓ´1 possible multi-monomials obtained by combining the operations ⊲ and b with fixed parenthesizing on the left, namely L ℓ pa 1 , ..., a ℓ q " ÿ σ 1 ,...,σ ℓ´1 Pt0,1u p´1q σ 1 `¨¨¨`σ ℓ´1 `¨¨¨`pa 1 ˚σ1 a 2 q ˚σ2 a 3 ˘˚σ 3 ¨¨¨˚σ ℓ´2 a ℓ´1 ˘˚σ ℓ´1 a l where we set ˚σ "

" ⊲ if σ " 0 b if σ " 1 .
Proof. By induction on ℓ. For ℓ " 2, we have

L 1 pa 1 q ⊲ a 2 ´L1 pa 1 q b a 2 " a 1 ⊲ a 2 ´a1 b a 2 " L 2 pa 1 , a 2 q.
Now suppose that for any i " 2, ..., ℓ ´1 we have L i pa 1 , ..., a i q " L i´1 pa 1 , ..., a i´1 q ⊲ a i ´Li´1 pa 1 , ..., a i´1 q b a i .

Let us expand the sum defining L ℓ pa 1 , ..., a ℓ q. At each step, we separate the first two terms of the sum over i " 0, ..., ℓ ´1:

L ℓ pa 1 , ..., a ℓ q " ℓ´1 ÿ i"0 p´1q ℓ´1´i ´Li pa 1 , ..., a i q ⊲ a i`1 ¯b a i`2 b ¨¨¨b a ℓ " p´1q ℓ´1 a 1 b a 2 b ¨¨¨b a ℓ `p´1q ℓ´2 pa 1 ⊲ a 2 q b ¨¨¨b a ℓ `ℓ´1 ÿ i"2 p´1q ℓ´1´i ´Li pa 1 , ..., a i q ⊲ a i`1 ¯b a i`2 b ¨¨¨b a ℓ " p´1q ℓ´2 L 2 pa 1 , a 2 q b a 3 b ¨¨¨b a ℓ `p´1q ℓ´3 ´L2 pa 1 , a 2 q ⊲ a 3 ¯b ¨¨¨b a ℓ `ℓ´1 ÿ i"3 p´1q ℓ´1´i ´Li pa 1 , ..., a i q ⊲ a i`1 ¯b a i`2 b ¨¨¨b a ℓ " . . .

Iterating this expansion we obtain

L ℓ pa 1 , ..., a ℓ q " p´1q ℓ´pℓ´1q L ℓ´1 pa 1 , ..., a ℓ´1 q b a ℓ `p´1q ℓ´ℓ L ℓ´1 pa 1 , ..., a ℓ´1 q ⊲ a ℓ " L ℓ´1 pa 1 , ..., a ℓ´1 q ⊲ a ℓ ´Lℓ´1 pa 1 , ..., a ℓ´1 q b a ℓ . l Definition 5.3.5 We call right recursive operator R : T pAq ÝÑ T pAq the collection R " tR ℓ , ℓ ě 0u of (non homogeneous) linear operators R 0 " id : F ÝÑ F and

R ℓ : A b ℓ ÝÑ ℓ à λ"1 A b λ , ℓ ě 1 defined recursively by R ℓ pa 1 , ..., a ℓ q " ℓ ÿ j"1 ÿ pP C j ℓ `a1 ⊲ R p 1 ´1pa 2 , .
.., a p 1 q ˘(5.3.6)

b `ap 1 `1 ⊲ R p 2 ´1pa p 1 `2, ..., a p 1 `p2 q ˘b ¨¨b `ap 1 `¨¨¨`p j´1 `1 ⊲ R p 2 ´1pa p 1 `¨¨¨`p j´1 `2, ..., a p 1 `¨¨¨`p j q ˘, where we denote R ℓ pa 1 , ..., a ℓ q :" R ℓ pa 1 b ¨¨¨b a ℓ q and where R 0 is understood as acting on 1.

For instance, the first right operators are

R 1 paq " a ⊲ R 0 p1q " a, R 2 pa, bq " a ⊲ R 1 pbq `pa ⊲ R 0 p1qq b pb ⊲ R 0 p1qq " a ⊲ b `a b b " ˆ|a|`1 1 ˙ab `a b b, R 3 pa, b, cq " a ⊲ R 2 pb, cq `pa ⊲ R 1 pbqq b c `a b pb ⊲ R 1 pcqq `a b b b c " a ⊲ pb ⊲ cq `a ⊲ pb b cq `a b pb ⊲ cq `pa ⊲ bq b c `a b b b c " ˆˆ|a|`1 1 ˙ˆ|b|`1 1 
˙`ˆ| a|`1 2 ˙˙abc `ˆ|b|`1 1 ˙a b bc `ˆ|a|`1 1 ˙ab b c `a b b b c.
Note that the right recursive operator is not just a flip of the left recursive one, basically because the recursion defining the two operators takes place on the left and on the right-hand side of ⊲, which is not a symmetric operation. The precise relationship between R ℓ and L ℓ is given in Cor. 5.4.3, after some preliminary results.

The right operators R ℓ can also be described in a closed way.

Definition 5.3.7 Let M ℓ be the set of sequences satisfying (5.2.2). For any m P M ℓ , we define a length-homogeneous linear operator R ℓ m : A b ℓ ÝÑ T pAq which nests the operation ⊲ in a multi-monomial a 1 b ¨¨¨b a ℓ according to the sequence m " pm 1 , ..., m ℓ q P M ℓ . The idea is the following:

• The multi-monomial R ℓ m pa 1 , ..., a ℓ q is constructed by nesting tensor monomials of the form a i ⊲ Q i`1 pa i`1 , a i`2 , ...q one into the other one, where Q i`1 pa i`1 , a i`2 , ...q is a multimonomial whose tensor factors can be single variables or monomials of the same form a j ⊲ Q 1 j`1 pa j`1 , a j`2 , ...q.

• Every tensor monomial a i ⊲ Q i`1 pa i`1 , a i`2 , ...q is determined by the length of the multimonomial Q i`1 pa i`1 , a i`2 , ...q and that of the nested monomials of the same form. The sequence m fixes the lengths of all the nested multi-monomials:

-The coefficient m 1 is the overall length of the multi-monomial R ℓ m pa 1 , ..., a ℓ q in the tensor algebra T pAq, that is, we have R ℓ m pa 1 , ..., a ℓ q P A b m 1 . -For i " 2, ..., ℓ´1, the coefficient m i is the length of the multi-monomial Q i pa i , a i`1 , ...q on which a i´1 acts by ⊲: if m i " 0, then a i´1 appears as an insolated tensor factor, if m i ‰ 0, then a i´1 acts by ⊲ on a multimonomial of length m i , which is determined by the values m j for j ą i.

And now we give the algorithm to construct R ℓ m pa 1 , ..., a ℓ q: (1) The coefficient m 1 tells us how many tensor factors we have to construct.

(2) Start with a 1 and read the coefficient m 2 : if m 2 " 0 write a 1 b a 2 ¨¨¨, if m 2 ‰ 0 write a 1 ⊲ pa 2 ¨¨¨q and expect to close the parenthesis after a multi-monomial of length m 2 .

