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Introduction

An undirected connected graph is represented by G(V, E) where V is the vertex set and E is the edge set. There are several types of covering problems such as covering the vertex set by stars (domination problem), covering the vertex set by cliques (the clique covering problem), covering the vertex set by independent sets (the coloring problem), and covering the vertex set by path-types. A path-type means a path, an induced path or an isometric path. A path P is an induced path in G if the subgraph induced by the vertices of P is a path. An induced path is also called a chordless path [START_REF] Mezzini | On the complexity of finding chordless paths in bipartite graphs and some interval operators in graphs and hypergraphs[END_REF]. Let us recall that isometric path and geodesic are other names for shortest path.

Mathematicians agree that the term "covering" is over-used or inappropriatelyused in graph theory. In set theory, there are two different terminologies: set covering problem and set hitting problem. The edge cover problem is a special case of set covering problem while the vertex cover problem is a special case of set hitting problem. While set theorists distinguished the two concepts by "covering" and "hitting", graph theorists chose to use the same term "covering" to mean two different concepts. Thus, right in the beginning, the term "cover" was over-used. The trend has been continuing. It is not uncommon that researchers use the term "path cover problem" to mean "path partition problem" and use the same term to mean "induced path cover problem". It is observed that the concepts "cover" & "partition" and the terms "path" & "induced path" are used inappropriately. There is no consistency in the usage of notations too. For example, while some authors use the notation π to represent the path cover number, others use the notation µ to represent the same concept of path cover number. These "inconsistent notation" and "inappropriate terminologies" lead novice readers to confusion. This situation demands an article that classifies and simplifies the notations and terminologies of path-type covering and partitioning problems.

In this article, we divide the "theory of decomposition" into six problems and classify the literatures accordingly. We also bring their related concepts together under one umbrella. This article targets young researchers in graph theory. The benefit of this article is that it exposes the gap and open space in research area under each problem. The article highlights that there is plenty of research to be done in this topic. In addition, this article will save time for young researchers to choose a right research topic in this domain and it may be a reference to apply common notations and appropriate terminologies in their research articles.

In section 3, some relevant problems such as the k-path cover problem, the S-path cover problem and k-path vertex cover problem are discussed. Since these topics are not our main focus, we do not provide elaborate literature survey for these problems.

In section 4, the significance of Gallai-Milgram theorem and Berge path partition conjecture is highlighted. The three cover problems are discussed in section 5 and the three partition problems are studied in section 6.

Path-type covering and partitioning problems

Brause and Krivoš-Belluš [START_REF] Brause | On a relation between k-path partition and k-path vertex cover[END_REF] state that the cover problem and the partition problem are central problems in graph theory. One such well-known concept in graph theory is "clique covering" and "clique partitioning" [START_REF] Erdős | Clique partitions and clique coverings[END_REF]. A path cover of G is a set of paths such that every vertex v ∈ V belongs to at least one path, whereas a path partition of G is a set of paths such that every vertex v ∈ V belongs to exactly one path [START_REF]Berge's conjecture on directed path partitions -a survey[END_REF]. In a path partition, the paths are mutually vertex-disjoint. A few authors use the term "vertex-disjoint path cover" to mean "path partition" [START_REF] Barioli | Computation of minimal rank and path cover number for certain graphs[END_REF]. The following six invariants (See Figure 1) are defined here:

(1) The path cover number of G, denoted by π c (G), is the cardinality of a minimum path cover of G. The path cover problem is to find a path cover of minimum cardinality in G.

(2) The induced path cover number of G, denoted by ρ c (G), is the cardinality of a minimum induced path cover of G. The induced path cover problem is to find an induced path cover of minimum cardinality in G.

(3) The isometric path cover number of G, denoted by ip c (G), is the cardinality of a minimum isometric path cover of G. The isometric path cover problem is to find an isometric path cover of minimum cardinality in G.

(4) The path partition number of G, denoted by π p (G), is the cardinality of a minimum path partition of G. The path partition problem is to find a path partition of minimum cardinality in G.

(5) The induced path partition number of G, denoted by ρ p (G), is the cardinality of a minimum induced path partition of G. The induced path partition problem is to find an induced path partition of minimum cardinality in G.

