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In this article, we perform an asymptotic analysis of a nonlocal reaction-diffusion equation, with a fractional laplacian as the diffusion term and with a nonlocal reaction term. Such equation models the evolutionary dynamics of a phenotypically structured population. We perform a rescaling considering large time and small effect of mutations, but still with algebraic law. With such rescaling, we expect that the phenotypic density will concentrate as a Dirac mass which evolves in time. To study such concentration phenomenon, we extend an approach based on Hamilton-Jacobi equations with constraint, that has been developed to study models from evolutionary biology, to the case of fat-tailed mutation kernels. However, unlike previous works within this approach, the WKB transformation of the solution does not converge to a viscosity solution of a Hamilton-Jacobi equation but to a viscosity supersolution of such equation which is minimal in a certain class of supersolutions. Such property allows to derive the concentration of the population density as an evolving Dirac mass, under monotony conditions on the growth rate, similarly to the case with thin-tailed mutation kernels.

1 Introduction

Model and motivation

In this paper we are interested in the following selection-mutation model

∂ t n + (-∆) α n = n R(x, I), n(x, 0) = n 0 (x), x ∈ R d , (1) 
with

I(t) = R d n(t, x)dx. (2) 
In all what follows, α ∈ (0, 1) is given. The term (-∆) α denotes the fractional laplacian:

(-∆) α n(t, x) = h∈R d
[n(t, x) -n(t, x + h)] dh |h| d+2α .

(

Equation [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF] has been derived from a stochastic individual based model describing the evolutionary dynamics of a phenotypically structured population [START_REF] Jourdain | Lévy flights in evolutionary ecology[END_REF]. Here, t corresponds to time and x corresponds to a phenotypic trait. The function n represents the phenotypic density of a population. The term I(t) corresponds to the total population size. The growth rate of the individuals is denoted by R(x, I) which depends on the phenotypic trait and the total population size, taking into account in this way competition between the individuals. The fractional laplacian term models the mutations.

The choice of a fractional laplacian rather than a classical laplacian or an integral kernel with thin tails, allows to take into account large mutation jumps with a high rate [START_REF] Jourdain | Lévy flights in evolutionary ecology[END_REF].

Several frameworks have been used to study models from evolutionary biology. Game theory is one of the first approaches which has contributed a lot to the understanding of mechanisms of evolution [START_REF] Smith | The theory of games and the evolution of animal conflicts[END_REF][START_REF] Hofbauer | The theory of evolution and dynamical systems: mathematical aspects of selection, volume 7 of London Mathematical Society Student Texts[END_REF]. Adaptive dynamics, a theory based on stability analysis of dynamical systems, allows to study evolution under very rare mutations [START_REF] Geritz | Dynamics of adaptation and evolutionary branching[END_REF][START_REF] Diekmann | A beginner's guide to adaptive dynamics[END_REF]. Integro-differential models are used to study evolutionary dynamics of large populations (see for instance [START_REF] Magal | Mutation, selection and recombination in a model of phenotype evolution[END_REF][START_REF] Calsina | Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics[END_REF][START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF]). Probabilistic tools allow to study populations of small size [START_REF] Champagnat | Evolution of discrete populations and the canonical diffusion of adaptive dynamics[END_REF] and also to derive the above models in the limit of large populations [START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF].

Within the integro-differential framework, an approach based on Hamilton-Jacobi equations with constraint has been developed during the last decade to study asymptotically, in the limit of small mutations and large time, integro-differential models from evolutionary biology. There is a large literature on this approach which was first suggested by [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF]. See for instance [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF] where the basis of this approach for models from evolutionary biology were established. Note that this approach has also been used to study the propagation phenomena in local reaction-diffusion equations (see for instance [START_REF] Freidlin | Functional integration and partial differential equations[END_REF][START_REF] Freidlin | Limit theorems for large deviations and reaction-diffusion equations[END_REF][START_REF] Evans | A PDE approach to certain large deviation problems for systems of parabolic equations[END_REF][START_REF] Barles | Wavefront propagation for reaction-diffusion systems of PDE[END_REF]). The present article follows an earlier work [START_REF] Méléard | Singular limits for reaction-diffusion equations with fractional laplacian and local or nonlocal nonlinearity[END_REF] which was an attempt to extend the Hamilton-Jacobi approach to the case where the diffusion is modeled by a fractional laplacian rather than a classical laplacian or an integral kernel with thin tails.

We consider a rescaling introduced in [START_REF] Méléard | Singular limits for reaction-diffusion equations with fractional laplacian and local or nonlocal nonlinearity[END_REF], rescaling the size of the mutations to be smaller and performing a change of variable in time, to be able to observe the effect of small mutations on the dynamics. To this end, we choose k > 0 and ν ∈ S d-1 such that h = (e k -1)ν, and perform the following rescaling

t → t ε , M (h, dh) = dh |h| d+2α = e k dkdS |e k -1| 1+2α → M ε (k, dk, dS) = e k ε dk ε dS |e k ε -1| 1+2α . ( 4 
)
Note that with the above transformation, the dimension d disappears in the power of |e k -1|, since dh becomes (e k -1) d-1 e k dkdS.

We then study the following rescaled problem:

     ε∂ t n ε (t, x) = ∞ 0 ν∈S d-1 n ε (t, x + (e εk -1)ν) -n ε (t, x) e k
|e k -1| 1+2α dSdk + n ε (t, x) R(x, I ε (t)), I ε (t) = R d n ε (t, x)dx, n e (x, 0) = n 0 ε (x).

(5) With this rescaling, we consider much smaller mutation steps. The mutations' distribution has still algebraic tails but with a large power. In particular, it has a finite variance of order ε 2 . Note indeed that the covariance matrix v = (v i,j ) 1≤i,j≤d of the mutations' distribution above is given by

v i,j = ∞ 0 ν∈S d-1
(e εk -1) 2 ν i ν j e k |e k -1| 1+2α dSdk = O(ε 2 ), as ε → 0.

The rescaling (4) is very different from the one considered for a model with a classical laplacian [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF], that is

ε∂ t n ε -ε 2 ∆n ε = n ε R(x, I ε ),
or the one considered for a model with an integral kernel J with thin tails [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF], that is

ε∂ t n ε - R d n ε (t, x + h) -n ε (t, x) J h ε dh ε d = n ε R(x, I ε ). ( 6 
)
The possibility of big jumps in (1) changes drastically the behavior of the solutions and leads to much faster dynamics of the phenotypic density. Therefore, such type of rescaling cannot be used. In particular, if we followed the same method that has been used in [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF] for [START_REF] Barles | Exit time problems in optimal control and vanishing viscosity method[END_REF], to study [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF] we would obtain a Hamiltonian, at the limit as ε → 0, that has infinite value (see equation ( 16) in [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF]). To obtain a relevant equation at the limit and similar type of behavior as in [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF] we consider a rescaling in (4) that makes the size of the mutations much smaller. The rescaling ( 4) is derived thanks to an analogy to the fractional Fisher-KPP equation [START_REF] Méléard | Singular limits for reaction-diffusion equations with fractional laplacian and local or nonlocal nonlinearity[END_REF]. In [START_REF] Méléard | Singular limits for reaction-diffusion equations with fractional laplacian and local or nonlocal nonlinearity[END_REF], an asymptotic analysis was provided in the case of the fractional Fisher-KPP equation where the propagation has an exponential speed [START_REF] Cabré | Propagation in Fisher-KPP type equations with fractional diffusion in periodic media[END_REF][START_REF] Cabré | The influence of fractional diffusion on Fisher-KPP equations[END_REF] leading to significantly different scalings compared to the case of the classical Fisher-KPP equation (see for instance [START_REF] Evans | A PDE approach to certain large deviation problems for systems of parabolic equations[END_REF]). Model (5) was then derived with an inspiration from such rescaling. Note however that in all of the above rescalings the variance of the rescaled mutation kernel is of order ε 2 . To be able to observe concentration phenomena, the variance of the mutation kernel must be indeed small.

An asymptotic analysis of (5) was provided in [START_REF] Méléard | Singular limits for reaction-diffusion equations with fractional laplacian and local or nonlocal nonlinearity[END_REF] for homogeneous reaction terms R(I) and under strong assumptions on the initial data. Here, we extend this result to the case of heterogeneous R(x, I) and relax the assumptions on the initial data, obtaining in this way a result which is analogous to the previous works with standard terms of mutation [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF].

