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Abstract. We consider systems with unboundedly many processes that
communicate through shared memory. In that context, simple verifica-
tion questions have a high complexity or, in the case of pushdown pro-
cesses, are even undecidable. Good algorithmic properties are recovered
under round-bounded verification, which restricts the system behavior
to a bounded number of round-robin schedules. In this paper, we extend
this approach to a game-based setting. This allows one to solve synthesis
and control problems and constitutes a further step towards a theory of
languages over infinite alphabets.

1 Introduction

Ad-hoc networks, mobile networks, cache-coherence protocols, robot swarms,
and distributed algorithms have (at least) one thing in common: They are re-
ferred to as parameterized systems, as they are usually designed to work for any
number of processes. The last few years have seen a multitude of approaches
to parameterized verification, which aims to ensure that a system is correct no
matter how many processes are involved. We refer to [15] for an overview.

Now, the above-mentioned applications are usually part of an open world, i.e.,
they are embedded into an environment that is not completely under the control
of a system. Think of scheduling problems, in which an unspecified number of
jobs have to be assigned to (a fixed number of) resources with limited capacity.
The arrival of a job and its characteristics are typically not under the control of
the scheduler. However, most available verification techniques are only suitable
for closed systems: A system is correct if some or every possible behavior satisfies
the correctness criterion, depending on whether one considers reachability or,
respectively, linear-time objectives.

This paper is a step towards a theory of synthesis and control, which provides
a more fine-grained way to reason about parameterized systems. Our system
model is essentially that from [24], but defined in a way that reveals similar-
ities with data automata/class-memory automata, a certain automata model
over infinite alphabets [8,9]. Actually, we consider parameterized pushdown sys-
tems, as each process has a dedicated stack to model recursion. A parameterized
pushdown system distinguishes between a finite-state global process (sometimes
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referred to as a global store or leader process) and a local process. The global
process can spawn new local processes. Thus, while a system configuration con-
tains only one global state, the number of instantiations of local processes is
unbounded. Moreover, when a local process takes a transition, it is allowed to
read, and modify, the global store.

So far so good. Now, it is well-known that reachability is undecidable as
soon as two pushdown processes communicate through shared memory. And
even when local processes are finite-state, the problem is at least as hard as
reachability in Petri nets [9]. This led La Torre, Madhusudan, and Parlato to
consider round-bounded verification of parameterized systems, which restricts
system executions to a bounded number of round-robin schedules [24]. Not only
did they show that reachability drops to PSPACE, but the corresponding fixed-
point computation also turned out to be practically feasible. Moreover, they give
a sound method (i.e., a sufficient criterion) for proving that all reachable states
can already be reached within a bounded number of round-robin schedules. This
is done using a game that is different from the one we introduce here. Actually,
we extend their model by adding the possibility to distinguish, in parameterized
pushdown automata, between controllable global states and uncontrollable ones.

The classical reachability problem then turns into a reachability objective in
an infinite-state game. As our main result, it is shown that the winner of such a
game can be computed, though in (inherently) non-elementary time. Our proof
makes a detour via games on multi-pushdown systems, which are undecidable in
general but decidable under a bound on the number of phases, each restricting
the number of pop operations to a dedicated stack [5,29]. Note that round-robin
schedules maintain processes in a queue fashion. However, bounding the number
of rounds allows us to store both the states of a local process as well as its stack
contents in a configuration of a multi-pushdown system. It is worth noting that
multi-pushdown systems have been employed in [23], too, to solve seemingly
different verification problems involving queues.

Related Work. As already mentioned, there is a large body of literature on
parameterized verification, mostly focusing on closed systems (e.g., [2,4,14,15]).

Infinite-state games have been extensively studied over vector addition sys-
tems with states (VASS) (e.g., [3, 7, 10,12,19]). However, reachability is already
undecidable for simple subclasses of VASS games, unless coverability objec-
tives are considered. Unfortunately, the latter do not allow us to require that
all local processes terminate in a final state. Interestingly, tight links between
VASS/energy games and games played on infinite domains have recently been
established [16].

