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Abstract

We consider a generalization of (pro)algebraic loops defined on general categories of al-
gebras and the dual notion of a coloop bialgebra suitable to represent them as functors. We
prove that the natural loop of formal diffeomorphisms with associative coefficients is proalge-
braic, and we give the closed formulas of the codivisions on its coloop bialgebra. This result
provides a generalization of the Lagrange inversion formula to series with non-commutative
coefficients, and a loop-theoretic explanation to the existence of the non-commutative Faa
di Bruno Hopf algebra.

MSC: 20N05, 14117, 18D35, 16T30
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1 Introduction

1.1 Presentation and overview of the results

An affine proalgebraic group G is a representable functor in groups defined on the category of
commutative associative algebras over a field F. The algebra representing G is the commutative
Hopf algebra F[G] of regular functions. In this paper we consider two generalizations of proal-
gebraic groups, on one side to representable functors on categories of non-commutative algebras,
on the other side to functors taking values in non-associative groups with divisions, that is, loops.

Our main motivation comes from two proalgebraic groups of formal series appearing in
renormalization in quantum field theory: the group of invertible series with constant term equal
to 1, represented by the Hopf algebra of symmetric functions, and that of formal diffeomorphisms
tangent to the identity, represented by the Faa di Bruno Hopf algebra. Details on the role played
by these series in quantum field theory are given in a separate section below.

Both types of series make sense with non-commutative coefficients, and both representa-
tive Hopf algebras admit a non-commutative version [8]. We are interested in the relationship
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between the non-commutative algebras and the sets of series. For this, we first consider gener-
alizations of proalgebraic groups to categories of non-commutative algebras.

Functors in groups on general categories have been studied by algebraic topologists in the
late 50’s. D. Kan considered them on the category of groups [23], and B. Eckmann and P.
Hilton [15] introduced them on general categories. Their representative Hopf-type object is
called a cogroup. In a category with coproduct 11 and initial object, a cogroup is an object H
endowed with a comultiplication, a counit and an antipode satisfying the usual properties of
Hopf algebras, where the comultiplication takes values in H 11 H instead of H® H (which is not
necessarily defined). Cogroups are then generalizations of commutative Hopf algebras which,
unlike quantum groups in the case of associative algebras, preserve the functorial properties and
the adjoint constructions. They have proved to be very fruitful in homotopy theory, where they
appear as special H-spaces [24], as shown by I. Berstein [3]. A comprehensive study of cogroups
in many varieties of algebras can be found in G. Bergman and A. Hausknecht’s book [2].

Not all proalgebraic groups admit an extention to non-commutative algebras. For instance,
while the group of invertible formal series naturally extends as a proalgebraic group to the
category of associative algebras, the group of formal diffeomorphism does not. We show, on this
example, that the extention of the functor is sometimes possible if we regard the original group
as a loop.

Loops are multiplicative sets with unit and with a left and a right division instead of two-
sided inverses. They first appeared, with some extra properties, in the work of R. Moufang [36]
on alternative rings, that is, rings where the associator (a, b, c) = (ab)c—a(bc) is skew-symmetric.
For an excellent historical review on loops, see [42]. Associative loops are groups. Similarly to
Lie groups, the tangent space of a smooth loop carries a particular algebraic structure called a
Sabinin algebra [44, 33], which reduces to a Mal’cev algebra [32] for smooth Moufang loops. The
notion of universal enveloping algebra has been extended to Sabinin algebras by 1. Shestakov,
U. U. Umirbaev [46] and J. Mostovoy, J. M. Pérez-Izquierdo [34].

In this paper we consider functors in loops on a general category C with coproduct and
initial object and call their representative objects coloops in C. We specialise C to be a variety
of algebras over a field F to have a reasonable notion of generalized (pro)algebraic loop. The
first simple example is the extention of the functors of invertible elements in a unital algebra
and that of unitary elements in a unital involutive algebra. As expected, the largest category on
which these functors are representable as loops turn out to be respectively that of alternative
and of alternative involutive algebras (Prop. 3.1.4 and Prop. 3.2.4). We also show that the loop
of unitary elements in the Cayley-Dickson extention of an involutive algebra is not representable
on non-commutative algebras (Prop. 3.3.1), even if examples of such loops exist. Then we turn
to loops of formal series with coefficients in a non-commutative algebra. First we consider the
set of invertible series (with constant term equal to 1). The algebra of series with coefficients
in an alternative algebra is alternative. Surprisingly, in contrast to the previous results, we find
that the set of invertible series is a proalgebraic loop on all algebras, not necessarily alternative
(Thm. 4.2.3). Finally, our main result concerns the natural loop of formal diffeomorphisms
(tangent to the identity) with associative coefficients. We show that it is proalgebraic, and
give the closed formulas of the codivisions on its representative Faa di Bruno coloop bialgebra
(Def. 5.2.6 and Thm. 5.4.10). For this, we express the co-operations in terms of some recursive
operators defined on any positively graded algebra (Thm. 5.3.14), which extend the natural
pre-Lie product of the Witt Lie algebra (cf. [9, 16]) but not as a multibrace product (cf. [27]),
and which turn out to be very rich in combinatorial properties. The coefficients appearing in
the divisions show up sequences of integer numbers typical of the Lagrange inversion formula
(as Catalan numbers) and some new ones, that we call (labeled) Lagrange coefficients (Def. 5.2.1
and 5.2.3). This result is a generalization of the Lagrange inversion formula to series with
non-commutative coefficients, and gives a loop-theoretic explanation to the existence of the



non-commutative Faa di Bruno Hopf algebra [8].

1.2 Motivation: formal series in quantum field theory

The main object of study in perturbative quantum field theory are the correlation functions
of the fields describing some elementary particles, from which one can compute the probability
amplitude of any event involving the particles. These quantities are asymptotic series in the
powers of a measurable parameter A, such as the electric charge, called the coupling constant.
For instance, for a self-interacting field ¢ with coupling A and mass m, the k-point correlation
function is a series

GW (@1, wp) = (D(@r) - dlag)y = Y G (w1, mpsm, B) A
n=0

where the nth coefficient is a finite sum of amplitudes of suitable Feynman graphs with & fixed
external legs, which depend on the mass m and on the Plank constant’s A, and n is related to
the number of internal vertices of the graph.

The computation of the correlation functions gives rise to some divergent integrals, or equiv-
alently to the ill-defined product of singular distributions. Giving a meaning to such terms
requires a renormalization procedure, which globally amounts to suitably multiplying and com-
posing the correlation functions with some others series, called renormalization factors, obtained
by assembling the counterterms needed to cure each divergence [14], [21]. Given an ambient al-
gebra A, typically C or the algebra C((¢)) of Laurent series in a regularization parameter &, in
renomalization theory there appear two groups of formal series in the variable A and coefficients
in A:

e the set Inv(A) = {a()\) = Z anp \" | ag = 1,a, € A} of invertible series, endowed with
n=0
the pointwise multiplication (ab)(A) = a(A) b(A) and the unit 1(\) = 1, which represent
the Green’s functions (up to an invertible factor) and the renormalization factors;

e the set Diff(4) = {a(/\) = Z an N7 ag = 1,a, € A} of formal diffeomorphisms,
n=0
endowed with the composition law (a0 b)(A) = a(b(X)) and the unit e(\) = A, which rep-
resent the bare coupling constants (i.e. the coupling constants before the renormalization
is performed).

Dyson’s renormalization formulas [14] are modeled by the semi-direct product Diff (A) x Inv(A),
endowed with the law

(a1,b1) - (az,b2) = (a1 0 ag, (b1 © az) bs),

where a1, ag € Diff (A) and by, by € Inv(A), which is well defined because formal diffeomorphisms
act on invertible series from the right, by composition.

These groups are proalgebraic on commutative algebras, so they are perfectly described
by their re*resentative Hopf algebra. Physically, this means that the overall renormalization
procedure (except the scheme which says how to compute the counterterms) is independent of
the chosen field theory, whenever the latter leads to commutative amplitudes. The recent results
on the Renormalization Hopf algebras, initiated by A. Connes and D. Kreimer [11, 12], show
even a stronger result: co-operations dual to the multiplication and the composition of series
exist even on Hopf algebras generated by Feynman graphs, which contain the coordinate ring
of the usual groups of power series. In other words, there exist proalgebraic groups of series
expanded over Feynman graphs, or over various types of trees, which project onto the groups



Inv gnd Diff and which turn out to be extremely efficient in handling the combinatorial content
of renormalization procedures [6, 7, 8, 47, 43].

The toy model ¢? theory used by Connes-Kreimer is a scalar field theory and leads to the
commutative algebra A = C of amplitudes. However, interesting physical situations involve non-
commutative algebras. In fact, Feynman amplitudes are complex numbers for single scalar fields,
the coupling constants and the renormalization factors, but they are 4 x 4 complex matrices for
the fermionic or bosonic fields, and may be represented by higher order matrices for theories
involving several interacting fields. In this case, forcing the final counterterms to be scalar, as
imposed by the fact that the renormalization factors act on the (scalar) Lagrangian, prevents us
from describing the renormalization in a functorial way, as shown by the results in [48], where
the Hopf algebra does not represent a functorial group on A = My(C). In order to preserve
this functoriality, there is a need to understand Dyson’s formulas for sets of series Inv(A) and
Diff (A) also when A is not a commutative algebra. This is the motivation for the present work.
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2 Loops and coloops

2.1 Loops and functors in loops

A loop is a non-empty set () endowed with a multiplication Q x Q@ — @, (a,b) —> a - b, a
(two-sided) unit 1 € @, a left division \ : Q x Q@ — @ and a right division /: Q x Q — @
satisfying the cancellation properties

a-(a\b) = b, a\(a-b) =b, (2.1.1)
(a/b) - b= a, (a-b)/b=a. (2.1.2)

Given two loops @ and @', a homomorphism of loops f: Q — Q' is of course a map which
preserves the multiplication, and therefore the unit and the divisions.

The multiplication in a loop @ is not necessarily associative, if it is associative then the loop
is a group. Any element a in a loop @ has a right inverse 1/a and a left inverse a\1, which
do not necessarily coincide and do not necessarily determine the divisions, in the sense that they
do not satisfy the identities

(a\1) - b=a\b and b-(1/a) =b/a (2.1.3)

for any a,b € @, which hold in any group.

Examples of loops which are not groups are known since a long time, see for instance [10]
or [41]. For finite loops, the multiplication table is a Latin square, and the number of non
isomorphic loops is known up to order 11 (cf. [37]). For instance, the subset {t1, +i, +j, +k}
of the hyperbolic quaternions [30] (where i® = j2 = k? = 1 and ij = k = —ji, jk = i = —kj,
ki = j = —ik) forms a finite loop. Among infinite loops, two well known examples are the set
of invertible octonions and that of unitary octonions, which is homeomorphic to 7.

Denote by Loop the category of loops and let F' : Loop — Set. be the forgetful functor
to the category of pointed sets. As for functors in groups, a functor ) : C — Loop on a given
category C is said to be representable if the composite functor F'Q) is representable, cf. [31].
This means that @ is naturally isomorphic to a hom-set functor A — Homc(H, A) for a given
object H in C, and implies that the loop operations on any loop Q(A) are determined by dual
co-operations on H, by convolution. Following an established terminology on cogroups, the rep-
resentative object H can then be called a coloop in C. A reasonable notion of (pro)algebraic
loop is obtained for C being a variety of algebras over a field [, its representative coloop then
being a sort of bialgebra.

In this section we describe coloops in an axiomatic way. In the next sections we give some
easy examples of algebraic and non-algebraic loops on associative and non-associative algebras,
and then study extensively the loop of invertible series and that of formal diffeomorphisms.

2.2 Coloops in general categories

Given a category C, Yoneda Lemma says that the category of representable functors from C
to Set, with natural transformations, is equivalent to C. The equivalence is realized by the
contravariant Yoneda functor Y from C to the functor category Set®, defined on any object
H in C by the functor Y(H) = Homc(H, ), and on any map ¢ : H — H by the natural
transformation Y (¢) : Y(H) — Y(H') : @ — «a¢ (cf. [31] for details). In this section we
characterise the subcategory of C equivalent to representable functors from C to Loop.



The cartesian product of two functors Y (H;) and Y (Hs) is known to be represented by the
categorical coproduct Hy 11 Ho, i.e. Y (H;) x Y(Hs) = Y (H; 11 Hy), and the constant functor
to the base point is known to be represented by an initial object I, i.e. it is of the form Y (I).
We recall the categorical notations about the coproduct, the initial object and some related
categorical maps we need to define coloops.

The coproduct in a category C is a bifunctor 1I defined on two objects A and B as the
unique object Al B together with two maps i1 : A — ALl B and i5 : B — A1l B satisfying the
following universal property: for any maps f : A — C and g : B — C, there exists a unique
map {f,g9) : ALIB — C such that {f,g)i; = f and {f,gyis = g. On two maps f: A —» A’
and ¢g : B — B’, the bifunctor is defined as the map f11g = (i} f,ibg): AuUB — A'11B’. The
coproduct can be extended to several objects and maps with similar universal constructions, and
turns out to be an associative bifunctor, in the sense that (ALIB)1IC = AlI(BLC) = AUBUC
for any three objects and (f11g)l1h = f1l(gllh) = fllgllh for any three maps in C.

An initial object in C is an object I together with a unique map u4 : I — A on any object,
which commutes with any map f : A — B, that is, fua = up. Then, there are canonical
isomorphisms A1l ] = A =~ I 11 A given by the universal maps

pri=11: A— AlT with inverse 1 =dda,ugay: ALl — A,
pgi=1ig: A—TIA with inverse o ={ua,idygy: TTA — A.
In particular, we have I 111 = I, {(ua,uas) = ug and therefore also uanp = ug Hup.
For any objects A and B, there is a canonical symmetry operator 74 g = (i2,%1) : AUB —
B1I A such that TXIB = 7B,4. Note that BIIA = ALl B as objects in C, but the maps 4; and
19 are inverted. The twist 7 is precisely the map which identifies A11 B and B 11 A as universal
objects. To sum up, (C,11,1,7) is a strict symmetric monoidal category.

Furthermore, for any A, there exists a canonical folding map pg = {ida,id4): ATA — A
such that, for any maps f,¢ : A — B, we have

(frg)=upB(f1g).

It follows that p preserves the unit, i.e. pa(ugllug) = ua,us) = ug, that it is associative, i.e.
pa(pallida) = pa(idalipa), and that it is commutative, i.e. 14744 = pa. It also follows that
p commutes with any map f: A — Bin C, ie. up (f1f) = fus. To sum up, we can say that
any object (A, pa,uqs) is a commutative monoid in C, with respect to the monoidal product 11,
and that any map f: A — B in C is a morphism of monoids. Finally, one can prove that the
folding map on A1l B is given by panp = (pallpup) (ida I 7p 4 idp).

Definition 2.2.1 Let us call coloop in C an object H endowed with the following maps in C:
i) a comultiplication A: H — H 11 H;
ii) a counit ¢ : H — [ satisfying the counitary property
(eIid) A = ¢ and (ide) A = ¢y, (2.2.2)
where 1 : H > HUI and o : H — I'11 H are the canonical isomorphisms;
iii) a right codivision 0, : H — H 11 H satisfying the right cocancellation properties
(id i p) (6, mid) A = 44 and (idup) (Arid) 6, = 41, (2.2.3)

where i1 : H — H 11 H can be factorized as i3 = (id 1 u) ¢1;



iv) a left codivision §; : H — H 11 H satisfying the left cocancellation properties
(plrid) (id11d;) A = idg and (plrid) id T A) §; = 49, (2.2.4)
where i : H — H 11 H can be factorized as is = (u11id) ¢a.

If H and H' are two coloops in C, we say that a map f : H — H’ is a homomorphism of
coloops if it commutes with the coproducts, the counits and the codivisions.

Proposition 2.2.5 Let H be a coloop in C.

1. The codivisions verify the identities
Woyp = ue and wop = ue, (2.2.6)
and the following partial counitality properties

(idire) o, = o1 and (e11id) §; = ¢a. (2.2.7)

2. We can define a right antipode S, : H — H and a left antipode S;: H — H by
setting

Sy =1y (e11id) 6, and Sp:=1 (id1e)d; , (2.2.8)

where 1 = (d,ugy : HUI — H and vy = (ug,id) : INWH — H are isomorphisms. The
antipodes satisfy the following left and right 5-terms identities

(S id) A = ue and w(idS) A =wue. (2.2.9)

These properties are easily verified. A proof using tangle diagrams is given in the Appendix.

Theorem 2.2.10 Let C be a category with coproduct and initial object. Then the Yoneda
functor is a contravariant equivalence of categories from the category of coloops in C to that
of covariant representable functors () : C — Loop.

Proof. We follow the ideas of Eckmann-Hilton [15], who characterized the subcategories of C
equivalent to the category of representable functors from C respectively to the category Mag of
unital multiplicative sets, called unital magmas in [45, 5], and to the category Grp of groups'.