(6) The isometric path partition number of G, denoted by ip p (G), is the cardinality of a minimum isometric path partition of G. The isometric path partition problem is to find an isometric path partition of minimum cardinality in G. While some authors [START_REF] Rao | Linear algorithm for optimal path problem on interval graphs[END_REF][START_REF] Chartrand | The induced path number of bipartite graphs[END_REF][START_REF] Erdős | Clique partitions and clique coverings[END_REF][START_REF] Hartman | Variations on the Gallai-Milgram theorem[END_REF][START_REF]Berge's conjecture on directed path partitions -a survey[END_REF][START_REF]Induced-path partition on graphs with special blocks[END_REF][START_REF] Skupién | Path partitions for vertices and Hamiltonicity of graphs[END_REF][START_REF] Srikant | Optimal path cover problem on block graphs and bipartite permutation graphs[END_REF][START_REF] Pak | Optimal path cover problem on block graphs[END_REF][START_REF] Yan | The path-partition problem in block graphs[END_REF] use the term "path partition", others [START_REF] Asdre | An optimal parallel solution for the path cover problem on P 4 -sparse graphs[END_REF][START_REF] Barioli | Computation of minimal rank and path cover number for certain graphs[END_REF][START_REF] Catral | Zero forcing number, maximum nullity, and path cover number of subdivided graphs[END_REF][START_REF] Corneil | LDFS-based certifying algorithm for the minimum path cover problem on cocomparability graphs[END_REF][START_REF] Hung | Solving the path cover problem on circulararc graphs by using an approximation algorithm[END_REF][START_REF] Magnant | A note on the path cover number of regular graphs[END_REF][START_REF] Nakano | A time-optimal solution for the path cover problem on cographs[END_REF][START_REF] Ore | Arc coverings of graphs[END_REF][START_REF] Row | Zero forcing number, path cover number, and maximum nullity of cacti[END_REF][START_REF] Fatemeh | On the relationships between zero forcing numbers and certain graph coverings[END_REF][START_REF] Yu | Covering 2-connected 3-regular graphs with disjoint paths[END_REF] use the term "path cover" (or vertex-disjoint path cover) in the place of "path partition". Some authors use the term "decomposition" for "partition" [START_REF] Arumugam | Decomposition of graphs into paths and cycles[END_REF][START_REF] Rani | Induced path decomposition and hole in sierpinsky graph[END_REF].

A simple example in Figure 2 demonstrates the different behaviors of six different problems: 

π c (G) = 1; ρ c (G) = 2; ip c (G) = 3; π p (G) = 1; ρ p (G) = 2; ip p (G) = 4; π c (H) = 2; ρ c (H) = 2; ip c (H) = 2; π p (H) = 3; ρ p (H) = 3; ip p (H) = 3;
The inequalities in Lemma 2.1 are true because of the following facts:

(1) An isometric path is an induced path. An induced path is a path.

(2) A path partition is a path cover. Lemma 2.1 For a given graph G,

(1) π c (G) ≤ ρ c (G) ≤ ip c (G); π p (G) ≤ ρ p (G) ≤ ip p (G); (2) π c (G) ≤ π p (G); ρ c (G) ≤ ρ p (G); ip c (G) ≤ ip p (G);
3 Some generalized concepts

In this section, we discuss some problems which are closely related to the six problems.

The k-path cover problem

A k-path is a path having at most k vertices. Here is a word of caution: While defining a k-path, some authors define k-path as a path of at most k vertices [START_REF] Jin | On the k-path cover problem for cacti[END_REF][START_REF]On the k-path partition of graphs[END_REF] and some authors define k-path as a path of length at most k [START_REF] Korpelainen | A boundary class for the k-path partition problem[END_REF]. Korpelainen [START_REF] Korpelainen | A boundary class for the k-path partition problem[END_REF] states that the 3-path partition problem is NP-complete on comparability graphs. According to his definition of k-path, the correct statement is that the 2-path partition problem is NP-complete on comparability graphs.

A k-path cover is a set of k-paths that cover V . The k-path cover problem is to find a k-path cover of minimum cardinality in G. This is a generalized version of path cover problem [START_REF]On the k-path partition of graphs[END_REF]. When k = 2, the k-path cover problem becomes the edge cover problem. It is straightforward to define other five problems in the same way [START_REF] Korpelainen | A boundary class for the k-path partition problem[END_REF][START_REF] Monnot | The path partition problem and related problems in bipartite graphs[END_REF][START_REF]On the k-path partition of graphs[END_REF].

