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Abstract. The rise of virtual and augmented reality fuels an increased
need for content suitable to these new technologies including 3D con-
tents obtained from real scenes. We consider in this paper the problem
of 3D shape reconstruction from multi-view RGB images. We investigate
the ability of learning-based strategies to effectively benefit the recon-
struction of arbitrary shapes with improved precision and robustness.
We especially target real life performance capture, containing complex
surface details that are difficult to recover with existing approaches. A
key step in the multi-view reconstruction pipeline lies in the search for
matching features between viewpoints in order to infer depth informa-
tion. We propose to cast the matching on a 3D receptive field along
viewing lines and to learn a multi-view photoconsistency measure for
that purpose. The intuition is that deep networks have the ability to
learn local photometric configurations in a broad way, even with respect
to different orientations along various viewing lines of the same surface
point. Our results demonstrate this ability, showing that a CNN, trained
on a standard static dataset, can help recover surface details on dynamic
scenes that are not perceived by traditional 2D feature based methods.
Our evaluation also shows that our solution compares on par to state-of-
the-art-reconstruction pipelines on standard evaluation datasets, while
yielding significantly better results and generalization with realistic per-
formance capture data.

Keywords: Multi View · Stereo Reconstruction · Learned Photoconsis-
tency · Performance Capture · Volume Sweeping

1 Introduction

In this paper, we examine the problem of multi-view shape reconstruction of
real-life performance sequences, in other words with realistic clothing, motions,
and corresponding capture set assumptions. 3D reconstruction is a popular and
mature field with numerous applications related to the ability to record and
replay 3D dynamic scenes, as with for instance the growing domain of virtual
and augmented reality. An essential and still improvable aspect in this matter,
in particular with performance capture setups, is the fidelity and quality of the
recovered shapes, our goal in this work.
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Fig. 1. Challenging scene captured with a passive RGB multi-camera setup [1]. (left)
one input image, (center) reconstructions obtained with classical 2D features [22],
(right) proposed solution. Our results validate the key improvement of a CNN-learned
disparity to MVS for performance capture scenarios. Results particularly improve in
noisy, very low contrast and low textured regions such as the arm, the leg or even the
black skirt folds, which can be better seen in a brightened version of the picture in
Figure 8.

Multi-view stereo (MVS) based methods have attained a good level of quality
with pipelines that typically comprise feature extraction, matching stages and
3D shape inference. Interestingly, very recent works have re-examined stereo
and MVS by introducing features and similarity functions automatically inferred
using deep learning. The main promise of this type of method, is to include better
data-driven priors, either in 2D [40, 24, 41, 39] as improvement over classic 2D
features, or in 3D to account for relative view placement and local or global
shape priors [5, 17, 18]. These novel MVS methods have been tested on static
scene benchmarks with promising results, offering the prospect of outperforming
standard feature pipelines thanks to these data-aware feature measures.

Our main goal is to examine whether these improvements transfer to the
more general and complex case of live performance capture, where a diverse
set of additional difficulties arise. Typical challenges for these capture situa-
tions include smaller visual projection areas of objects of interest due to wider
necessary fields of view for capturing motion; occlusion and self-occlusion of
several subjects interacting together; lack of texture content typical of real-life
subject appearance and clothing; or motion blur with fast moving subjects such
as sport action scenes (see Figure 7). To the best of our knowledge, existing
learning-based MVS schemes report results on static datasets such as DTU [16]
or ShapeNet [4] but have not yet been demonstrated on performance capture
data with the aforementioned typical issues.

With the aim to generalize to this type of data we propose a novel framework
that takes advantage of recent learning methods while keeping the precision ad-
vantage of a per view depth map extraction, as applied in many successful MVS
algorithms [28]. Our approach performs multi-view matching within local vol-
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umetric units of inference. Contrary to previous methods, our volumetric unit
is defined in a given view’s own reference, so as to capture camera inherent
3D dependencies, specifically for the purpose of per-view decision. Instead of
inferring occupancies, we infer disparity scores to ease training and to focus
the method more on photometric configurations than local shape patterns. We
sweep viewing rays with this volumetric receptive field, a process we coin volume
sweeping, and embed the algorithm in a multi-view depth-map extraction and
fusion pipeline followed by a geometric surface reconstruction. With this strat-
egy, we are able to validate that CNN-based MVS outperforms classical MVS
approaches in dynamic performance scenarios. We obtain high precision geomet-
ric results on complex sequences, outperforming both existing CNN-based and
classic non-learning methods. We verify this improvement on available bench-
marks with static objects. These results on diverse data situations are obtained
using only a DTU subset as training data, which evidences the generalization
capabilities of our network.