The method developed in [START_REF] Méléard | Singular limits for reaction-diffusion equations with fractional laplacian and local or nonlocal nonlinearity[END_REF] has been extended in several directions. In [START_REF] Souganidis | Front propagation for non-local KPP reaction diffusion equations in periodic media[END_REF][START_REF] Léculier | A singular limit in a fractional reaction-diffusion equation with periodic coefficients[END_REF] an asymptotic study of a Fisher-KPP type equation has been provided in periodic media and with a general non-local stable operator of order α ∈ (0, 2). In [START_REF] Bouin | Thin front limit of an integro-differential fisher-KPP equation with fat-tailed kernels[END_REF] a homogeneous Fisher-KPP type model has been studied, modeling the diffusion by a convolution term without singularity but considering more general decays for the integral kernel. The method provided in the present paper can also be used to generalize the results of [START_REF] Bouin | Thin front limit of an integro-differential fisher-KPP equation with fat-tailed kernels[END_REF] and to study selection-mutation models with the integral kernels given in [START_REF] Bouin | Thin front limit of an integro-differential fisher-KPP equation with fat-tailed kernels[END_REF], where a similar difficulty appears.

Assumptions

Before presenting our assumptions, we first introduce the classical Hopf-Cole transformation

n ε = exp u ε ε . (7) 
Here are our assumptions:

We assume that there are two constants 0

< I m < I M < ∞ such that min x∈R d R(x, I m ) = 0, max x∈R d R(x, I M ) = 0, (8) 
and there exists constants

K i > 0 such that, for any x ∈ R d , I ∈ R, -K 1 ≤ ∂R ∂I (x, I) ≤ -K -1 1 < 0, (9) 
sup

Im 2 ≤I≤2I M R(•, I) W 2,∞ (R d ) < K 2 . ( 10 
)
Moreover, we make the following assumptions on the initial data:

(u 0 ε ) ε is a sequence of continuous functions which converge in C loc (R d ) to u 0 , as ε → 0, ( 11 
)
where u 0 ε = ε log n 0 ε , and there exists a constant A < α and positive constants C 0 and C 1 such that

n 0 ε (x) ≤ C 0 C 1 (1 + |x| 2 ) A ε , (12) 
I m ≤ R d n 0 ε (x) ≤ I M . (13) 

Main results and plan of the paper

Our main result is the following (see Definition 4.1 for the definition of viscosity sub and supersolutions).

Theorem 1.1 Let n ε be the solution of (5) and u ε = ε log n ε . Assume (8)- [START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF]. Then, along subsequences as ε → 0, (I ε ) ε converges a.e. to I and (u ε ) ε converges locally uniformly to a function u which is Lipschitz continuous with respect to x and continuous in t, such that

D x u L ∞ (R d ×R + ) ≤ 2α, u(t, x + h) -u(t, x) ≤ 2α log(1 + |h|), for all x, h ∈ R d . (14) 
Moreover, u is a viscosity supersolution to the following equation

∂ t u - ∞ 0 ν∈S d-1 e kDxu•ν -1 e k dSdk |e k -1| 1+2α = R(x, I), u(x, 0) = u 0 (x). ( 15 
)
For fixed I, u is indeed the minimal viscosity supersolution of (15) satisfying [START_REF] Champagnat | Evolution of discrete populations and the canonical diffusion of adaptive dynamics[END_REF]. Moreover, u satisfies the following constraint

max x∈R d u(t, x) = 0, for all t > 0. ( 16 
)
It is also a viscosity subsolution of (15) in the following weak sense. Let ϕ ∈ C 2 (R + × R d ) be a test function such that u -ϕ takes a maximum at (t 0 , x 0 ) and

ϕ(t, x + h) -ϕ(t, x) ≤ (2α -ξ) log(1 + |h|), for all (t, x) ∈ B r (t 0 , x 0 ) and h ∈ R d , (17) 
with r and ξ positive constants. Then, we have

∂ t ϕ(t 0 , x 0 ) - ∞ 0 ν∈S d-1 e kDxϕ(t 0 ,x 0 )•ν -1 e k dSdk |e k -1| 1+2α ≤ lim sup s→t 0 R(x, I(s)). (18) 
A main difficulty in this convergence result is that the Hamiltonian in the above Hamilton-Jacobi equation can take infinite values. Another difficulty comes from the fact that the term I(t) is only BV and potentially discontinuous. To prove the convergence of (u ε ) ε we use the method of semi-relaxed limits [START_REF] Barles | Exit time problems in optimal control and vanishing viscosity method[END_REF] in the theory of viscosity solutions. However, since the Hamiltonian in [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF] takes infinite values and since the limit u is not in general a viscosity solution of (15), we cannot use this method in a classical manner and further work is required. This issue is indeed closely related to the work in [START_REF] Brändle | Large deviations estimates for some non-local equations. General bounds and applications[END_REF] where a large deviation type result has been obtained for a Lévy type nonlocal operator where the integral kernel has at most exponential tails. In the case where the integral kernel has exponential tails, a Hamilton-Jacobi equation close to [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF], without the growth term, is obtained at the limit. However, in that case the function obtained at the limit does not satisfy necessarily the second regularity result in [START_REF] Champagnat | Evolution of discrete populations and the canonical diffusion of adaptive dynamics[END_REF] and it is indeed a viscosity solution to the Hamilton-Jacobi equation. Note indeed that [START_REF] Champagnat | Evolution of discrete populations and the canonical diffusion of adaptive dynamics[END_REF] indicates that there is a strong regularizing effect of the solutions, independently of the regularity of R(x, I) and the initial condition. Such regularizing effect is proved simultaneously with the proof of the convergence of (u ε ) ε .

Note that in Theorem 1.1 we do not characterize the limit u as a viscosity solution to a Hamilton-Jacobi equation with constraint, as was the case in the previous results on such selection-mutation models (see for instance [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF]). We only prove that u is the minimal viscosity supersolution to (15) satisfying ( 14) and a viscosity subsolution in a weak sense. One can wonder if u is indeed a viscosity solution to [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF]. We do not expect this assertion to be true in general. The fact that the Hamiltonian in [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF] has infinite values for |D x u| ≥ 2α indicates that (15) has a regularizing effect forcing u to verify |D x u| ≤ 2α (i.e. the first property in ( 14)). However, the second property in ( 14) is a stronger property and generally is not satisfied by a solution of a Hamilton-Jacobi equation of type [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF]. In Section 7, we provide an example of a Hamilton-Jacobi equation of similar type which has a solution that does not satisfy the second inequality in [START_REF] Champagnat | Evolution of discrete populations and the canonical diffusion of adaptive dynamics[END_REF]. Existence of such solutions together with the uniqueness of viscosity solutions to Hamilton-Jacobi equations of type [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF], with fixed I, (see [START_REF] Brändle | Large deviations estimates for some non-local equations. General bounds and applications[END_REF], Section 6) indicates that u might not be a viscosity solution of (15) in general. Note that, of course, thanks to the comparison principle for fixed I, u is always greater than (or equal to) the unique viscosity solution of [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF].

The information obtained in Theorem 1.1 still allows to obtain the concentration of the population's density as Dirac masses, analogously to the previous works [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF]:

Theorem 1.2 Let n ε be the solution of [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF]. Assume (8)- [START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF]. Then, along subsequences as ε → 0,

n ε converges in L ∞ w * (0, ∞); M 1 (R d ) to a measure n, such that, supp n(t, •) ⊂ {x | u(t, x) = 0}, for a.e. t. (19) 
Moreover, for all continuous points of I(t), we have

{x | u(t, x) = 0} ⊂ {x | R(x, I(t)) = 0}. ( 20 
)
In particular, if x ∈ R and R is monotonic with respect to x, then for all t > 0 except for a countable set of points, n(t, x) = I(t) δ(x -x(t)).

The paper is organized as follows. In Section 2 we provide some preliminary regularity estimates. In section 3 we give the main elements of the proof of the convergence of u ε to a viscosity supersolution of [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF]. In Section 4 we prove Proposition 3.2 which is an important ingredient in the proof of the convergence of u ε . In sections 5 and 6 we provide respectively the proofs of Theorem 1.1 and Theorem 1.2. Finally, in Section 7, we give an example of a Hamilton-Jacobi equation of type [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF] which has a viscosity solution not satisfying the second property in [START_REF] Champagnat | Evolution of discrete populations and the canonical diffusion of adaptive dynamics[END_REF].

Throughout the paper, we denote by C positive constants that are independent of ε but can change from line to line.

Regularity estimates

In this section we prove the following Proposition 2.1 Let (n ε , I ε ) be the solution to (5) and assume (8)-( 13). Then, there exists positive constants ε 0 and C 2 such that, for all

(t, x) ∈ R + × R d and ε ≤ ε 0 , I m ≤ I ε (t) ≤ I M , (21) 
n ε (t, x) ≤ C 0 e C 2 t ε C 1 (1 + |x| 2 ) A ε . (22) 
Moreover, (I ε ) ε is locally uniformly BV for ε ≤ ε 0 and hence it converges a.e., as ε → 0 and along subsequences, to a function I : R + → R + . Moreover, I is nondecreasing in (0, +∞).