(3) Then read the next coefficient of m and repeat the procedure of (2). For any i " 2, ..., ℓ, if m i " 0 write a i´1 b a i ¨¨¨, if m i ‰ 0 write a i´1 ⊲ pa i ¨¨¨q and expect to close this parenthesis after a multi-monomial of length m i .

(4) The procedure stops with the coefficient m ℓ which, by definition of m, can be only 0 or 1, and tells if the last pattern is a ℓ´1 b a ℓ or a ℓ´1 ⊲ a ℓ .

Example 5.3.8 Let us give some examples of this algorithm, for ℓ " 5. Fix a 1 , ..., a 5 P A and set n i " |a i | for i " 1, ..., 5. For m " p2, 1, 0, 2, 0q, the multi-monomial R 5 p2,1,0,2,0q pa 1 , ..., a 5 q is composed of two tensor factors (because m 1 " 2). The variable a 1 acts by ⊲ on a multimonomial of length 1 (because m 2 " 1) which starts necessarily by a 2 , and since a 2 does not act by ⊲ (because m 3 " 0), the first tensor factor is necessarily of the form a 1 ⊲ a 2 . Then the second tensor factor starts with a 3 acting by ⊲ on a multi-monomial of length 2 (because m 4 " 2), which starts necessarily by a 4 . Since a 4 does not act by ⊲ (because m 5 " 0), the second tensor factor is necessarily of the form a 3 ⊲ pa 4 b a 5 q. Therefore we finally have R 5

p2,1,0,2,0q pa 1 , ..., a 5 q " pa 1 ⊲ a 2 q b `a3 ⊲ pa 4 b a 5 q " ˆn1 `1 1

˙ˆn 3 `1 2 ˙a1 a 2 b a 3 a 4 a 5 .
For m " p2, 1, 2, 0, 0q, the variable a 1 still acts by ⊲ on a multi-monomial of length 1 which starts necessarily by a 2 , but this time a 2 itself acts by ⊲ on a multi-monomial of length 2, and this exhausts the possible ⊲ operations. Finally, this time we have R 5

p2,1,2,0,0q pa 1 , ..., a 5 q " ra 1 ⊲ pa

2 ⊲ pa 3 b a 4 qs b a 5 " ˆn1 `1 1 ˙ˆn 2 `1 2 ˙a1 a 2 a 3 a 4 b a 5 .
Note that the binomial coefficients given by a sequence m P M ℓ can be determined directly from the last ℓ ´1 digits, plus an extra null value. For p2, 1, 0, 2, 0q we have exactly

ˆn1 `1 1 ˙ˆn 2 `1 0 ˙ˆn 3 `1 2 ˙ˆn 4 `1 0 ˙ˆn 5 `1 0 ˙.
and for p2, 1, 2, 0, 0q we have

ˆn1 `1 1 ˙ˆn 2 `1 2 
˙ˆn 3 `1 0 ˙ˆn 4 `1 0 ˙ˆn 5 `1 0 ˙.
Two more examples of the algorithm: for m " p3, 0, 2, 0, 0q, R 5 p3,0,2,0,0q pa 1 , ..., a 5 q " a 1 b `a2 ⊲ pa 3 b a 4 q ˘b a 5

" ˆn2 `1 2 ˙a1 b a 2 a 3 a 4 b a 5 ,
and for m " p4, 0, 1, 0, 0q,

R 5 p4,0,1,0,0q pa 1 , ..., a 5 q " a 1 b pa 2 ⊲ a 3 q b a 4 b a 5 " ˆn2 `1 1 ˙a1 b a 2 a 3 b a 4 b a 5 .
Lemma 5.3.9 For any ℓ ě 1 and any pa 1 , ..., a ℓ q, we have

R ℓ pa 1 , ..., a ℓ q " ÿ mP M ℓ R ℓ m pa 1 , ..., a ℓ q.
For instance, for ℓ " 1, 2, 3 we have

R 1 p1q paq " a, R 2 p1,1q pa, bq " a ⊲ b " ˆn1 `1 1 ˙ab R 2 p2,0q pa, bq " a b b R 3 p1,1,1q pa, b, cq " a ⊲ pb ⊲ cq " ˆn1 `1 1 ˙ˆn 2 `1 1 ˙abc. R 3 p1,2,0q pa, b, cq " a ⊲ pb b cq " ˆn1 `1 2 ˙abc R 3 p2,0,1q pa, b, cq " a b pb ⊲ cq " ˆn2 `1 1 ˙a b bc R 3 p2,1,0q pa, b, cq " pa ⊲ bq b c " ˆn1 `1 1 ˙ab b c R 3 p3,0,0q pa, b, cq " a b b b c
Comparing with the value of R 1 , R 2 and R 3 given above, the assertion is easily verified.

Proof. Let us call Rℓ pa 1 , ..., a ℓ q the sum over m P M ℓ of Lemma 5.3.9, and prove that it solves equation (5.3.6) by induction on ℓ. For ℓ " 1, 2, 3 the assertion was proved in the examples. For any ℓ ě 1, we then suppose that on the right-hand side of eq. (5.3.6) we have R p i ´1 " Rp i ´1 for any 1 ď i ď j, and we set

P i " p 1 `p2 `¨¨¨`p i , so that R ℓ pa 1 , ..., a ℓ q " ℓ ÿ j"1 ÿ pP C j ℓ j ÿ i"1 ÿ q piq P M p i ´1 `a1 ⊲ Rp 1 ´1 q p1q pa 2 , ..., a p 1 q ˘b b `ap 1 `1 ⊲ Rp 2 ´1
q p2q pa p 1 `2, ..., a P 2 q ˘b ¨¨¨b `aP j´1 `1 ⊲ Rp j

´1

q pjq pa P j´1 `2, ..., a P j q ˘.

In this sum, we can note the following things:

• The running value j gives the length of the corresponding multi-monomial.

• In the first tensor factor, the value q p1q 1 represents the length of Rp 1 ´1 q p1q pa 2 , ..., a p 1 q, that is, a sequence number associated to a 1 , and more generally q p1q rules the nested operations up to the variable a p 1 ´1. The last variable a p 1 does not act on further variables and so it should be associated to a missing value 0. Therefore, the nested operations in the whole first tensor factor are ruled by the sequence pq p1q , 0q.

• Similarly, for any i ď j, the nested operations in the ith tensor factor are ruled by the sequence pq piq , 0q.

Let us then associate to this expression the sequence m " pj, q p1q , 0, q p2q , 0, ..., q pjq q, that is,

m 1 " j m 2 " q p1q 1 , . . . , m p 1 " q p1q p 1 ´1 , m p 1 `1 " 0 , m P i´1 `2 " q piq 1 , . . . , m P i " q piq p i ´1 , m P i `1 " 0 , for 1 ď i ď j ´1 m P j´1 `2 " q pjq 1 , . . . , m P j " q pjq p j ´1,
which has precisely length 1 `pp 1 ´1q `1 `pp 2 ´1q `¨¨¨`1 `pp j ´1q " p 1 `¨¨¨`p j " P j " ℓ.