Let us first prove that the Yoneda functor, applied to coloops in C, gives rise to a functor
in loops. On a given coloop H, let us call Q = Y (H). We define the multiplication and the
divisions on each set Q(A) = Homc(H, A) as usual convolution with the coproduct and the
codivisions in H, namely

a-f=(B)A=ps(alif)A
a/f ={a, )8, = pa(all )9, (2.2.11)
a\B ={a, B)d = pa(all B) 6y,

for any «, 8 € Q(A). The unit in Q(A) is given, as usual, by the map 14 = uae, and the left

and right inverses of « are then easily described as a\l = a S; and 1/a = «S,. Then, using
the cocancellation identities (2.2.3) and (2.2.4), and because u4 is associative and commutes

!Eckmann-Hilton require C to have zero-maps, we replace them with an initial object.



with C-maps, it is easy to verify that the divisions given by (2.2.11) satisfy the cancellation
properties (2.1.2) and (2.1.1).

Now fix a homomorphism of coloops ¢ : H — H, and call Q = Y(H), Q' = Y(H’) and
® =Y (¢). Yoneda Lemma tells us already that ® is given on an object A by the map

D41 Q(A) — Q'(4)
a— Pyp(a) =ag,

and that, for any f: A — B, ® acts on the map Q(f) : Q(A) — Q(B) given by Q(f)(a) = f«

as a natural transformation, i.e.

op(Q(f) () = fad=Q'(f)(Pala)).

It is then easy to verify that ® 4 is a homomorphism of loops, that is, for any «, 5 € Q(A), we
have

Pa(a-B) =Pa(a)  Pa(B),

and similarly for the other co-operations.

Viceversa, let us describe how a functor in loops () gives rise to a coloop structure on its
representative object H. Suppose that the covariant functor @ is represented by an object H,
ie. Q =Y (H), that the set Q(A) is a loop for any A in C, and that for any map f : A — B the
induced map Q(f) : Q(A) — Q(B) given by a — Q(f)(«) = fa is a loop homomorphism. We
use repeatedly the fact that, given «, 5 € Q(A), for the composite maps f(a - f3), fa, fG € Q(B)
we have

fla-B) =Q(f)(a-B) =Q(f)(a) QU )(B) = (fa) - (fB) (2.2.12)

and similarly for the operations / and \. Seeing ij,i5 : H — H 11 H as elements of the loop
Q(H 11 H), we define the comultiplication and the codivisions on H by

A =iy g, Oy = 11 /i, 0 = i1\i2

and the counit ¢ as the unit 17 in Q(I). It follows that the antipodes are the inverses of the
identity map, S, = 1g/idyg and S; = idg\1x.

Let us show that these maps give a coloop structure to H, and that the functor Q — H
is inverse to the Yoneda one, H — @ = Y (H). For any «,8 € Q(A), we apply (2.2.12) to
A=HUH,B=A, f={a,f8): HUH — A and to the elements o = i1, = i of Q(H 1 H),
and get

(o, B) A =<, B) (in - i)
= (o, B)ir) - (e, Briz) = - B (2.2.13)

and similarly for the operations / and \. Now apply @ to a unit map ug : I — A. Since
Q(ua) : Q(I) = Q(A) is a homomorphism of loops, it preserves the units, and therefore, for
e =17 € Q(I), we have

Q(ug)(e) =uae = 14.

In particular we have ug e = 1p, and therefore, using (2.2.13), we have
(uge,idgy A = 1y -idyg = idy.
On the other side, we have

(uge,idg) A = (uy,idy) (e 1id) A
= Yo (6 Il ld) A,



and we obtain the equality 1y (¢ 11id) A = id. Since 1)y is the inverse map to @2, we obtain
(e11id) A = ¢y, which proves (2.2.2). Let us show equalities (2.2.3). Firstly, we have trivially
that

(idI_IuH) 11 = <i1,i2 uH>z'1 =11.

Secondly, note that 0, - iy = (i1/i3) - ia = i1, therefore

(d 1) (6, id) A = iy, dgp) (i10y, i2) (i1 - i2)
= (i1, 421 (07 - i2)
= <i1,i2u>i1 = il.

Finally, since {«, 8)(i1/i2) = a/ and (i3 - i2)/ie = i1, we also have

(id 1 p) (ALid) 6, = iy, tap) i1 A, dg) (i1/12)
= (inyiapy (i1 - i2)/i2)

= (i1, d2p) i1 = i1.
The same arguments apply to the left codivision. O

The relationship between coloops and cogroups is straightforward. As usual, a coloop H is
coassociative if

(ALIid) A = (id LT A) A, (2.2.14)

and H is cocommutative if 7 A = A.
We say that H has the left and right coinverse property if the codivisions are determined
by the antipodes, that is,

o = (Spid) A. and 0p = (id11S,) A (2.2.15)

These identities correspond to the analogues (2.1.3) in the loop Q = Y (H).
Furthermore, an antipode on H is a map S : H — H satisfying the 5-terms identity

p(SUid)A = p(idIS)A = ue. (2.2.16)

This can happen if and only if S, = 5; =: S. Note that the unicity of the antipode satisfying
(2.2.16) does not imply that the coinverse properties (2.2.15) are verified. A counterexample is
given by the coloop of formal diffeomorphisms, cf. Section 5.

A cogroup in a category C is an object H endowed with a coassociative comultiplication A,
a counit € satisfying the counitary property (2.2.2) and an antipode S satisfying the 5-terms
identity (2.2.16), cf. [3]. It follows from the dual statement on loops and groups (cf. [10]), that

Proposition 2.2.17 If H is a coassociative coloop, then it is a cogroup.

In the Appendix we prove with tangles that coassociativity implies that the left and the right
antipodes coincide, and therefore H has an antipode satisfying the coinverse property.

2.3 (Pro)algebraic loops

Let A be a variety of unital algebras over a field [, that is, the subcategory of vector spaces
over | which collects all algebras of a certain type, given by a set of operations of various arities,
including the unit of arity 0, defined by a set of identities (cf. [31] ch. V). For instance, A can be
the category of P-algebras, where P is an algebraic operad with P(0) = { unit map } (cf. [28]).



Then, A has a coproduct and an initial object (cf. [31] ch. IX), therefore we can apply to
A the results of the previous section. More precisely, the initial object is given by the trivial
unital algebra . Suppose that in A there are operations p of arity n > 0, and let A denote the
subalgebra of an algebra A determined by such operations. Then, given two algebras A and B
in A, the coproduct A1l B is the quotient of the free algebra A(A @ B) (which always exists,
cf. [31] ch. V) by the ideal generated by the identities

PA(AeB) (a1, s an) = pa(al, ...;an) € A, for any ay,...,a, € A

PA(AeB) (b1, 0n) = pB(b1, ..., by) € B, for any b1, ...,b, € B (2.3.1)
1a =1 = la(aeB)

for all the operations p admitted in A. The universal properties of LI follow from the universal
properties of the free algebra A(A@® B).

Examples 2.3.2 1. In the category Comy of unital commutative and associative algebras
over [, the free algebra Comg (V) on a vector space V' is the symmetric algebra S(V),
and the coproduct of two algebras A and B is the tensor product A® B.

2. In the category Asf of unital associative algebras over [, the free algebra Asp(V) is the
tensor algebra T'(V'), and the coproduct? A 11 B of two algebras A and B is the tensor
algebra T(A @ B) modulo relations (2.3.1), which mean that a®a’ = aa whenever a and
a’ are both in A or both in B. As a vector space, we then have

AuB=Fe @ [A@B@A@-- @B®A®B®---],
nz=1 }: ;:

and the multiplication in A11 B is given by the concatenation modulo the above relations.
For instance, if we denote the multiplication in A1l B by e, we have

(b®a)e (V®d @b") =b®@a®l ®@d @V
(b®a)e (d @V ®d") =b®(ad)@b ®d".

3. Let Algy be the category of unital algebras (not necessarily associative, also called mag-
matic) over F. The free unital algebra on a vector space V is the tensor algebra with
parenthesizing T{V'}, and the coproduct A1l B of two algebras A and B is the quotient of
T{A® B} modulo relations (2.3.1), which again mean that a®a’ = aa whenever a and
a’ are both in A or both in B. The multiplication in A 11 B is the concatenation with
parenthesis.

4. An alternative algebra is an algebra A such that the associator (a,b,c) = (ab)c — a(bc)
is skew-symmetric, that is

(bya,c) = —(a,b,c) and (a,c,b) = —(a,b,c) (2.3.3)
for any a,b,c € A. This is equivalent to requiring that
(ab)b = a(bb) and (aa)b = a(ab)

for any a,b € A. Unital alternative algebras over a field F form a subcategory of Algp,
denoted by Alty, which is a variety with initial object F. The coproduct A1l B of two
unital alternative algebras is the quotient of the coproduct in Algy by the relations (2.3.3).
For details see [50] or [25].

2In associative algebras, the coproduct is usually called free product and denoted by x.
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5. In a category A, an (anti) involution is a unary linear operation * : A — A such that
(@*)* =a and (a1 a2)* = a3 af, (2.3.4)

for any a,ai,as € A. Each of the four previous categories of algebras can be considered
with involution, and denote by A*. For such algebras, the initial object and the coproduct
are the same as in A, the involution on A11B is automatically defined from the involutions
on A and B by properties (2.3.4). Note that, in Algy and in Alty, the parenthesizing of a
word a1 ® - -+ ®ay, is inverted from left to right by the involution, together with the single
letters of the word.

Definition 2.3.5 A coloop H in a variety of unital algebras A is called a coloop A-bialgebra.
Its associated functor in loops @ = Y (H) is then called an algebraic loop on A if H is a finitely
generated algebra, and a proalgebraic loop on A if H is not finitely generated. In this case,
it is an inductive limit of finitely generated coloop A-bialgebras.

There are not many known examples of algebraic loops on non-commutative algebras, but
some of them are quite special. In section 3, we give two easy examples of algebraic groups on
commutative algebras which can be extended as groups to associative algebras (the groups of
invertible elements and that of unitary ones), and another one which can not be extended to a
functor on associative algebras even as a loop (the Cayley-Dickson loop). Viceversa, in section
5 we give the example of a proalgebraic group which can be extended to associative algebras
only as a proalgebraic loop (the loop of formal diffeomorphisms).

Finally, the two groups of invertible and unitary elements can be extended to alternative
algebras if we regard them as algebraic loops, and in section 4 we also give an example of
an algebraic group which can be extended to all associative algebras as a group, and to non-
associative algebras as a loop (the loop of invertible series).

While the functoriality of the first examples is straightforward, for the two loops of formal
series it is not. The group of formal diffeomorphisms is a local approximation of the most simple
group of smooth diffeomorphisms on a manifold, and the existence of a proalgebraic version on
associative algebras is a new step in the study of non-commutative geometry. In particular,
its existence as a proalgebraic loop allows us to consider a physical “renormalization loop” to
replace the standard group [21], which could be applied in any perturbative theory when the
function rings have to be replaced by tensor algebras, as in [20].

Remark 2.3.6 All known examples of algebraic groups and loops on non-commutative algebras
have free underlying algebra structure. The fact that this should hold in any category (under
certain completeness hypothesis) has not been proved, but it was proved for cogroups in several
categories: by D. Kan [23] in the category of groups, by I. Berstein [3] (and later reproved by
J. Zhang in [51]) in the category of graded connected associative algebras, and by B. Fresse [17]
in the category of complete algebras over any operad. For coloops, this result is proved by G.
Bergman and A.O. Hausknecht [2] in the category of graded connected associative rings.

Before giving the examples, we mention two maps which allow us to compare coloop and
cogroup bialgebras to usual Hopf algebras. A coloop A-bialgebra has the operations p : H®" —
H from A, and the categorical folding map p : HIIH — H needed to describe the coloop axioms,
which can be iterated on n copies of H. In general, there is no relationship between these two
types of operations, since H®™ need not be an algebra in A.
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Assume that A is a category of algebras such that, for any A-algebras A and B, the tensor
product A® B is again an A-algebra with componentwise operations

pX%B(aléabl’”' ’an@b”) :pgl)(ab”' 7an)®pg)(bl7 7bn)
and unit 1ygp = 14®1p.

Definition 2.3.7 For any n > 2 and for any n algebras Ay, with k = 1, ..., n, we call canonical
projection of Aj11---11 A, onto 41 ® --- ® A, the algebra homomorphism

T = <j1,...,jn>ZA1U---L[An—>A1®--- ®An
induced by the injective algebra maps ji : Ay > A1 ® -+ ® A, given by
Jelar) =14, ® - ®ap® - Qlg,.

The map 7 reorders the elements of A;11---1I A, and then multiplies them within each Aj to
get elements in A1 ® -+ ® A,,. For instance, if we denote by a*) an element a € A, seen in the
coproduct A;11---11 A,,, we have

7(aWpP e d?) = (ac) ® (bd).

This map is surjective, because a preimage of any a1 ®a2® - ®a, € A1® -+ ® A, by 7 is
given by agl)ag) e a%n) eAI---1TA,.

Note that, when all A; coincide and we are given an operation p of arity n, the map p :
A" — A is not, in general, an algebra homomorphism (because p is not), and therefore it
surely differs from the folding map p = {(id4, ...,id4). In fact, g multiplies the elements of A in
the order they appear in A" (it is a concatenation), while p 7 first reorders the factors in A™™
with 7, as explained above, then multiplies them (it is a componentwise operation).

Definition 2.3.8 On the other side, for any n > 2 and for any n algebras Ay, with k =1, ..., n,
there are categorical maps i : Ay — A;11---11 A,. For any operation p of arity n in A, we call
canonical inclusion of 4;® --- ® A, in Ay 1I---11 4, the linear map ¢, : 41® - ®A, —
Ay 1---11 A, defined by

Lp(a1® o ®an) = pu(il(al), ---ain(an))y

where pyp: (A1 1011 Ay) @n _ Aj11---11 A, denotes the operation p on the coproduct algebra
A l---11A,. It follows from the definition of II that this map is injective.

Note that ¢, is not, in general, an algebra homomorphism, because the operation p in A is
not. However, when all A, coincide (say, with A), the map ¢, allows us to recover the operation
pa: A®" 5 A from the folding map i, in the sense that ¢, = pa, because

o pu(in(ar), ..., in(an)) = pa(an, .., an)

for any aq, ...,a, € A.

Proposition 2.3.9 When the map p, is well defined, we have 7, = ida,@.-®@A,-

12



Proof. Denote by pg the operation p on the tensor algebra 41 ® --- ® A,,. Since 7 is an algebra
homomorphism, for any ai € Ay, with k = 1,...,n, we have

Tip(a1® -+ @an) = mpyu(ir(ar), ... in(an)) = p®<7r(i1(a1)), ...,ﬂ(in(an))>
= 9@ (Gt s G (11()) s Gt s i) (i) )

:p®<j1(a1),...,jn(an)>
= ® - Ray.

O

Remark 2.3.10 These maps allow us in particular to compare the coloop bialgebra representing
some loop to other types of bialgebras related to it which appear in the literature. In particular,
the universal enveloping algebra of the Sabinin algebra associated to the loop has been studied
in [39, 34, 35]. Because of the axioms, it is clear that the graded dual of this universal enveloping
algebra does not coincide with the bialgebra H® induced by a coloop bialgebra H, nor in Algy
nor in Asf.

Finally, let us use these maps to compare associative coloop bialgebras and Hopf algebras.
Let H be a coloop bialgebra in Asg. Denote by H® the algebra H endowed with the usual
co-operations

A® =7 A, 68 =76, P =nd,: H® — H®® H®,

the counit € and the antipodes S, S;, which are all still algebra homomorphisms on H®.

Proposition 2.3.11 If A is coassociative, then A® is coassociative. Moreover, we have

S, =(e®id)d®  and S = ([d®e)5P.

Proof. If A is coassociative, the two terms
(A® ® ld) A® = (7'(' ® ld) 7T(HL[H)]_IH (A LI ld) A

and
(1d®A®) A® = (ld@ﬂ') WHH(HL[H) (ldUA) A

coincide, because A is coassociative and because the two maps (7 ® id) ® 7y and (id ®
7) @ Tg(anm) coincide with the standard projection 7 : HIIH1IH — H ® H ® H. Therefore
A% is coassociative.

For any a € H, the term §,(a) € HM 11 H® is a finite sum of products of elements of H)
and of H® in alternative order. The right antipode S(a), = (¢11id) d,(a) turns all the factors
belonging to H() into scalars, which can then be positioned on the lefthand side of all the
remaining elements belonging to H®). Therefore the result is the same that we obtain if we
first reorder the factors in H() all at the leftmost position by applying 5,(a)®. Same with S,
by putting all the scalars on the rightmost position. O

Note however that S, and S; do not necessarily satisfy the left and right 5-terms identities
for A® on H®, because

m (S, ®id) A® = m7 (S, 1id)i A® = po7 (S, Hid) e A

and ¢ is not the identity map on H 11 H. Therefore, even if H is a cogroup bialgebra, H® is
not necessarily a Hopf algebra.
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3 Coloops of invertible and unitary elements

3.1 Loop of invertible elements

In this section we give an example of an abelian algebraic group which can be extended to
associative algebras as a group, to alternative algebras as a loop, but not to non-associative
algebras, even as a loop.