2 Related Work

Multi-view stereo reconstruction is a longstanding active vision problem [32]. Ini-
tially applied on static scenes, the extension to performance capture of dynamic
scenes has become increasingly popular. Stereo and MVS-based approaches are a
modality of choice for high fidelity capture applications [12, 34, 13, 29, 16, 27, 31],
possibly complementing other strategies such as depth-based reconstruction [28,
15, 6, 10] by addressing shortcomings that include limited range, sensitivity to
high contrast lighting, and interference when increasing the number of view-
points.

While considering various shape representations, for instance point clouds [12],
fused depth maps [25], meshes [33, 21], or volumetric discretizations [20, 8, 38],
most MVS methods infer 3D shape information by relying on the photoconsis-
tency principle that rays observing the same scene point should convey similar
photometric information.

In its simplest form, such similarity can be measured by considering pro-
jected color variances among views, as used in early works [20] with limited
robustness. In stereo and short baseline situations, simple normalized forms of
2D window correlation are sufficient to characterize similarity under simple light-
ing and constrast changes, using e.g. ZNCC, SSD, SHD. For broader geometric
and photometric resilience, various features based on scale-invariant gradient
characterizations [23, 2, 26] have been designed, some specialized for the dense
matching required for the MVS problem [36]. More recently, image features have
been successfully applied to moving sequences in e.g. [27, 22]. Generally, MVS
methods characterize photoconsistency either with a symmetric, viewpoint ag-
nostic, combination of all pairwise similarities [30], or with a per image depth
map determination through sweeping strategies [7, 25]. Our approach employs
also a sweeping strategy, which proves generally simpler and still significantly
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more robust to occlusion than view-agnostic methods, an issue that quite often
occurs in practice with multiple moving shapes or through limb self-occlusion.

While classic MVS approaches have been generally successful, recent works
aimed at learning stereo photoconsistency have underlined that additional priors
and more subtle variability co-dependencies are still discoverable in real world
data. Several works leverage this by learning how to match 2D patch pairs for
short baseline stereo, letting deep networks infer what features are relevant [40,
24, 41, 39]. Very recent works extend this principle to wide baseline MVS, with
symmetric combination of 2D learned features [14].

The common limitation of such methods with 2D receptive fields is the dif-
ficulty to correctly capture 3D correlations with hence both false positive and
false negative correlations arising from the 2D projection. Consequently, a num-
ber of learned MVS methods resort to full volumetric 3D receptive fields instead,
to broaden the capability to any form of data 3D correlation [5, 17, 18]. While
casting correlations in 3D as well, our approach proposes several key differ-
ences: our volumetric receptive field is a back-projected image region, similar
to some binocular stereo [19] or image-based rendering [11] works, where the
latter only uses the grid as proxy without explicitely extracting 3D informa-
tion. This enables a sweeping search strategy along viewing rays, which proves a
robust search strategy as plane sweeping in stereo reconstruction. This scheme
also avoids decorrelating camera resolution and 3D receptive field resolution, as
with e.g. voxels, the volumetric receptive field being defined as a backprojec-
tion along pixel rays. Additionally, this volumetric receptive field learns local
pairwise correlations, a lower level and easier task than learning occupancy grid
patterns. Our evaluation on practical performance capture scenes, beyond tra-
ditional static datasets, validates the benefit of such a learning strategy over
traditional approaches.

3 Method Overview

As for many recent multi-view stereo reconstruction methods, ours estimates
per camera depth maps, followed by depth fusion, allowing therefore each cam-
era to provide local details on the observed surface with local estimations. We
take this strategy a step further by replacing the traditional photoconsistency
measure used to estimate depths with a learned version. This version is based
on CNNs and exploits their ability to learn local photometric configurations
near surfaces observed from multiple viewpoints. As depicted in Figure 2, our
approach takes as input a set of calibrated images and outputs a 3D mesh ob-
tained by fusing depth maps. Depths along pixel viewing rays are obtained using
a volume sweeping strategy that samples multi-view photoconsistency along rays
and identifies the maxima. For a point along a viewing ray, the photoconsistency
is estimated using a discretized 3D volumetric patch around that point. In such
a 3D patch, at each point within, color information from the primary camera
ray incident to that point is paired to the color information of the incident ray
of another camera. We collect these paired color volumes for every other camera
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Fig. 2. Method pipeline and notations.

than the primary. A trained CNN is used to recognize the photoconsistent con-
figurations given pairs of color samples within the 3D patch. The key aspects of
this strategy are:

– The per camera approach, which, by construction, samples the photoconsis-
tency at a given location as captured and thus enables more local details to
be revealed compared to global approaches, as shown in Figure 8.