Note that in the sum over the sequences p " pp 1 , ..., p j q P C j ℓ , where p i ě 1 for i " 1, ..., j, there occur the terms with p i ´1 " 0. In this case the multipolynomial Rp i ´1 " R 0 " 1 has no variables, and the set M p 1 ´1 " M 0 is empty. The corresponding sequence q piq is then absent in m, but its associated null value must be present, for any i " 1, ..., j ´1, to preserve the total length ℓ. Following the rules of the algorithm given in Def. 5.3.7, we can therefore write `a1 ⊲ Rp 1 ´1 q p1q pa 2 , ..., a p 1 q ˘b `ap 1 `1 ⊲ Rp 2 ´1 q p2q pa p 1 `2, ..., a P 2 q ˘b ¨¨b `aP j´1 `1 ⊲ Rp j

´1

q pjq pa P j´1 `2, ..., a P j q ˘" R m pa 1 , ..., a ℓ q.

Let us call N ℓ " tm " pj, q p1q , 0, q p2q , 0, ..., q pjq q | 1 ď j ď ℓ, p P C j ℓ , q piq P M p i ´1 for 1 ď i ď ju the set of sequences obtained in this way. Then the equality R ℓ pa 1 , a 2 , ..., a ℓ q " ÿ mP N ℓ R ℓ m pa 1 , ..., a ℓ q " Rℓ pa 1 , a 2 , ..., a ℓ q holds if we show that N ℓ " M ℓ .

Let us first show that N ℓ Ă M ℓ . For fixed j, p and q p1q , ..., q pjq , we have

m 1 `¨¨¨`m ℓ " j `j ÿ i"1 `qpiq 1 `¨¨¨`q piq p i ´1"
j `pp 1 ´1q `pp 2 ´1q `¨¨¨`pp j ´1q " j `p1 `¨¨¨`p j ´j " ℓ.

For any h " 1, ..., ℓ, suppose that h belongs to the rth block, for some r ď j, that is, `qpiq 1 `¨¨¨`q piq p i ´1˘``q prq 1 `¨¨¨`q prq k " j `pp 1 ´1q `pp 2 ´1q `¨¨¨`pp r´1 ´1q ``q prq 1 `¨¨¨`q prq k " pp 1 `¨¨¨`p r´1 q ``q prq 1 `¨¨¨`q prq k ˘`pj ´rq `1 ě P r´1 `1 `k " h because q prq 1 `¨¨¨`q prq k ě k and j ´r ě 0. Finally, let us show that there is a bijection between N ℓ and M ℓ . The set M ℓ is well known to be in bijection with the set P BT ℓ`1 of planar binary trees with ℓ `1 leaves (and a root). An explicit bijection Φ : M ℓ ÝÑ P BT ℓ`1 is described in [START_REF] Ch | Non-commutative Hopf algebra of formal diffeomorphisms[END_REF], Definition 2.16, using the over and under grafting operations on trees, namely t{s " s t and tzs " t s .

h " P r´1 `1 `k " p 1 `¨¨¨`p r´1 `1 `k,
The first values of Φ, for the empty sequence in M 0 and for p1q P M 1 and p2, 0q, p1, 1q P M 2 , are Φp q " , Φp1q " , Φp2, 0q " , Φp1, 1q " .

So, for our purpose, it is enough to show that N ℓ is in bijection with P BT ℓ`1 . For this, since N ℓ Ă M ℓ , consider the map Φ restricted to N ℓ and let us show that the image Φp N ℓ q coincides with P BT ℓ`1 . For a given sequence m " pj, q p1q , 0, q p2q , 0, ..., q pjq q P N ℓ , we have:

• The sequence m is decomposable as m " pm 1 , q pjq q into the two well-defined sequences m 1 " pj, q p1q , 0, q p2q , 0, ..., q pj´1q , 0q P M P j´1 `1 and q pjq P M p j ´1. In fact, if we set ℓ 1 " P j´1 `1, we have m 1 1 `¨¨¨m 1 ℓ 1 " j `pp 1 ´1q `¨¨¨`pp j´1 ´1q " j `Pj´1 ´pj ´1q " ℓ 1 , and for any h " 1, ..., ℓ 1 one can see that m 1 1 `¨¨¨m 1 h ě h with a computation similar to that used to show that m P M ℓ .

According to the definition of Φ, we then have Φpmq " Φpm 1 qzΦpq pjq q. Graphically, if we denote the trees by t " Φpmq, t 1 " Φpm 1 q and t j " Φpq pjq q, this means that t " t 1 t j .

• The sequence m 1 is surely not decomposable because it is of the form m 1 " pm 2 1 `1, m 2 2 , ..., m 2 ℓ 2 , 0q with m 2 " pj ´1, q p1q , 0, q p2q , 0, ..., q pj´1q q P M ℓ 2 , ℓ 2 " ℓ 1 ´1.

The sequence m 2 indeed belongs to M ℓ 2 for the same reason used to show that m P M ℓ . Then, the sequence m 1 is not decomposable in position 1 because m 1 1 " m 2 1 `1 ě 2, and it is not decomposable in any position h " 2, ..., ℓ 1 because m 2 P M ℓ 2 implies that m 1 1 `¨¨¨`m 1 h " m 2 1 `1 `m2 2 `¨¨¨`m 2 h ě h `1, and therefore surely m 1 1 `¨¨¨`m 1 h ‰ h. Finally, according to the definition of Φ, we then have Φpm 1 q " Φpm 2 q{ . If we set t 2 " Φpm 2 q, this means that t 1 " t 2 and therefore t " t 2 t j .

• The same arguments can be applied to the sequence m 2 and its new components, until we reach a full description of the tree t " Φpmq in terms of the trees t i " Φpq piq q, for i " 1, ..., j, namely t " . . .

t 1 t 2 t j .
Let us denote this tree by G j pt 1 , ..., t j q.

In conclusion, if we let j run from 1 to ℓ, we consider all possible sequences p P C j ℓ and for any i " 1, ..., j all trees t i P Φp M p i ´1q " P BT p i , the result G j pt 1 , ..., t j q is any possible tree with number of leaves given by ˇˇG j pt 1 , ..., t j q ˇˇ" 1 `|t 1 | `¨¨¨`|t j | " 1 `p1 `¨¨¨`p j " ℓ `1.

In other words, we have Φp N ℓ q " t " G j pt 1 , ..., t j q | j " 1, ..., ℓ, p P C j ℓ , t i P P BT p i , 1 ď i ď j ( " P BT ℓ`1 .

l Corollary 5.3.10 For any ℓ ě 0 and any a 1 , ..., a ℓ`1 P A, set n i " |a i | ě 1 for i " 1, ..., ℓ `1.

Then, for any sequence m P M ℓ , we have a 1 ⊲ R m pa 2 , ..., a ℓ`1 q " ˆn1 `1 m 1 ˙¨¨¨ˆn ℓ `1 m ℓ ˙ˆn ℓ`1 `1 0 ˙a1 a 2 ¨¨¨a ℓ`1 .

Therefore a 1 ⊲ R ℓ pa 2 , ..., a ℓ`1 q " dpn 1 , ..., n ℓ`1 q a 1 a 2 ¨¨¨a ℓ`1 ,

where the Lagrange coefficients dpn 1 , ..., n ℓ`1 q are given in Def. 5.2.1.