Underapproximate verification goes back to Qadeer and Rehof [27]. In the
realm of multi-threaded recursive programs, they restricted the number of con-
trol switches between different threads. The number of processes, however, was
considered to be fixed. Another kind of bounded verification of parameterized
systems with thread creation was studied in [6]. Contrary to our restriction, the
order in which processes evolve may vary from round to round.

2



We believe that our results will fertilize synthesis of parameterized sys-
tems [18] and more classical questions whose theoretical foundations go back
to the 50s and Church’s synthesis problem. Let us cite Brütsch and Thomas,
who observed a lack of approaches to synthesis over infinite alphabets [11]: “It
is remarkable, however, that a different kind of ‘infinite extension’ of the Büchi-
Landweber Theorem has not been addressed in the literature, namely the case
where the input alphabet over which ω-sequences are formed is infinite.” In-
deed, an execution of a parameterized system can be considered as a sequence of
letters, each containing the process identifier of the process involved in perform-
ing the corresponding action. Recall that our model of parameterized systems
is largely inspired by data automata/class-memory automata [8, 9], which were
originally defined as language acceptors over infinite alphabets. The automata
studied in [11] are quite different. Since synthesis problems are often reduced
to game-theoretic questions, our work can be considered as an orthogonal step
towards a theory of synthesis over infinite alphabets.

Outline. We define parameterized pushdown systems in Section 2, where we also
recall known results on reachability questions. The control problem is addressed
in Section 3, and we conclude in Section 4. Missing proof details can be found
in the appendix.

2 Reachability in Parameterized Systems

We start with some preliminary definitions.

Words. Let Σ be a (possibly infinite) set. A word w over Σ is a finite or (count-
ably) infinite sequence a0a1a2 . . . of elements ai ∈ Σ. Let Σ∗ denote the set of
finite words over Σ, Σω the set of infinite words, and Σ∞ = Σ∗ ∪ Σω. Given
w ∈ Σ∞, we denote by |w| the length of w, i.e., |w| = n if w = a0 . . . an−1 ∈ Σ∗,
and |w| = ω if w ∈ Σω. In particular, the length |ε| of the empty word ε is 0.

Transition Systems. A transition system is a triple T = (V,E, vin) such that
V is a (possibly infinite) set of nodes, E ⊆ V × V is the transition relation, and
vin ∈ V is the initial node. For (u, v) ∈ E, we call v a successor of u.

A partial run of T is a non-empty, finite or infinite sequence ρ = v0v1v2 . . . ∈
V∞ such that, for all 0 < i < |ρ|, vi is a successor of vi−1. If, in addition, we have
v0 = vin, then we call ρ a run. A (partial) run from u to v is a finite (partial)
run of the form u . . . v. In particular, u is a partial run (of length 1) from u to u.

2.1 Parameterized Pushdown Systems

We consider parameterized systems in which processes may be created dynami-
cally. Every process can manipulate a stack as well as its local state. Information
shared by all the processes is modeled in terms of a global state.

Definition 1. A parameterized pushdown system (PPS) is given by a tuple
P = (S,L, Γ, sin, `in, ∆, Fglob, Floc) where
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– S is the finite set of global states, including the initial global state sin,

– L is the finite set of local states, including the initial local state `in,

– Γ is the finite stack alphabet,

– ∆ ⊆ (S × L) × (Act × Γ ) × (S × L) is the transition relation with Act =
{push, pop, int} (where int stands for internal), and

– Fglob ⊆ S and Floc ⊆ L are the sets of accepting global states and accepting
local states, respectively. We assume that sin 6∈ Fglob.

A configuration of P is a tuple c = (s, (`1, γ1), . . . , (`k, γk)) where k ∈ N
(possibly k = 0), s ∈ S is the current global state, and, for each p ∈ {1, . . . , k},
`p ∈ L and γp ∈ Γ ∗ are respectively the local state and stack content of process
p. We let CP denote the set of configurations of P. The initial configuration is
(sin) and a configuration c = (s, (`1, γ1), . . . , (`k, γk)) is final if s ∈ Fglob and
{`1, . . . , `k} ⊆ Floc. The size |c| of a configuration c is the number k of processes
in c.