Proof. (i) [Proof of [START_REF] Geritz | Dynamics of adaptation and evolutionary branching[END_REF]] For L > L 0 , with L 0 a large constant, let χ L be a smooth function with compact support in

B L (0) such that      χ L (x) = 1 if |x| ≤ L/2, 0 ≤ χ L (x) ≤ 1 if L 2 ≤ |x| ≤ L, χ L W 2,∞ (R d ) ≤ 1.
We define

I ε,L (x) = ∞ 0 ν∈S d-1 χ L (x + (e εk -1)ν) -χ L (x) e k |e k -1| 1+2α dSdk. It is immediate from the definition of χ L that I ε,L (x) ≤ 0, for |x| ≤ L 2 . ( 23 
)
We also prove that there exists a positive constant C such that

I ε,L (x) ≤ C, for all ε ≤ 1, L > L 0 and x ∈ R d . (24) 
To this end we split the integral term in I ε,L into two parts:

I ε,L = 1 0 ν∈S d-1 χ L (x + (e εk -1)ν) -χ L (x) e k |e k -1| 1+2α dSdk + ∞ 1 ν∈S d-1 χ L (x + (e εk -1)ν) -χ L (x) e k |e k -1| 1+2α dSdk = I ε,L,1 + I ε,L,2 . Since 0 ≤ χ L ≤ 1 we have I ε,L,2 ≤ ∞ 1 ν∈S d-1 e k |e k -1| 1+2α dSdk.
To control I ε,L,1 we use the Taylor expansion of χ L (x + (e εk -1)ν) with respect to k around k = 0. We compute, for k ∈ (0, 1):

χ L (x + (e εk -1)ν) = χ L (x) + εkD x χ L (x) • ν + k 2 2 e ε k ε 2 D x χ L y + (e ε k -1 ν) • ν + e 2ε k ε 2 ν t D 2 xx χ y + (e ε k -1)ν ν ,
with k ∈ (0, k). We deduce, thanks to the boundedness of the derivatives of χ L , that

I ε,L,1 ≤ ε 2 C 1 0 k 2 e (1+2ε)k |e k -1| 1+2α dk,
which is bounded for ε ≤ 1.

We now have at hand a suitable set of test functions that we will use to prove [START_REF] Geritz | Dynamics of adaptation and evolutionary branching[END_REF]. We multiply ( 5) by χ L and integrate with respect to x and obtain, using Fubini's Theorem, ( 23) and ( 24),

ε d dt R d χ L (x)n ε (t, x)dx = R d n ε (t, x) ∞ 0 ν∈S d-1 χ L (x + (e εk -1)ν) -χ L (x) e k |e k -1| 1+2α dSdk dx + R d χ L (x)n ε (t, x)R(x, I ε (t))dx ≤ C ∞ L 2 n ε (t, x)dx + R d χ L (x)n ε (t, x)R(x, I ε (t))dx.
We then let L go to +∞, and use the fact that n ε (t,

•) ∈ L 1 (R d ) to obtain ε d dt I ε (t) = R d n ε (t, x)R(x, I ε (t))dx.
Using the above equation, ( 8) and ( 13) we obtain [START_REF] Geritz | Dynamics of adaptation and evolutionary branching[END_REF].

(ii) [Proof of [START_REF] Hofbauer | The theory of evolution and dynamical systems: mathematical aspects of selection, volume 7 of London Mathematical Society Student Texts[END_REF]] We define, for C 2 a positive constant,

s(t, x) = C 0 e C 2 t ε C 1 (1 + |x| 2 ) A ε
.

We show that, for C 2 large enough, s is a supersolution to [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF]. Note that (5), with I ε fixed, admits a comparison principle, since (1) admits a comparison principle (see [START_REF] Barles | Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited[END_REF]-Theorem 3). Moreover, thanks to Assumption [START_REF] Calsina | Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics[END_REF],

n 0 ε (x) ≤ C 0 C 1 (1 + |x| 2 ) A ε = s(0, x).
We hence obtain [START_REF] Hofbauer | The theory of evolution and dynamical systems: mathematical aspects of selection, volume 7 of London Mathematical Society Student Texts[END_REF] thanks to the comparison principle.

To prove that, for C 2 large enough, s is a supersolution to (5), since R(x, I ε ) is bounded thanks to [START_REF] Cabré | Propagation in Fisher-KPP type equations with fractional diffusion in periodic media[END_REF], it is enough to prove that

F (t, x) = ∞ 0 ν∈S d-1 s(t, x + (e εk -1)ν) -s(t, x) e k |e k -1| 1+2α dSdk ≤ Cs(t, x),
for C a constant which is large enough but is independent of ε. We compute

F (t, x) s(t, x) = ∞ 0 ν∈S d-1 (1 + |x| 2 ) A ε (1 + |x + (e εk -1)ν| 2 ) A ε -1 e k |e k -1| 1+2α dSdk.
We split the above integral into two parts, that we will control separately,

G 1 = ∞ 1 ν∈S d-1 (1 + |x| 2 ) A ε (1 + |x + (e εk -1)ν| 2 ) A ε -1 e k |e k -1| 1+2α dSdk, G 2 = 1 0 ν∈S d-1 (1 + |x| 2 ) A ε (1 + |x + (e εk -1)ν| 2 ) A ε -1 e k |e k -1| 1+2α dSdk.
In order to control the above integrals we use the following inequality:

1 + |y -l| 2 1 + |y| 2 ≤ (1 + |l|) 2 , with l = (e εk -1)ν, x = y -l.
We deduce that

s(x, k, ν) := (1 + |x| 2 ) A ε (1 + |x + (e εk -1)ν| 2 ) A ε ≤ e 2Ak , (25) 
and hence

G 1 ≤ ∞ 1 ν∈S d-1 (e 2Ak -1) e k |e k -1| 1+2α dSdk ≤ C.
Note that the above integral is bounded since A < α.

In order to control G 2 we use the Taylor's expansion of s(x, k, ν) with respect to k, around k = 0. We compute

∂ ∂k s(x, k, ν) = -2A (1 + |x| 2 ) A ε (1 + |x + (e εk -1)ν| 2 ) 1+ A ε (x + (e εk -1)ν, ν)e εk , ∂ 2 ∂k 2 s(x, k, ν) = 4A(A + ε) (1+|x| 2 ) A ε (1+|x+(e εk -1)ν| 2 ) 2+ A ε (x + (e εk -1)ν, ν) 2 e 2εk
-2Aε

(1+|x| 2 ) A ε (1+|x+(e εk -1)ν| 2 ) 1+ A ε (x + (e εk -1)ν, ν)e εk -2Aε (1+|x| 2 ) A ε (1+|x+(e εk -1)ν| 2 ) 1+ A ε (ν, ν)e 2εk .
One can verify that

1 0 ν∈S d-1 k ∂ ∂k s(x, 0, ν) e k |e k -1| 1+2α dSdk = 0,
and thanks to (25), ∂ 2 ∂k 2 s(x, k, ν) is bounded for ε ≤ ε 0 and 0 ≤ k ≤ 1. We deduce that, for all ε ≤ ε 0 ,

G 2 ≤ C 1 0 ν∈S d-1 k 2 e k |e k -1| 1+2α dSdk ≤ C.
Combining the above inequalities on G 1 and G 2 we obtain that F (t, x) ≤ Cs(t, x) for C large enough and ε ≤ ε 0 .

(iii) [Uniform BV bound on I ε ] The proof of uniform BV bound on I ε is an adaptation of the proof of Theorem 3.1. in [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF]. Integrating [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF] with respect to x we obtain

d dt I ε = 1 ε R d n ε (t, x) R(x, I ε (t))dx. We define J ε (t) = 1 ε R d n ε (t, x) R(x, I ε (t))dx and J ε,L (t) = 1 ε R d χ L (x)n ε (t, x) R(x, I ε (t)
)dx, with χ L defined in the proof of part (i). We then differentiate J ε,L with respect to t and obtain

d dt J ε,L (t) = 1 ε R d χ L (x) ∂ ∂t n ε (t, x) R(x, I ε (t))dx + 1 ε R d χ L (x)n ε (t, x) ∂ ∂I R(x, I ε (t))dx d dt I ε (t) = 1 ε 2 R d ∞ 0 ν∈S d-1 χ L (x) n ε (t, x + (e εk -1)ν) -n ε (t, x) R(x, I ε (t)) e k |e k -1| 1+2α dSdkdx + 1 ε 2 R d χ L (x)n ε (t, x) R(x, I ε (t)) 2 dx + 1 ε R d χ L (x)n ε (t, x) ∂ ∂I R(x, I ε (t))dx d dt I ε (t) = A 1 + A 2 + A 3 .
We rewrite A 1 as below