To describe the left codivision we introduce a last set of operators corresponding to the labeled Lagrange coefficients. and, for ℓ ě 2 and for any e " pe 1 , ..., e ℓ q P E ℓ , by R e ℓ pa 1 , ..., a ℓ q " ℓ ÿ j"1 ÿ pP C j ℓ `Rpe 1 q 1 pa 1 q ⊲ R pe 2 ,...,ep 1 q p 1 ´1 pa 2 , ..., a p 1 q ˘(5.3.12)

b `ap 1 `1 ⊲ R pe p 1 `2,...,e p 1 `p2 q p 2 ´1

pa p 1 `2, ..., a p 1 `p2 q ˘b ¨¨b `ap 1 `¨¨¨`p j´1 `1 ⊲ R pe p 1 `¨¨¨`p j´1 `2,...,e ℓ q p j ´1 pa p 1 `¨¨¨`p j´1 `2, ..., a ℓ q ˘.

It turns out that R e ℓ " R ℓ if e " p1, 1, ..., 1q. If e starts by 2, then R e ℓ " 0. If e starts by 1 and contains a bit value e i " 2 (in position i), then R e ℓ is obtained from R ℓ by removing the term which contains the factor a i´1 ⊲ Q i .

For instance, for ℓ " 2, we have E 1 " tp1, 1q, p1, 2q, p2, 1q, p2, 2qu and therefore Proof. It suffices to write a 1 ⊲ R ℓ pa 2 , ..., a ℓ`1 q " ℓ´1 ÿ i"1 p´1q i´1 `a1 ⊲ pa 2 b ¨¨¨b a i`1 q ˘⊲ R ℓ´i pa i`2 b ¨¨¨b a ℓ`1 q `p´1q ℓ a 1 ⊲ pa 2 b ¨¨¨b a ℓ`1 q after Lemma 5.4.5, and to apply the equality b 1 ⊲ R j pb 2 , ..., b j`1 q " L j pb 1 , ..., b j q ⊲ b j`1 everywhere. l Lemma 5.4.8 For any ℓ ě 2, any e P E ℓ and any a 1 , ..., a ℓ P A, we have R e ℓ pa 1 , ..., a ℓ q " R pe 1 q

1 pa 1 q ⊲ R pe 2 ,...,e ℓ q ℓ´1 pa 2 , ..., a ℓ q `ℓ´1 ÿ i"1 R pe 1 ,...,e i q i pa 1 , ..., a i q b ´ai`1 ⊲ R pe i`2 ,...,e ℓ q ℓ´i´1 pa i`2 , ..., a ℓ q ¯.

Proof. The term j " 1 in the defining recursion (5.3.12) gives exactly R pe 1 q 1 pa 1 q ⊲ R pe 2 ,...,e ℓ´1 q ℓ´1 pa 2 , ..., a ℓ q, se it remains to prove that ℓ ÿ j"2 ÿ pP C j ℓ `Rpe 1 q 1 pa 1 q ⊲ R pe 2 ,...,ep 1 q p 1 ´1 pa 2 , ..., a p 1 q b `ap 1 `1 ⊲ R pe p 1 `2,...,e p 1 `p2 q p 2 ´1

pa p 1 `2, ..., a p 1 `p2 q ˘b ¨¨¨(5.4.9)

¨¨¨b `ap 1 `¨¨¨`p j´1 `1 ⊲ R pe p 1 `¨¨¨`p j´1 `2,...,e ℓ q p j ´1 pa p 1 `¨¨¨`p j´1 `2, ..., a ℓ q ˘" " ℓ´1 ÿ i"1 R pe 1 ,...,e i q i pa 1 , ..., a i q b ´ai`1 ⊲ R pe i`2 ,...,e ℓ q ℓ´i´1 pa i`2 , ..., a ℓ q ¯.

Let us prove this identity by induction. For ℓ " 2 and 3, it is easy to verify on the above examples that R e 2 pa, bq " R

pe 1 q 1 paq ⊲ R pe 2 q 1 pbq `Rpe 1 q 1 paq b `b ⊲ R 0 p1qq, R e 3 pa, b, cq " R pe 1 q 1 paq ⊲ R pe 2 ,e 3 q 2 pb, cq `Rpe 1 q 1 paq b `b ⊲ R pe 3 q 1 pcq ˘`R pe 1 ,e 2 q 2
pa, bq b pc ⊲ R 0 p1qq. Now suppose it holds up to order ℓ ´1, and let us prove it at order ℓ.

Consider the left-hand side of eq. (5.4.9). Since j ě 2, we can write

C j ℓ " ℓ´1 ď i"j´1
C j´1 i ˆC1 ℓ´i and decompose p P C j ℓ into pp 1 , ..., p j´1 q P C j´1 i and pp j q P C 1 ℓ´i for any value i " j ´1, ..., ℓ ´1. We then have p 1 `¨¨¨`p j´1 " i and p j " ℓ ´pp 1 `¨¨¨`p j´1 q " ℓ ´i. Therefore the left-hand Proof. Assume that ∆ is coassociative. then we have S l " S r because

✞ ✝ ☎ ✆ l " ✎ ☞ ❝ ✞ ✝ ☎ ✆ l ❝ ✍ ✌ " ✎ ☞ ✞ ☎ ✞ ✝ ☎ ✆ r ✞ ✝ ☎ ✆ l ✝ ✆ ✍ ✌ " ✎ ☞ ✞ ☎ ✞ ✝ ☎ ✆ r ✞ ✝ ☎ ✆ l ✝ ✆ ✍ ✌ " ✎ ☞ ✞ ✝ ☎ ✆ r ❝ ❝ ✍ ✌ " ✞ ✝ ☎ ✆ r
and therefore S :" S l " S r satisfies the 5-terms identity becuase of (2.2.9). For the the coinverse properties, let us show that the operator R :" pid > Sq∆ satisfies the right cocancellations (2.2.4), and therefore it coincides with δ r . In fact, we have

✞ ☎ R ✞ ☎ r ✝ ✆ " ✞ ☎ ✞ ☎ ✞ ✝ ☎ ✆ S ✝ ✆ " ✞ ☎ ✞ ☎ ✞ ✝ ☎ ✆ S ✝ ✆ " ✞ ☎ ❝ ❝ " ❝ and R ✞ ☎ r ✞ ☎ ✝ ✆ " ✞ ☎ ✞ ☎ ✞ ✝ ☎ ✆ S ✝ ✆ " ✞ ☎ ✞ ☎ ✞ ✝ ☎ ✆ S ✝ ✆ " ✞ ☎ ❝ ❝ " ❝
Similarly, the operator pS>idq∆ satisfies the left-cocancellations (2.2.4), and therefore it coincides with δ l . l

  and the antipodes S r , S l , which are all still algebra homomorphisms on H b . Proposition 2.3.11 If ∆ is coassociative, then ∆ b is coassociative. Moreover, we have S r " pε b idq δ b r and S l " pid b εq δ b l . Proof. If ∆ is coassociative, the two terms p∆ b b idq ∆ b " pπ b idq π pH>Hq>H p∆ > idq ∆ and pid b ∆ b q ∆ b " pid b πq π H>pH>Hq pid > ∆q ∆ coincide, because ∆ is coassociative and because the two maps pπ b idq b π pH>Hq>H and pid b πq b π H>pH>Hq coincide with the standard projection π :

Definition 4 . 1 . 1 aa m b n´m λ n

 411 Let A be a unital algebra and let λ be a formal variable. We call invertible series in λ with coefficients in A the formal series in the set InvpAq " n λ n | a 0 " 1, a n P A

Proposition 4 . 3 . 1

 431 Given an algebra A, the loop InvpAq satisfies an identity p˚q upa, b, ..., cq " vpa, b, ..., cq for any series a, b, ..., c P InvpAq if and only if the identity p˚q is satisfied in A, that is, for any elements a, b, ..., c P A.