Let | be a field. For any unital commutative algebra A over [, the set
I(A) = {a € A | a admits an inverse a~! }

is the abelian group of invertible elements in A. The functor I is represented on Comy by the
commutative (and cocommutative) Hopf algebra of Laurent polynomials H; = F[z,z 1], with
co-operations

Alx) =z ®u, e(z) =1, S(x)=az".

In fact, elements a € I(A) are in bijection with algebra homomorphisms « : H — A such that
a(z) = a and a(z™') = a~!. Then, if a and § give respectively the elements a and b, their
convolution product coincides with the product in A, because we have

(- B)(@) = pala ® AA®) = al@)B(x) = ab,

o Nz) =aS(x) =a(z ) =a .

We show that the functor I admits an extention to associative algebras as a group, and that it
admits an extention to non-associative algebras, as a loop, only on alternative algebras.

Definition 3.1.1 We call invertible coloop bialgebra on [ the associative algebra H[' =
F[z,r~!] endowed with the following co-operations with values in the coproduct H'1HY of the
category Asf:

A(z) = 2 () Alz™) = (x—l)(2) (x—l)(l)’
e(z) =1 etz =1,
or(z) = W (271 6p(z7") = 2® (z7H) W,
bi(x) = (@)W 2@ bia) = (a1 2,
where z(F) = ir(z) is the generator x seen in the kth copy of H}' of the coproduct algebra

HU'11HY, for k = 1,2, and similarly for (z71)®) = i;((z=1)*)).
It follows that there is a two-sided antipode given by S(x) = 2! and S(z7!) = .

Proposition 3.1.2 The algebra Hf' is a cogroup bialgebra in Asy and represents, for any as-

sociative algebra A, the group
I(A) = Homas, (HY, A)

of invertible elements of A. Moreover, the group I(A) is abelian if A is commutative.
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Proof. The axioms of a coloop bialgebra for the codivisions are easily verified. For instance,
the computations

(id 1) (8, 1id)A(z) = (id 11 2) (8, 1id) (2N 2®)
(ldﬂu)(fc < > e
1

- <w )@
—2M = i) (x)
(id 11 p)(Aid)s(z) = (idup)(Anid)( (@ )®)
(1d1_1 )(x(l)x@)( )(3))
:13(2)( 1)(2
—ZE(l)ZZl(l‘)

and the analogue computations for z~! prove the cocancellation (2.2.3) for §,. The first claim
is then ensured by the fact that A is coassociative. In fact,

(Aid)A(z) = 2 22 24 = ((duA)A(x),

and similarly for 271, Thus, I(A) is a group by Theorem 2.2.10 and Proposition 2.2.17.
The fact that the group I(A) is abelian if A is commutative is less evident because A is not
cocommutative. In fact, we have

T A(z) = (M @) = 2@ 21 2 20 4@ — A(z).

It is however true because the generators z and z~! are group-like, and therefore the commuta-
tivity of the convolution product only depends on that of the multiplication in A. O

Example 3.1.3 The group I(A) is the simplest algebraic group at all: it describes invertible
elements in an associative algebra A whatever is the nature of A, that is, without making use of
any internal structure of A. The simplest non-trivial example is the group I(M,(F)) = GL,(F),
which is recovered as the set of M, (F)-valued algebra homomorphisms on Hy without using the
non-homogeneous relation det(A) # 0 which defines invertible matrices (or, more precisely, the
relation det(A) = t where ¢t determines a new scalar invertible generator of the coordinate ring).

Proposition 3.1.4 The algebraic group I can be extended as a loop to a wvariety of algebras
A < Algr if A is a subcategory of alternative algebras Alty admitting coproduct and initial
object. In particular, it is an algebraic loop on Alty.

Proof. If I could be extended as an algebraic loop to Alg, its representative coloop bialgebra
should be the algebra H{' = Flz, 2~ 1] with co-operations defined on generators as in Def. 3.1.1
but taking values in the coproduct Hf' 1T Hf' of the category Alg. This algebra is not a coloop
bialgebra in Alg, because the codivisions do not satisfy the cocancelation properties (2.2.4) and
(2.2.3). In fact, the element

(id 11 ) (6, 1id) A(z) = (2O (271 @) 22

can not coincide with 4;(z) = z() in H{'11 Hi'. However, the conditions under which the
cocancellation properties hold, all similar to the one above, are guaranteed in the category of
alternative algebras, where (ab)b~! = a = b=!(ba) for any a and any invertible b (cf. [50]). [
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Example 3.1.5 The octonions O form an alternative algebra, therefore one can apply I to O.
The set I(0) of invertible octonions is a well known Moufang loop (cf. [10]), that is, it is a loop
satisfying the Moufang identities

a(b(ca)) = ((ab)a)c (ab)(ca) = (a(bc))a
a(b(cb)) = ((ab)c)b (ab)(ca) = a((bc)a

for any elements a, b, c.

3.2 Loop of unitary elements

Consider now involutive algebras A, and the subgroup of I(A) made of unitary elements in A,
namely
UA) ={aeA|aa” =1},

when A is commutative. Exactly as for I, the functor U is represented on Comyf by the
commutative Hopf algebra Hy = Flz,z* | x 2™ = 1], with co-operations

Alx) =z Q®uw, e(z) =1, S(z) = z*.

Definition 3.2.1 Let us call unitary coloop bialgebra on F the associative algebra Hy =
Flz,z* | xz* = 1] endowed with the co-operations defined on generators exactly as those in
Def. 3.1.1, where the generator ! is replaced by z*.

As for the invertible coloop bialgebra, one can prove that

Proposition 3.2.2 The algebra Hyj is a cogroup bialgebra in Asf and represents, for any in-
volutive associative algebra A, the group

U(A) = HOHIAS? (H[L,[T7 A)
of unitary elements of A. Moreover, the group U(A) is abelian if A is commutative.

Examples 3.2.3 For [ = R, this functor allows us to describe several groups of unitary matri-
ces.

1. Applied to the algebra M, (R), if we take the transposition of matrices as involution, it
gives U(R) = {1, -1}, and the orthogonal group U (M,(R)) = O(n) for n > 1.

2. On M,,(C), we take as involution the complex conjugate of the transposition. Then U(C) =
U(1) = S' and U(M,(C)) = U(n) is the unitary group.

3. Let H be the algebra of quaternions, spanned over R by 1 and by three imaginary units ¢, j,
k which anticommute with each other. The conjugate of a quaternion ¢ = a+bi+cj+dk
is the quaternion ¢* = a — bi — ¢j — d k. The conjugation is an involution, and the real
number |¢| = v/qq* = Vg¥q = Va2 + b2 + ¢ + d? defines a multiplicative norm on H.
Then, the functor U applied to H gives the subgroup U(H) = Sp(1) = SU(2) = S of I(H)
consisting of unit norm quaternions.

On the set of matrices M,(H), we take as involution the quaternionic conjugate of the
transposition. Then U(Mn([H)) ~ U(n,H) =~ Sp(n) is the compact symplectic group, also
called the hyperunitary group.
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Again exactly as for the invertible coloop bialgebra, one can prove the next result.

Proposition 3.2.4 The algebraic group U can be extended as a loop to a variety of algebras
A c Algf if A is a subcategory of involutive alternative algebras Altf admitting coproduct and
initial object. In particular, U is an algebraic loop on Altf.

Example 3.2.5 An alternative algebra of octonions O = O(a, 3,7) is spanned over a field F
of characteristic not 2 by eg = 1 and by seven imaginary units e;, for ¢ = 1,...,7, with an
involved table of multiplication (cf. [10], [50, Ch.2], [25]). Over the field R there are two non-
isomorphic octonion algebras: the classical division Cayley octonions O and the split matrix
Cayley-Dickson algebra Zorn(R) [10], also known as the Zorn vector-matrix algebra [38]. The
last one may be defined over an arbitrary commutative ring. The conjugate of an octonion
q = Zi?:o a;e; is the octonion ¢* = ageg — 22-7:1 a;e;. Again, the conjugation is an involution,
and the scalar n(q) = q¢* = ¢*q defines a multiplicative norm on O (and an isotropic quadratic
form on Zorn(R)).

Then, for the classical Cayley octonions O, the set U(0) is the Moufang subloop of the
loop I(0) consisting of unit norm octonions, which is homeomorphic to the sphere S7, while
for the matrix Cayley-Dickson algebra Zorn(R) the loop U(Zorn(R)) is not compact. The loops
U(0) and U(Zorn(R)) can be compared to the groups U(H) = S and U(P) = SL2(R) obtained
respectively for division quaternions H and for split quaternions P.

3.3 Unitary Cayley-Dickson loops
In this section we give an example of a loop which is not algebraic on associative algebras.

Let F be a field and j denote an imaginary unit. For any involutive commutative algebra A
over [, the set
Ucp(A)={a+bje A+ Aj|aa*+bb" =1}

gives the group of unitary elements in the Cayley-Dickson algebra A + A j with multiplication
(a+bj) (c+dj) = (ac — d*b) + (da + bc*) j,

unit 1, and involution (a + bj)* = a™ —bj.
The functor A — Ucp(A) is representable on Comy, by the commutative Hopf algebra

Hycp = Flz, 2%, y,y* | x2® + yy* = 1]

with co-operations

A(r) =z®@z —y®Y* Ay) =z@y +y®@r*,
e(x) =1 e(z) =0,
S(z) = o S(y) = —y-

Proposition 3.3.1 The algebraic group Ucp can not be extended as an algebraic loop to the
category of involutive associative algebras.

Proof. If Ucp could be extended to an algebraic loop to Asf, its representative coloop bialgebra
H{p should be an associative algebra generated by x, z*, y and y* submitted to conditions
which give z z*+y y* = 1 if the variables commute. The co-operations should then be defined on
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generators exactly as in the commutative case, but taking values in the coproduct Hjcp I H{jep
of the category Asf.

The conditions z * = z*z and x *+y*y = 1 are enough to guarantee that the algebra H{jqp,
has a well defined comultiplication, a counit and an antipode satisfying the 5-terms relations.
However, the codivisions, defined according to the coinverse properties (2.2.15) as

20 (9@ 4 (5@ 4O 5.(1) = —y@ 2D 4 4 7@
() 2@ 4 (y*)@ M ai(y) =y (@)W =y (@),

O ()
oi(z)

satisfy the cocancellation identities (2.2.3) and (2.2.4) if and only if

W (2*2)@ = (2% 2)@ M) and Yy ()@ = (y*y)@ 4D

in Hjep U Hjep. This could happen for two reasons. The first is that the map n : Hjop —
Hyep given by n(a) = aa® = a*a has scalar values, i.e. its image is in u(F) € H{cp. This
is the case if H{jop is a composition algebra, cf. [1]. But composition algebras do not have
a categorical coproduct. The second possibility to verify these conditions is that the identity
aWp@ = p2 ¢ holds in H{op I Hyep for any elements a,b € H{jp. This means that I = ®
and therefore it is only possible in the category Comjf. OJ

Examples 3.3.2 In agreement with this result, namely that the construction Ugp is not func-
torial on associative algebras, there are few examples of loops arising as sets of unitary elements
in the Cayley-Dickson algebra constructed on an associative algebra. For instance, we can con-
sider the associative algebras of matrices A = M,,(K) with entries in involutive algebras K over
the field F = R, with involution given by the transposition of the matrices plus the involution
of their matrix elements. The unitary elements in A + Aj are preserved by divisions if A is a
composition algebra, and matrix algebras, in general, are not. So, in general, Ucp(A) is not a
loop. There are few exceptions:

1. The set Ucp(M,(R)) is a loop for n = 1,2. For n = 1 (when A = R is commutative) it is
an abelian group Ucp(R) = U(C) = S!, and for n = 2 the loop Ucp(Ma(R)) coincides with
the loop U(Zorn(R)) from Example 3.2.5, since Ma(R) + Ma(R)j = Zorn(R) is a matrix
Cayley-Dickson algebra.

2. The set Ucp(M,(C)) is a loop for n = 1,2. For n = 1 (when A = C is commutative) it
is a group Uop(C) = U(H) = 3, and for n = 2 the loop Ucp(Ma(C)) coincides with the
loop U(Zorn(C)) of unital elements in the split matrix Cayley-Dickson algebra over the
complex numbers C.

3. The set Uop(M,(H)) is a Moufang loop only for n = 1, and we have Ugp(H) = U(0D) = S7.
For n > 1, the set Ucop(M,,(H)) is not a loop because M, (H) is not a composition algebra.

4 Coloop of invertible series

The group of invertible series (with constant term equal to 1), is the set of formal series

Inv(A)z{a(/\):Zan)\"Mo:l, aneA}

n=0
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with coefficients a,, taken in a commutative algebra A, endowed with the pointwise multiplication
(ab)(A) = a(N) b(A), unit 1(A) = 1, and where the inverse of a series a()) is found by recursion.
It is an abelian proalgebraic group on Com, represented by the cocommutative Hopf algebra

Hiyy = Flxy, n>1] (xg=1)

Ainv(517n) = i T @ Tp—m

=0

3

known as Hopf algebra of symmetric functions [18].
The functor Inv admits an evident extention to associative algebras as a functor in groups
(but not abelian), represented by the cogroup bialgebra [8]

Hinv = [F<a;n, n = 1> (LE() = 1)
Ainv(‘rn) = Z x1(’l’1L) ‘TQZ
m=0

with antipode defined recursively. The projection of this bialgebra by the canonical map 7 given
in Def. 2.3.7 coincides with the Hopf algebra of non-commutative symmetric functions (cf. [19]).

In this section we show that the functor Inv can be extended to non-associative algebras, as
a proalgebraic loop.

4.1 Loop of invertible series

Definition 4.1.1 Let A be a unital algebra and let A be a formal variable. We call invertible
series in A\ with coefficients in A the formal series in the set

Inv(A):{a=Zan)\"|a0=1, aneA},

n=0

endowed with the multiplication

b= Z i_o A by A"

n=0

and the unit e given by ep = 1 and e,, = 0 for all n > 1. For instance,

(a' b)l =aj + bl,
(a-b)2 = az +aiby + by,
(a . b)g = az + asb1 + a1by + b3.

Proposition 4.1.2 For any unital algebra A, the set of invertible series Inv(A) is a loop.

Proof. It is clear that the series e is a unit for the given multiplication, so we only have to
show that there exist a left and a right divisions satisfying the cancellation properties (2.1.2)
and (2.1.1). Since the multiplication is completely symmetric in the the two variables, the proof
for the two divisions is exactly the same. We do it for the right division.

Given two series a = Y a, A" and b = >, b, A", we define the right division a/b = > (a/b), A"
so that (a/b)b = a, that is

n
(a/b)m bp—m = an for any n = 0.

m=0
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These equations are solved recusively from (a/b)g = 1, and give the nth term

n—1

(a/b)n = an — > (a/b)m bnm.
m=0
Let us then prove by induction that (a - b)/b = a, that is, ((a . b)/b) = a, for any n > 0. We
have ((a - b)/b)0 =ap =1 and, for any n > 1,

nfl

((a-0)b), = (@-b),

m:O

—_

n—

=a, + Z (am —(a- b)m) br—m,
m=0

so if we suppose that ((a - b)/b)m = ay, for any m > n — 1, we have ((a- b)/b)n = Q. ]
For instance, for the right division we find
(a/b)1 = a1 — by,
(a/b)2 = a9 — albl — b2 + blbl,
(a/b)3 = qag — (a1b2 + agbl) + (albl)bl — b3+ (blbg + bgbl) — (blbl)bl,

and for the left division we find
(a\b)l = bl —ay,

(a\b)2 = ba — a1by — az + a1ax1,
(a\b)3 = by — (a1b2 + a2b1) + al(albl) — b3 + (a1a2 + agal) — al(alal).

4.2 Coloop bialgebra of invertible series

For any n > 1, let x,, be a graded variable of degree n. For X = Spang{z,, n > 1}, the tensor

algebra H = T(X ) can be seen as the set of non-commutative polynomials in the variables

x1,x2, ..., that we denote by F(x,, n = 1). It is then useful to denote the unit 1 of H by xg.
The unital associative coproduct algebra H 11 H is then the tensor algebra T(XD @ x®?)

on two identical sets of variables, and similarly HUHUIH = T(X®M @ X® @ X®). To simplify

the notations, in this section we denote by x, = a:gl), Yn = xg) and z, = azg) the generators

taken in the different copies of X in a coproduct algebra.