The semantics of a PPS P is defined as a transition system JPK = (V,E, vin)
where V = CP , vin = (sin), and the transition relation is E =

⋃
p≥1Ep with

Ep defining the transitions of process p. Actually, Ep contains two types of
transitions. The first type corresponds to the activity of a process that has
already been created. Formally, for two configurations (s, (`1, γ1), . . . , (`k, γk))
and (s′, (`′1, γ

′
1), . . . , (`′k, γ

′
k)) of size k ≥ 1,

((s, (`1, γ1), . . . , (`k, γk)), (s′, (`′1, γ
′
1), . . . , (`′k, γ

′
k))) ∈ Ep

if and only if p ≤ k and there are op ∈ Act and A ∈ Γ such that

– ((s, `p), (op, A), (s′, `′p)) ∈ ∆,

– `q = `′q and γq = γ′q for all q ∈ {1, . . . , k} \ {p}, and

– one of the following holds: (i) op = push and γ′p = A · γp, (ii) op = pop and
γp = A · γ′p, or (iii) op = int and γp = γ′p (in which case A is meaningless).

Note that the topmost stack symbol can be found at the leftmost position of γp.
The second type of transition is when a new process joins the system. For a

configuration (s, (`1, γ1), . . . , (`k, γk)) of size k ≥ 0,

((s, (`1, γ1), . . . , (`k, γk)), (s′, (`1, γ1), . . . , (`k, γk), (`k+1, γk+1))) ∈ Ep

if and only if p = k + 1 and there are op ∈ Act and A ∈ Γ such that
((s, `in), (op, A), (s′, `k+1)) ∈ ∆ and one of the following holds: (i) op = push
and γk+1 = A, or (ii) op = int and γk+1 = ε.

A run of P is a run of the transition system JPK. A finite run of P is accepting
if it ends in a final configuration.

Similarly, we define a parameterized finite-state system (PFS), which is a PPS
without stacks. That is, a PFS is a tuple P = (S,L, sin, `in, ∆, Fglob, Floc) where
∆ ⊆ (S×L)×(S×L) and the rest is defined as in PPS. Configurations in CP are

4



tuples c = (s, `1, . . . , `k) with k ≥ 0. The semantics of P is JPK = (CP , E, (sin))
with E =

⋃
p≥1Ep defined as follows:

((s, `1, . . . , `k), (s′, `′1, . . . , `
′
k)) ∈ Ep

if and only if p ≤ k, ((s, `p), (s
′, `′p)) ∈ ∆, and `q = `′q for all q 6= p, and

((s, `1, . . . , `k), (s′, `1, . . . , `k, `k+1)) ∈ Ep

if and only if p = k + 1 and ((s, `in), (s
′, `k+1)) ∈ ∆. The notions of runs and

accepting runs are defined accordingly.

Reachability Problems. Consider Table 1. The problem PPS-Reachability
(respectively, PFS-Reachability) consists in deciding if, in a given PPS (re-
spectively, PFS), there is an accepting run, starting in the initial configuration.

In the general case, these problems are already known and we recall here the
results. The first is folklore (cf. also [28]), as two stacks are already sufficient
to simulate a Turing machine. For the second, we observe that parameterized
systems without stacks are essentially Petri nets (cf. [9]).

Theorem 1. PPS-Reachability is undecidable, while PFS-Reachability is
decidable (and as hard as Petri-net reachability).

2.2 Round-Bounded Behaviors

To regain decidability in the case of PPS, we restrict ourselves to runs that
are round-bounded, a notion introduced in [24]. Intuitively, during a round, the
first process will do any number of transitions (possibly 0), then the second
process will do any number of transitions, and so on. Once process p + 1 has
started performing transitions, process p cannot act again in this round. A run
is then said to be B-round bounded if it uses at most B rounds. Formally, given
a natural number B ≥ 1 and a PPS P = (S,L, Γ, sin, `in, ∆, Fglob, Floc), we define
the bounded semantics of P as the transition system JPKB = (V B , EB , vBin ) where

– nodes are enhanced configurations of the form v = (c, p, r) with c ∈ CP a
configuration, say, of size k, p ∈ {0, . . . , k} represents the last process that
made a transition (or 0 if it is not yet defined), and r ∈ {1, . . . , B} is the
number of the current round,

– the initial node is vBin = ((sin), 0, 1), and
– there is an edge between (c, p, r) and (c′, p′, r′) if, in JPK = (V,E, vin), there

is an edge (c, c′) in Ep′ and either
• p′ ≥ p and r′ = r, or
• p′ < p, r < B, and r′ = r + 1.