The k-path partition problem is solved for trees [START_REF] Yan | Hedetniemi, k-path partitions in trees[END_REF], cacti [START_REF] Jin | On the k-path cover problem for cacti[END_REF], cographs for a fixed k [START_REF] Steiner | On the k-path partition problem in cographs[END_REF], threshold graphs [START_REF] Steiner | On the k-path partition problem in cographs[END_REF], bipartite permutation graphs [START_REF]On the k-path partition of graphs[END_REF]. The 3-path partition problem is NP-complete on general graphs [START_REF] Garey | Computers and Intractability: A guide to the theory of NP-completeness[END_REF] and comparability graphs [START_REF]On the k-path partition of graphs[END_REF]. The k-path partition problem is NP-complete on the class of cographs [START_REF] Steiner | On the k-path partition problem in cographs[END_REF] and chordal bipartite graphs [START_REF]On the k-path partition of graphs[END_REF] if k is part of the input. The k-path partition problem as well as the induced k-path partition problem remains NP-complete on bipartite graphs of maximum degree three [START_REF] Monnot | The path partition problem and related problems in bipartite graphs[END_REF]. The k-path partition problem remains NP-complete for a graph class defined by finitely many minimal forbidden induced subgraphs [START_REF] Korpelainen | A boundary class for the k-path partition problem[END_REF]. Korpelainen [START_REF] Korpelainen | A boundary class for the k-path partition problem[END_REF] has nicely analyzed the differences between the k-path cover problem and induced k-path cover problem. The author also provides a good account of literature survey on k-path cover problems and their related topics [START_REF] Korpelainen | A boundary class for the k-path partition problem[END_REF].

The S-path cover problem

Here is another generalization of the path cover problem. For a set S of vertices in a graph G = (V, E), an S-path cover is a path cover P in which every vertex of S is an endpoint of a path in P . The S-path cover problem is to find an S-path cover of minimum cardinality in G. Some authors [START_REF] Asdre | A linear-time algorithm for the kfixed-endpoint path cover problem on cographs[END_REF][START_REF]A polynomial solution to the k-fixed-endpoint path cover problem on proper interval graphs[END_REF][START_REF] Breeanne | The k-fixed-endpoint path partition problem[END_REF][START_REF] Li | A linear time algorithm for the 1-fixed-endpoint path cover problem on interval graphs[END_REF] call it k-fixed-endpoint path cover problem (or kP C problem) where k = |S|. Notice that, when S is empty, the S-path cover problem coincides with the classical path cover problem [START_REF] Yeh | The path-partition problem in bipartite distance-hereditary graphs[END_REF].

It is shown that the 1-Fixed-Endpoint path cover problem is polynomial on interval graphs [START_REF] Li | A linear time algorithm for the 1-fixed-endpoint path cover problem on interval graphs[END_REF] and the k-fixed-endpoint path cover problem is polynomial on cographs [START_REF] Asdre | A linear-time algorithm for the kfixed-endpoint path cover problem on cographs[END_REF], proper interval graphs [START_REF]A polynomial solution to the k-fixed-endpoint path cover problem on proper interval graphs[END_REF]. The S-path partition number is polynomially solvable for bipartite distance-hereditary graph [START_REF] Yeh | The path-partition problem in bipartite distance-hereditary graphs[END_REF]. The PhD thesis by Baker [START_REF] Breeanne | The k-fixed-endpoint path partition problem[END_REF] is a good source of information on this problem.

The k-path vertex cover problem

There is another concept in the literature called k-path vertex cover (which is denoted by k-(All-) Path Cover) [START_REF] Funke | On k-path covers and their applications[END_REF]. A set C of vertices is a k-path vertex cover if every k-path on k vertices contains at least one vertex from C [START_REF] Li | The k-path vertex cover in Cartesian product graphs and complete bipartite graphs[END_REF]. While the k-path cover problem is an extension of edge cover problem, the k-path vertex cover problem is an extension of vertex cover problem. Brause and Krivoš-Belluš [START_REF] Brause | On a relation between k-path partition and k-path vertex cover[END_REF] have studied the relationship between the k-path vertex cover problem and the k-path partition problem. Both these problems are completely different from the computational complexity point of view. The k-path vertex cover problem is NP-complete for cubic planar graphs of girth 3 for k = 3 [START_REF] Tu | The vertex cover P 3 -problem in cubic graphs[END_REF]. Funke, Nusser and Storandt [START_REF] Funke | On k-path covers and their applications[END_REF] have provided a list of applications of this problem on different domains.