For any integer n > 1 and any 1 < £ < n, let C/ denote the set of compositions of n of length
¢, that is, the set of ordered sequences n = (nq,...,ny) such that

ni+ -+ ng=n, and ni,...,ng = 1. (4.2.1)
For instance, for £ = 1,2, 3, we have

ca={n}, a={@} aG={wy}
c={®} G={2.12}, ¢={111}
Definition 4.2.2 Let us call coloop bialgebra of invertible series the free unital algebra
H]_I

mv

= T{a, | n>1}

with the following graded co-operations:
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e comultiplication Al : HY — HI 11 HH given by

mv mv mv mv

A]'ilv (‘TTL) =

Tm Yn—m;

ANGE

0

e counit € : Hl

— [ given by e(zy,) = dp0;

e right codivision ¢, : Hj} — HL 11 H!l given by

inv in

n—1

O (Tn) = Tn — Yn + Z (_1)6 Z ((((xm - ym)ynz)yng) ”')yn5+17

l=1 neCffrl

where C:+! is the set of compositions of n of length £ + 1, cf. (4.2.1);

e left codivision §; : Hl) , — H{I 1 Hl given by
n—1
l
01(en) = g = o+ 2, (1D @y (- (s @iy = 2nn))) )-
(=1 necit!

Theorem 4.2.3 The algebra HY is a coloop bialgebra and represents the loop of invertible
series as a functor Inv : Alg — Loop.

As a consequence, given an algebra A, a series a = ano an A" € Inv(A) can be seen as an
algebra homomorphism a : HYl — A defined on the generators of Hi, by a(z,) = a,, and the

right and left division a/b and a\b are given at any order n by the following closed formulas:
(a/b)n = pa (a11b) 6y (2n)

n—1
=a, — by, + Z (—1)6 Z ((((anl - bnl)bng)bng) e ')bne+17
/=1

ne Cf;rl

(a\b)n = pa (a11b) 6 (zn)

n—1
=by, —ap + Z (_1)Z Z Qny ( o (anz (anz (bnlJrl - anlJrl))))'
=1

ne Cff 1

Proof. The algebra H}}  clearly represents the functor Inv with values in sets, and the comul-
tiplication All = represents the pointwise multiplication of series. The only thing which should
be proved is that H} is a coloop bialgebra with the given codivisions. The formulas for the left
and for the right codivisions are perfectly symmetric, in the sense that §; = 79, so it suffices to
give the details for one codivision. Let us then show that the right codivision satisfies the two
equations (2.2.3).

Concerning the first one, we have

n—1
(6, L)AL (zn) = 0r(@n) + 20 + D 6:(Tim) Zn—m,
m=1
which is an element of H} 1T HL 11H  and sinceidlip: HY UHY 1HL — HI 1TH

multiplies the variables y and z (in the order they appear) and puts the result in the right-hand
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side copy of Hl  in H 11 H!  we have
n—1
(id 11 ) (8, id) Ay (wn) = 07 (Tn) + Yo + Z Or (Tm) Yn—m
m=1
n—1
—Yn + Z <_1)£ Z (((unl Yns) yng) T >yn“1 + Yn
4=1 nECfL+1
n—1 m—1
+ Z Um Yn—m + Z Z Z (((um1 ymz)"')ymAH) Yn—m
m=1 A=1 me CAHL

where we set u,, := z,, — y, and therefore we have

n—1
Z Um Yn—m = Z Uny Yng -
m=1

neC2

Setting £ = A + 1 in the last sum, we have 2 </ <n—1and £ < m <n — 1 with

n—1

4 1 _ b+l
U cnx e =it
m=A

therefore

n—1 m—1 n—1

Z Z <_1)>\ Z <((UM1 ymZ)...)ymA+1) Yn—m = Z<_1)Z Z <(<um yng)ym) "')yne+1'
m=1 =1 mec)t =2 necltl

Thus, we finally obtain
(6, Wid) AL () = 2.
For the second identity, we rewrite the comultiplication as

Aty (Tn) = T + Yo + Z Tny Yny

neC2

and using the fact that
Cf—l-l U Cl « sz s

and setting A = ¢, we rewrite the right codivision as

n—1 n—m
67“(*%'71) = Up + Zl )\Zl(_l))\ Z <(<umyk1)yk2)”'>yk>\-
m=1 A= keC)_
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We then have

n—1 n—m
(Al )3 () = Al () = 2+ 23 23 (DN D3 (Al lom) = 2m) 21) - )2,
m= 1 A 1 kecé m
n—1n—m
:x"+y"+2x"1y"2+2 Z<_ )\ Z (<xm2k‘1)’”)zk>\_2n
neC3 m=1 \=1 keC)
n—1 n—m
+ Z Z (1) Z (W 280) -+ ) 2,
m=1 A=1 kGCn m

DD (CHRENEREY

m=1meC2, keCA

n—m
n—1n—m
_Z Z(_ /\ Z ((Zmzkl)"')zk)\’
m=1 \=1 keC>

n—m

When we then apply id 1T i, we identify z,, = y,, and 2z, = yy, for @ = 1, ..., A, and therefore we
have

n—1n—m
(d ) (Al )0, () = T+ D) Toy Yo + D0 20 (DY D (@ i) )k
nGC% m=1 \=1 kGCé .
n—1 n—m
+ Z Z Z (_ )\ Z ((($m1ym2)yk1) >yk,\
m=1meC2, \=1 keC)
where
n—1n—m n—1
(=1)A Z ((@myr) )k, = Z(_1)£ Z (T Yn) =+ )Yy
m=1 \=1 keC)_,. =1 nectt!
and

Z fﬂmynz“‘Z Z 2 Z (((wmlymz)ykl)'“)ym

neC2 m=1meC2 A=1 keC)_ ..
n—1
1 14
= Z (_1) Tny Ynipq — Z (_1) Z ((xm ynz) e )ynprl'
neCit! =2 ne it

This we finally have

(id 11 ) (A

mv

11id)d, (zy,) = xp.

4.3 Properties of the loop of invertible series

Loops satisfying weak versions of associativity have many applications, for instance in Blaschke’s
Web Geometry through nets [4]. It is therefore interesting to ask what kind of identities are
satisfied by the loops Inv(A) of invertible series.
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Proposition 4.3.1 Given an algebra A, the loop Inv(A) satisfies an identity
(%) u(a,b,...,c) =v(a,b,...,c)

for any series a,b,...,c € Inv(A) if and only if the identity () is satisfied in A, that is, for any
elements a,b,...,c € A.

Proof. Roughly speaking, this result follows from the fact that the comultiplication AL is
linear on both sides on generators. More precisely, if in the identity (*) the operators u and v are
multilinear, the implication “(*) on A = (x) on Inv(A)” is proved by direct inspection, and
the opposite implication is proved by considering series of the forma = 14+a1 A\, b =1+ b1 A,...,
c=1+4c A\

If in the identity (*) the operators u and v are not multilinear, for instance the element a
appears k times, it suffices to linearize them, by considering the sum a = a' + --- + a* of k
different elements. ]

In particular, this result implies that Inv(A) is a Moufang loop if and only if A is alternative,
that Inv(A) is a group if and only if A is associative, and that Inv(A) is an abelian group if and
only if A is commutative and associative.

We give below counterexamples to some interesting properties of loops which fail on the
loops Inv(A) for associative algebras A, which can be deduced by the coloop bialgebra H}! .

Example 4.3.2 The left and the right inverses of any a € Inv(A) do not coincide, that is
a\e # e/a.

In fact, the left and right inverses in Inv(A) coincide if and only if the left antipode S; and the
right antipode S, of H}  coincide. Applying equations (2.2.8), we find

Sy(xy,) := (e1id) 6, (xy,)

and

i
L

= —x, — Z (—1)5 Z ZEm( (mnz (mng:ﬂnul)))’

{=1 ne C4iH1
therefore the two antipodes do not coincide. For instance, for a series a = 1 + a1 A, we have
efa:=aS, =1—ay X+ aja; N> — (a1a1)a; N> + ((alal)al)al A4
a\e:=aS;=1—a A+ aja; A\ — aj(aay) X+ a (al(alal)) M

To have a counterexample to the equality e/a = a\e, take for A the algebra of 2 x 2 matrices
over the sedenions, spanned by 1 and by the imaginary units e; for i = 1,...,15. If a = 1 4+ a1 A

is the series with coefficient
an = e1 +eyp es+euy
1= 0 1 ’

we have
0 —2(65 + 614)

dww¥=<0 0 >ﬁ+0@ﬂ
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Example 4.3.3 The left and right inversions in Inv(A) do not allow us to construct the divi-
sions, that is,

a/b # a(e/b) and a\b # (a\e) b

for any a,b € Inv(A).
In fact, to show that a/b # a (e/b) and a\b # (a\e) b in the loop Inv(A) is equivalent to show
that

0 # (1d11.S;) All‘lnv and 0 # (Sl 11 id) Al

mv

in the coloop bialgebra H
have

1. Let us show it for the right codivision. For any generator z,,, we

n—1
—Yn — Z<_1)é Z ((yru yn2)"')yn5+1
=1 neC,€+1
n—1 n—1 n—m-—1
- Z Tm Yn—m — Z Z <_1)>\ Z Lm (((ykl ka)”.)ykA+1>'
m=1 m=1 =1 kec>\+1

n—m

Writing the last two sums in terms of compositions of n yields

(ld]_IS )Amv :En = Up + Z Z Lny (((ynz yns) e )ynl+1) - ((ym ynz) ’ ")y"ul)’

Cl+1

which is clearly different from the expression of d,(z,,).

Example 4.3.4 A loop @ is left alternative if a(ab) = (aa)b for any a,b € Q, and it is right
alternative if (ab)b = a(bb). The proalgebraic loop Inv on the category Alg is not left nor right
alternative.

For this, it suffices to show that the coloop bialgebra HY  is not right coalternative, that is

mv

(idiip) K # 0, where K = (Al 11id) All_(idITAL ) All is the coassociator. The first deviation

mv mv mv mv
from right alternativity appears on the generator x3, since we have

K(x3) = (z1y1)21 — 21(y121)
(id 1 p) K(x3) = (z1y1)y1 — 1(y1y1) # 0.

For instance, if A is the algebra of sedenions, the deviation from right alternativity can be seen
comparing (ab)b and a(bb) for the two series

a=1+ (e1 +e1)A and b=1+4 (e5 + e14)A
because (e1 + e1p)(es + e14) = 0 and therefore

(ab)b — a(bb) = —(61 + 610)(65 + 614)2 )\3 = 2(61 + 610) )\3.

Example 4.3.5 A loop @ is power associative if every element of the loop generates an
abelian subgroup. The proalgebraic loop Inv on the category Alg is not power associative.
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In particular, power associativity requires the associativity (aa)a = a(aa) for any element.
Therefore, it suffices to show that

pdip) K(xs) = (x121)x1 — x1(x121) # 0.
For instance, if we take A to be the algebra of 2 x 2 matrices with coefficients in the sedenion
algebra, for the series a = 1 + a1 A of Example 4.3.3 with

e1+eyg es+ ey
@ = 0 1

we have

aay = ( —2(€1O+ e10) —(es il- e14) > and ara? = ( —2(€1O+ e10) es 4;614 )

and therefore

(aa)a — alaa) < o il e > 23,

5 Coloop of formal diffeomorphisms

The group of formal diffeomorphisms (tangent to the identity) is the set of series

Diff(A) :{a: S an A ag = 1, aneA}
n=0
with coefficients a,, taken in a commutative algebra A, endowed with the composition law
(aob)(A) = a(b(\)), unit e(A) = A, and where the inverse of a series a()) is given by the
Lagrange inversion formula [26]. It is a proalgebraic group on Com, represented by the Faa di
Bruno Hopf algebra [13], [22]

Hpgg = Flz,, n > 1] (zg =1)
n

(m+1)!
AFdB("En) = Z Tm ®Z po'pl 3511)1 T "Eifzn

m=0

where the sum is done over the set of tuples (po, P1,D2, ---, Pn) Of non-negative integers such that
po+pr+pe+---+py=m+1and p; + 2ps + -+ np, = n —m. In this section we show that
this group can be extended as a proalgebraic loop to the category As.

5.1 Loop of formal diffeomorphisms

Definition 5.1.1 Let A be a unital associative algebra, non necessarily commutative, and let
A be a formal variable. We call formal diffeomorphisms in A with coefficients in A the formal
series in the set
Diff(A) = { a=Y a A" [ag=1, a, € A }
n=0

endowed with the composition law

aob= )" i > G g+ - by AV

k07~~~7km>0
! " (m4+1
=3 |an+ba+ am2< l ) > Dy - gy | AT
n=0 m=1 =1
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and the unit e given by ey = 1 and e, = 0 for all n > 1. For instance,

(aob); =ay + by,
(@ob)y = ag + 2a1by + b,
(aob)s = ag + 3azby + a1(2bs + b%) + b3.

The indeterminate A is not necessary to define the loop law, but helps to keep track of the degree
of the terms in the sum.

Proposition 5.1.2 For any unital associative algebra A, the set Diff (A) is a loop.

Proof. It is clear that the composition is a well-defined operation, and that e is a unit. Let us
show that the left and right divisions exist.

i) Let us prove that there exists a right division / satisfying the two equations (2.1.2). Given
two series a = Y. ap, A"t and b= Y. b, \"*1 let us define the series a/b = >.(a/b), \"*! so that
(a/b) o b = a, that is

n
Z Z (a/b)m biy - - - br,, = an for any n > 0.
m=0 ko+--+km=n—m
ko, km=0

From now on, in the sum over the integers ko, ..., k, we omit to write that all integers can be
zero. These equations are solved recursively, starting from (a/b)g = a9 = 1. The nth term is
given by

n—1

(a/b)n = an— )] > (@b by by

m=0 ko+-+km=n—m

To prove that (a0 b)/b = a, i.e. that <(a o b)/b) = ay, for any n > 0, we proceed by induction.
We have ((a o b)/b)0 = (aob)y = 1, therefore

<(ao b)/b)1 — (aob) — ((ao b)/b)obl — a1+ b — by = a

and

n—1

((aob)/b)n:(aob)n— 3 3 <(aob)/b>mbk0---bkm

m=0 ko+--+km=n—m

n n—1
= Z Z ap bko"'bkm_ Z Z ((aob)/b) bko"'bkm
m=0 ko+-+km=n—m m=0 ko++km=n—m m

=a, + nz—:l Z (am - ((aob)/b>m) ko *** bk

m=0 ko+-+km=n—m

SO

if we suppose that <(a o b)/b> = @y, for any m < n — 1, we have ((a o b)/b> = Q.

27



ii) To prove the existence of the left division we proceed in the same way: the series a\b that
satisfies the identity a o (a\b) = b of equations (2.1.1), that is,

n

Z Z A, (A\D)g, -+ - (@\D)k,, = bn for any n > 0,

m=0 ko+-+km=n—m

is given recursively by (a\b)g = 1 and
n

(@\b) = by — D] > am (@\b)ky -+ (a\D) -

m=1 ko+--+km=n—m
The identity a\(a o b) = b means that, for any n > 0, we have <a\(a o b)) = by,. This is proved
by induction. We have (a\(a o b)>0 =1, therefore

<a\(a o b))1 =(aob) —ay (a\(a o b))0<a\(a o b))0 =a;+b—a;=0b
and

(a\(a o b))n — (aob), — i N a <a\(a o b))k

m=1 ko+--+km=n—m

<+ (a\(@o b))

0 m

n

_ Zn: Z U iy -+ by, — Z Z am(a\(ao b))k

= aobn + i > am <bk0 “o b, — <a\(a ° b)>k0 o (a\(a ° b))km>

m=1 ko+--+km=n—m

SN (et (0aen), (o), )

m=1 ko+--+km=n—m

+an (boebo— (a\(@ob)) - (a\(@ob)) )
=b, + ni 2 tm <bk0 v O — <a\(a ? b))ko o <a\(a ° b)>k7n> ’

m=1 ko+-+km=n—m

- (a\@on)

0 km,

so, if we suppose that <a\(a o b))m = by, for any m < n — 1, we have (a\(a o b))n = by,. O
For instance, the first terms of the right division are
(a/b)1 = a1 — by,
(a/b)s = a5 — by + 2(a/b)1br | = az = 211 — (b — 203),
(a/b)s = az — [bg + (a/b)1 (2by + b2) + 3(a/b)gbl]
= a3 — (2a1by + 3azby) + 5aybi — [bs — (2b1by + 3boby) + 5b3 ],
and the first terms of the left division are
(a\b)1 = b1 — a1,
(a\b)2 = by — [2&1 (a\b) + a2] — by — 2a1by — (a — 2a2),
(@\b)s = by — |a1(2(a\b)e + (@\b)) + a2(3(a\b)1) + as
= b3 — (2a1bo + 3ash1) + (5aiby + arbiar — a1b}) — [ag — (2a1a2 + 3asar) + 5ai).

We now prove that the loop of formal diffeomorphism is proalgebraic over associative alge-
bras, and give its representative coloop bialgebra.
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5.2 Faa di Bruno coloop bialgebra

As in Section 4.2, let X = Spang{z,, n = 1} be the set of graded variables z,, of degree n, and
identify the tensor algebra T'(X) = F(x,, n = 1) with the set of non-commutative polynomials
F{xn, n > 1). We endow this algebra with the structure of a coloop biagebra which represents
the loop Diff.