The bounded semantics of a PFS is defined accordingly.
A B-run (or simply run if B is understood) of P is a run of JPKB . A B-run is

accepting if it is finite and ends in a node (c, p, r) where c is a final configuration.
Consider the problems on the right-hand side of Table 1 (note that B is

encoded in unary). Deciding the existence of an accepting B-run is PSPACE-
complete for both PPS and PFS.
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Table 1. Reachability Problems

PPS-Reachability

I: PPS P
Q: Is there an accepting run of P ?

PPS-Reachabilityrb

I: PPS P; B ≥ 1 (given in unary)

Q: Is there an accepting B-run of P ?

PFS-Reachability

I: PFS P
Q: Is there an accepting run of P ?

PFS-Reachabilityrb

I: PFS P; B ≥ 1 (given in unary)

Q: Is there an accepting B-run of P ?

Theorem 2. PPS-Reachabilityrb and PFS-Reachabilityrb are PSPACE-
complete.

The rest of this section is devoted to the proof of this theorem. Actually,
we prove that PPS-Reachabilityrb is in PSPACE and PFS-Reachabilityrb

is PSPACE-hard. The upper bound has already been stated in [24], the lower
bound in [25], for a similar model. For the sake of completeness, we give proofs
for both bounds.

PPS-Reachabilityrb is in PSPACE. We give an (N)PSPACE algorithm solving
the problem PPS-Reachabilityrb using a slight variant of the notion of inter-
faces as described in [24]. Let P = (S,L, Γ, sin, `in, ∆, Fglob, Floc) be a PPS and
B ≥ 1 be the maximal number of rounds.

An interface for a single process is a triple I = [t, (s1, . . . , sB), (s′1, . . . , s
′
B)] ∈

{1, . . . , B} × SB × SB satisfying the following conditions:

1. For all 1 ≤ i < t, we have si = s′i.
2. There are local states `t−1, . . . , `B and stack contents γt−1, . . . , γB such

that (i) for all t ≤ i ≤ B there is a finite partial run in JPK from ci =
(si, (`i−1, γi−1)) to c′i = (s′i, (`i, γi)), (ii) this run has length at least two
(i.e., it performs at least one transition) if i = t, and (iii) `t−1 is the initial
local state, γt−1 = ε, and `B is an accepting local state.

We refer to the first B-tuple of I as I` and to the second B-tuple as Ir. The
natural number t is the starting round and is referred to as tI . We say that an
interface I1 is compatible with an interface I2 if tI1 ≤ tI2 and Ir1 = I`2.

Intuitively, an interface represents the possibility of a computation of a single
process during a run of the PPS. Global states are the only piece of information
needed to be able to coordinate between different processes, since a process can-
not access the local content of another one. Moreover, when a process is created,
it takes the last position in a round. The starting round t of each interface is
needed to check that the order of the processes respects the order of their cre-
ation. In other words, interfaces can be viewed as the skeleton of a run of P.
This is formalised in the following lemma, which is illustrated in Figure 1 and
whose proof can be found in Appendix A.
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Fig. 1. A run as the composition of compatible interfaces; all starting rounds are 1

Lemma 1. There is an accepting B-run of P if and only if there are k interfaces
I1, . . . , Ik for k ≥ 1 verifying the following conditions:

– For all 1 < i ≤ k, Ii−1 is compatible with Ii.
– Let I`1 = (s1, . . . , sB) and Irk = (s′1, . . . , s

′
B). Then, s1 is the initial global

state sin, s′B is an accepting global state, and sj = s′j−1 for all 1 < j ≤ B.