– The 3D receptive field for the photoconsistency evaluation, which resolves
some 2D projection ambiguities that hindered 2D based strategies.

– The learning based strategy using a convolutional neural network, which
outperforms traditional photometric features when evaluating the photocon-
sistency in dynamic captured scenes, as demonstrated by our experiments.

The following sections focus on our main contributions, namely the 3D vol-
ume sampling and the learning based approach for the photoconsistency evalu-
ation. Note that for the final step, without loss of generality, we use the TSDF
to fuse depth information and [22] to get a 3D mesh from the fused depths.

4 Depth Map Estimation by Volume Sweeping

Our reconstruction approach takes as input N images {Ii}Ni=1, along with their
projection operators {πi}Ni=1, and computes depth maps, for the input images,
that are subsequently fused into a 3D implicit form. This section explains how
these maps are estimated. Given a pixel p in an input image i, the problem is
therefore to find the depth d along its viewing ray of its intersection with the ob-
served surface. The point along the ray of pixel p at depth d is noted ri(p, d). Our
approach searches along viewing rays using a likelihood function for a point to be
on the surface given the input color pairs in the evaluation volume. In contrast to
traditional methods that consider hand-crafted photoconsistency measures, we
learn this function from multiview datasets with ground-truth surfaces. To this
purpose we build a convolutional neural network which, given a reference camera
i and a query point x ∈ R3, maps a local volume of color pair samples around
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x to a scalar photoconsistency score ρi(x) ∈ [0..1]. The photoconsistency score
accounts in practice for color information from camera i at native resolution, and
for other camera colors and their relative orientation implicitly encoded in the
volume color pair construction. These important features allow our method to
adapt to specific ray incidences. Its intentionally asymmetric nature also allows
subsequent inferences to automatically build visibility decisions, e.g. deciding
for occlusion when the primary camera i’s color is not confirmed by other view’s
colors. This would not have been possible with a symmetric function such as [14].

We thus cast the photoconsistency estimation as a binary classification prob-
lem from these color pairs around x, with respect to the reference image i and
the other images. In the following, we first provide details about the 3D sampling
regions before describing the CNN architecture used for the classification and
its training. We then explain the volume sweeping strategy that is subsequently
applied to find depths along rays.

4.1 Volume Sampling

In order to estimate photoconsistency along a viewing ray, a 3D sampling region
is moved along that ray at regular distances. Within this region, pairs of colors
backprojected from the images are sampled. Each pair contains a color from the
reference image and its corresponding color in another image. Samples within
the 3D region are taken at regular depths along viewing rays in the reference
image (see Figure 3). The corresponding volume is a truncated pyramid that
projects onto a 2D region of constant and given dimension in the reference image.
This allows the 3D sampling to adapt to the camera perception properties, e.g.
resolution and focal length.

More precisely, consider the back-projection ri(p, d) at depth d of pixel p
from the reference image i. The k3 input sample grid used to compare pairs
of colors from images {i, j}j 6=i is then the set of back-projected pixels in a k2

window centered on p, regularly sampled from depth d− kλ/2 to d+ kλ/2, with
λ chosen s.t. spacing in the depth direction is equal to inter-pixel distance from
the reference camera at that depth. Every sample contains the reference color of
the originating pixel in image i and the color of the point projected on camera
j.

Volume sampling is always performed with the same orientation and ordering
with respect to the reference camera. Convolutions are thus consistently oriented
relative to the camera depth direction.

Volume Size In our experiments and with no loss of generality, k = 8. Our
strategy is to learn pairwise photoconsistent configurations along rays, in order
to detect the surface presence. This is in contrast with previous works that try
to infer directly shape within regular voxel grids, e.g. [17] with 323 or 643 grids.
By considering the surface detection problem alone, and letting the subsequent
step of fusion integrate depth in a robust and consistent way, we simplify the
problem and require little spatial coherence, hence allowing for small grids.
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Fig. 3. The 3D volume used to esti-
mate photoconsistency along rays from
the reference image i. k3 samples
within the volume are regularly dis-
tributed along viewing rays and con-
tain color pairs as back-projected from
images i and j. At a given depth along
a ray from i each image j 6= i defines a
pairwise comparison volume.