Example 4 . 3 . 3

 433 The left and right inversions in InvpAq do not allow us to construct the divisions, that is, a{b ‰ a pe{bq and azb ‰ pazeq b for any a, b P InvpAq.

a m ˆbk 0 ¨¨¨b km ´´azpa ˝bq

  ¨¨¨`km"n´m a m ˆbk 0 ¨¨¨b km ´´azpa ˝bq ¯k0 ¨¨¨´azpa ˝bq ¯km ˙, so, if we suppose that ´azpa ˝bq ¯m " b m for any m ď n ´1, we have ´azpa ˝bq ¯n " b n . l

1 À 0 b

 10 [START_REF] Loday | Combinatorial Hopf algebras[END_REF]), even excluding the scalar component, because the first non-trivial multibrace identity M 21 pa b b `b b a; cq `M11 pM 11 pa; bq; cq " M 11 pa; M 11 pb; cqq `M12 pa; b b c c b bq is not satisfied. Moreover, a unit for ⊲ can not exist, because of length arguments, and ⊲ is not associative, since for any a, b, c P A we have pa ⊲ bq ⊲ c ´a ⊲ pb ⊲ cq " p|a|`1q|a| abc ‰ 0. The algebraic structure described by the operator ⊲ in terms of generators and relations is an open question. and T pAqn " À n ℓ"An 1 b ¨¨¨b An ℓ for n ě 1.

with 1 ď

 1 k ď p r ´1. Then we havem 1 `¨¨¨`m h " j `r´1 ÿ i"1

Definition 5 . 3 . 11

 5311 For any ℓ ě 1, let E ℓ be the set of sequences of bits e i P t1, 2u, as in Def. 5.2.3. We call labeled right recursive operator R e : T pAq ÝÑ T pAq the collection R e " tR e ℓ , ℓ ě 0, e P E ℓ u of (non homogeneous) linear operators R e 0 " id : F ÝÑ F and R e ℓ : A b ℓ ÝÑ ℓ à

1

 1 paq b pb ⊲ R 0 p1qq " a b b R p2,1q 2 pa, bq " R p2q 1 paq ⊲ R p1q 1 pbq `Rp2q 1 paq b pb ⊲ R 0 p1qq " 0 R p2,2q 2 pa, bq " R p2q 1 paq ⊲ R p2q 1 pbq `Rp2q 1 paq b pb ⊲ R 0 p1qq " 0.

1

  Let us call coloop in C an object H endowed with the following maps in C: ) a left codivision δ l : H ÝÑ H > H satisfying the left cocancellation properties pµ > idq pid > δ l q ∆ " i 2 and pµ > idq pid > ∆q δ l " i 2 , (2.2.4)where i 2 : H Ñ H > H can be factorized as i 2 " pu > idq ϕ 2 .If H and H 1 are two coloops in C, we say that a map f : H ÝÑ H 1 is a homomorphism of coloops if it commutes with the coproducts, the counits and the codivisions.

	pε > idq ∆ " ϕ 2 1. The codivisions verify the identities µ δ r " u ε and the following partial counitality properties and pid > εq ∆ " ϕ 1 , and µ δ l " u ε, pid > εq δ r " ϕ 1 and pε > idq δ l " ϕ 2 . where ϕ Proposition 2.2.5 Let H be a coloop in C. 2. We can define a right antipode S	(2.2.2) (2.2.6) (2.2.7)

i) a comultiplication ∆ : H ÝÑ H > H; ii) a counit ε : H ÝÑ I satisfying the counitary property 1 : H Ñ H > I and ϕ 2 : H Ñ I > H are the canonical isomorphisms; iii) a right codivision δ r : H ÝÑ H > H satisfying the right cocancellation properties pid > µq pδ r > idq ∆ " i 1 and pid > µq p∆ > idq δ r " i 1 , (2.2.3) where i 1 : H Ñ H > H can be factorized as i 1 " pid > uq ϕ 1 ; ivr : H ÝÑ H and a left antipode S l : H ÝÑ H by setting S r :" ψ 2 pε > idq δ r and S l :" ψ 1 pid > εq δ l , (2.2.8) where ψ 1 " xid, u H y : H > I Ñ H and ψ 2 " xu H , idy : I > H Ñ H are isomorphisms. The antipodes satisfy the following left and right 5-terms identities

  Proposition 3.1.2 The algebra H > I is a cogroup bialgebra in As F and represents, for any associative algebra A, the group IpAq " Hom As F pH > I , Aq of invertible elements of A. Moreover, the group IpAq is abelian if A is commutative.

  The set IpOq of invertible octonions is a well known Moufang loop (cf. [10]), that is, it is a loop satisfying the Moufang identities Consider now involutive algebras A, and the subgroup of IpAq made of unitary elements in A, namely U pAq " ta P A | a a ˚" 1u, when A is commutative. Exactly as for I, the functor U is represented on Com F by the commutative Hopf algebra H ˚| x x ˚" 1s endowed with the co-operations defined on generators exactly as those in Def. 3.1.1, where the generator x ´1 is replaced by x As for the invertible coloop bialgebra, one can prove that Proposition 3.2.2 The algebra H > U is a cogroup bialgebra in As F and represents, for any involutive associative algebra A, the group U pAq " Hom As F pH >

	apbpcaqq " ppabqaqc apbpcbqq " ppabqcqb	pabqpcaq " papbcqqa pabqpcaq " appbcqa
	for any elements a, b, c.	
	3.2 Loop of unitary elements	
		˚.

). l Example 3.1.5 The octonions O form an alternative algebra, therefore one can apply I to O. U " Frx, x ˚| x x ˚" 1s, with co-operations ∆pxq " x b x, εpxq " 1, Spxq " x ˚. Definition 3.2.1 Let us call unitary coloop bialgebra on F the associative algebra H > U " Frx, x U , Aq of unitary elements of A. Moreover, the group U pAq is abelian if A is commutative.

Eckmann-Hilton require C to have zero-maps, we replace them with an initial object.

In associative algebras, the coproduct is usually called free product and denoted by ‹.

These coefficients appear in the Lagrange inversion formula[START_REF] Lagrange | Nouvelle méthode pour résoudre les équations littérales par le moyen des séries[END_REF], cf.[START_REF] Ch | Non-commutative Hopf algebra of formal diffeomorphisms[END_REF].

Note that if A had a null degree component A0, then T pAq would contain an infinite sum of terms in each degree, namely T pAq0 " À pě0 A bp 0
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For ℓ " 3, the set E 2 contains 8 sequences, which give The labeled right operations can also be given by a closed formula.

Lemma 5.3.13 For any ℓ ě 2, for any sequence e P E ℓ and for any a 1 , ..., a ℓ P A, we have R e ℓ pa 1 , ..., a ℓ q " ÿ mP M e ℓ R ℓ m pa 1 , ..., a ℓ q.