As before, to simplify the notations, we denote by x, = :cS})
taken in the two copies of X in T(X)uT(X) = (XM @ X)),

To describe the codivisions we need to introduce some sets of sequences and two types of
related integer coefficients.

and y, = 3:%2) the generators

Definition 5.2.1 For any ¢ > 1, let M, denote the set of sequences m = (myq, ..., my) such that
mi+---+my=4¢, and mi+---+mj=j for j=1,... /-1 (5.2.2)
For instance, for ¢ = 1,2, 3, we have
My ={1)}, M2={(20),(1,1)}, Ms=1{(3,0,0),(21,0),(2,0,1),(1,2,0),(1,1,1)}.
For any ¢ > 1 and any sequence (nq,...,ny1) of positive integers, we call Lagrange coeffi-

cient? the number ) )
dg(nl,...,ng) = Z <’I’L1~|— > <7’Lg+ >
me M, mi me

For ¢ =0, My is empty and we set dy = 1.
For instance, for £ = 1,2,3, we have

di(ny) = <n11+ 1)7
dy(ny.ma) = (m;— 1> N <n11+ 1> <n21+ 1>7
ds(ny. 9. m3) — (nl?:i- 1> N <n12+ 1> <n21+ 1> N <n12+ 1> <n31+ 1>
I

Definition 5.2.3 For any ¢ > 1, let & be the set of sequences e = (e, ..., ;) of bits e; € {1,2}.
For any e € &, let MY be the set of sequences m = (mq,...,my) € M, such that

m; =0 if e =2, for i=2, ../

The bits e; will be used in Eq. (5.2.7) to label the generators z; of the coloop bialgebra in order
to determine to which copy of the coproduct algebra the variables xgei) belong. To simplify
the final formulas for the codivisions, we chose for e; the bits 1 and 2, even if, for the present
discussion, the bits 1 and 0 would be more appropriate.

In particular, if e = (1,1,...,1) then M7 = M,. If e starts with the bit e; = 2, then M7
is empty, because the condition (5.2.2) implies that m; > 1. If e starts with the bit e; = 1 and
contains at least a bit value 2, then the set M7 is a proper subset of M, obtained by keeping

3These coefficients appear in the Lagrange inversion formula [26], cf. [8].
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only those sequences m which have the value 0 in all the positions where the bit value of e is 2.
For instance, Mgl) = Mj; ={(1)} and for ¢ = 2 we have

MEY = My = {(2,0), (1, 1)},

M& = (2,00} (5.2.4)
For ¢ = 3, we have
MY = My = {(3,0,0),(2,1,0), (2,0, 1), (1,2,0), (1,1,1)}
112:«30@4 ,0), (1,2,0)}
MY —((3,0,0),(2,0,1)} (5.2.5)
122:{@00»

For any ¢ > 1, any sequence e € & and any sequence (nj,...,ng41) of positive integers, we
call labeled Lagrange coefficient the number

ny+1 ng + 1
dS(ny,.ong) = ) (ﬁn )~(7n )
me M3 1 ¢

For ¢ = 0, Mg and & are empty and we set df = dpl. Of course, if e = (1,1,...,1) then
dg(ni,...,ne) = dg(ny, ..., ng), if e starts by 2 then dj = 0, and if e starts by 1 and contains some
bit values equal to 2, then df(ni,...,ng) < de(n1,...,np).

Here are the values of dj for £ = 1, 2,3, obtained by summing the patterns according to the
labeled sequences given in (5.2.4) and (5.2.5):

di (n1) = di(n) = <n11+ 1>,

ny + 1 mt+ 1 (e +1
dél’l)(m,nz)—dz(m,nz)_( 12 >+< 11 >< 21 >7
ny +1
d§1’2)(”1’n2):< P )

where the term ("11+ 1) ("2+1) disappears because it corresponds to the sequence m = (1, 1) which

does not have the value 0 in the same position as the bit 2 in e = (1,2),

() ) ) )
CED)-COED)
S (0 <n1; 1) s <n12+ 1) <n21+ 1) s <n11+ 1) <n22+ 1>,
d§1’2’1)(n1,n2,n3) _ (nl?j- 1) N <n12+ 1) <n31+ 1)7

1
d§1’2’2)(n1,n2,n3) _ (711; >
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Definition 5.2.6 We call Faa di Bruno coloop bialgebra the free unital associative algebra
HIIEIdB = |F<$n7 n = 1>7 o =1

of non-commutative polynomials in the graded variables x,, with the following graded co-
operations:

e comultiplication AR : HRyg — Hpgp I Hpgp given by

ny+1
AII_:I‘dB(‘Tn) =Tn +Yn t Z Z ( / > Tny Yng " " Yngyrs

¢=1 pe C£+1

where C:+! is the set of compositions of n of length £ + 1, cf. (4.2.1);
e counit ¢ : Hpyz — [ given by e(z,,) = 0p0;

e right codivision 9§, : Hgyg — Hpyp I Hpgp given by
57"(:En) = (_1)é Z dg(’l’Ll, ) né) (mn1 - yn1) Yno " Ynpyqs

where the Lagrange coefficients d, are given in Def. 5.2.1;
o left codivision ¢; : Hpyy — Hpap 1 Hpyp given by

n—

di(n) = Z )2 2 (D dE(n,ng) Vel ) (yngy — o)

=0 necltlecs,

where the set of sequences &, and the labeled Lagrange coefficients dj are given in
Def. 5.2.3, and where we set
(_1)9 _ (_1)e1+~~~+ee—€

and, according to the previous convention, we set

(i) _ Tn if €, = 1
xy { y ife; =2 (5.2.7)
In particular, since dj = 0 if ey = 2, the first variable is always :175?11) = Ty,.

For instance, on the first five generators, the comultiplication is

A]ﬁdB(JIH =1+ Y

FdB\X2 To + Y2 + 2211

)
Afgp(22) =
Abap(zs) = 3+ y3 + (2z1y2 + 3w2y1) + 2197
(24) = 24+ ya + (221y3 + 3z292 + 4w3y1) + (21 (192 + Y2y1) + 37291)
(z5) = (

Ts + Y5 +

Afap (74
Afqp (s 2014 + 3xays + Ax3ys + Sray1)

+ (21 (y1ys + 5 + ysy1) + 32(y1ye + yoyr) + 623y1) + 229
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the right codivision, with u,, = x,, — ¥, is

Or(z1) = g

Or(z2) = ug — 2urys

Or(x3) = us (2u1y2 + 3u2y1) + Suyy?

Or(zg) = uy (2u1y3 + 3ugys + 4u3y1) (5u1y1y2 + Turyoy1 + 92@@/%) — lduyy3
br(25) = us — (2u1ys + 3ugys + 4usys + Suayr)

+ (Puryiys + Turys + Yurysyr + uoyiye + 12usyoy; + 14usyi)
— (Huryiys + 19uryiyoys + 23uryeyi + 28usy?) + 42u1y}

and the left codivision has additional terms which contain both variables  and y in alternative
order beside the first position which is always x, and last position which is always v, = y, — x,:

(1)
(w2)
0i(x3) = vg — (2x1v2 + 3:1:21)1) + 5230 — T1Y101
(x4) = vg — (2x1v3 + 3zov + 4:L'3’U1) + (5x%v2 + Tx1T001 + 9x2x1v1) — 14z
— (219102 + 21y201 + 3z2y101) + (dxiyivr + 221121 01)
§i(z5) = v5 — (2z1v4 + 3x2v3 + 42309 + Bz401)
+ (5:13%1)3 + Tx12909 + 9212301 + 92022100 + 12x%v1 + 14:E3:E1v1)
— (14x:1)’v2 + 19:13%@111 + 23x1T07101 + 28:L'2$%U1) + 42ZL'£11’U1
- ($1y1v3 + T1Y2v2 + £1Y3v1 + 3T2Y1vV2 + 3T2Y2v1 + 6x3y1U1)
+ (4x%y1v2 + 4a:%y2fu1 + 9z 229101 + 1022219101
+ 221y17102 + 3T1Y12201 + 221Y22101 + TT2y1 0101 — $2y%U1)

- (14513‘;’1111)1 + 9:13%1/11131111 + 5$1y1$%vl - ZE%y%Ul - £E1y1$1ylv1)-

We now want to prove that the algebra given above is indeed a coloop bialgebra. The only
difficulty is to prove that the codivisions satisfy the cocancellation properties (2.2.4) and (2.2.3),
which are equivalent to some recurrence relations on the Lagrange coefficients dy and dj.

We prove in fact a stronger result, namely, that there exist some operators R, and Rj defined
on the tensor space T(A) over any positively graded algebra A, which produce the Lagrange
coefficients and which satisfy the wished recurrence relations. These operators provide an al-
ternative definition of the Faa di Bruno codivisions when applied to the non-unital associative
coproduct algebra A = HE 11 HE - =T(X® @ X?).

5.3 Faa di Bruno co-operations in terms of recursive operators

Let A = ®,>14, be a positively graded associative algebra over a field F, and let us denote by
la| the degree of an element a € A, that is, the integer n such that a € A,. The tensor algebra
T(A) = @Z>OA®Z is then bigraded, on one side by the tensor power ¢, that we call length,
and on the other side by the grading induced by that of A, that we call degree,

¢
a1 ®as® -+ ®@ay| = Z la;|.
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A multi-monomial is a homogeneous element of T(A) with respect to the length, that is, an
element of the form a; ® a2 ® -+ ®ay for some ¢ > 1. Then T(A) can be decomposed into the
following direct sum with respect to the degree?:

T(A):[F@@ C—nB C—B Ap ® - ®@An, |,

n=1 /=1 neCfL
where the compositions n € C’ are defined by eq. (4.2.1).

Definition 5.3.1 Let us define a graded linear operation
>:T(A)RT(A) —F® A

by setting

+1
at>(bi® - ®by) = <|a|£ >abl"'b£

(a1® - ®ap)> (1@ - Qb)) =a1 > (2@ - Qap b1 @ -+ ®byr)

al|+1
(L Y e

where the expressions on the right-hand side mean the product in the algebra A.
In particular, if we apply these rules to 1€ F = A®0, we have

I>p1=1
1>b=05
I>(b1®--®b) =0 if £>1
a>1l=a
la1| + 1
(a1®~'®a5)>1=< /1 )al---ag.

Remark 5.3.2 The restriction > : AQT(A) —> A is a brace product on A which is symmetric
if A is commutative and generalises the natural pre-Lie product of the Lie subalgebra of strictly
positive generators in the Witt algebra (cf. [9, 16]). Note however that > on T'(A)®T(A) is not a
multibrace product (cf. [27]), even excluding the scalar component, because the first non-trivial
multibrace identity Ms;(a®b+b®a;c) + M1 (M1 (a;b);¢) = Mii(a; My1(b;c)) + Mia(a;b®c+
c®b) is not satisfied. Moreover, a unit for > can not exist, because of length arguments, and >
is not associative, since for any a, b, c € A we have

(a>b)>c—ar (br>c) = (Ja|]+1)|al abe # 0.

The algebraic structure described by the operator > in terms of generators and relations is an
open question.

“Note that if A had a null degree component Ao, then T(A) would contain an infinite sum of terms in each
degree, namely T'(A)o = @, ASP and T(A)n = @), D, ct D,=0 (l;p) AP Q@ Ap, ® -+ @ Ay, for n > 1.
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Definition 5.3.3 We call left recursive operator L : T(A) — T(A) the collection L =
{Ly, ¢ > 0} of (non homogeneous) linear operators Ly = id : F — [ and

l
Ly A®Y — P A®Y =1

A=1
defined recursively by
/—1 '
Lg(al, ceey ag) = Z (—1)6717Z <L2‘(a1, ceey ai) > CLZ‘+1) ®ai+2® -+ Ray,
i=0

where we denote Ly(ay,...,ar) := Ly(a1 ® -+~ ®ay) and Ly is understood as acting on 1.

The first left operators give

Li(a) =Lo(l)>pa=1>a=a,
Ly(a,b) = —(Lo(1) > a)®b+ Li(a) >b=—a®b+ar>b

1
= —a®b+ <|a|1—|— )ab,

Ls(a,b,c) = (Lo(1) > a)®@b®c — (L1(a) > b)®c + La(a,b) > ¢
=a®b®c— (a>b)@c— (a®b)>c+ (a>b)>c

_ la|+1 la|+ 1Y [|a|+]b]+1 la|+1
—a@b@c—( 1 ab®c+< 1 1 — 5 )abc.

The left operators Ly can be easily described in a closed way.
Lemma 5.3.4 For any ¢ > 2 and any ay,...,ay € A we have

Ly(ay,...;ar) = Ly—1(ay, ...,ap—1) > ag — Ly_1(az, ...,ar—1) @ ay.

As a consequence, Ly(ay, ..., az) is the sum of the 2¢=1 possible multi-monomials obtained by

combining the operations > and ® with fived parenthesizing on the left, namely

L[(al, ...,CL[) = Z (_1)Ul+...+0271 ( e ((CLl *oq a2) *o9 a3) *g3 0 Foy_y af*l) *op_1 A

01,.-,00-1€{0,1}

where we set

> ifo=0
*y = : .

® ifo=1
Proof. By induction on £. For ¢ = 2, we have

Ll(al) > a9 — Ll(a1)®a2 =qa1>a—a1®az = Lg(al,ag).

Now suppose that for any ¢ = 2,...,£ — 1 we have

L,-(al, ...,a,-) = Li_l(al, ...,ai_l) > a; — L,-_l(al, ...,ai_1)®a,~.
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Let us expand the sum defining Ly(a, ...,az). At each step, we separate the first two terms of
the sum over ¢ =0,...,¢ — 1:

Ly(aq,...,ap) = (_1)6714 (Li(al, ey Q) D> aiﬂ) ®ai2® - - Day
7
= (_1)6 ai ®a2® e @ay + (—1)6_2((11 D>ag)® - ®ay
+Z 5 1- Z( al’...,ai)l>ai+1>®ai+2®...®ae

= (=1)"2Lay(a1,02) ®a3® - - @ag + (—1)5*3<L2(a1,a2) > ag) ® - ®ay

-1

+ Z(—l)#l*i (Li(ala ey Q) B> ai+1> Ri42® -+ @ar =
i=3

Iterating this expansion we obtain

Li(ar,.yag) = (1) VL (ar, ey ap1) @ap + (1) Lo_1 (a1, ..y ar—1) > a
= Ly_q(a1,...,ap—1) > ap — Ly_1(ay, ...,ap—1) @ay.

OJ

Definition 5.3.5 We call right recursive operator R : T(A) — T(A) the collection R =
{Ry, ¢ > 0} of (non homogeneous) linear operators Ry =id : F — [ and

l
Ry A®! — @ A®r i1
A=1

defined recursively by

R a17 5 ag) =

14
]:

Z al > Rpl 1 ag, .. ,apl)) (5.3.6)
1peC
® (alerl > Rp2*1(ap1+2’ ) ap1+p2)) -

® (ap1+~'~+pj71+1 > szfl(ap1+'”+pj71+27 ey ap1+---+pj))7

where we denote Ry(aq,...,as) := Ry(a1 ® -+ ®ay) and where Ry is understood as acting on 1.

For instance, the first right operators are

Ri(a) = ar> Ry(1) = a,
Ry(a,b) = ar> Ry(b) + (ar> Ro(1))® (b > Rp(1))
\a|1+1> ab+ a®b,
Rs(a,b,c) = ar> Ra(b,c) + (a> Ri(b))®@c+a®(b> Ri(c)) + a®@b®c
=ab> (b>c)+ab> (b®c)+a®(b>c)+ (a>b)®c+a®Rb®c

(CEICE) (7 ()

la]+1
+ 1 ab®c+a®b®ec.

=a>b+a®b=<
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Note that the right recursive operator is not just a flip of the left recursive one, basically
because the recursion defining the two operators takes place on the left and on the right-hand
side of >, which is not a symmetric operation. The precise relationship between R, and Ly is
given in Cor. 5.4.3, after some preliminary results.

The right operators R, can also be described in a closed way.

Definition 5.3.7 Let M, be the set of sequences satisfying (5.2.2). For any m € My, we
define a length-homogeneous linear operator RY, : A®* — T(A) which nests the operation >
in a multi-monomial a1 ® - -+ ®ay according to the sequence m = (myq,...,my) € My. The idea
is the following:

e The multi-monomial R%,(ay, ..., ar) is constructed by nesting tensor monomials of the form
a; > Q;i+1(ai41,ai42,...) one into the other one, where Q;i1(a;t1,a;12,...) is a multi-
monomial whose tensor factors can be single variables or monomials of the same form

a; > Q1 (a1, 0542, ).

e Every tensor monomial a; > Q;+1(ai+1,ait2,...) is determined by the length of the multi-
monomial @Q;+1(a;+1,ai+2,...) and that of the nested monomials of the same form. The
sequence m fixes the lengths of all the nested multi-monomials:

— The coefficient m; is the overall length of the multi-monomial R, (ay,...,a;) in the
tensor algebra T'(A), that is, we have R%, (a1, ...,ar) € AQ™,

— Fori = 2,...,/—1, the coefficient m; is the length of the multi-monomial Q;(a;, a;+1, ...)
on which a;_1 acts by t>: if m; = 0, then a;_1 appears as an insolated tensor factor,
if m; # 0, then a;_1 acts by > on a multimonomial of length m;, which is determined
by the values m; for j > i.