Fig. 4. CNN architecture. Each cube is
a pairwise comparison volume with k3

samples that contain 6 valued vectors
of RGB pairs and over which 3D con-
volutions are applied. The output score
ρi(ri(p, d)) ∈ [0..1] encodes the photo-
consistency at depth d along the ray
from pixel p in image i.

4.2 Multi-View Neural Network

As explained in the previous section, at a given point x along a viewing ray we
are given N − 1 volumes colored by pairs of views, i.e. (N − 1) × k3 pairs of
colors, and we want to detect whether the surface is going through x. To this aim,
we build siamese encoders similarly to [14], with however 3D volumes instead
of 2D patches. Each encoder builds a feature given a pairwise volume. These
features are then averaged and fed into a final decision layer. Weight sharing
and averaging are chosen to achieve camera order invariance.

The network is depicted in Figure 4. The inputs are N−1 colored volumes of
size k3×6 where RGB pairs are concatenated at each sample within the volume.
Convolutions are performed in 3D over the 6 valued vectors of RGB pairs. The
first layers (encoders) of the network process every volume in parallel, with
shared weights. Every encoder is a sequence of two convolutions followed by
non-linearities, and max-pooling with stride. Both convolutional layers consist
of respectively 16 and 32 filters of kernel 4×4×4, followed by a Rectified Linear
Unit (ReLU) and a max-pooling with kernel 2 × 2 × 2 with stride 2. We then
average the obtained 2 × 2 × 2 × 32 features and feed the result to a 128 filter
1×1×1 convolutional layer, followed by a ReLU and a final 1×1×1 decision layer,
for a total of 72K parameters . The network provides a score ρi(ri(p, d)) ∈ [0..1]
for the photoconsistency at depth d along the ray from pixel p in image i.

We experimented with this network using different configurations. In par-
ticular, instead of averaging pairwise comparison features, we tried max-pooling
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which did not yield better results. Compared to the volumetric solution proposed
by [17], the number of parameters is an order of magnitude less. As mentioned
earlier, we believe that photoconsistency is a local property that requires less
spatial coherence than shape properties.

4.3 Network Training

The network was implemented using TensorFlow and trained from scratch using
the DTU Robot Image Dataset [16], which provides multiview data equipped
with ground-truth surfaces that present an accuracy up to 0.5mm. From this
dataset 11 million k3 sample volumes were generated, from which we randomly
chose 80 percent for training, and the remaining part for evaluation. Both posi-
tive and negative samples were equally generated by randomly sampling volumes
up to 20cm away from ground truth points, where a volume is considered as posi-
tive when it contains at least µ ground truth points. In theory, the network could
be trained with any number of camera pairs, however, in practice, we randomly
choose from one up to 40 pairs. Training was performed with the binary cross
entropy function as loss. Model weights are optimized by performing a Stochas-
tic Gradient Descent, using Adaptive Moment Estimation on 560, 000 iterations
with batch size of 50 comparisons, and with a random number of compared cam-
eras (from 2 up to 40). Since our sampling grids are relatively small and camera
dependent, we are able to generate enough sample variability for training, with-
out the need for data augmentation.

4.4 Volume Sweeping

In order to estimate the depth along viewing rays, our volumetric solution is
integrated in an existing standard plane sweeping algorithm, replacing the plane
with a volume and computing the N -way photoconsistency score using our net-
work. For every camera, we sample therefore along viewing rays, test possible
depth values, and choose the most photoconsistent candidate with respect to
the network score. In practice, a reference view i is only compared to the cam-
eras such that cos(θij) > 0.5, where θij is the angle between the optical axes of
camera i and j. Then, we sample rays from camera i through every pixel p and
build colored volumes at every candidate depth. We define the estimated depth
dpi as:

dpi = argmax
d∈[dmin,dmax]

(ρi(ri(p, d))), (1)

where ρi(ri(p, d)) is the consistency measure along the ray from p in image i,
as estimated by the network, and [dmin, dmax] defines the range of search that
can be limited using for instance the visual hull when available. Depths for all
pixels and from all images are further fused using a volumetric truncated signed
distance function [9].
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5 Results

We perform various evaluations to verify and quantify the benefit of our learned
multi-view similarity. First, we study different classifiers performances, with an
emphasis on comparing planar or volumetric receptive fields. We next apply
our approach in the static case using the [16] benchmark and compare it to
state-of-the-art MVS methods, both classic and learning based. Finally, we build
experiments to test the main claim of improvement with real life performance
data. To this goal we use several captured dynamic sequences which exhibit
typical difficulties of such data, with very significant qualitative improvements
compared to the state-of-the-art approaches [17], and [22].