As a consequence, if for a 1 , ..., a ℓ`1 P A we denote n i " |a i | for i " 1, ..., ℓ `1, we then have a 1 ⊲ R e ℓ pa 2 , ..., a ℓ`1 q " d e ℓ pn 1 , ..., n ℓ q a 1 ¨¨¨a ℓ`1 P A, where the labeled Lagrange coefficients d e ℓ pn 1 , ..., n ℓ q are given in Def. 5.2.3.

Proof. If e " p1, 1, ..., 1q, and if e starts by 2, there is nothing to prove. Otherwise, for any value e i " 2 in e, we obtain R e ℓ pa 1 , ..., a ℓ q from R ℓ pa 1 , ..., a ℓ q by removing the term containing the factor a i´1 ⊲ Q i . By Lemma 5.3.9, such a term is associated to a sequence m P M ℓ , and by Def. 5.3.7 the factor a i´1 ⊲ Q i corresponds to a non-zero value m i . Therefore, in order to remove such terms, it suffices to consider sequences m with m i " 0 whenever e i " 2. l Theorem 5.3.14 The co-operations of the Faà di Bruno coloop bialgebra can be equivalently defined in terms of the recursive operators as follows:

x pe 1 q n 1 ⊲ R e ℓ px pe 2 q n 2 , ..., x pe ℓ q n ℓ , v n ℓ`1 q (5. 3.15) where we recall that u n " x n ´yn , v n " y n ´xn , and also that p´1q e " p´1q e 1 `¨¨¨`e ℓ ´ℓ and that the bit value in x peq n tells us in which copy of H > dif > H > dif falls the generator x n , cf. Def. 5.2.6.

Proof. It follows from the definition of ⊲ given in Def. 5.3.1, the expression of R ℓ given in Cor. 5.3.10, and that of R e ℓ given in Lemma 5.3.13. The equivalence of the presentations of the right codivision in terms of R ℓ and L ℓ is proved in Cor. 5.4.3 in next section. l

Note that in the term x

pe 2 q n 2 , ..., x pe ℓ q n ℓ , v n ℓ`1 q of the left codivision (5.3.15), the labeled operator R e ℓ " R pe 1 ,...,e ℓ q ℓ is applied to variables which are also labeled, but only by the last ℓ ´1 bits of e. For instance, no labels affect the variables in

but labels do affect the variables in

Functoriality of the diffeomorphisms loop

To prove the main theorem of this section we need some preliminary recurrence relations for the recursive operators, and consequently for the Lagrange coefficients.

Corollary 5.4.1 For any ℓ ě 1 and any sequence pn 1 , ..., n ℓ`1 q of positive integers, the coefficients d ℓ`1 pa 1 , ..., a ℓ q satisfy the following recursive equation:

.., n p 1 q d p 2 ´1pn p 1 `2, ..., n p 1 `p2 q ¨¨d p j ´1pn p 1 `¨¨¨`p j´1 `2, ..., n ℓ q.

Proof. Applying a 1 ⊲ p q to the recursive expression (5.3.6) of R ℓ pa 2 , a 3 , ..., a ℓ`1 q, and using Cor. 5.3.10, immediately gives the result. l Lemma 5.4.2 For any ℓ ě 0 and any a 1 , ..., a ℓ`1 P A, the following recursive equation holds:

Modulo the factor a 1 a 2 ¨¨¨a ℓ`1 , this means that

Proof. The two assertions are equivalent, and the second one appears as a recursion for the coefficients in the non-commutative Lagrange inversion formula. It is essentially based on the Chu-Vandermonde identity and can be proved 5 using the hypergeometric function 2 F 1 or using some trick as in [START_REF] Ch | Non-commutative Hopf algebra of formal diffeomorphisms[END_REF], Lemma 2.15. l Corollary 5.4.3 For any ℓ ě 0 and any a 1 , ...a ℓ`1 P A we have

Proof. By induction on ℓ. For ℓ " 0, 1 the identity is easily verified, because

Now suppose that for i " 1, ..., ℓ ´1 we have a 1 ⊲ R i pa 2 , ..., a i`1 q " L i pa 1 , ..., a i q ⊲ a i`1 . Then by Lemma 5.4.2 and Def. 5.3.3 we have

" L ℓ pa 1 , ..., a ℓ q ⊲ a ℓ`1 . l Remark 5.4.4 In the case e ‰ p1, 1, ..., 1q, whether there exists an operator L e ℓ : A b ℓ ÝÑ T pAq such that a 1 ⊲ R e ℓ pa 2 , ..., a ℓ`1 q " L e ℓ pa 1 , ..., a ℓ q ⊲ a ℓ`1 is an open question.

Lemma 5.4.5 For any ℓ ě 1 and any a 1 , ..., a ℓ`1 P A, the following recursive equation holds:

Modulo the factor a 1 a 2 ¨¨¨a ℓ`1 , and if we call n i " |a i | for i " 1, ..., ℓ `1, this means that

, n i`2 , ..., n ℓ q.

(5.4.6)

Proof. The two assertions are equivalent. Let us prove the second one by induction on ℓ. Let us call dℓ pn 1 , ..., n ℓ q the right-hand side of equation (5.4.6). For ℓ " 1, the sum in d1 pnq has only one term for i " 1, which gives d1 pnq " p´1q 1´1 ˆn `1 1 ˙d0 " d 1 pnq. Now suppose that eq. (5.4.6) holds for any 1 ď k ď ℓ ´1, that is, we have

and prove it for ℓ. For this, we write d ℓ pn 1 , ..., n ℓ q using the recursion given in Lemma 5.4.2 as a sum over 0 ď k ď ℓ ´1, and separate the term k " 0 to which we can not apply the inductive hypothesis. Then we expand the factor d k pn 1 , n k q using the inductive hypothesis and exchange the sums over k and i. We finally obtain

Then, d ℓ pn 1 , ..., n ℓ q is equal to dℓ pn 1 , ..., n ℓ q "

if and only if, for any 1 ď i ď ℓ ´1, we have

This identity is easily verifyed by setting j " k ´i, p 1 " n 1 `¨¨¨`n i`1 and p j " n i`j for 2 ď j ď ℓ ´1 ´i, since it gives ℓ´i´1 ÿ j"0 p´1q ℓ´i´1´j ˆp1 `¨¨¨`p j`1 `1 ℓ ´i ´j ˙dj pp 1 , p 2 , ..., p j q " d ℓ´i pp 1 , p 2 , ..., p ℓ´i q which holds again by Lemma 5.4.2. l Corollary 5.4.7 For any ℓ ě 1 and any a 1 , ..., a ℓ P A, the following recursive equation holds:

side can be written as

where P k " p 1 `¨¨¨`p k . Applying the inductive hypothesis to the sum over k leads to the result. l Theorem 5.4.10 The associative algebra H > FdB is indeed a coloop bialgebra and represents the loop of formal diffeomorphisms Diff as a functor Diff : As ÝÑ Loop.

As a consequence, given an associative algebra A, a series a " ř ně0 a n λ n`1 P DiffpAq can be seen as an algebra homomorphism a : H > FdB ÝÑ A defined on the generators of H > FdB by apx n q " a n , and the right and left division a{b and azb are given at any order n by the following closed formulas:

where c

Proof. The free associative algebra H > FdB clearly represents the sets DiffpAq over associative algebras A, and the comultiplication ∆ > FdB is just the Faà di Bruno comultiplication ∆ FdB seen with values in H FdB > H FdB instead of H FdB b H FdB , therefore it clearly represents the loop law given in Definition 5.1.1. Thus, the theorem is proved if we show that H > FdB is indeed a coloop bialgebra.