And now we give the algorithm to construct R’ (a1, ..., ar):
(1) The coefficient m; tells us how many tensor factors we have to construct.

(2) Start with a; and read the coefficient mqy: if mg = 0 write a; ® ag-- -, if mg # 0 write
ay > (a2 ---) and expect to close the parenthesis after a multi-monomial of length ms.

(3) Then read the next coefficient of m and repeat the procedure of (2). For any i = 2,..., ¢,
if m; = 0 write a;—1 ® a;---, if m; # 0 write a;—1 > (a;---) and expect to close this
parenthesis after a multi-monomial of length m;.

(4) The procedure stops with the coefficient m, which, by definition of m, can be only 0 or 1,
and tells if the last pattern is ay_1 ® ag or ay_1 > ay.

Example 5.3.8 Let us give some examples of this algorithm, for £ = 5. Fix aq,...,a5 € A and
set n; = |a;| for i« = 1,...,5. For m = (2,1,0,2,0), the multi-monomial R‘E’27170’270)(a1,...,a5)
is composed of two tensor factors (because m; = 2). The variable a; acts by > on a multi-
monomial of length 1 (because my = 1) which starts necessarily by as, and since as does not act
by > (because mg = 0), the first tensor factor is necessarily of the form a; > ag. Then the second
tensor factor starts with as acting by > on a multi-monomial of length 2 (because m4 = 2),
which starts necessarily by a4. Since a4 does not act by > (because ms = 0), the second tensor

factor is necessarily of the form ag > (a4 ® as). Therefore we finally have

R?2’170’270)(a1, . CL5) = (al > CLQ) ® (CL3 > (CL4®CL5))
ny+1 ng + 1
= 1 9 a1az ® azasas.
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For m = (2,1,2,0,0), the variable a; still acts by &> on a multi-monomial of length 1 which
starts necessarily by as, but this time ay itself acts by > on a multi-monomial of length 2, and
this exhausts the possible > operations. Finally, this time we have

3?2,1,2,0,0) (at,...,as) = [a1 > (a2 > (a3®a4)] @ a5

ny+1 ng + 1
= 1 9 a1a2a304 Q as.

Note that the binomial coefficients given by a sequence m € M, can be determined directly
from the last ¢ — 1 digits, plus an extra null value. For (2,1,0,2,0) we have exactly

ny+1 no + 1 ng + 1 ng + 1 ns + 1
1 0 2 0 0 ’
and for (2,1,2,0,0) we have
ny+1 ng + 1 ng+ 1 ng+1 ns + 1
1 2 0 0 0 ’
Two more examples of the algorithm: for m = (3,0,2,0,0),
R??,,o,z,o,()) (a1,..,a5) = a1 ® (az > (a3®a4)) ®as

no + 1
= 9 a1 ®azazas @ as,

and for m = (4,0,1,0,0),

R?470717070) (al, . a5) =a1® (CLQ > ag) ®Kaqs®as

no + 1
= 1 a1 ®aza3@as @ as.

Lemma 5.3.9 For any £ =1 and any (a1, ..., ap), we have

Re(ar, ar) = Y Rb(ar, ).

me M,
For instance, for £ = 1,2,3 we have
R%l) (CL) =a,
1
R?Ll)(a, b)=ar>b= <n11~|— > ab

R, ) (a,b) = a®b

R?Ll,l)(a, byc)=a> (b>c) = <n11+ 1) <n21+ 1) bc
R?L?,O) (a,b,c) =ar> (b®c) = <n12~|— 1> abe
R?Zo’l)(a, b,c) =a®((b>c) = <n21~|— 1) a®bc

R?ll,o) (a,b,c) = (a>b)®@c = <n11+ 1> ab®c

Ris00)(a,b,¢) = a@b®c
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Comparing with the value of Ry, Ry and R3 given above, the assertion is easily verified.

Proof. Let us call Rg(al, ..., ap) the sum over m € M, of Lemma 5.3.9, and prove that it solves
equation (5.3.6) by induction on £.

For ¢ = 1,2,3 the assertion was proved in the examples. For any ¢ > 1, we then suppose
that on the right-hand side of eq. (5.3.6) we have R, 1 = f%pi_l for any 1 < ¢ < j, and we set

P, =pi+p2+---+pi,

so that

J
| Z Z (CLl DRZ};I(G%'-WQM))@

RZ(ah [RX3) a’@) =

Hp2—1 ~pi—1
® (ap1+1 > RZ2(2) (ap1+2, . an)) ® - ® (apj71+1 > qu(j) (apj71+2, . apj)).
In this sum, we can note the following things:

e The running value j gives the length of the corresponding multi-monomial.

e In the first tensor factor, the value qgl) represents the length of RZ 0 Yag, ..., ap, ), that is,

a sequence number associated to a;, and more generally q") rules the nested operations
up to the variable a,, 1. The last variable a,, does not act on further variables and so it
should be associated to a missing value 0. Therefore, the nested operations in the whole
first tensor factor are ruled by the sequence (q(l),O).

e Similarly, for any ¢ < j, the nested operations in the ith tensor factor are ruled by the
sequence (q(l),O).

Let us then associate to this expression the sequence

m = (,]7 q(1)707q(2)707 ceey q(]))a

that is,
my =j
mo =g,y = a0y mpr =0
mp, 42 = qgi), ce., mp, = ql(,?_l ,mpy1 =0, forl<i<j—1
ey rea =0 e s py = g9

which has precisely length
I+ —1)+1+(p2—1)+---+1+(pj—1)=p1+---+pj=P =1L

Note that in the sum over the sequences p = (pi,...,pj) € Cj, where p; = 1 for i = 1,..., 7,
there occur the terms with p; — 1 = 0. In this case the multipolynomial }épi,l = Ry =1 has no
variables, and the set M, _1 = M, is empty. The corresponding sequence q® is then absent
in m, but its associated null value must be present, for any i = 1, ..., 7 — 1, to preserve the total
length ¢. Following the rules of the algorithm given in Def. 5.3.7, we can therefore write

~ ~ho—1
(a1 > Ry (a2, ap,)) ® (a1 & REfy) (Apy 2,000 0p,) ) @ -

®(apj71+1 DRZJ(j) (apj71+2,...,apj)) = Rm(al,...,ag).
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Let us call
Ne={m = (j,q",0,?,0,....q") [ 1<j <t pe ¢], ¥ e My, for 1 <i < j)
the set of sequences obtained in this way. Then the equality

R@(al,GQ,...,GZ) = Z an(alv'“)af) = R@(al,CLQ,...,GZ)
mENz

holds if we show that Ny = M,.
Let us first show that Ay © M,. For fixed j, p and qV, ..., q¥), we have
: (4) (4)
. 3 (2
mi+ o mg =g+ (g gy )
i=1
=j+tPm—-D+@z—1)+-+(@—-1)
= p ==L
For any h = 1,..., £, suppose that h belongs to the rth block, for some r < j, that is,
h=PFP_1+1+k=p1+---+p—1+1+k,

with 1 < k£ < p, — 1. Then we have

r—1
=1

— i+ =D+ =D+ + =D+ (¢ + - +4")
= (p1+ -+ pre1) + (af

>P._1+1+k=nh

_|_..
S v G- +1

because qgr) 4+ ~|—q,(:) >kand j—r>0.

Finally, let us show that there is a bijection between Ny, and M,. The set M, is well known
to be in bijection with the set PBTy, 1 of planar binary trees with £+ 1 leaves (and a root). An
explicit bijection ® : My, — PBTyy; is described in [8], Definition 2.16, using the over and
under grafting operations on trees, namely

¢ s
AN /
t/s = s and t\s=

The first values of @, for the empty sequence in M and for (1) € M; and (2,0),(1,1) € Mo,
are

a()=1, @)=Y, ®(20=7%, B1,1)=Y.

So, for our purpose, it is enough to show that AN is in bijection with PBT},,;. For this, since
Ny © My, consider the map & restricted to Ny and let us show that the image ®(Ny) coincides
with PBTyy4.

For a given sequence m = (j,q"),0,q®,0,...,q¥)) € Ay, we have:

e The sequence m is decomposable as m = (m’, q(j)) into the two well-defined sequences
m' = (5,9",0,q®,0,...,qV"1,0) € Mp;_,+1 and q) € Mp,—1. In fact, if we set
¢' = Pj_1 + 1, we have

my+-omp =j+ -+t (pia-1)=j+Pa—(G-1) =10,
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and for any h = 1,...,¢' one can see that m} + ---mj > h with a computation similar to
that used to show that m € M,.

According to the definition of ®, we then have ®(m) = ®(m’)\®(q"/)). Graphically, if we
denote the trees by ¢t = ®(m), t' = ®(m’) and t; = ®(q"?)), this means that

tj
/

t= t

The sequence m’ is surely not decomposable because it is of the form

m, = (m,{ + 1,m,2,, ...,m/é//,o)
with |
m” = (j_laq(1)707q(2)707 '-'7q(]71)) € MZ”, 6” = gl — 1.

The sequence m” indeed belongs to M~ for the same reason used to show that m € M.
Then, the sequence m’ is not decomposable in position 1 because m} = mj +1 > 2,
and it is not decomposable in any position h = 2,...,¢' because m” € My» implies that
my+---+my =m{ +1+my+---+mj > h+1, and therefore surely m| +--- +mj # h.

Finally, according to the definition of ®, we then have ®(m’) = ®(m”)/Y . If we set
t” = ®(m"), this means that

and therefore
t” t]
t= Y

The same arguments can be applied to the sequence m” and its new components, until
we reach a full description of the tree ¢ = ®(m) in terms of the trees t; = ®(q(*)), for
1 =1,...,j, namely

tq
to

t =

Let us denote this tree by G’ (t1, ..., t;).

In conclusion, if we let j run from 1 to ¢, we consider all possible sequences p € CZ and for any
i =1,..,7 all trees t; € ®(Mp,_1) = PBT,,, the result G/(ty,...,t;) is any possible tree with
number of leaves given by

GOty tj) =1+ [ta| + -+t =1+p1 4+ +p;j=L+1.

In other words, we have

B(Ny) = {t=GI(t1,..t;) | j=1,..,0, pe C}, ti€ PBT,,, 1<i<j}=PBTp.
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Corollary 5.3.10 For any £ = 0 and any ay,...,ap41 € A, set n; = la;| =1 fori=1,....,0 + 1.
Then, for any sequence m € My, we have

ny+1 ng+ 1\ /n +1
a1|>Rm(a2,---aaé+l):< 1m1 >< Zmé >< HB >a1a2"'ae+1-

Therefore
a1 > Ry(az, ..., ape1) = d(n,...,ne1) araz - agea,
where the Lagrange coefficients d(ny, ...,ngr1) are given in Def. 5.2.1.

To describe the left codivision we introduce a last set of operators corresponding to the
labeled Lagrange coefficients.

Definition 5.3.11 For any ¢ > 1, let & be the set of sequences of bits e¢; € {1,2}, as in
Def. 5.2.3. We call labeled right recursive operator R® : T(A) — T(A) the collection
R® = {R¢, £ >0, ee &} of (non homogeneous) linear operators R§ = id : F — [F and

l
RS: A® — P A®N iz
A=1

defined recursively by
Rél)(a) =a and Ré2)(a) =0,

and, for ¢ > 2 and for any e = (eq,...,ep) € &, by

)4
R(ar,-va0) = Y D1 (BRI (@) > RS2 (ag, ...y ap, ) (5.3.12)
J=1 png
( ey )
® (ap1+l > szp—l1+2 it (CLP1+27 ey ap1+pz)) ® -
(€p1+4p;_q142r€0)
e ® (ap1+~~~+pj71+1 > Rpjp_ll ot (ap1+~~~+pj71+27 e aé))~

It turns out that Ry = Ry if e = (1,1,...,1). If e starts by 2, then Ry = 0. If e starts by 1 and
contains a bit value e; = 2 (in position ¢), then Rj is obtained from Ry by removing the term
which contains the factor a;_1 > Q;.

For instance, for £ = 2, we have & = {(1,1),(1,2),(2,1),(2,2)} and therefore

Ry (a,0) = RV (a) > RV (6) + R{"(a) ® (b > Ro(1))
=al>b+a®b

Ry (a,0) = By (a) > B (b) + By (@) @ (b > Ro(1))
=a®b

BP Y (a,b) = R (@) & BY (0) + B (@)@ (b Ro(1)) = 0

RP?(a,0) = R () & RY (1) + RY (@)@ (b > Ro(1)) = 0.
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For ¢ = 3, the set & contains 8 sequences, which give

Rél’l’l)(a, b,c) =ar Rgl’l)(b, )+ (ar Rgl)(b)) ®c+a® (b Rgl)(c)) +a®b®c
=ab> (b>c)+ad> (b®c)+ (a>b)@®c+a®(b>c) +a®b®c

Rél’l’z)(a, b,c) =ar Rgm)(b, )+ (ar> Rgl)(b)) ®c+a® (b Rgz)(c)) +a®b®c
=ab> (b®c)+ (a>b)®c+a®b®c

R§1’2’1)(a, b,c) =ar Rgz’l)(b, ¢)+ (ar> Rgz)(b)) ®c+a® (b Rgl)(c)) +a®b®c
=a®((b>c)+ab®c

R§1’2’2)(a, b,c) =ar Rg2’2)(b, o)+ (ar> Rgz)(b)) ®c+a® (b Rgz)(c)) +a®b®c
=a®b®c

and finally R§’2,l,1) _ R§2,1,2) _ Réz,z,l) _ R§2’2’2) _o

The labeled right operations can also be given by a closed formula.

Lemma 5.3.13 For any £ > 2, for any sequence e € & and for any aq,...,a; € A, we have

R(ar,oma) = Y Rla(ar, o ac).
me M§

As a consequence, if for ai,...,ap41 € A we denote n; = |a;| for i =1,...,0 + 1, we then have
ay > R?(CLQ, ey ag+1) = df(nl, ...,ng) ajp---ap41 € A,

where the labeled Lagrange coefficients dj(n1,...,ng) are given in Def. 5.2.3.

Proof. If e = (1,1,...,1), and if e starts by 2, there is nothing to prove. Otherwise, for any
value e; = 2 in e, we obtain R?(al, .yag) from Ry(aq,...,ap) by removing the term containing
the factor a;_1 > @Q;. By Lemma 5.3.9, such a term is associated to a sequence m € M,, and
by Def. 5.3.7 the factor a;_1 > Q); corresponds to a non-zero value m;. Therefore, in order to
remove such terms, it suffices to consider sequences m with m; = 0 whenever e¢; = 2. O

Theorem 5.3.14 The co-operations of the Fad di Bruno coloop bialgebra can be equivalently
defined in terms of the recursive operators as follows:

n—1
A%‘dB(IEn) = Tn + Yn + Z Z xTL1 > (y’ng ® - ®yng+1)7
=1 meCfL+1

n—1

(57»(1'”) = Up + Z <_1)é Z L@(unlaynzu ceey yne) > yne+1
=1 nEC,g+1
n—1

= U, + (—1)5 Z Uny > Re(Yngs s Ynp, 1)

=1 nECZ+1
n—1

i) = v+ (=D DT (=1 a2l > R, ) o) (5.3.15)
=1 necl+1 ee&y

where we recall that w, = Tp, — Yn, Un = Yn — Tn, and also that (—1)¢ = (—1)1+ "+~ and that
the bit value in ng) tells us in which copy of Hi., 1 HY., falls the generator x,,, cf. Def. 5.2.6.
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Proof. It follows from the definition of > given in Def. 5.3.1, the expression of R, given in
Cor. 5.3.10, and that of R} given in Lemma 5.3.13. The equivalence of the presentations of the
right codivision in terms of R, and Ly is proved in Cor. 5.4.3 in next section. O

Note that in the term z'c") R?(xsff), ...,xsff),vwﬂ) of the left codivision (5.3.15), the
labeled operator Rj = Réel""’w) is applied to variables which are also labeled, but only by the

last £ — 1 bits of e. For instance, no labels affect the variables in
Si(w2) = vy — 2\ > RV (v1) + 2P > R ()
=vp—x1>v+1y1 >0
= V2 — 2%1?)1

but labels do affect the variables in

0(z3) = vg — (:cﬁ” > Rgl)(m) + xél) > Rgl)(vl)) — ( — :17&2) > R§2) (vg) — xél) > R§2) (vl))
+ azgl) > Rél’l)(xgl),vl) — azgl) > Rém) (azgz),ful) — x&z) > Réz’l)(azgl),vl)
b o REDED 4
=v3— (1 >vet+a>u)+r>(T1>v)+21> (T1QV1) — 21> (Y1 ®01)

([ () () () - G

= v3 — (221v2 + 3xouy) + 5x%v1 — T1Yy1v1.