A 1 = 1 ε 2 R d ∞ 0 S d-1 n ε t, x + (e εk -1)ν (χ L R)(x, I ε ) -(χ L R) x + (e εk -1)ν, I ε ) e k |e k -1| 1+2α dSdkdx+ 1 ε 2 R d ∞ 0 S d-1 (n ε χ L R) x + (e εk -1)ν, I ε ) -(n ε χ L R)(x, I ε ) e k |e k -1| 1+2α dSdkdx = 1 ε 2 ∞ 0 S d-1 R d n ε t, x + (e εk -1)ν (χ L R)(x, I ε ) -(χ L R) x + (e εk -1)ν, I ε ) e k |e k -1| 1+2α dxdSdk = 1 ε 2 ∞ 0 S d-1 R d n ε t, y (χ L R)(y -(e εk -1)ν, I ε ) -(χ L R) y, I ε ) e k |e k -1| 1+2α dydSdk.
Note that here we have used Fubini's theorem on the first and the second integral term in order to integrate with respect to x before integrating with respect to ν and then k, which allows to show in particular that the second integral term is null. We then use [START_REF] Cabré | Propagation in Fisher-KPP type equations with fractional diffusion in periodic media[END_REF] and a Taylor expansion of the integrand of the last line with respect to ε around ε = 0 to obtain that, for ε ≤ ε 0 small enough, there exists a positive constant C, independent of ε and L, such that

|A 1 | ≤ C.
We next notice that A 2 is positive. We hence obtain that

d dt J ε,L (t) ≥ -C + 1 ε R d χ L (x)n ε (t, x) ∂ ∂I R(x, I ε (t))dx J ε (t).
We then let L go to +∞ and use [START_REF] Hofbauer | The theory of evolution and dynamical systems: mathematical aspects of selection, volume 7 of London Mathematical Society Student Texts[END_REF] and ( 9) to obtain

d dt J ε (t) ≥ -C + 1 ε R d n ε (t, x) ∂ ∂I R(x, I ε (t))dx J ε (t).
It follows, thanks to ( 9) and [START_REF] Geritz | Dynamics of adaptation and evolutionary branching[END_REF], that for ε ≤ ε 0 ,

d dt (J ε (t)) -≤ C - I m εK 1 (J ε (t)) -, with (J ε (t)) -= max(0, -J ε (t)). We deduce that (J ε (t)) -≤ ε CK 1 I m + (J ε (0)) -e -Imt K 1 ε .
We next use [START_REF] Cabré | Propagation in Fisher-KPP type equations with fractional diffusion in periodic media[END_REF] and ( 13) to obtain

(J ε (0)) -≤ 1 ε R d n 0 ε (x) R(x, I ε (0))dx - ≤ K 2 I M ε .
We deduce that

(J ε (t)) -≤ ε CK 1 I m + K 2 I M ε e -Imt K 1 ε . ( 26 
)
Finally, we show that the above inequality leads to a BV estimate on I ε . To this end, we compute using [START_REF] Geritz | Dynamics of adaptation and evolutionary branching[END_REF] and the above inequality:

T 0 | d dt I ε (t)|dt = T 0 d dt I ε (t)dt + 2 T 0 (J ε (t)) -dt ≤ I M -I m + 2ε CK 1 T I m + K 2 K 1 I M I m .
We conclude that (I ε ) ε is locally uniformly BV for ε ≤ ε 0 . As a consequence, (I ε ) ε converges a.e., as ε → 0 and along subsequences, to a function I : R + → R + . Moreover, for all t 0 > 0, I is nondecreasing in [t 0 , +∞) thanks to [START_REF] Lions | Remarks on Hamilton-Jacobi equations with measurable timedependent Hamiltonians[END_REF].

3 Convergence of u ε to a viscosity supersolution of [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF] In this Section, we prove the following Proposition 3.1 Assume (8)- [START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF]. As ε → 0 and along subsequences, u ε converges to u, a viscosity supersolution of the Hamilton-Jacobi equation in [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF]. Moreover, u satisfies [START_REF] Champagnat | Evolution of discrete populations and the canonical diffusion of adaptive dynamics[END_REF].

Proof. For a technical reason, we will need to deal with an equation with negative growth rate. Therefore, we modify n ε in the following way

m ε (t, x) = n ε (t, x) e -K 2 t ε .
The above function solves

ε∂ t m ε (t, x) = ∞ 0 ν∈S d-1 m ε (t, x + (e εk -1)ν) -m ε (t, x) e k |e k -1| 1+2α dSdk + m ε (t, x) R(x, I ε (t)), ( 27 
) with R(x, I) = R(x, I) -K 2 ≤ 0. ( 28 
)
We then define

v ε = ε log(m ε ).
It is easy to verify that (u ε ) ε converges to u a viscosity supersolution to the Hamilton-Jacobi equation in [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF] if and only if (v ε ) ε converges to v, a viscosity supersolution of the following equation

∂ t v -H(D x v) = R(x, I), (29) 
with

H(D x v) = ∞ 0 ν∈S d-1 e kDxv•ν -1 e k dSdk |e k -1| 1+2α . ( 30 
)
Moreover, if v satisfies [START_REF] Champagnat | Evolution of discrete populations and the canonical diffusion of adaptive dynamics[END_REF], then u also satisfies [START_REF] Champagnat | Evolution of discrete populations and the canonical diffusion of adaptive dynamics[END_REF].

In what follows we will prove that (v ε ) ε converges indeed to a viscosity supersolution of (29) that satisfies [START_REF] Champagnat | Evolution of discrete populations and the canonical diffusion of adaptive dynamics[END_REF]. We first notice that thanks to [START_REF] Hofbauer | The theory of evolution and dynamical systems: mathematical aspects of selection, volume 7 of London Mathematical Society Student Texts[END_REF], v ε is locally uniformly bounded above by:

v ε (t, x) ≤ ε log C 0 -A log(C 1 ) + (C 2 -K 2 )t -A log(1 + |x| 2 ).
To avoid lower estimate we use a classical trick by modifying v ε a little bit (see for instance [START_REF] Barles | Comparison principle for Dirichlet type Hamilton-Jacobi equations and singular perturbation of degenerated elliptic equations[END_REF]):

v B ε = ε log(m ε + e -B ε ), (31) 
with B a large positive constant. One can verify that v B ε is locally uniformly bounded from above and below. We prove the following results: Proposition 3.2 Assume that (I ε ) ε converges as ε → 0 to I. Then, as ε → 0, the sequence (v B ε ) ε converges to v B a viscosity supersolution to the following equation

min(v B + B, ∂ t v B -H(D x v B ) -R(x, I)) = 0. ( 32 
)
Moreover, v B satisfies

D x v B L ∞ (R d ×R + ) ≤ 2α, v B (t, x + h) -v B (t, x) ≤ 2α log(1 + |h|), (33) 
for all (x, h) ∈ R d × R d .
Lemma 3.3 For any compact set K ∈ R + ×R d , there exists B 0 large enough, such that for all B ≥ B 0 ,

-B < v B in K.
We postpone the proof of Proposition 3.2 to the next section and the proof of Lemma 3.3 to the end of this paragraph and explain first how they allow us to conclude. Thanks to Proposition 2.1, as ε → 0 and along subsequences, I ε converges a.e. to a function I. Proposition 3.2 implies that, along such subsequences and for all B > 0, v B ε converges to v B a viscosity supersolution of (32). Let's fix a compact set K and consider B 0 given by Lemma 3.3. Thanks to the definitions of v ε and v B ε we can write

v ε = ε log(e v B 0 ε ε -e -B 0 ε ).
We then use the fact that, in the set K, -B 0 < v B 0 , to obtain that v ε converges, in the set K, to v = v B 0 . Moreover, v is a viscosity supersolution to [START_REF] Smith | The theory of games and the evolution of animal conflicts[END_REF], in the set K thanks to [START_REF] Souganidis | Front propagation for non-local KPP reaction diffusion equations in periodic media[END_REF] and it satisfies [START_REF] Champagnat | Evolution of discrete populations and the canonical diffusion of adaptive dynamics[END_REF] thanks to (33).

To prove Lemma 3.3 we first introduce the following semi-relaxed limits

u(t, x) = lim sup (s,y)→(t,x) ε→0 u ε (s, y), v(t, x) = lim sup (s,y)→(t,x) ε→0 v ε (s, y), v B (t, x) = lim sup (s,y)→(t,x) ε→0 v B ε (t, x), v B (t, x) = lim inf (s,y)→(t,x) ε→0 v B ε (t, x).
Note that we can define such quantities, since u ε is locally uniformly bounded from above and v B ε is locally uniformly bounded from below and above. We then prove the following lemma. Lemma 3.4 Assume (8)- [START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF]. Then, for all t ∈ R + , we have

max x∈R d u(t, x) ≥ 0.
[Proof of Lemma 3.4] Let's fix t ∈ R + and assume that max x∈R d u(t, x) = -a < 0. Note that such maximum is attained thanks to [START_REF] Hofbauer | The theory of evolution and dynamical systems: mathematical aspects of selection, volume 7 of London Mathematical Society Student Texts[END_REF]. Thanks to [START_REF] Hofbauer | The theory of evolution and dynamical systems: mathematical aspects of selection, volume 7 of London Mathematical Society Student Texts[END_REF] there exists constants r > 0 large enough and ε 0 small enough such that, for all ε ≤ ε 0 ,

Br(0) c n ε (t, x)dx < I m 2 .
It follows from ( 21) that

I m 2 ≤ Br(0) n ε (t, x)dx = Br(0) e uε(t,x) ε dx.
Letting ε → 0 we obtain that

I m 2 ≤ Br(0) lim sup ε→0 e uε(t,x) ε dx = 0,
which is a contradiction.