The comultiplication ∆ > FdB satisfies the compatibility relation with the standard counit, because ∆ FdB does, and coassociativity is not required. So it remains to check that the codivisions δ r and δ l given in Def. 5.1.1 satisfy the identities (2.2.3) and (2.2.4). Since these maps are algebra morphisms, it suffices to verify these identities on the generators x n , for any n ě 1.

i) Let us start with the right codivision and show that it satisfies the first identity (2.2.3), namely

which explicitely gives the recurrence (with u n " x n ´yn )

Expanding δ r px n q in terms of the left recursive opeators, this equation becomes

let us call n " pp, qq, that is, pn 1 , n 2 , ..., n ℓ`1 q " pp 1 , ..., p i`1 , q 1 , ..., q j q.

Then, the recursion (5.4.11) is equivalent, for any n ě 1, any 1 ď ℓ ď n ´1 and any n P C ℓ`1 n , to the equation

which holds by definition of L ℓ .

The second identity (2.2.3), namely

is better developed using the expansion over the right recursive operators, and explicitely gives the recurrence

.., y n ℓ`1 q (5.4.12)

¨¨¨b y p i q ˘⊲ R j py q 1 , ..., y q j q.

Rewriting the sums in terms of m " 1, ..., n ´1, ℓ " i `j " 1, ..., n ´m, i " 1, ..., ℓ and j " ℓ ´i, this gives a sum over p P C i p and q P C ℓ´i n´m´p for p " i, ..., n ´m. That is, we get a sum over k " pp, qq P C ℓ n´m and consequently a sum over n " pm, kq P C ℓ`1 n :

Therefore, for any n ě 2, any ℓ " 1, ..., n´1 and any sequence n P C ℓ`1 n , eq. (5.4.12) is equivalent to the recurrence equation

which is proved in Lemma 5.4.5.

ii) Let us show now that the left codivision given in Def. (5.2.6) satisfies the identities (2.2.4). The first identity (2.2.4), namely pµ > idq pid > δ l q ∆ > FdB px n q " y n , explicitely gives the recurrence (with v n " y n ´xn )

where y k is just the kth generator x k in the second copy of the free product algebra H > FdB >H > FdB , therefore the formula for δ l py k q is just the same as for δ l px k q.

To show this, we consider the expansion (5.3.15) of δ l px n q given in Thm. 5.3.14. Since R e ℓ " 0 when e 1 " 2, we have x pe 1 q n 1 " x n 1 and we can rewrite (5.3.15) as

Then eq. (5.4.13) is clearly verified for n " 1, because δ l px 1 q " v 1 , and for any n ě 2 and any m " 1, ..., n ´1, it is equivalent to the equation

p´1q e R e ℓ px pe 2 q n 1 , ..., x pe ℓ q n ℓ´1 , v n ℓ q, for any µ " n ´m " 1, ..., n ´1.

Let us prove this equation by induction on µ. For µ " 1 we again have δ l px 1 q " v 1 . So, suppose that eq. (5.4.14) holds up to order µ ´1 and prove it at order µ.

On the left-hand side of eq. (5.4.14), we separate the term λ " 1 and observe that, for λ ě 2, we can decompose k " pk 1 , ..., k λ´1 , k λ q P C λ µ into pq, νq P C λ´1 µ´ν ˆC1 ν with

the left-hand side of eq. ( 5.4.14) can then be written as

We then apply the inductive hypothesis (5.4.14) to the sum over i " 1, ..., µ ´ν, and expand the single factors δ l px µ q and δ l px ν q as in (5.3.15), thus obtaining

q 2 , ..., x pe 2 j q q j , v q j`1 q '.

Finally, it remains to prove that the right-hand side of eq. (5.4.14) coincides with the right-hand side of eq. (5.4.15). The first term v µ appears in both formulas, let us compare the other terms. The first term in eq. (5.4.15) is

We apply the trick

to the element x pe 2 1 q n 1 , then set ℓ " λ `1 and e " pe 1 , e 2 q " pe 1 , e 2 1 , ..., e 2 λ q, and get

p´1q e ´Rpe 1 q 1 px pe 2 q n 1 q ⊲ R pe 2 ,...,e ℓ q ℓ´1 px pe 3 q n 2 , ..., x pe ℓ q n ℓ´1 , v n ℓ q ¯.

The second term in eq. ( 5.4.15) is

We apply the second trick v n " ´px p1q n ´xp2q n q " ´ÿ pe 1 qP E 1 p´1q e 1 ´1x pe 1 q n " ´ÿ e"pe 1 ,e 2 qP E 2 p´1q e R pe 1 q 1 px pe 2 q n q (5.4.17)

to the element v µ´ν , and get

Using again (5.4.17), the third term in eq. ( 5.4.15) becomes

q 2 , ..., x pe 3 j q q j , v q j`1 q ¯.

We set ℓ " 1 `1 `j, n " pµ ´ν, qq P C ℓ µ and e " pe 1 , e 2 , e 3 q P E ℓ , and obtain

1 px pe 2 q n 1 q b ´xpe 3 q n 2 ⊲ R pe 3 ,...,e ℓ q ℓ´2 px pe 4 q n 3 , ..., x pe ℓ q n ℓ´1 , v n ℓ q ¯.

The fourth term in eq. (5.4.15) is

We write v p i " ´ře 2 P E 1 p´1q e 2 x pe 2 q n using (5.4.16), and set ℓ " i `1, n " pp, νq P C ℓ µ and e " pe 1 , e 2 q P E ℓ . Then we have

With similar manipulations, setting ℓ " i`j `1 and n " pp, qq P C ℓ µ , the last term in eq. (5.4. 15)

R pe 1 ,...,e i q i px pe 2 q n 1 , ..., x

We now observe that the sum B extends C to the value ℓ " 2, and that D extends E to the value ℓ " 3. Alltogether, we have

Therefore, eq. ( 5.4.14) is then equivalent, for any ℓ ě 3, any n P C ℓ ν and any e P E ℓ , to the following recursion R e ℓ px pe 2 q n 1 , ..., x pe ℓ q n ℓ´1 , v n ℓ q " R pe 1 q 1 px pe 2 q n 1 q ⊲ R pe 2 ,...,e ℓ q ℓ´1 px pe 3 q n 2 , ..., x pe ℓ q n ℓ´1 , v n ℓ q `ℓ´1 ÿ i"1 R pe 1 ,...,e i q i px pe 2 q n 1 , ..., x

which is proved in Lemma 5.4.8.

The second identity (2.2.4), namely pµ > idq pid > ∆ > FdB q δ l px n q " y n , can not be expressed as a recurrence on R e ℓ , because these operators do not show up explicitely to which factor of H > FdB > H > FdB the variables belong. Then, let us use the recursion (5.4.13) to describe δ l and prove the second identity by induction on n.