5.4 Functoriality of the diffeomorphisms loop

To prove the main theorem of this section we need some preliminary recurrence relations for the
recursive operators, and consequently for the Lagrange coefficients.

Corollary 5.4.1 For any { > 1 and any sequence (nq,...,ngy1) of positive integers, the coeffi-
cients dpi1(a1, ..., ap) satisfy the following recursive equation:

ny+1
dﬂ(nl’“"nZ) = Z Z ( ' : > dplfl(n%-“’nm) dp2*1(np1+2v""n101+102)"'

— . ]
J=1 peCﬁ

e dpj—l<np1+'“+pj71+27 te TL[)-

Proof. Applying a; > () to the recursive expression (5.3.6) of Ry(asg,as,...,as+1), and using
Cor. 5.3.10, immediately gives the result. ]

Lemma 5.4.2 For any £ > 0 and any a1, ...,aps1 € A, the following recursive equation holds:

-1

a1 > Ry(az, ...,ap41) = Z(—l)#l*i(al > Ri(ag, ..., ai+1)) > (aiy2® -+ @agy1).
i=0

Modulo the factor aias---apyq, this means that

/—1

_ifmi ot gt 1

dg(nl,...,ng) = Z(—l)g 1 < ! 0 —i 1 > d’i(”la”'7n’i)'
=0
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Proof. The two assertions are equivalent, and the second one appears as a recursion for the
coefficients in the non-commutative Lagrange inversion formula. It is essentially based on the
Chu-Vandermonde identity and can be proved® using the hypergeometric function 9} or using
some trick as in [8], Lemma 2.15. O

Corollary 5.4.3 For any ¢ = 0 and any aq, ...ap11 € A we have

ar > Ry(ag, ...,apr1) = Ly(ay, ..., ap) > apqq

Proof. By induction on ¢. For ¢ = 0,1 the identity is easily verified, because

a>l=a=1>a
aq I>R1(CL2) =a1>ag = Ll(al) > as.

Now suppose that for ¢ = 1,...,¢£ — 1 we have a; > R;(ag,...,a;4+1) = Li(a1,...,a;) > a;41. Then
by Lemma 5.4.2 and Def. 5.3.3 we have

-1
a1 > Ry(az, yari1) = ¥ (=17 (a1 > Ri(az, oy ai41)) & (a42® -+ @agi1)
=0
-1 '
= Y (1) (Li(ar, - ai) > aig1) B (0i42® - @aps)
20
-1

(_1)Z717i <(Li(a17 Ex3) ai) > aiJrl) Rai12® -+ ®aé) > ap+1
0

Z(ala ...,CLZ) > ag+1-

<.
Il

I
h

OJ

Remark 5.4.4 Inthe casee # (1,1, ..., 1), whether there exists an operator Lj : AL, T(A)
such that

a1 > Rj(ag, ..., apr1) = Li(a1, ..., ap) > agq

is an open question.

Lemma 5.4.5 For any £ > 1 and any a1, ...,ap41 € A, the following recursive equation holds:

[
ar > Ry(az,...,ap41) = Z(—l)%l(m > (a2® - ®ai+1)) D> Ri—i(@it2® -+ ®apq1).
i=1

Modulo the factor ajay - --agy1, and if we call n; = |a;| fori=1,...,¢ + 1, this means that

4

i—1 nq + 1

de(ni,...,ng) = Z:(—l)Z ( ; ) de—i(n1+- - 4ni41,Nig2, -0, Ng). (5.4.6)
i=1

5We warmly thank Jiang Zeng for pointing out this method to us.
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Proof. The two assertions are equivalent. Let us prove the second one by induction on ¢. Let
us call dy(ni, ..., ne) the right-hand side of equation (5.4.6). For ¢ = 1, the sum in d;(n) has only
one term for ¢ = 1, which gives

d\(n) = (—1) (“ . 1) do = dy(n).

Now suppose that eq. (5.4.6) holds for any 1 < k < ¢ — 1, that is, we have

k
.o (np+1
di(ni,...,ng) = 2:(—1)Z 1< ; > dg—i(n1+- 4111, Niv2, s NE),
i=1

and prove it for . For this, we write d¢(nq,...,ny) using the recursion given in Lemma 5.4.2
as a sum over 0 < k < £ — 1, and separate the term & = 0 to which we can not apply the
inductive hypothesis. Then we expand the factor di(ni,...,nx) using the inductive hypothesis
and exchange the sums over k and i. We finally obtain

-1
ek (mt g+ 1 o ni+1
de(na,ime) = 3, (=) k( o >dk<nl,---vnk)+(—1>z 1< y )
k=1 o

-1 -1
-1 (m+1 g (Mt ANy +1
= (=1 1( ; > PG k( é_kJr ) dg—i(ni+- 4111, Nig2, .., k)
-1 =i

ren (M),

Then, dy(nq,...,n¢) is equal to

/-1

- 1 f(n1+1
dg(nl,...,ng) = Z(—l)Z 1( ; ) dg_,-(nrl—'--+ni+1,ni+2,...,n5)
=1

en (M)

if and only if, for any 1 <7 < /¢ — 1, we have
= ni+- - +ng+1
Z(_l)ZIk< , I<:+ > dp—i(n1+--+ni1,nit2, . N)
k=i N
=dp—i(n1+-+Ni41,Mig2, 0, M)

This identity is easily verifyed by setting j = k& — 4, p1 = n1 + --- + n;41 and p; = n;y; for
2<j</{l—1-—1,since it gives

/—

i1
1 p1+_|_p 1+1
Z (—1)fit J( E—z’—j;’ > dj(p1,p2; .-, 0j) = de—i(P1, D2, s Pe—i)
i=0

which holds again by Lemma 5.4.2. O

Corollary 5.4.7 For any £ =1 and any aq,...,ap € A, the following recursive equation holds:

-1

Ly(ay,...,ap) = Z(_l)i_lLZ—i(al > (a2® -+ ®ait1), Qig2, -, ap) + -D"'a® - ®a.
i=1
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Proof. It suffices to write

-1

ay > Re(ag, ..., ar1) = D (1) (a1 > (02® -+ ®i11)) > Re—i(aiy2® -+ ®ags1)
i=1

+(=Dfar > (a2® - @agy1)

after Lemma 5.4.5, and to apply the equality by > R;(b2,...,bj41) = L;j(b1,...,b;) > bj 41 every-
where. 0

Lemma 5.4.8 For any £ > 2, any e € & and any ay,...,ay € A, we have

R}?(al, ey CL[) = Rgel)(al) > Réefim’ee)(ag, ey CL[)

+ Z REGI"“’ei)(ab ey ) ® <(li+1 > Rée_ii*_z’l‘“’e‘)(aim, ...,a4)>.

Proof. The term j = 1 in the defining recursion (5.3.12) gives exactly

R§ )( )DR(62’ Heq— 1)(a2,...,a4),
se it remains to prove that

l
33 (R ) B )

pe CJ

(em +2;5--€p1+pg )

® (ap1+1 > sz—l (ap1+2, .. ap1+p2)) ® - (549)

(ep1+ Hpjo1+2s 7‘3!)(

®(ap1+ Apj—1+1 > R ap1+“'+17j71+27"'7af)) =

= Z R§e1,...,ei) (al, ey ai) ® (CLZ‘+1 > Réii:fim’ee) (ai+2, ey ag)> .
i=1

Let us prove this identity by induction. For ¢ = 2 and 3, it is easy to verify on the above
examples that

R§(a,b) = RI(a) > RSP (b) + BRIV (a) @ (b> Ro(1)),

RS(a,b,c) = R (a) > RS (b, ¢) + R ()@ (b > R (¢)) + RY"*? (a,b) @ (¢ > Ro(1)).

Now suppose it holds up to order £ — 1, and let us prove it at order £.
Consider the left-hand side of eq. (5.4.9). Since j > 2, we can write

CZ = U Cz‘jﬂ x Cp_;

and decompose p € CZ into (p1,...,pj—1) € Cg and (p]) € C} , for any value i = j —1,...,0 — 1.
We then have p1 +---+pj_1 =iand p; =€ — (p1 +--- +pj— 1) = { —i. Therefore the left hand
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side can be written as

[y

Z —
Z Z Z ey 1 (al I>R;ii’.l“’epl)<a27"’7ap1))®
I=21=1=1 (py,...pj 1))

(pJ o+25- 76PJ 1)

- ® (anfz-i-l > R pj_1—1 (an72+27 ...,CLi)) ®

® (ai+1 > Réil:fi...,ee)(ai+27 ey g)) =

{—1 %
= Z Z Z 5617 (al > R(Ez7 —€p1— 1)(a2,...,ap1))®
i=1

k=1 (py,....px)eCk
(eP 25+-EP, )
- ® (aPk 1+1 > R k v r (aPk,1+27 70’2))) ®
® (ai-i-l > Réiizfim7ee) (a’i+27 ceey CL[)),

where P, = p1 + -+ + pr. Applying the inductive hypothesis to the sum over k leads to the
result. ]

Theorem 5.4.10 The associative algebra Hp is indeed a coloop bialgebra and represents the
loop of formal diffeomorphisms Diff as a functor Diff : As — Loop.

As a consequence, given an associative algebra A, a series a = Y, _qan A" € Diff (4) can
be seen as an algebra homomorphism a : Hpz —> A defined on the generators of Hpyp by
a(xy) = an, and the right and left division a/b and a\b are given at any order n by the following
closed formulas:

(a/b)n = HA (CL ul b) 57’ (mn)

= an = b+ >, (=1 D de(na,.e;ne) (any = bny) bny -+ by

ne Cf;rl

(a\b)n = pra (a11b) &y (zy)

n—1
=bp —an + Z( Z Z dé ni,.. ,’I’Lg) anlc%ezl) C(ele v (bne+1 - a”£+1)7
=

ne CZ+1 ec &y

where c,(fi) =ap, ife; =1 and c(el) = by, if ; = 2.

Proof. The free associative algebra Hp clearly represents the sets Diff(A) over associative
algebras A, and the comultiplication AR, is just the Faa di Bruno comultiplication Apgp seen
with values in Hpgp I Hpgp instead of Hpgg ® Hpgp, therefore it clearly represents the loop law
given in Definition 5.1.1. Thus, the theorem is proved if we show that H} is indeed a coloop
bialgebra.

The comultiplication AR satisfies the compatibility relation with the standard counit, be-
cause Apgp does, and coassociativity is not required. So it remains to check that the codivisions
0, and 0; given in Def. 5.1.1 satisfy the identities (2.2.3) and (2.2.4). Since these maps are
algebra morphisms, it suffices to verify these identities on the generators z,,, for any n > 1.

i) Let us start with the right codivision and show that it satisfies the first identity (2.2.3), namely

(id o) (6, 1id) Apgg(wn) = @n,
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which explicitely gives the recurrence (with u, = x, — yn)

n—1 n—m

Op(Tn) = up — Z Z Z O (zm) yk1®---®ykz). (5.4.11)

m=1 (= 1keCf

1—m

Expanding 0, (z,) in terms of the left recursive opeators, this equation becomes

u”+2(_1)£ Z Lf(unpynzw"vyng)\>yn5+1

meCfL+1
n—1 n—m m—1 '
- Z Z Z Z (_1)2 Z <Li(up1vyp2""7ypi) > ypi+1) > (yq1® ®ng‘)
m=1 j=1 qufl ., =0 pecift
n—1
= U, + Z Z 1)i+! Z Z < upl,ym,..,ypi)bypiH) > (Y ® - @Yq, ;)
l=i+j=11=0 m=i+1 pecf,‘fl

quZ i

n—m

Now, since
n—1
it+1 0—i 1
U aitxe,=cy
m=i+1

let us call n = (p,q), that is,

(Tll,nQ, "'7n5+1) = <p17 -y Dit1,41, 7Q_7)

Then, the recursion (5.4.11) is equivalent, for any n > 1, any 1 < £ <n — 1 and any ne C.!,
to the equation

LZ(um sYnoy -y Yn ) > Yngoy
Z_ .
= (_1)£7lil (Li(unuynzv o0y ym) > yn¢+1) > (yni+2 @ ®ynz+1)

~ W .
I
= o

<_1)£_1_i ((Li(unlaynzu seey ym) > yni+1) ®yni+2 ® T ®yn5) > yne+17

I
=}

i

which holds by definition of L,.
The second identity (2.2.3), namely

(d 1 p) (ARgg 1id) 6, (z5) = n,

is better developed using the expansion over the right recursive operators, and explicitely gives
the recurrence

n—1
Z Z (_1)6 Tny B Rf(ynzv ---yynHl) (5.4.12)

(=1 pe ol

Z Z <_1)j+1(xm > (ym@ ®ypi)) I>Rj<yQ1="'7ng')'
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Rewriting the sums in terms of m = 1,. -1, l=i+5j=1,..,n—m,i=1,....,0 and j = £ —1,
this gives a sum over p € CZ and q € C for p = 4,...,n — m. That is, we get a sum over

n— m P
k = (p,q) € C._,, and consequently a sum over n = (m, k) e C5F1:
n—1
Z Z (—1)6 Ty > Re(Yngs s Ynpir)
=1 mecﬁ+1
n—1n—-m £ n—m '
- Z Z Z Z (_1)6_”1 (xm > (ypl ® - ®ypi)) > Ré—z’(qu ---,yqzﬂ-)
m=1 (=1 i=1 p=i peC} quﬁ 1m )
n—1 n—m

(.’I’m > (ykl ® - ®ykl)) > Rffi(ykluﬁp "’7ykg)

Il Il
1
3
“Mf\ i~ 3
D
~
g

mm (ynz ® - ®ynz‘+1)) > R57i<ym‘+27 BS) yne+1)'

Therefore, for any n > 2, any £ = 1,...,n—1 and any sequence n € C.*!, eq. (5.4.12) is equivalent
to the recurrence equation

¢

:Enl > Ré(yn27 ey y’anrl) = Z(_]‘)Zil (xnl > (y’ng ® ct e ®ynl+1)) > Ré—i(ynlurga ey y’nngl)a
i=1

which is proved in Lemma 5.4.5.

ii) Let us show now that the left codivision given in Def. (5.2.6) satisfies the identities (2.2.4).
The first identity (2.2.4), namely

(p1rid) (id 11 6;) ARgg (20) = Yn,

explicitely gives the recurrence (with v, = y, — ;)

n—1 n—m

(5 = Un — Z Z Z Tm D> 6[ ylﬂ)@ T ®6l<ykx))7 (5'4'13)

mlAlkec/\

n—m

where yy, is just the kth generator zj, in the second copy of the free product algebra Hg 5 LHE 53,
therefore the formula for &;(yy) is just the same as for §;(zy).

To show this, we consider the expansion (5.3.15) of §;(z,,) given in Thm. 5.3.14. Since Rj = 0
(e1)

when e; = 2, we have zp,"’ = z,, and we can rewrite (5.3.15) as
1(20) = vn + Z T B> Z )T (CDPRE(S, 2l ).
necn m
eE(‘:e

Then eq. (5.4.13) is clearly verified for n = 1, because 0;(z1) = v1, and for any n > 2 and any
m =1,...,n — 1, it is equivalent to the equation

I
Z Z 0 (g, ) ® - - - ®5l(33k,\) = (5.4.14)

A=1keCp

_ i( Z Z (62)7' .736517,)17%)7
=2

neCf e€&y
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forany uy=n—m=1,...n — 1.

Let us prove this equation by induction on u. For g = 1 we again have §;(x1) = v;. So,
suppose that eq. (5.4.14) holds up to order p — 1 and prove it at order pu.

On the left-hand side of eq. (5.4.14), we separate the term A = 1 and observe that, for A > 2
we can decompose k = (ky,...,kx_1,k)) € C;} into (q,v) € C;‘j x C} with

q = k; fori=1,...,A—1

VvV = k)\.
Since
p—A+1
A A—1 1
= |J eixcl,

the left-hand side of eq. (5.4.14) can then be written as

pn—1

n—v
)+ 2 (D) Y iwg)® - ®di(zy,) | @1(x).

v=1 \ i= lqecl

v

We then apply the inductive hypothesis (5.4.14) to the sum over ¢ = 1,...,u — v, and expand
the single factors d;(z,) and &;(x,) as in (5.3.15), thus obtaining

i
DD G ® - ®@by(an,) =

A=1keC)
pn—1
v+ 2 (=DN Y D (=) ) > R (el el oy ) (5.4.15)
A=1 neCp Tl eeéy
S N (€5) (e})
+ Vv = Z Z Z xplz 3 ooy Tpil 177}101) ®
v=1 1=2 peCZ eeS
v—1 ( ) (e”)
® | v+ Z Z Z qu DRe (245 .. , g 5 Vg; 40
J=1 qecJ+1e”66

Finally, it remains to prove that the right-hand side of eq. (5.4.14) coincides with the right-hand
side of eq. (5.4.15). The first term v, appears in both formulas, let us compare the other terms.
The first term in eq. (5.4.15) is

g @) )

1 e (&

= Z( Z Z )€ xnl DRe (T s ooy Tny s Vny oy )-
A=1 ne At e"E €y

We apply the trick

a=R"@)= Y R") (5.4.16)

to the element %(1@11)7 then set £ =X+ 1 and e = (¢/,€") = (¢/,€],...,€Y), and get

_ _i( Z Z ) <R(e1 (z¢ (e2 )) DRE?{--M)(%%@;)’_ 7x£fez)1va)>.