A discussion on the Gallai-Milgram theorem

One of the earliest contributions to the path partition problem is the Gallai-Milgram theorem. While surveying the Gallai-Milgram theorem, Berge states that the Gallai-Milgram theorem has been independently extended by Las Vergnas and Linial [START_REF] Berge | Path partitions in directed graphs[END_REF][START_REF] Hartman | Variations on the Gallai-Milgram theorem[END_REF][START_REF]Berge's conjecture on directed path partitions -a survey[END_REF][START_REF] Linial | Covering digraphs by paths[END_REF]. The Gallai-Milgram theorem illustrates the differences among the three pathtypes such as path, induced path and isometric path. The Gallai-Milgram theorem is true only for path covers and path partitions in undirected graphs. Let α(G) denote the independence number of G. Notice that the inequalities in Theorem 4.3 are not true for trees. The following result is straightforward and does not require any proof: Theorem 4.4 Let G be an undirected bipartite graph. Then

ρ c (G) ≤ ρ p (G) ≤ α(G); ip c (G) ≤ ip p (G) ≤ α(G)
In undirected graphs, the Gallai-Milgram theorem illustrates how the behavior of isometric and induced paths changes from the dense graphs (such as chordal graphs without pendant vertices) to sparse graphs (such as bipartite graphs).

Following Las Vergnas and Linial, Berge takes the Gallai-Milgram theorem to the next level which is the famous Berge path partition conjecture [START_REF] Berge | Path partitions in directed graphs[END_REF][START_REF] Hartman | Variations on the Gallai-Milgram theorem[END_REF][START_REF]Berge's conjecture on directed path partitions -a survey[END_REF] and weak path partition conjecture [START_REF]Extending the greene-kleitman theorem to directed graphs[END_REF]. Hartman [START_REF]Berge's conjecture on directed path partitions -a survey[END_REF] has provided a survey on the Berge path partition conjectures.

As we have discussed the behavior of the Gallai-Milgram theorem on bipartite graphs and chordal graphs, a similar discussion on the Berge path partition conjecture will be interesting. It will also be useful to study the behavior of the Berge path partition conjecture for different path-types such as paths, induced paths, and isometric paths on special classes of undirected graphs.

The three cover problems

In this section, we shall discuss three problems: the path cover problem, the induced path cover problem and the isometric path cover problem.

The path cover problem

The Hamiltonian path problem, and hence the path cover problem is NP-complete for planar graphs, bipartite graphs, chordal graphs, chordal bipartite graphs, and strongly chordal graphs [START_REF] Yeh | The path-partition problem in bipartite distance-hereditary graphs[END_REF]. Lin, Olariu and Pruesse [START_REF] Lin | An optimal path cover algorithm for cographs[END_REF] have presented an optimal algorithm for determining a minimum path cover for cographs. Unfortunately, there is no record of any significant research work on the path cover problem. But there is a variant of path cover problem which is called the identifying path cover problem. A path cover P is an identifying path cover if for each pair u, v of vertices, there is a path P of P such that exactly either u or v belongs to P . Foucaud and Kovše [START_REF] Foucaud | Identifying path covers in graphs[END_REF] have given lower and upper bounds on the minimum size of an identifying path cover for general graphs and discuss the tightness of the bounds. They have also illustrated that any connected graph G has an identifying path cover of size at most 2|V |/3 + 5.

The induced path cover problem

The induced path cover problem is NP-complete for general graphs [START_REF] Garey | Computers and Intractability: A guide to the theory of NP-completeness[END_REF]. There is no record of any significant research work on the induced path cover problem too.

The isometric path cover problem

There may not be vast difference between paths and induced paths. But there is distinct difference between induced paths and isometric paths. The following problems illustrate the difference:

(1) The problem of finding an induced path between a vertex s and a vertex t containing a vertex v remains NP-complete in bipartite graphs [START_REF] Mezzini | On the complexity of finding chordless paths in bipartite graphs and some interval operators in graphs and hypergraphs[END_REF]. However, the problem of finding an isometric path between a vertex s and a vertex t containing a vertex v is polynomially solvable for general graphs.

(2) Given a positive integer k, the problem of finding an induced path of length at least k is NP-complete [START_REF] Garey | Computers and Intractability: A guide to the theory of NP-completeness[END_REF]. However, the problem of finding an isometric path of length at least k is a trivial problem.

(3) The problem of deciding, given a graph G and two vertices s and t, whether there exists an induced path of given parity between s and t in G is NP-complete [START_REF] Kaminski | Finding an induced path of given parity in planar graphs in polynomial time[END_REF]. But the corresponding isometric problem is polynomially solvable.