The identity is verified for n " 1 because we have

Then, suppose it holds up to the degree n ´1 Since ∆ > FdB and µ are algebra homomorphisms, if we apply the operator D " pµ > idq pid > ∆ > FdB q to the expression

we obtain, for D `δl px n q ˘, the sum of

Therefore the second identity is satisfied if, for any m " 1, ..., n ´1, any λ " 1, ..., n ´m and any k P C λ n´m , we have

which is true by inductive hypothesis. l

Properties of the diffeomorphisms loop

Proposition 5.5.1 The coloop bialgebra H > FdB has a two-sided antipode S such that

while the identity δ l " pS > idq ∆ > FdB does not hold. Moreover, the antipode in the Faà di Bruno coloop bialgebra coincides with that in the non-commutative Faà di Bruno Hopf algebra given in [START_REF] Ch | Non-commutative Hopf algebra of formal diffeomorphisms[END_REF], that is,

Proof. i) In a coloop bialgebra, the left and right antipodes are given respectively by S l " pid > εq δ l and S r " pε > idq δ r , cf. (2.2.8). Let us show that for H > FdB these two operators coincide, and therefore the two-sided antipode is well defined by S :" S l " S r .

Indeed, let us fix n ě 1. For the right antipode we have

where n 1 ą 0 implies εpx n 1 q " 0, and where we renamed the variables y as x because S r takes values in H > FdB . For the left antipode we have

Since ε kills the terms where some y appears, in the sum over the sequences e P E ℓ´1 there only remains the sequence e " p1, 1, ..., 1q, for which d e ℓ`1 " d ℓ`1 and p´1q e " `, and therefore we have

" S r px n q.

ii) Let us now prove the identity δ r " pid > Sq ∆ > FdB . For any generator x n of H > FdB , we have

because n 1 `n2 `¨¨¨`n j`1 " n, if we rename the sequence pn 1 , q 1 1 , ..., q 1 p 1 , ..., q j 1 , ..., q j p j q as n P C ℓ`1 n , the sum over j becomes

where P i " p 1 `¨¨¨`p i for i " 1, ..., j. Using the recurrence proved in Corollary 5.4.1, we finally obtain

iii) The first counterexample to the analogue identity δ l " pS > idq ∆ > FdB is on the generator x 3 , for which we have

where v n " y n ´xn , while

l This result allows us on one side to deduce some properties of the loop of formal diffeomorphisms, and on the other side to compare the Faà di Bruno coloop bialgebra with the non-commutative Faà di Bruno Hopf algebra.

Corollary 5.5.2

1. The proalgebraic loop Diff is not right alternative, nor power associative.

2. Nevertheless, Diff has two-sided inverses and, for a given an associative algebra A and an element a P DiffpAq, the inverse a ´1 " aze " e{a is given by the usual Lagrange coefficients, namely

3. The inversion allows us to construct the right division, that is, a{b " a ˝pe{bq for any a, b P DiffpAq, but it does not allow us to construct the left division, because bza ‰ pbzeq ˝a if a n ‰ 0 and b m ‰ 0 for some n, m ě 1.

Proof. 1. The loop DiffpAq is right alternative if and only if the coloop bialgebra H >

FdB is right coalternative, that is pid > µq K " 0, where

The first deviation from right alternativity appears on the generator x 5 . If we temporarily denote by x n " x p1q n , y n " x p2q n and z n " x p3q n the three copies of the generators in H > H > H, we get Kpx 5 q " 6x 3 py 1 z 1 ´z1 y 1 q `x2 " 3py 2 z 1 ´z2 y 1 q `3py 1 z 2 ´z1 y 2 q `p8y 2 1 z 1 ´7y 1 z 1 y 1 ´z1 y 2 1 q `p8y 1 z 2 1 ´7z 1 y 1 z 1 ´z2 1 y 1 q ‰ `x1 " py 3 z 1 ´z3 y 1 q `py 2 z 2 ´z2 y 2 q `py 1 z 3 ´z1 y 3 q `3py 2 y 1 z 1 ´y2 z 1 y 1 q `2py 1 y 2 z 1 ´y1 z 2 y 1 q `2py 2 1 z 2 ´y1 z 1 y 2 q `2py

‰ and therefore pid > µq Kpx 5 q " x 1 py 2 y 2 1 ´y1 y 2 y 1 q ‰ 0. The generator x 5 corresponds to the power λ 6 of usual series with substitution law, therefore the deviation from right alternativity computed on the generator x 5 can be detected by comparing the values pa ˝bq ˝b and a ˝pb ˝bq for the two series apλq " λ `a1 λ 2 and bpλq " λ `b1 λ 2 `b2 λ 3 6 The authors warmly thank J. M. Pérez-Izquierdo for comunicating this example.
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The same computation shows that DiffpAq is not power associative, because

For a series cpλq " λ `c1 λ 2 `c2 λ 3 , we then have pc ˝cq ˝c ‰ c ˝pc ˝cq if c 1 c 2 c 2 1 ‰ c 2 1 c 2 c 1 . For instance, this is verified for the two 2 ˆ2 matrices

for which we have

2. The left and right inverses of a P DiffpAq can be found using respectively the left antipode S l and right antipode S r of H > FdB , according to the standard rule pe{aq n " a `Sl px n q ˘and pazeq n " a `Sr px n q ˘. By Proposition 5.5.1 we have S r " S l , therefore e{a " aze.

3. The identity a{b " a ˝pe{bq in the loop DiffpAq is equivalent to the identity δ r " pid > S r q ∆ > FdB in H > FdB , proved in Proposition 5.5.1. The analogue identity for the left division does not hold.

The commutative Faà di Bruno Hopf algebra which represents the classical proalgebraic group Diff, mentioned at the beginning of section 5, admits a non-commutative lift [START_REF] Ch | Non-commutative Hopf algebra of formal diffeomorphisms[END_REF] H nc FdB " Fxx n , n ě 1y, px 0 " 1q

where the sum is over the set of tuples pk 0 , k 1 , k 2 , ..., k m q of non-negative integers such that k 0 `k1 `k2 `¨¨¨`k m " n ´m. Since Diff is not a group over associative algebras, the existence of this Hopf algebra is not a priori ensured by the extention of the functor Diff from Com F to As F .

Corollary 5.5.3 The image of the coloop bialgebra H > FdB under the canonical projection π given in Def. 2.3.7 is the non-commutative Faà di Bruno Hopf algebra H nc FdB , that is,

Proof. Indeed, we have pH > FdB q b " H nc FdB as an algebra, and eventhough ∆ > FdB is not coassociative, the comultiplication p∆ > FdB q b coincides with ∆ nc FdB and therefore it is coassociative with respect to the component-wise multiplication in H nc FdB b H nc FdB . The assertion is then proved because, by Prop. 5.5.1, the antipode in H > FdB is unique and coincides with that in H nc FdB on generators. l

6 Appendix: Categorical proofs with tangles

Tangle diagrams are an efficient tool to prove formal (categorical) properties. Tangles are drawings suitable to represent operations and co-operations in a monoidal category, cf. [29] [49], and therefore can be used to encode the structure of coloops in a category pC, >, Iq. In the context of non-associative algebras they have been used in [START_REF] Pérez-Izquierdo | Co-Moufang deformations of the universal enveloping algebra of the algebra of traceless octonions[END_REF] to code deformations of the enveloping algebra of a Malcev algebra, seen as the infinitesimal structure of a Moufang loop.

Tangles are drawings to be read from the top to the bottom as concatenation of operations acting on objects related by the monoidal product, and not by a cartesian (or tensor) product.

Here is the list of the tangles needed to represent all the operations and the co-operations in coloops, with their defining identities.