=2 ne CZ ec&y
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The second term in eq. (5.4.15) is

pn—1
B = Z Uy @ Uy
v=1
We apply the second trick
e I

(e)eé&r

=— Y (F1eR (@) (5.4.17)

e=(e1,e2)€ &

to the element v,_,, and get

-5 B e een

v=1 ecé&y

- Z Z (61))®Un2

ne 02 ec &

Using again (5.4.17), the third term in eq. (5.4.15) becomes

poly—l . m “ n (e
C=Y 20 Y Y O e (ol e Bl e v))
v=1j=2

j /1 .
qeclt! eeg;

p—lv—1 ’ ” e”’ e’” e”’
=YY EY Y N N 0 RO ) e (o e B @l v,
v=1 j=2

qe citl ee&
e’e &
e’eg;

Weset l=1+14+j,n=(u—v,q)E Cﬁ and e = (¢/,¢”,e") € &, and obtain

== T T 0t Al () RO sl )

=3 neCZ ec&y

The fourth term in eq. (5.4.15) is

(Sl &) ()
o Z Z( Z Z $P612 PEER 7xpiilavpi)®’uy-
v=1 i=2

peC7'7 e'e&;
We write v, = —Ze,,egl(—l)eﬂazgfﬁ) using (5.4.16), and set ¢ = i+ 1, n = (p,v) € Cﬁ and
e = (€/,e") e &. Then we have

-1

Z Z ZRga,...,ei)(xSlelz)’” x%f 1))®U6-

ne CZ ec&y =2

D =

I Mt

With similar manipulations, setting ¢ = i+j+1 and n = (p,q) € Cﬁ, the last term in eq. (5.4.15)

o1



is

222< SYY YN ey

pecZ qeCitle’eg;eed;

/ e e el (e///)
Ry (x,(,f), “'7x1(>i3)1=”pi)® <33q1 > Re (%22 )7 s g, qu+1)>

1 -2
—Z(—l)é Z Z(_l)eZ R(el, 5 )(:L"Sff), :U’Sle,bl+1))®
=4 neCl e &y i=2

® <xsleii++12) > Réewm . e)(xsleii;s)’ 51753)1’””2))

We now observe that the sum B extends C to the value £ = 2, and that D extends E to the
value ¢ = 3. Alltogether, we have

B+C+D+E:—Z ) (- Z Riere)(glea) gy g

(=3 ne CZ ec&y
(6z+2) (€it25-ve0) ¢, (€it3) e
® <':Unz+1 RZ 1—1 (xn7,+2 RS xsl;)l ) UTLZ)

Therefore, eq. (5.4.14) is then equivalent, for any £ > 3, any n € C, and any e € &, to the
following recursion

RY(x(),. ,x,&i”l,vn» RV (2e?)) > R0 (20, ., 260 ug,)

ny na

+Z R (@l al ) @ (o) o RE @l ) o)),

which is proved in Lemma 5.4.8.

The second identity (2.2.4), namely

(p1rid) (id 1 ARgg) 8 (2n) = Yn,

can not be expressed as a recurrence on R}, because these operators do not show up explicitely
to which factor of Hp 5 I HRyp the variables belong. Then, let us use the recursion (5.4.13) to
describe §; and prove the second identity by induction on n.

The identity is verified for n = 1 because we have

(puid) (id 1 ARgg) 61(z1) = 1 + y1 — 21 = Y1

Then, suppose it holds up to the degree n — 1 Since AR,z and p are algebra homomorphisms,
if we apply the operator D = (p11id) (id I ARyp) to the expression

n—1 n—m

_Un Z Z Z Tm B 61 yk1)®®6l<ykx))7

mlAlkec/\

we obtain, for D(&;(zy)), the sum of

n—1 n—m

Dlwp) =yn+ Y, D, D, Tm®>Ur® - Quk,)



and of

_E ”im Z me<D(5l<yk1))®"'®D(5z(ykk))>.
m=1 A=1 keC}

Therefore the second identity is satisfied if, for any m = 1,....,.n — 1, any A = 1,...,n — m and

any ke C)_,., we have

D(61(yr,)) ® -+ ®D(61(yry) = Yy ® -+ ® Yy,

which is true by inductive hypothesis. ]

5.5 Properties of the diffeomorphisms loop
Proposition 5.5.1 The coloop bialgebra Hy,5 has a two-sided antipode S such that

while the identity 6 = (S11id) ARz does not hold. Moreover, the antipode in the Fada di Bruno

coloop bialgebra coincides with that in the non-commutative Fad di Bruno Hopf algebra given in
[8], that is,

n—1
S(an) == > (=" Y der1(n, 1) Tny Ty - Ty
=0

ne Cff 1

Proof. i) In a coloop bialgebra, the left and right antipodes are given respectively by
S; = (id1e) g and Sy = (e11id) 6,

cf. (2.2.8). Let us show that for Hi,5 these two operators coincide, and therefore the two-sided
antipode is well defined by S := 5; = S,.
Indeed, let us fix n > 1. For the right antipode we have

n—

—
—

Z dZJrl(nla ey n£+1) (E<xn1) - yn1) Yng """ Ynpyq

£=0 neCit!

n—

14

== Z(_l) Z d@-‘rl(nlv""né-i-l) Tny Tng """ Tnpyqy
£=0 n€c£+1

where n; > 0 implies &(z,,) = 0, and where we renamed the variables y as « because S, takes
values in Hp . For the left antipode we have

Si(zy) = — T — Z di(n1) xm (ynz) - xm)
neC3
n—
Z Z Z )® dS,1(n1, .y mrr) (d1e) (2, xlE) - ngf 1)1)”“1).
=2 necltlec gy
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Since ¢ kills the terms where some y appears, in the sum over the sequences e € £,_; there only
remains the sequence e = (1,1,...,1), for which dj ; = dyy1 and (—=1)® = +, and therefore we

have

Si(xn) = —xp + Z di(n1) Tn, Tn,

neC2

ne C£+1

n—1
- Z(_l)z Z dZJrl(nla'-'ynZJrl) TniTng =" Tnyyy
(=2

= S5,(

ii) Let us now prove the identity §, = (id11S) Af,5. For any generator z,, of Hg g, we have

n—1
(d 11 S) Allyp(2n) = 20 + S(yn) + Z 3 <n1 + 1) Ty S(ny) S(Un,.,)

" J
J=1 nECfLJr1

n—1

=Tn — Yn — Z (_1)£ Z d@-i—l(nlv "'7nf+1) Yni Yno " " Ynypiq

(=1 necttl

+n21 Z i...nil(_l)pﬁ---ﬂw Z Z (n1+1>d (g} Ly,
j o1 (@15 -5 Gy

e T aecly ey,

dp](q{’,qg)]) xnl yq% ...yqllzl ...yqj ng)]

Set { =p; +---+pj, then 1 < j < ¢ <n—1. Since

n——¢ no Nj41
L D1 Pj o+l
U U U Cpy X Oy X x Oy = Gy,
ni=1 p1=1 pj=1
because ni + ng + --- + njy1 = n, if we rename the sequence (nl,q%,...,q}n,...,q{,...,qg,j) as
ne Cf*1 the sum over j becomes

n—1 l

ny +1
Z(_l)f Z Z Z < ] > dp1<n27"-7np1+1)"'dpj<nPj,1+27”'7n£+1) Ty ynz"'yne+17
=1 neCffl J=1 png

where Pi = py + -+ + p; for i = 1,...,j. Using the recurrence proved in Corollary 5.4.1, we
finally obtain

n—1
(id]—[ S) All:ldB("En) =Tp — Yn — Z (_1)£ Z d€+1(n17 ---yné+l) Yni Yno " Yngpiq
/=1 n€c£+1
n—1
+ Z (1) Z Aoy 1(N1, o, Mo 1) Ty Yno *** Yngs
4=1 neC,€+1

= 0p(zp).

iii) The first counterexample to the analogue identity 6; = (S'11id) ARy is on the generator
x3, for which we have

(S1id) Afgg(z3) = v3 — (2z1v2 + 3z201) + 5:17%1)1 — 1Y,

o4



where v, = y, — =, while
(5[(%3) = V3 — (2%1?)2 + 3%2’01) + 5%%?)1 — T1Yy1v1.

O

This result allows us on one side to deduce some properties of the loop of formal diffeo-
morphisms, and on the other side to compare the Faa di Bruno coloop bialgebra with the
non-commutative Faa di Bruno Hopf algebra.

Corollary 5.5.2 1. The proalgebraic loop Diff is not right alternative, nor power associative.

2. Newvertheless, Diff has two-sided inverses and, for a given an associative algebra A and
an element a € Diff(A), the inverse a=! = a\e = e/a is given by the usual Lagrange
coefficients, namely

n—1
(ail)n == Z (_1)Z Z d£+1<n17 -'-7n5+1) Qny Qny * " Any iy -
£=0 nECfLJr1

3. The inversion allows us to construct the right division, that is, a/b = a o (e/b) for any
a,b e Diff (A), but it does not allow us to construct the left division, because b\a # (b\e)ca
if an # 0 and by, # 0 for some n,m > 1.

Proof. 1. The loop Diff(A) is right alternative if and only if the coloop bialgebra Hpp; is right
coalternative, that is (id I u) K = 0, where K = (AR g Uid) Afyg — (id I AR ) ARgp is the
coassociator.

The first deviation from right alternativity appears on the generator zs. If we temporarily

denote by x, = JES), Yn = :179 and z, = xg’) the three copies of the generators in H 1 H 11 H,

we get

K(w5) = 6z3(y121 — z191)
+ 29[3(y221 — 2001) + (Y122 — 2192) + (8yiz1 — Tyr1z191 — 2191)
+ (8121 — Taryiz1 — 25y1) ]
+ wl[(y3z1 — 23y1) + (Y222 — 22y2) + (Y123 — 21y3) + 3(y2y121 — Y221Y1)
+ 2(y1y221 — y122y1) + 2(yiz2 — y12192) + 2(y12122 — 21Y122)
+ (3227 — 2z20m121) + (2y12221 — 3219221)
+ (55 2% + 12} — dyiz1yiz — yiztyn — z21y125) |
and therefore
(id 1 ) K (25) = 21(y297 — y1y2y1) # 0.

The generator x5 corresponds to the power A8 of usual series with substitution law, there-
fore the deviation from right alternativity computed on the generator xs can be detected by
comparing the values (a o b) o b and a o (bo b) for the two series

aN) = A+a A2 and b)) = A+ b A% 4+ boA3

with a1 = 1 and be% # biboby. For instance®, by taking the 2 x 2 elementary matrices b = Epq
and bg = Egl, for which bgb% = bg and blbgbl =0.

5The authors warmly thank J. M. Pérez-Izquierdo for comunicating this example.
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The same computation shows that Diff(A) is not power associative, because
pdinp) K(xs) = mle:E% — l‘%:ﬂgﬂ?l # 0.

For a series ¢(A) = A + c1A2 + A3, we then have (coc)oc # co(coc) if cieac? # c3eacy. For
instance, this is verified for the two 2 x 2 matrices

11 10
01=<01> and 02=<10>,
2 4 3 3
61020%: < 1 2) and c%czclz < 11 )

2. The left and right inverses of a € Diff(A) can be found using respectively the left antipode
S; and right antipode S, of Hj 4, according to the standard rule

(e/a)n = a(Si(zn)) and (a\e)n = a(Sy(zy)).

for which we have

By Proposition 5.5.1 we have S, = S, therefore e/a = a\e.

3. The identity a/b = a o (e/b) in the loop Diff(A) is equivalent to the identity 46, =
(id 1 S,) ARyp in Hpgp, proved in Proposition 5.5.1. The analogue identity for the left division
does not hold. ]

The commutative Faa di Bruno Hopf algebra which represents the classical proalgebraic
group Diff, mentioned at the beginning of section 5, admits a non-commutative lift [§]

Hpip = Fzyp, n > 1), (xg=1)
n

Fap(@n) = ), 2m ® ) Tk Thys

m=0 (k)

where the sum is over the set of tuples (ko, k1, k2, ..., kp) of non-negative integers such that
ko+ki+ko+-- -+ kyn = n—m. Since Diff is not a group over associative algebras, the existence
of this Hopf algebra is not a priori ensured by the extention of the functor Diff from Comy to
AS[F.

Corollary 5.5.3 The image of the coloop bialgebra Hp 5 under the canonical projection m given
in Def. 2.3.7 is the non-commutative Faa di Bruno Hopf algebra Hpqy, that is,

(Hpap)® = Hidp-

Proof. Indeed, we have (Hi;p)® = HRSp as an algebra, and eventhough Al is not coasso-
ciative, the comultiplication (A} 3)® coincides with AL, and therefore it is coassociative with
respect to the component-wise multiplication in Hpgs ® Hpgg-

The assertion is then proved because, by Prop. 5.5.1, the antipode in Hp,g is unique and

coincides with that in Hgjp on generators. ]
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6 Appendix: Categorical proofs with tangles

Tangle diagrams are an efficient tool to prove formal (categorical) properties. Tangles are draw-
ings suitable to represent operations and co-operations in a monoidal category, cf. [29] [49], and
therefore can be used to encode the structure of coloops in a category (C,I1,I). In the context
of non-associative algebras they have been used in [40] to code deformations of the enveloping
algebra of a Malcev algebra, seen as the infinitesimal structure of a Moufang loop.

Tangles are drawings to be read from the top to the bottom as concatenation of operations
acting on objects related by the monoidal product, and not by a cartesian (or tensor) product.
Here is the list of the tangles needed to represent all the operations and the co-operations in

coloops, with their defining identities.

Categorical maps

T

7

u

twist

folding map

unit

X

kTJ

Coloop structure maps

A

€

comultiplication

counit

A

invertible

associative

commutative

unital

folding morphism

folding morphism

unital

counital

folding morphism

unital

o7

7/

~
N
Il

X«
,

o—C T > >
I
o
|

o0—o
I
Q

Sect.

Sect.

Sect.

Sect.

Sect.

Sect.

2.2

2.2

2.2

2.2

2.2

2.2

Sect. 2.2

Eq. (2.2.2)

Sect. 2.2

Sect. 2.2



6, right codivision fi\ folding morphism

unital

right cocancellation

é; left codivision KZL\ folding morphism

unital

left cocancellation

Further coloop maps

S, right antipode = O folding morphism

unital

folding morphism

o>

S; left antipode @ =

unital

Properties of coloops
WOy = po =ue
partial counitality (idue)d, = (eu1id) §; = id

left and right

FId) A = p(id 1 A =
5-terms identities p Sy id) p(id11.5;) ve

o8

7S

S S

G G

o L

m Sect. 2.2

T T Sect. 2.2

- @ - ‘ 7 Ea (223)

C/\/j Sect. 2.2

T T Sect. 2.2

- @ -9 ‘ Eq. (2.2.4)

= Sect. 2.2
= T Sect. 2.2
= Sect. 2.2
= T Sect. 2.2

= lO _% Eq. (2.2.6)
(1

- ‘ Eq. (2.2.7)

@5} = _% Eq. (2.2.9)



Proof of Eq. (2.2.6): For ¢,

and similarly for 9;.

Proof of Eq. (2.2.7): For ¢,

A-0)- -y

and similarly for ¢;.

Proof of Eq. (2.2.9): For S,

and similarly for .5;.

Properties of cogroups

coassociative (Arid) A = (idITA) A m = m\ Eq.
(2.2.14)

l
unique antipode S,=5=:5 m = rl =: @ Prop.

2.2.17

5-terms identity p(SUid)A = p(iduS)A =ue = = <L Eq.
T (2216

R ST LE
(2.2.15)

et cofmerse i = (S11id) A A= g Bq
(2.2.15)

Lemma 6.0.1 (cf. Prop. 2.2.17) If a coloop H is coassociative, then it has a two-sided an-
tipode satisfying the 5-terms identity (2.2.16) and the coinverse properties (2.2.15). Therefore
it 1S a cogroup.
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Proof. Assume that A is coassociative. then we have S; = S, because

v-(3- 94 -8B - )¢

and therefore S := S; = S, satisfies the 5-terms identity becuase of (2.2.9).
For the the coinverse properties, let us show that the operator R = (1d 11.S)A satisfies the
right cocancellations (2.2.4), and therefore it coincides with 6,. In fact, we have

w%@

Similarly, the operator (Stid)A satisfies the left-cocancellations (2.2.4), and therefore it coincides
with §;. O

—0

and
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