Fitzpatrick [25] has introduced the concept of the isometric path cover problem in her PhD thesis [START_REF] Pan | Isometric path numbers of block graphs[END_REF]. The isometric path cover number is computed for tress, cycles, complete bipartite graphs, the Cartesian product of paths (including hypercubes) under some restricted cases [START_REF] Fisher | The isometric number of a graph[END_REF]25,[START_REF]The isometric path number of the cartesian product of paths[END_REF][START_REF] Shannon | Covering hypercubes by isometric paths[END_REF]. Fisher and Fitzpatrick [START_REF] Fisher | The isometric number of a graph[END_REF][START_REF] Shannon | Fractional isometric path number[END_REF] have derived a lower bound that ip c (G) ≥ |V |/(diam(G) + 1) and have shown that the isometric path cover number of an r × r grid is 2r/3 and the isometric path cover number of a tree with leaves is /2 . Fitzpatrick et al. [START_REF] Shannon | Covering hypercubes by isometric paths[END_REF] have shown that the isometric path number of hypercube Q r is at least 2r/(r + 1). In addition, they have also shown that ip c (Q r ) = 2 r-log 2 (r+1) when r + 1 is a power of 2. Pan and Chang have given a linear-time algorithm to solve the isometric path cover problem on block graphs [START_REF] Pan | Isometric path numbers of block graphs[END_REF], complete r-partite graphs and Cartesian products of 2 or 3 complete graphs [START_REF]Isometric path numbers of graphs[END_REF].

The strong geodetic problem is a variation of the geodetic problem which is to find a minimum set S of vertices of a graph G such that each vertex of G lies on some isometric path between a pair of vertices from S [START_REF] Harary | The geodetic number of a graph[END_REF]. A strong geodetic set of a graph G is a set S of vertices such that each vertex of G lies on a fixed isometric path between a pair of vertices from S [START_REF] Manuel | Strong geodetic problem in networks[END_REF]. For a graph G, its strong geodetic number sg(G) is the cardinality of a minimum strong geodetic set of G. The relationship between the isometric path cover number and the strong geodetic number is given below: Theorem 5.1 ( [START_REF] Manuel | Strong geodetic problem in networks[END_REF]) Let G be a graph.

(1) When G is an undirected graph,

1+ √ (8×ipc(G)+1) 2 ≤ sg(G) ≤ 2 × ip c (G).
(2) When G is a tree or block graph, ip c (G) = sg(G)/2 .

Even though the isometric path cover problem is a fundamental concept in graph theory, to our knowledge, there are no literatures on the computational complexity status of the isometric path cover problem for general graphs.

The three partition problems

In this section, we discuss the other set of three problems: the path partition problem, the induced path partition problem and the isometric path partition problem.

The path partition problem

The path partition problem was introduced by Ore in 1961 [START_REF] Ore | Arc coverings of graphs[END_REF]. The Hamiltonian path problem is NP-complete and hence the path partition problem is NP-complete for planar graphs, bipartite graphs, chordal graphs, chordal bipartite graphs, and strongly chordal graphs [START_REF] Yeh | The path-partition problem in bipartite distance-hereditary graphs[END_REF]. Nakano, Olariu and Zomaya [START_REF] Nakano | A time-optimal solution for the path cover problem on cographs[END_REF] call this problem as notoriously difficult and have reported an NC-algorithm to solve the path partition problem for cographs. Dinh [START_REF] Vu | Path partition number in tough graphs[END_REF] has studied the path partition problem for graphs with toughness greater than or equal to 1. Asdre, Nikolopoulos and Papadopoulos [START_REF] Asdre | An optimal parallel solution for the path cover problem on P 4 -sparse graphs[END_REF] have presented an optimal parallel algorithm for the path partition problem on P 4 -sparse graphs. Pan and Chang [START_REF] Pan | Path partition for graphs with special blocks[END_REF] have designed a linear-time algorithm for the path-partition problem in graphs whose blocks are complete graphs, cycles or complete bipartite graphs. The path-partition problem is polynomially solvable for forests [START_REF] Skupién | Path partitions for vertices and Hamiltonicity of graphs[END_REF], interval graphs [START_REF] Rao | Linear algorithm for optimal path problem on interval graphs[END_REF][START_REF] Chang | A certifying algorithm for the path cover problem on interval graphs[END_REF][START_REF]Linear-time certifying algorithms for the path cover and Hamiltonian cycle problems on interval graphs[END_REF], circular arc graphs [START_REF] Hung | Solving the path cover problem on circulararc graphs by using an approximation algorithm[END_REF], distance-hereditary graphs [START_REF]Finding a minimum path cover of a distance-hereditary graph in polynomial time[END_REF], bipartite permutation graphs [START_REF] Srikant | Optimal path cover problem on block graphs and bipartite permutation graphs[END_REF], block graphs [START_REF] Pak | Optimal path cover problem on block graphs[END_REF][START_REF] Yan | The path-partition problem in block graphs[END_REF], cographs [START_REF] Chang | The L(2, 1)-labeling problem on graphs[END_REF], bipartite distance-hereditary graphs [START_REF] Yeh | The path-partition problem in bipartite distance-hereditary graphs[END_REF], co-comparability graphs [START_REF] Corneil | LDFS-based certifying algorithm for the minimum path cover problem on cocomparability graphs[END_REF][START_REF] Kóhler | Linear time LexDFS on cocomparability graphs[END_REF]. Given a connected graph G, there is a spanning tree T of G such that π p (G) = π p (T ) [START_REF] Boesch | On covering the points of a graph with point disjoint paths, Graphs and Combinatorics[END_REF]. The relationship between the path partition number and L(2, 1)-labeling number of graphs have been studied by several authors [START_REF] Chang | The L(2, 1)-labeling problem on graphs[END_REF][START_REF] Lu | Path covering number and L(2, 1)-labeling number of graphs[END_REF].