5.1 Surface Detection

Fig. 5. ROC Curves of three different classifiers, ZNCC, planar and volumetric re-
ceptive fields, on the DTU Dataset [16]. Circles represent thresholds that optimize
sensitivity + specificity with the values 0.2, 0.5 and 0.5 respectively.

Surface detection along viewing rays can be formulated as a binary classi-
fication problem. In order to assess the benefit of our volumetric strategy, we
compare performances of classifiers based on various receptive fields.

1. Deterministic Zero-Mean Normalized Cross Correlation (ZNCC ): ZNCC is
applied over the samples within the volumetric receptive field.

2. Learning (CNN) with a planar receptive field: a planar equivalent of our
volumetric solution, with the same architecture and number of weights, in a
fronto-facing plane sweeping fashion.
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3. Learning (CNN) with a volumetric receptive field: our solution described in
the previous sections.

To speed up computations, we limit the search along a viewing ray to 5mm
around a coarse depth estimation based on image descriptors [35]. Depths are
sampled every 0.5mm. As a post processing step, we simply add a soft bilateral
filter, similarly to [14], accounting for color, spatial neighborhood, and proba-
bility of the detection. Figure 5 shows, with the classifiers’ ROC curves, that
the most accurate results are obtained with a volumetric receptive field and
learning. Intuitively, a volumetric sampling region better accounts for the local
non-planar geometry of the surface than planar sampling regions. This graph also
emphasizes the significantly higher discriminative ability of learned correlations
compared to deterministic ones.

We also evaluate the robustness to baseline variability by testing classification
with more further apart cameras. Table 2 shows the accuracy of the classifiers
with a varying number of cameras and for the optimal threshold values in Fig-
ure 5 . As already noticed in the litterature, e.g. [12, 29], a planar receptive field
gives better results with a narrow baseline and the accuracy consistently de-
creases when the inter-camera space grows with additional cameras. In contrast
the classifier based on a volumetric receptive field exhibits more robustness to
the variety in the camera baselines. This appears to be an advantage with large
multi-camera setup as it enables more cameras to contribute and hence reduces
occlusion issues.

5.2 Quantitative Evaluation

In this section, we compare our solution to various state-of-the-art methods using
the DTU Robot Image Dataset [16]. We use the standard accuracy and com-
pleteness metrics to quantify the quality of the estimated surface. We compare
to Furukawa et al. [12], Campbell et al. [3] and Tola et al. [36], as well as to
additional learning-based results from Ji et al. [17] and Hartmann et al. [14]. To
conduct a fair comparison with [14], which is a patch based approach building a
depthmap with a network comparable to ours, we use the result of our volume
sweeping approach on only one depth map.

Reconstructions results are depicted in table 1. We obtain quality on par
with other methods, with a median accuracy and completeness in the range
of the ground truth accuracy that we measured around 0.5mm. It should be
noticed that the best accuracy is obtained by Tola et al. [37] which tend to
favor accuracy over completeness whereas Campbell et al. [3], in a symetric
manner, tend to favor completeness over accuracy. We obtain more balanced
results on the 2 criteria, similarly to the widely used approach by Furukawa
et al. [12], with however better performances. We also outperform the recent
learning based method Surfacenet [17] on most measures in this experiment.

Compared to Hartmann et al. [14], and under similar experimental con-
ditions, our approach obtains better results with 2 orders of magnitude less
parameters, thereby confirming the benefit of volumetric receptive fields over
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planar ones. Compared to Surfacenet [17] (cube size 64 × 64 × 64, sample step
0.4mm) we obtain reconstructions of slightly better quality with an order of
magnitude less parameters.

Table 1. Reconstruction accuracy and com-
pleteness (in mm).

Acc. Compl.
Measure Mean Med. Mean Med.

Tola et al. [37] 0.448 0.205 0.754 0.425
Furukawa et al. [12] 0.678 0.325 0.597 0.375
Campbell et al. [3] 1.286 0.532 0.279 0.155
Ji et al. [17] 0.530 0.260 0.892 0.254
Ours (fused) 0.490 0.220 0.532 0.296

Hartmann et al. [14] 1.563 0.496 1.540 0.710
Ours (depthmap) 0.599 0.272 1.037 0.387

Table 2. Classifier accuracy (%).