[Proof of Lemma 3.3] Let's fix T > 0. Thanks to Lemma 3.4 and the definition of v B we have

-K 2 T ≤ max x v B (t, x) = max x v B (t, •), for t ∈ [0, T ].
We also note that, thanks to [START_REF] Hofbauer | The theory of evolution and dynamical systems: mathematical aspects of selection, volume 7 of London Mathematical Society Student Texts[END_REF], there exists a positive constant r large enough such that

v(t, x) = u(t, x) -K 2 t < -K 2 T, for (t, x) ∈ [0, T ] × B r (0) c .
It follows that for B > K 2 T and t ∈ [0, T ], v B (t, •) attains its maximum with respect to x in the set B r (0). Moreover, this maximum is greater than -K 2 T . Next, using the Lipschitz continuity of v B given by Proposition 3.2, we deduce that for any compact set K ⊂ [0, T ] × R d and B > K 2 T , there exists a constant C large enough, independent of B, such that

-C < v B (t, x), for all (t, x) ∈ K.
Finally, taking B 0 = max(K 2 T + 1, C) we conclude that -B 0 < v B 0 (t, x), for all (t, x) ∈ K.

Proof of Proposition 3.2

To prove Proposition 3.2, we will work with semi-relaxed limits v B and v B . A classical method in the theory of viscosity solutions is to prove that v B and v B are respectively sub and supersolutions of [START_REF] Souganidis | Front propagation for non-local KPP reaction diffusion equations in periodic media[END_REF] and then use a comparison principle to obtain that v B ≤ v B . This would imply that v B = v B and that (v ε ) ε converges locally uniformly to the solution of [START_REF] Souganidis | Front propagation for non-local KPP reaction diffusion equations in periodic media[END_REF]. Here, we cannot use this strategy because v B is not generally a subsolution of (32). To overcome this difficulty we first regularize the supersolution v B and modify it to become a strict supersolution and to satisfy some required properties. Then we use it as a test function that we compare with v B to obtain directly that v B ≤ v B . See [START_REF] Brändle | Large deviations estimates for some non-local equations. General bounds and applications[END_REF][START_REF] Barles | A Bellman approach for regional optimal control problems in R N[END_REF] where this method has been suggested in other contexts.

Before providing the proof of Proposition 3.2 we first recall the definition of viscosity solutions for [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF] which has a discontinuous Hamiltonian (see [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF]-page 80). Note that here the discontinuity of the Hamilton-Jacobi equation comes from the fact that the function I can be potentially discontinuous since it is only of bounded variation.

Definition 4.1 (viscosity solutions) (i) An upper semi-continuous function u which is locally bounded is a subsolution of (15) if and only if

∀ϕ ∈ C 2 (R + × R d ), if u -ϕ takes a local maximum at (t 0 , x 0 ), then ∂ t ϕ(t 0 , x 0 ) - ∞ 0 ν∈S d-1 e kDxϕ(t 0 ,x 0 )•ν -1 e k dSdk |e k -1| 1+2α ≤ lim sup s→t 0 R(x, I(s)).
(ii) A lower semi-continuous function u which is locally bounded is a supersolution of (15) if and only

if ∀ϕ ∈ C 2 (R + × R d ), if u -ϕ takes a local minimum at (t 0 , x 0 ), then ∂ t ϕ(t 0 , x 0 ) - ∞ 0 ν∈S d-1 e kDxϕ(t 0 ,x 0 )•ν -1 e k dSdk |e k -1| 1+2α ≥ lim inf s→t 0

R(x, I(s)).

(iii) A continuous function u which satisfies both the properties above, is a viscosity solution of [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF].

We provide the proof of Proposition 3.2 in several steps. Note first that replacing [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF] in [START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF], we obtain that

∂ t v B ε = ∞ 0 ν∈S d-1 (e v B ε (t,x+(e εk -1)ν)-v B ε (t,x) ε -1) e k |e k -1| 1+2α dSdk + m ε m ε + e -B ε R(x, I ε (t)). (34) 
(i) We first prove that v B (t, x) is a supersolution to [START_REF] Souganidis | Front propagation for non-local KPP reaction diffusion equations in periodic media[END_REF]. To this end, let's suppose that ϕ ∈ C(R + × R d ; R) ∩ C 2 (O(t 0 , x 0 )), with O(t 0 , x 0 ) a neighborhood of (t 0 , x 0 ), is a test function such that v B -ϕ attains a global and strict minimum at (t 0 , x 0 ). Then, (see [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF], Lemma 4.2) there exists a sequence (t ε , x ε ) ε such that v B ε -ϕ has a global minimum at (t ε , x ε ), (t ε , x ε ) → (t 0 , x 0 ) as ε → 0 and v B ε (t ε , x ε ) → v B (t 0 , x 0 ). Using (34), [START_REF] Magal | Mutation, selection and recombination in a model of phenotype evolution[END_REF] and the fact that (t ε , x ε ) is a global minimum point of v B ε -ϕ, we obtain

∂ t ϕ(t ε , x ε ) ≥ M 0 ν∈S d-1 (e ϕ(tε ,xε+(e εk -1)ν)-ϕ(tε,xε) ε -1) e k |e k -1| 1+2α dSdk + R(x ε , I ε (t ε )) + ∞ M ν∈S d-1 (e v B ε (tε,xε+(e εk -1)ν)-v B ε (tε,xε) ε -1) e k |e k -1| 1+2α dSdk.
(35) Note that the above formula holds for all M > 0 since

ϕ(t ε , z) -ϕ(t ε , x ε ) ≤ v B ε (t ε , z) -v B ε (t ε , x ε ), for all z ∈ R d .
Using the Taylor-Lagrange formula we have, for ε small enough and thanks to the fact that ϕ ∈ C 2 (O(t 0 , x 0 )), for µ ∈ (0, ε),

ϕ(t ε , x ε + (e εk -1)ν) = ϕ(t ε , x ε ) + kεD x ϕ(t ε , x ε ) • ν + ε 2 2 e µk k 2 D x ϕ t ε , x ε + (e µk -1 ν) • ν + e 2µk k 2 ν t D 2 xx ϕ t ε , x ε + (e µk -1)ν ν .
Therefore, for fixed M as ε → 0, the first integral term at the r.h.s. of ( 35) converges to

M 0 ν∈S d-1
(e kDxϕ(t 0 ,x 0 )•ν -1) e k |e k -1| 1+2α dSdk.

Passing to the limit in (35) as ε → 0 we thus obtain that

∂ t ϕ(t 0 , x 0 ) ≥ M 0 ν∈S d-1 (e kDxϕ(t 0 ,x 0 )•ν -1) e k |e k -1| 1+2α dSdk + lim inf (s,y)→(t 0 ,x 0 ) ε→0 R(y, I ε (s)), - ∞ M ν∈S d-1 e k |e k -1| 1+2α dSdk,
where we have used the positivity of the exponential term in the last term of (35). Letting M → ∞ and using the smoothness of R with respect to the first variable and it's monotonicity with respect to its second variable we obtain that

∂ t ϕ(t 0 , x 0 ) ≥ +∞ 0 ν∈S d-1 (e kDxϕ(t 0 ,x 0 )•ν -1) e k |e k -1| 1+2α dSdk + R(x 0 , lim sup s→t 0 ε→0 I ε (s)),
To prove that v B (t, x) is a supersolution to [START_REF] Souganidis | Front propagation for non-local KPP reaction diffusion equations in periodic media[END_REF], that is

∂ t ϕ(t 0 , x 0 ) ≥ +∞ 0 ν∈S d-1
(e kDxϕ(t 0 ,x 0 )•ν -1) e k |e k -1| 1+2α dSdk + R(x 0 , I(t 0 )), with I(t 0 ) = lim sup

s→t 0 I(s),
it remains to prove that lim sup

s→t 0 ε→0 I ε (s) ≤ lim sup s→t 0 I(s).
This can be proved similarly to the proof of Theorem 4.1. in [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF]. Finally, from [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF] it is immediate that v B ≥ -B. Therefore, v B (t, x) is a supersolution to [START_REF] Souganidis | Front propagation for non-local KPP reaction diffusion equations in periodic media[END_REF].