Graffiti.pc conjecture

The number of edges in a maximum matching of a graph G is called the matching number of G, denoted by α (G). The total domination number of G, denoted by γ t (G), is a minimum set S of vertices such that every vertex of G is adjacent to some vertex in S. The Graffiti.pc conjectures are well-known for total domination number [START_REF] Delavińa | Some conjectures of graffiti.pc on total domination[END_REF]. Some of the conjectures are related to path partition number. DeLaViña et al. [START_REF] Delavińa | Some conjectures of graffiti.pc on total domination[END_REF] have positively answered to some Graffiti.pc conjectures which are related to path partition numbers.

Theorem 6.1 ([21]) For every graph G with no isolated vertex, γ t (G) ≤ α (G) + π p (G). When G is a connected 3-regular graph, γ t (G) ≥ 2π p (G).
Henning and Wash [START_REF] Henning | Matchings, path covers and domination[END_REF] have improved Graffiti.pc conjectures and shown that the bounds are tight.

Theorem 6.2 ([36]) If G is a graph of order n, then α (G) + (1/2)π p (G) ≥ (n/2). Moreover, when δ(G) ≥ 3, then γ t (G) ≤ α (G) + (1/2)(π p (G) -1).

Some bounds on the path partition number π p (G)

While introducing the path partition problem, Ore [START_REF] Ore | Arc coverings of graphs[END_REF] has produced the following bound: Theorem 6.3 ([59]) Given a graph G of order n, the path partition number π p satisfies π p (G) ≤ n-σ 2 (G), where σ 2 (G) is the minimum sum of degrees of two nonadjacent vertices.

According to Magnant and Martin [START_REF] Magnant | A note on the path cover number of regular graphs[END_REF], the above bound by Ore is sharp. There is another strong bound on the path partition number due to Hartman [START_REF] Hartman | Variations on the Gallai-Milgram theorem[END_REF]. The Gallai-Milgram theorem with respect to the path partition number which is π p (G) ≤ α(G) is improved by Hartman [START_REF] Hartman | Variations on the Gallai-Milgram theorem[END_REF] under certain conditions: Theorem 6.4 ( [START_REF] Hartman | Variations on the Gallai-Milgram theorem[END_REF]) Let G be a graph with connectivity k. If α(G) > k, then the path partition number satisfies π p (G) ≤ α(G) -k. [START_REF] Magnant | A note on the path cover number of regular graphs[END_REF] have posed the following conjecture: Conjecture 6.5 ([53]) Given a k-regular graph G of order n, the path partition number satisfies π p (G) ≤ n/(k + 1).

Magnant and Martin

The bound in the Conjecture 6.5 is sharp [START_REF] Magnant | A note on the path cover number of regular graphs[END_REF]. In support of their conjecture, they have provided the following result: Theorem 6.6 ( [START_REF] Magnant | A note on the path cover number of regular graphs[END_REF]) Given a k-regular graph G of order n with 0 ≤ k ≤ 5, the path partition number satisfies π p (G) ≤ n/(k + 1).

Magnant, Wang and Yuan [START_REF] Magnant | Path partitions of almost regular graphs[END_REF] have recently revised the Conjecture 6.5 as follows: Conjecture 6.7 ( [START_REF] Magnant | Path partitions of almost regular graphs[END_REF]) Given positive integers δ and ∆ with δ ≤ ∆, if G is a graph of order n with δ ≤ δ(G) ≤ ∆(G) ≤ ∆, then π p (G) ≤ max{n/(δ + 1), (∆ -δ)n/(∆ + δ)}.