Camera # 5 20 49

ZNCC 64.98 65.46 65.58
Ours Plan. 80.67 77.87 75.92
Ours Vol. 82.95 84.84 83.45

Fig. 6. Close up view of the arm region in Figure 1. (Left) Results from [22], (right)
our reconstruction

5.3 Qualitative Evaluation and Generalization

One of our main goals is to verify whether a learning based strategy general-
izes to the performance capture scenario and how it compares to state-of-the-art
deterministic approaches in this case. To this purpose, we perform reconstruc-
tions of dynamic RGB sequences captured by a setup largely different from the
training one, i.e. a hemispherical setup with 68 cameras of 4M resolution with
various focal lengths, as provided in [22] along with reconstructions obtained
with a deterministic approach. In this scenario, standard MVS assumptions are
often violated, e.g. specular surfaces, motion blur and occlusions, challenging
therefore the reconstruction methods.
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Fig. 7. (Top) input images, (middle) result with [22], (bottom) result with our method.
Motion blur and low contrast are visible in the input images . Best viewed magnified.
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We adapted our volume sweeping algorithm to limit depth search, along
viewing rays, inside visual hulls. No other modification was applied, in particular
the network previously trained was kept as such without any fine tuning. Figure 1
shows a reconstruction using our method compared to [22], which is a patch based
sweeping method using traditional image features and specifically designed for
this scenario. Even though [22] performs well in contrasted regions, the patch
based descriptors reach their limits in image regions with low contrast or low
resolution. Figure 6 and 7 give such examples. They show that our solution
helps recover finer surface details, while strongly decreasing noise in low contrast
regions. The results obtained also demonstrate strong improvements in surface
details, such as dress folds, that were undetected by the deterministic approach.
In addition, they demonstrate lower levels of noise, particularly in self-occluded
regions, and more robustness to motion blur as with the toes or tongue-in-cheek
details that appear in Figure 7-bottom.

Fig. 8. Qualitative comparison with [17]. (Left) input image with the horizontal section
in red, (middle) point cloud with [17], (right-top) point cloud horizontal section with
[17] (right-bottom) point cloud horizontal section with our approach.

We also compared with a recent learning based approach [17] using the code
available online (see Figure 8). Reconstructions with this approach were limited
to a tight bounding box and different values for the volume sampling step were
tested. The best results were obtained with a 2mm step. To conduct a fair com-
parison with our method, all points falling outside the visual hull were removed
from the reconstruction. In this scenario, the point cloud obtained using [17]
appeared to be very noisy and incomplete (see Figure 8-middle), plaguing the
subsequent surface extraction step. Figure 8-left also shows a horizontal section
of the model in a poorly contrasted image region of the dress. The global strategy
used in [17] wrongly reconstruct many surface points inside the shape volume
(top figure), as a result of the ambiguous appearance of the dress. In contrast,
our approach (bottom figure) correctly identifies surface points by maximizing
learned correlations along viewing rays.
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Fig. 9. (Left) 3 input images, (middle) plane based classifier, (right) volumetric classi-
fier. The face is highly occluded (left) yielding noisier and less accurate reconstructions
when using a planar receptive field, whereas the volume counterpart yields smoother
and more accurate details.

The final qualitative experiment studies the impact of a volumetric recep-
tive field compared to the equivalent planar one (see sec. 5.1) in figure 9. The
volume allows a sharp reconstruction of finer details of the belt, where a plane
cannot handle finer geometry details. A video demonstrating results on dynamic
sequences is available online: https://hal.archives-ouvertes.fr/hal-01849286.

6 Conclusion

We presented a learning framework for surface reconstruction in passive multi-
view scenarios. Our solution consists in a N -view volume sweeping, trained on
static scenes from a small scale dataset equipped with ground truth. Thanks
to this new model, we validate the improvement of CNN-learned MVS similar-
ity in the case of complex moving sequence captures, with significant challenges
typical of these datasets such as low light areas and low texture content and
perceived resolution. This result is achieved with an order of magnitude less
training parameters than previous comparable learned MVS works, showing sig-
nificant network generalization from a training performed only on static DTU
inputs, and fully leverages the high quality ground truth now available with these
datasets. Our method achieved significantly improved detail recovery and noise
reduction in complex real life scenarios, outperforming all existing approaches in
this case, and consequently offers very interesting prospects for even more chal-
lenging capture scenarios or even better ground truth datasets in the future.
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