(ii) We prove that

D x v B L ∞ (R d ×R + ) ≤ 2α, v B (t, x + h) -v B (t, x) ≤ 2α log(1 + |h|). ( 36 
) Let (t, x) ∈ R + × R d be such that there exists a test function ϕ ∈ C(R + × R d ; R) ∩ C 2 (O(t, x)), with O(t,
x) a neighborhood of (t, x), such that v B -ϕ attains a global and strict minimum at (t, x). We first prove the second inequality of (36) for such points. Note that the set of such points is dense in R + ×R d .

Let's suppose that there exist (k 0 , ν 0 ) ∈ R + × S d-1 and b > 0, such that

v B (t, x + (e k 0 -1)ν 0 ) -v B (t, x) ≥ 2k 0 α + b.
Since v B is lower semi-continuous, we deduce that there exist positive constants k 1 and k 2 such that

k 1 < k 0 < k 2 and an open set Ω 0 ⊂ S d-1 such that ν 0 ∈ Ω 0 and v B (t, x + (e k -1)ν) -v B (t, x) ≥ 2kα + b 2 , for k ∈ (k 1 , k 2 ), and ν ∈ Ω 0 .
From the definition of v B , we also deduce that, there exists a subsequence (ε n ) n , with ε n → 0 as n → +∞, and there exists (

t n , x n ) such that (t n , x n ) is a global minimum point of v B εn -ϕ, (t n , x n ) → (t, x) and v B εn (t n , x n ) → v B (t,
x), as n → +∞, and

v B εn (t n , x n + (e k -1)ν) -v B εn (t n , x n ) ≥ 2kα + b 4 , for k ∈ (k 1 , k 2 )
, and ν ∈ Ω 0 .

Similarly to (35) we obtain that

∂ t ϕ(t n , x n ) ≥ M 0 ν∈S d-1 (e ϕ(tn ,xn+(e εnk -1)ν)-ϕ(tn,xn) εn -1) e k |e k -1| +2α dSdk + R(x n , I εn (t n )) + k 2 εn k 1 εn ν∈Ω 0 e v B εn (tn,xn+(e εnk -1)ν)-v B εn (tn,xn) εn e k |e k -1| 1+2α dSdk - ∞ M ν∈S d-1 e k |e k -1| 1+2α dSdk ≥ M 0 ν∈S d-1 (e ϕ(tn ,xn+(e εnk -1)ν)-ϕ(tn,xn) εn -1) e k |e k -1| 1+2α dSdk + R(x n , I εn (t n )) + k 2 k 1 ν∈Ω 0 e 2kα+ b 4 εn e k εn e k(1+2α) εn dS dk εn - ∞ M ν∈S d-1 e k |e k -1| 1+2α dSdk
Note that the third term in the r.h.s. of the above inequality goes to +∞ as n → +∞, while the other terms are bounded and asymptotically, as n → +∞, greater than

M 0 ν∈S d-1 (e kDxϕ(t,x)•ν -1) e k |e k -1| 1+2α dSdk + R(x, I(t)) - ∞ M ν∈S d-1 e k |e k -1| 1+2α dSdk.
This is in contradiction with the fact that ∂ t ϕ(t n , x n ) is bounded, and hence we obtain the second inequality in (36):

v B (t, x + h) -v B (t, x) ≤ 2α log(1 + |h|), for all h ∈ R d . (37) 
We hence have proved (36) for all (t, x) below which we can put a C 2 test function. Note also that since (t, x) is a global minimum point of v B -ϕ, we have

ϕ(t, x + h) -ϕ(t, x) ≤ 2α log(1 + |h|), for all h ∈ R d .
and hence |∇ϕ|(t, x) ≤ 2α.

We deduce that

-|∇v B | ≥ -2α, in R + × R d ,
in the viscosity sense. As a consequence, v B is Lipschitz continuous with Lipschitz constant 2α. Since the set of the points (t, x) below which we can put a C 2 test function is dense in R + ×R d , the continuity of v B implies that (37) holds indeed for all (t, x) ∈ R + × R d and hence the second inequality in (36) holds. The first inequality in (36) is a consequence of the second one.

(iii) We next prove that v B (0, x) ≥ u B 0 (x) = max(u 0 (x), -B), for all x ∈ R d . To this end, we first prove that max

(∂ t v B (0, x) -H(D x v B (0, x)) -R(x, I(0)), v B (0, x) -u B 0 (x)) ≥ 0. ( 38 
)
To prove the above inequality, let (ε n , t n , x n ) n be such that, as n → +∞, (ε n , t n , x n ) → (0, 0, x) and v B εn (t n , x n ) → v B (0, x). Let's first suppose that there exists a subsequence, that we call again by an abuse of notation (ε n , t n , x n ) n , such that t n = 0. It follows that

v B εn (t n , x n ) = v B εn (0, x n ) = ε n log e u 0 εn (xn) εn + e -B ε .
We then let n → +∞ to obtain, thanks to [START_REF] Cabré | The influence of fractional diffusion on Fisher-KPP equations[END_REF], that v B (0, x) = u B 0 (x) and hence (38).

We now suppose that such a subsequence does not exist and hence we can suppose that, removing if necessary a finite number of points from the sequence, for all n ≥ 1, we have t n > 0. We can then repeat the arguments in Step (i) to prove that

∂ t v B (0, x) -H(D x v B (0, x)) -R(x, I(0)) ≥ 0,
and hence (38).

We next prove that u B 0 (x 0 ) ≤ v B (0, x 0 ), following the arguments of [1]-Theorem 4.7. To this end, we first notice that H(p) ≥ 0, for all p ∈ R d , since e kp•ν + e -kp•ν ≥ 2.

We consider the following test function

ϕ(t, x) = - |x -x 0 | 2 η 2 - t η .
For η small enough, v B -ϕ attains a minimum at (t η , x η ) such that t η → 0 and x η → x 0 as η → 0. Note that since H and R are bounded from below, for η small enough,

∂ t ϕ(t η , x η ) -H(D x ϕ(t η , x η )) -R(x η , I(t η )) < 0.
Since v B is a supersolution to (32) for t > 0, we deduce that t η = 0. Using (38) we obtain that

u B 0 (x η ) ≤ v B (0, x η ).
Moreover, since (0, x η ) is a minimum point of v B -ϕ, we deduce that

u B 0 (x η ) ≤ v B (0, x η ) ≤ v B (0, x 0 ).
Letting η → 0, and thanks to the continuity of u B 0 we obtain that

u B 0 (x 0 ) ≤ v B (0, x 0 ). (iv) We next prove that v B (t, x) ≤ v B (t, x).
To this end, we first modify and regularize v B (t, x) and then use the regularized function as a test function. We first modify v B at the initial time in the following way:

v B ⋄ (t, x) =    v B (t, x) t > 0, lim inf s→0 s>0 v B (s, x) t = 0.
Note from (iii) and the lower semi-continuity of v B that

u B 0 (x) ≤ v B ⋄ (0, x).
Moreover, with this definition, v B ⋄ (t, x) is a viscosity supersolution of (32) also on the boundary t = 0.

Note that thanks to (36) v B ⋄ (t, x) is Lipschitz and a.e. differentiable with respect to x. We perform an inf-convolution of v B ⋄ to make it also Lipschitz continuous with respect to time:

v B ⋄,γ (t, x) = inf s∈R + {v B ⋄ (s, x) + (t -s) 2 γ 2 }. (39) 
One can verify that v B ⋄,γ converges to v B ⋄ as γ → 0. We prove that v B ⋄,γ is a supersolution of a perturbed version of the equation in [START_REF] Souganidis | Front propagation for non-local KPP reaction diffusion equations in periodic media[END_REF] in (0, +∞) × R d . Let ϕ be a smooth test function and assume that v B ⋄,γ -ϕ takes a minimum at the point (t 0 , x 0 ) ∈ (0, +∞) × R d . Assume also that

v B ⋄,γ (t 0 , x 0 ) = v B ⋄ (s 0 , x 0 ) + (t 0 -s 0 ) 2 γ 2 .
Note that such s 0 ∈ [0, ∞) exists since the infimum in (39) is attained. Therefore, (t 0 , s 0 , x 0 ) is a minimum point of the following function

(t, s, x) → v B ⋄ (s, x) + (t -s) 2 γ 2 -ϕ(t, x).
Since v B ⋄ is a supersolution of (32) in [0, ∞) × R d , we deduce that 2(t 0 -s 0 ) γ 2 -H(D x ϕ(t 0 , x 0 )) -R(x 0 , I(s 0 )) ≥ 0, which is equivalent with

∂ t ϕ(t 0 , x 0 ) -H(D x ϕ(t 0 , x 0 )) -R(x 0 , I(s 0 )) ≥ 0.
We conclude that

∂ t ϕ(t 0 , x 0 ) -H(D x ϕ(t 0 , x 0 )) -R(x 0 , I(t 0 )) ≥ R(x 0 , I(s 0 (t 0 ))) -R(x 0 , I(t 0 )), (40) 
with s 0 (t 0 ) a point where the infimum in (39) is attained. Note also that, by the definition of s 0 (t 0 ) and the fact that |v B ⋄ | is bounded, there exists a constant C, which may depend on B, such that

|t 0 -s 0 (t 0 )| ≤ Cγ. (41) 
However, despite the above inequality, the right hand side of (40) can be large for small γ because of the discontinuity of I.