They have also proved this conjecture when δ = 1, 2. They have also provided another bound as follows:

Theorem 6.8 ([54]) Suppose G is a graph of order n with ∆(G) = ∆ < 2δ = 2δ(G), then π p (G) ≤ ((∆ -2)n/(2(∆ + δ -4)).
While pointing out that Conjecture 6.5 is true even for k ≥ (n -1)/2, Han [START_REF] Han | On vertex-disjoint paths in regular graphs[END_REF] has provided a tight bound for bipartite graphs as follows: Theorem 6.9 ( [START_REF] Han | On vertex-disjoint paths in regular graphs[END_REF]) Given a bipartite k-regular graph G of order n, the path partition number satisfies π p (G) ≤ n/2k. For 3-regular graphs, Reed [START_REF] Reed | Paths, stars and the number three[END_REF] has provided a bound which is sharper than the bound in Conjecture 6.5. Theorem 6.10 ( [START_REF] Reed | Paths, stars and the number three[END_REF]) Given a connected 3-regular graph G of order n, the path partition number satisfies π p (G) ≤ n/9.

Reed [START_REF] Reed | Paths, stars and the number three[END_REF] also demonstrates that these results are tight. Furthermore, Reed has conjectured in the same paper that Conjecture 6.11 ([66]) Given a 2-connected 3-regular graph G of order n, the path partition number satisfies π p (G) ≤ n/10 . This conjecture has been recently settled by Yu [START_REF] Yu | Covering 2-connected 3-regular graphs with disjoint paths[END_REF]. In addition, Yu has given an interesting lower bound for π p (G): Theorem 6.12 ( [START_REF] Yu | Covering 2-connected 3-regular graphs with disjoint paths[END_REF]) There are infinitely many 2-connected 3-regular n-vertex graphs whose path cover numbers are at least n/14.

The induced path partition problem

Chartrand et al. [START_REF] Chartrand | The induced path number of bipartite graphs[END_REF] have introduced the concept of induced path partition problem and have produced the induced-path number of complete bipartite graphs, complete binary trees, 2-dimensional meshes, butterflies, and general trees. They have shown that ρ p (P m × P n ) = 2. In addition, they have also derived upper bounds for hypercubes and conjectured that ρ p (Q r ) ≤ r for the r-dimensional hypercube Q r with r ≥ 2 [START_REF] Chartrand | The induced path number of bipartite graphs[END_REF]. Alsardary [START_REF] Alsardary | The induced path number of the hypercube[END_REF] has answered to the conjecture that ρ p (Q r ) ≤ 16 [START_REF]Induced-path partition on graphs with special blocks[END_REF]. The induced path partition problem is concluded to be NP-complete by showing that it is NPcomplete to determine whether the vertex set of a graph can be partitioned into two induced paths [START_REF] Le | Splitting a graph into disjoint induced paths or cycles[END_REF]. Pan and Chang [START_REF]Induced-path partition on graphs with special blocks[END_REF] have presented a linear-time algorithm for the induced path partition problem on graphs whose blocks are complete graphs, cycles or complete bipartite graphs. Broere, Jonck and Domke [START_REF] Broere | The induced path number of the cartesian product of some graphs[END_REF] 

have determined ρ p (G) for G = K m × K n and have shown that ρ p (C m × C n ) < 3.
Broere et al. [START_REF] Broere | The induced path number of the complements of some graphs[END_REF] have studied the induced path partition problem on the complements of some graphs such as cycles, paths, product of complete graphs, and product of cycles. They have also produced an elegant Nordhaus-Gaddum type relation in terms of induced path partition number ρ p as follows: (3) | | ≤ ρ p (T ) + ρ p (T ) ≤ 3(n -1)/2 for trees T where is the # of leaves of T .

Several authors [START_REF] Barioli | Zero forcing sets and the minimum rank of graphs[END_REF][START_REF] Hogben | Minimum rank problems[END_REF][START_REF] Perdigao | Minimum rank and path cover number for generalized and double generalized cycle star graphs[END_REF][START_REF] Row | Zero forcing number, path cover number, and maximum nullity of cacti[END_REF][START_REF] Fatemeh | On the relationships between zero forcing numbers and certain graph coverings[END_REF] have studied the relationship between the zeroforcing number z(G) and the induced path partition number ρ p (G). Hogben [START_REF] Hogben | Minimum rank problems[END_REF] have shown that ρ p (G) ≤ z(G) for general graphs. It is shown that ρ p (G) = z(G) when G is a block-cycle graph, unicyclic graph, double path, and series of double paths [START_REF] Fatemeh | On the relationships between zero forcing numbers and certain graph coverings[END_REF], a tree [START_REF] Barioli | Zero forcing sets and the minimum rank of graphs[END_REF] and a cactus [START_REF] Row | Zero forcing number, path cover number, and maximum nullity of cacti[END_REF].