Let χ β (•, •) = 1 β d+1 χ(•/β, •/β) be a smoothing mollifier, with χ : R + × R d → R + a smooth function such that      0 ≤ χ ≤ 1, R + ×R d χ(t, x)dxdt = 1, χ(t, x) = 0, if |x| ≥ 1 or |t| ≥ 1.
We define

v B ⋄,β,γ = v B ⋄,γ * χ β .
Using the concavity of the Hamiltonian in [START_REF] Souganidis | Front propagation for non-local KPP reaction diffusion equations in periodic media[END_REF] and (40) we obtain that

∂ t v B ⋄,β,γ (t 0 , x 0 ) - ∞ 0 ν∈S d-1 e kDxv B ⋄,β,γ (t 0 ,x 0 )•ν -1 e k dSdk |e k -1| 1+2α -R * χ β (t 0 , x 0 ) ≥ R + ×R d χ β (t 0 -τ, x 0 -y) R(y, I(s 0 (τ ))) -R(y, I(τ )) dτ dy. ( 42 
)
We prove that the right hand side of the above inequality is greater than -µ 2(1-µ) , with 0 < µ < 1 a small constant, for γ small enough. To this end, define

A = {τ ∈ [t 0 -β, t 0 + β] | | I(s 0 (τ )) -I(τ ) | ≤ κ},
with κ a small constant to be chosen later. Note that A may be empty. We split the integral on the r.h.s. of (42) into two parts in the following way

R d R + χ β (t 0 -τ, x 0 -y) R(y, I(s 0 (τ ))) -R(y, I(τ )) dτ dy = y∈B β (x 0 ) A χ β (t 0 -τ, x 0 -y) R(y, I(s 0 (τ ))) -R(y, I(τ )) dτ dy+ y∈B β (x 0 ) A c χ β (t 0 -τ, x 0 -y) R(y, I(s 0 (τ ))) -R(y, I(τ )) dτ dy = F 1 + F 2 .
Using ( 9), [START_REF] Magal | Mutation, selection and recombination in a model of phenotype evolution[END_REF] and the definition of χ β we obtain that

|F 1 | ≤ K 1 κ.
Moreover, using [START_REF] Cabré | Propagation in Fisher-KPP type equations with fractional diffusion in periodic media[END_REF] and the definition of χ β we obtain that, for some positive constant C ′ ,

|F 2 | ≤ C ′ K 2 β A c
dτ.

We then use the monotonicity of I, thanks to Proposition 2.1, ( 21) and ( 41) to obtain that

A c dτ ≤ 3CγI M κ ,
and hence

|F 2 | ≤ 3C ′ CK 2 I M γ βκ .
Here, we have used the fact that at most

I M κ disjoint intervals [τ i , τ i + Cγ] exist such that I(τ i + Cγ) -I(τ i ) > κ. Moreover, if B = ∪ i∈I [τ i , τ i + Cγ] is a maximal set of such intervals, then A c ⊂ ∪ i∈I [τ i -Cγ, τ i + 2Cγ].
Combining the above properties and choosing κ and γ small enough such that γ << κβ, we obtain that

∂ t v B ⋄,β,γ (t 0 , x 0 ) - ∞ 0 ν∈S d-1 e kDxv B ⋄,β,γ (t 0 ,x 0 )•ν -1 e k dSdk |e k -1| 1+2α -R * χ β (t 0 , x 0 ) ≥ - µ 2(1 -µ) . (43) 
We thus obtain a supersolution, with a small error, which is smooth with respect to x and t. We then modify it to obtain a strict supersolution and also make the inequalities in (36) strict:

v B ⋄,β,γ,µ = (1 -µ)v B ⋄,β,γ + µt, with 0 < µ < 1.
Using the concavity of the Hamiltonian and the fact that t is a strict supersolution of (43) we obtain that v B ⋄,β,γ,µ is a supersolution of the following equation, for γ small enough,

∂ t v B ⋄,β,γ,µ - ∞ 0 ν∈S d-1 e kDxv B ⋄,β,γ,µ •ν -1 e k dSdk |e k -1| 1+2α ≥ R * χ β + µ 2 , in (0, +∞) × R d , (44) 
and moreover

D x v B ⋄,β,γ,µ L ∞ (R d ×R + ) ≤ 2α(1 -µ), v B ⋄,β,γ,µ (t, x + h) -v B ⋄,β,µ (t, x) ≤ 2α(1 -µ) log(1 + |h|). ( 45 
)
Note also that by regularity and the above inequalities, v B ⋄,β,γ,µ is a strict supersolution up to t = 0. We have now a good candidate for a test function.

Fix T > 0. Let's suppose that max

(t,x)∈[0,T ]×R d v B -v B ⋄ ≥ a > 0.
Using the bound [START_REF] Hofbauer | The theory of evolution and dynamical systems: mathematical aspects of selection, volume 7 of London Mathematical Society Student Texts[END_REF] and the fact that v B ≥ -B, we obtain that such maximum is attained at some point (t 0 , x 0 ) ∈ [0, T ] × K, with K a compact set. Moreover, v B (t 0 , x 0 ) > -B. We can choose the set K such that x 0 is an interior point of this set and such that the value of v B -v B ⋄ on [0, T ] × ∂K is strictly less than this maximum. For γ, β and µ small enough, v B -v B ⋄,β,γ,µ takes a positive maximum, greater than a/2, at some point ( t, x) ∈ [0, T ] × K, with v B ( t, x) > -B. The main idea is to consider v B ⋄,β,γ,µ as a test function at the point ( t, x). To deal with the discontinuity in time of R we will use methods of viscosity solutions for Hamilton-Jacobi equations where the Hamiltonian is L 1 with respect to t [START_REF] Ishii | Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets[END_REF][START_REF] Lions | Remarks on Hamilton-Jacobi equations with measurable timedependent Hamiltonians[END_REF]. To this end, we define

b β,ε (t) = sup x∈K R(x, I ε (t)) -R(•, I ε (•)) * χ β (t, x) , b β (t) = sup x∈K R(x, I(t)) -R(•, I(•)) * χ β (t, x) .
One can verify that, for all t > 0,

t 0 b β,ε (s)ds → t 0 b β (s)ds, as ε → 0, t 0 b β (s)ds → 0, as β → 0.
Therefore, for β small enough, v B (t, x) -v B ⋄,β,γ,µ (t, x) -t 0 b β (s)ds, attains a positive maximum. Note from the definition of v B and the above properties, there exists a sequence (ε

n ) n , with ε n → 0 as n → ∞, such that v B εn -v B ⋄,β,γ,µ - t 0 b β,εn ( 
s)ds takes a positive maximum at some point (t εn , x εn ) ∈ K. Passing to the limits along an appropriate subsequence, noting again by an abuse of notation (ε n ) n , we obtain that, as ε n → 0, (t εn , x εn ) → (t, x), such that v εn (t εn , x εn ) → v B (t, x) and (t,

x) ∈ K is a maximum point of v B (t, x) -v B ⋄,β,γ,µ (t, x) - t 0 b β (s)ds.
Moreover, for all (t, x) ∈ [0, T ] × K, we have

R(x, I ε (t)) ≤ b β,ε (t) + R(•, I ε (•)) * χ β (t, x). ( 46 
)
Case 1 : t > 0. Then, for ε n small enough, we have also t εn > 0. We then use v B ⋄,β,γ,µ + t 0 b β,εn (s)ds as a test function for equation (34) on v εn at the point (t εn , x εn ):

∂ t v B ⋄,β,γ,µ (t εn , x εn ) ≤ ∞ 0 ν∈S d-1 e v B ⋄,β,γ,µ (tε n ,xε n +(e εnk -1)ν)-v B ⋄,β,γ,µ (tε n ,xε n ) εn -1 e k |e k -1| 1+2α dSdk + mε n mε n +e -B εn R(x εn , I εn (t εn )) -b β,εn (t εn ).
Furthermore, thanks to (46) and taking ε n , β, γ and µ small enough such that (t εn , x εn ) ∈ K, we obtain