Catral et al. [START_REF] Catral | Zero forcing number, maximum nullity, and path cover number of subdivided graphs[END_REF] have studied the induced path partition problem for edge subdivision graphs. Let e = uv be an edge of G. An edge subdivision graph G e is obtained from G by inserting a new vertex w into V , deleting the edge e and inserting edges uw and wv.

Let us recall that M (G) denotes the maximum nullity of G. Johnson and Duarte [START_REF] Johnson | The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree[END_REF] have shown that M (G) = ρ p (G) when G is a tree. Barioli, Fallat and Hogben [START_REF]On the difference between the maximum multiplicity and path cover number for tree-like graphs[END_REF] have proved that M (G) = ρ p (G) or M (G) = ρ p (G) -1 for unicyclic graphs. Sinkovic [START_REF] Sinkovic | Maximum nullity of outerplanar graphs and the path cover number[END_REF] have derived that M (G) ≤ ρ p (G) for any outerplanar graph G and M (G) = ρ p (G) for any partial 2-path G. Barioli, Fallat and Hogben [START_REF] Barioli | Computation of minimal rank and path cover number for certain graphs[END_REF] have studied the relationship between minimum rank and the induced path partition number and have derived that ∆(G) ≤ ρ p (G) where ∆(G) = max{p -q/ there are q vertices of G whose deletion leaves p induced paths}.

The isometric path partition problem

It is quite a big surprise that there is no literature on the isometric path partition problem including the computational complexity status of isometric path partition problem for general graphs.

Conclusion

This article is meant for young researchers in graph theory. It identifies the gaps and open space in "covering and partitioning by path-types" as potential research topics. Among all the six problems, the most attractive and interesting problem is path partition problem. The literatures on the path partition problem are larger than those of the other five problems. The reason may be due to the Gallai-Milgram theorem and Berges path partition conjecture. There are a very few literatures in path cover problem, induced path problem and isometric partition problem. Between the covering and partitioning problems, it is observed that researchers are more active on path-type partition problems than path-type cover problems.

In addition to the six problems, we have also considered several problems which are related to these six problems. We have also discussed the correlation among these six problems and their related problems. We have covered the literatures for the last 30 years.

Chang and his teammates have carried out significant research on paths [START_REF] Chang | The L(2, 1)-labeling problem on graphs[END_REF][START_REF] Pan | Path partition for graphs with special blocks[END_REF][START_REF] Yan | The path-partition problem in block graphs[END_REF][START_REF] Yan | Hedetniemi, k-path partitions in trees[END_REF][START_REF] Yeh | The path-partition problem in bipartite distance-hereditary graphs[END_REF], induced paths [START_REF]Induced-path partition on graphs with special blocks[END_REF] and isometric paths [START_REF] Pan | Isometric path numbers of block graphs[END_REF][START_REF]Isometric path numbers of graphs[END_REF]. Young researchers are encouraged to read these papers to understand how Chang and his teammates apply different techniques to solve different path-type problems.

We have discussed only vertex version of the covering and partitioning problems. The edge version of these problems is equally popular among the researchers. In the same way, covering and partitioning by cycles or trees are other well-known subtopics
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 1 Figure 1: Six types of covering / partitioning problems
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 2 Figure 2: Illustration how the six problems are different

Theorem 4 . 1 (

 41 Gallai-Milgram) Let P be a minimal path partition of an undirected graph G. Then there is an independent set S in G such that S contains exactly one vertex from each path in P . The vertex set V of G can be partitioned by at most α(G) paths.

Theorem 4 . 2 (

 42 Gallai-Milgram) Let G be an undirected graph. Then π c (G) ≤ π p (G) ≤ α(G).

Figure 3 :

 3 Figure 3: The Gallai-Milgram theorem fails for induced paths and isometric paths in undirected graphs

Theorem 6 .

 6 13 ([15]) Given an undirected graph on n vertices, (1) √ n ≤ ρ p (G) + ρ p (G) ≤ 3n/2 for arbitrary graph G (2) 1 + n/4 ≤ ρ p (G) + ρ p (G) ≤ 3n/2 for bipartite graph G.
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