∂ t v B ⋄,β,γ,µ (t εn , x εn ) ≤ ∞ 0 ν∈S d-1 e v B ⋄,β,γ,µ (tε n ,xε n +(e εnk -1)ν)-v B ⋄,β,γ,µ (tε n ,xε n ) εn -1 e k |e k -1| 1+2α dSdk + mε n mε n +e -B εn R(x εn , I εn (t εn )) -R(x εn , I εn (t εn )) + R(•, I εn (•)) * χ β (t εn , x εn ).
We then let ε n → 0 and use similar arguments as in Step (i), (45) and the fact that v B (t, x) > -B to find that

∂ t v B ⋄,β,γ,µ (t, x) - ∞ 0 ν∈S d-1 e kDxv B ⋄,β,γ,µ (t,x)•ν -1 e k dSdk |e k -1| 1+2α ≤ R(•, I(•)) * χ β (t, x). (47) 
Note indeed that, thanks to (45),

∞ M ν∈S d-1 e v B ⋄,β,γ,µ (tε n ,xε n +(e εnk -1)ν)-v B ⋄,β,γ,µ (tε n ,xε n ) εn -1 e k |e k -1| 1+2α dSdk ≤ ∞ M ν∈S d-1 e 2α(1-µ)k -1 e k |e k -1| 1+2α dSdk which tends to 0 as M → ∞.
We conclude by noticing that (47) is in contradiction with (44) which holds when γ is chosen small enough.

Case 2 : t = 0. If there is a subsequence (t εn ) εn such that t εn = 0, then v B (0, x) = u B 0 ( x). This equality together with step (iii) implies that v B (0, x)-v B ⋄,β,γ,µ (0, x) < a/2 for β, γ and µ small enough, which is a contradiction. We can thus assume that t εn > 0. Then, the problem can be treated as in Case 1.

Proof of Theorem 1.1

In view of Proposition 3.1 which was proved in Section 3, to prove Theorem 1.1 it remains to prove that u, a limit of (u ε ) ε along a subsequence as ε → 0, satisfies [START_REF] Diekmann | A beginner's guide to adaptive dynamics[END_REF], it is minimal in the set of viscosity supersolutions satisfying [START_REF] Champagnat | Evolution of discrete populations and the canonical diffusion of adaptive dynamics[END_REF] and it is a viscosity subsolution to [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF] in a weak sense as stated in the theorem.

[The proof of (16)] In view of Lemma 3.4, to prove [START_REF] Diekmann | A beginner's guide to adaptive dynamics[END_REF] it is enough to prove that max x∈R d u(t, x) ≤ 0. This is immediate from the Hopf-Cole transformation [START_REF] Barles | Comparison principle for Dirichlet type Hamilton-Jacobi equations and singular perturbation of degenerated elliptic equations[END_REF], the Lipschitz continuity of u and [START_REF] Geritz | Dynamics of adaptation and evolutionary branching[END_REF].

[Minimality of u in the set of viscosity supersolutions satisfying (14)] Let's assume that u is a viscosity supersolution to [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF] satisfying [START_REF] Champagnat | Evolution of discrete populations and the canonical diffusion of adaptive dynamics[END_REF]. To prove that u ≤ u we first define analogously to Section 3: v B = max(-B, u -K 2 t).

We then repeat the arguments in the proof of Proposition 3.2-Step (iv), to obtain that v B ≤ v B . We next let B → ∞ to deduce that u ≤ u.

[u is a viscosity subsolution of (15) in a weak sense] Let's suppose that ϕ ∈ C(R + × R d → R) ∩ C 2 (O(t 0 , x 0 )) is a test function at the point (t 0 , x 0 ) such that it satisfies [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF] and such that u -ϕ takes a global and strict maximum at the point (t 0 , x 0 ). We prove that ϕ satisfies [START_REF] Evans | A PDE approach to certain large deviation problems for systems of parabolic equations[END_REF].

Since (u ε ) ε converges locally uniformly to u, we deduce that u ε -ϕ takes a global maximum at a point (t ε , x ε ) ∈ R + × R d such that, as ε → 0, (t ε , x ε ) → (t 0 , x 0 ). Note also that replacing [START_REF] Barles | Comparison principle for Dirichlet type Hamilton-Jacobi equations and singular perturbation of degenerated elliptic equations[END_REF] in ( 5) we obtain the following equation

∂ t u ε = ∞ 0 ν∈S d-1
(e uε(t,x+(e εk -1)ν)-uε(t,x) ε -1) e k |e k -1| 1+2α dSdk + R(x, I ε (t)). Thanks to the above equality and the fact that u ε -ϕ takes a global maximum at the point (t ε , x ε ), we find that

∂ t ϕ(t ε , x ε ) ≤ ∞ 0 ν∈S d-1
(e ϕ(tε ,xε+(e εk -1)ν)-ϕ(tε,xε) ε -1) e k |e k -1| 1+2α dSdk + R(x ε , I ε (t)).

Note that for ε small enough, (t ε , x ε ) ∈ B r (t 0 , x 0 ) with r given by [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF]. In view of [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF], we can pass to the limit in the above inequality and obtain

∂ t ϕ(t 0 , x 0 ) - ∞ 0 ν∈S d-1
e kDxϕ(t 0 ,x 0 )•ν -1 e k dSdk |e k -1| 1+2α ≤ lim sup ε→0 R(x ε , I ε (t ε )), which leads to (18) since (t ε , x ε ) → (t 0 , x 0 ) and thanks to the estimate on dIε dt (see Step (i) in the proof of Proposition 3.2 and [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF]).

6 Proof of Theorem 1.2

Thanks to [START_REF] Geritz | Dynamics of adaptation and evolutionary branching[END_REF] we obtain that, along subsequences as ε → 0, n ε converges in L ∞ w * (0, ∞); M 1 (R d ) to a measure n. From the Hopf-Cole transformation and ( 16), ( 19) is immediate. We prove that [START_REF] Freidlin | Limit theorems for large deviations and reaction-diffusion equations[END_REF] holds at the continuity points of I(t).

Let (t 0 , x 0 ) be such that u(t 0 , x 0 ) = 0 with t 0 a continuity point of I. Then, ϕ ≡ 0 is a test function which satisfies [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF] and such that u -ϕ takes a maximum at the point 0. Therefore, ϕ is an admissible test function and (18) holds, i.e. 0 ≤ lim sup s→t 0 R(x 0 , I(s)) = R(x 0 , I(t 0 )).

We next prove the inverse inequality. To this end, we integrate [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF] with respect to t, on (t 0 , t 0 + h) at the point x = x 0 . Using the positivity of

S d-1
e kDxu•ν -1 dS ≥ 0, and the fact that u is a viscosity supersolution to [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF], we obtain that 1 h t 0 +h t 0 R(x 0 , I(s))ds ≤ u(t 0 + h, x 0 ) -u(t 0 , x 0 ) h .

Using [START_REF] Diekmann | A beginner's guide to adaptive dynamics[END_REF] and the fact that u(t 0 , x 0 ) = 0 we obtain that 1 h t 0 +h t 0 R(x 0 , I(s))ds ≤ 0.

We then let h → 0 and use the continuity of I at the point t 0 to obtain R(x 0 , I(t 0 )) ≤ 0.

7 An example of a Hamilton-Jacobi equation of type [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF] with a solution not satisfying the second property of [START_REF] Champagnat | Evolution of discrete populations and the canonical diffusion of adaptive dynamics[END_REF] In this section, we provide an example of a Hamilton-Jacobi equation of type [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF] which has a viscosity solution that does not satisfy the second property of [START_REF] Champagnat | Evolution of discrete populations and the canonical diffusion of adaptive dynamics[END_REF]. This example together with the fact that such Hamilton-Jacobi equation, with fixed I, has a unique viscosity solution (see [START_REF] Brändle | Large deviations estimates for some non-local equations. General bounds and applications[END_REF], Section 6), indicates that the function u might not be in general a viscosity solution of [START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF]; it is only a viscosity supersolution and a viscosity subsolution in a weak sense as stated in Theorem 1.1.

Consider the following equation

∂ t u(t, x) - ∞ 0
e k∂xu(t,x) + e -k∂xu(t,x) -2 e k dk |e k -1| 1+2α = a(t, x), (t, x) ∈ R + × R,

u(0, x) = 0, x ∈ R, (48) 
with

a(t, x) = -C √ 1 + x 2 (1 + t) 2 - ∞ 0 e Ctx (1+t) √ 1+x 2 k + e -Ctx (1+t) √ 1+x 2 k
-2 e k dk |e k -1| 1+2α , with 0 < C < 2α. One can verify that

u(t, x) = - Ct √ 1 + x 2 1 + t ,
is a solution to (48). However, u does not satisfy the second property in [START_REF] Champagnat | Evolution of discrete populations and the canonical diffusion of adaptive dynamics[END_REF] since it has linear decay.
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