Given I = [t, (s1, . . . , sB), (s′1, . . . , s
′
B)], one can check in polynomial time

whether I is an interface. To do this, we check the emptiness of a pushdown
automaton that simulates the actions of P on a single process and has special
transitions to change the global state from s′j to sj+1 (cf. Appendix B). As non-
emptiness of a pushdown automaton can be checked in polynomial time [17], so
can the validity of a given interface.

The algorithm to solve PPS-Reachabilityrb first guesses an interface I1
for the first process, and stores tI1 , I`1, and Ir1 . Then, it guesses an interface
I2 for the second process, checks that it is compatible by comparing tI2 and
I`2 with the previously stored tI1 and Ir1 , and then replaces Ir1 by Ir2 and tI1
by tI2 (so only I`1, tI2 , and Ir2 are stored). We continue guessing compatible
interfaces, storing at each step i the values of I`1, tIi , and Iri . Eventually, the
algorithm guesses that the last process has been reached. At that point, there
are two halves of interfaces stored in memory: the left interface I`1 = (s1, . . . , sB)
of the first process, and the right interface Irk = (s′1, . . . , s

′
B) of the last process.

We accept if, for all i ∈ {1, . . . , B − 1}, we have that s′i = si+1, s1 = sin, and
s′B ∈ Fglob. By Lemma 1, there is an accepting B-run of P.

PFS-Reachabilityrb is PSPACE-hard. This can be shown by a reduction from
the non-emptiness of the intersection of a collection of finite automataA1, . . . ,An,
which is PSPACE-complete [21]. The bound B on the number of rounds will be
n. We construct a PFS that non-deterministically guesses a word w in the first
round. Moreover, in round i, it will check that w is accepted by Ai. To do this,
each process simulates one transition of Ai on one letter of w. That is, the num-
ber of processes is |w|. Each process performs exactly one action each round,
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and, to ensure that the word w is the same for each Ai, stores the correspond-
ing letter in its local state. The global state stores the state of the currently
simulated automaton. The full proof can be found in Appendix C.

3 Round-Bounded Control of Parameterized Systems

We will extend parameterized pushdown systems to a game-based setting with
the aim of modeling systems with a centralized control that are embedded into
an uncontrollable environment.

3.1 Parameterized Pushdown Games

Games. A game is given by an arena, i.e., a transition system G = (V,E, vin)
where V = V0 ] V1 is partitioned into the set of states controlled by Player 0
and Player 1, respectively, along with a winning condition W ⊆ V∞.

A play of G is a run of the underlying transition system. A play is maximal if
it is infinite, or ends in a node that has no successor. A maximal play is winning
for Player 0 if it is in W, otherwise it is winning for Player 1.

We will be concerned with two winning conditions: A reachability condition
is given by a set of nodes F ⊆ V . It induces the set WF = {ρ = v0v1v2 . . . ∈
V∞ | vi ∈ F for some 0 ≤ i < |ρ|}. A parity condition is given by a ranking
function α : V → Col where Col ⊆ N is a finite set of colors. It induces the
set Wα = {ρ ∈ V ω | min(Infα(ρ)) is even} with Infα(v0v1v2 . . .) = {m ∈ Col |
m appears infinitely often in α(v0)α(v1)α(v2) . . .}. I.e., Wα contains an infinite
run if and only if the minimal color seen infinitely often is even.

Let j ∈ {0, 1}. A strategy for Player j is a partial mapping fj : V ∗Vj → V
such that, for all w ∈ V ∗ and v ∈ Vj , the following hold: if fj(wv) is defined,
then (v, fj(wv)) ∈ E; otherwise, v has no successor.

Fix strategies f0 and f1 for Players 0 and 1, respectively. An (f0, f1)-play of
G is a maximal play ρ = v0v1v2 . . . such that, for all 0 < i < |ρ| and j ∈ {0, 1},
if vi−1 ∈ Vj , then fj(v0 . . . vi−1) = vi.

We say that fj is winning if, for all strategies f1−j , the unique maximal
(f0, f1)-play is winning for Player j. A game is determined if either Player 0 has
a winning strategy, or Player 1 has a winning strategy. Furthermore, we say that
fj is memoryless if, for all w,w′ ∈ V ∗ and v ∈ Vj , we have fj(wv) = fj(w

′v),
i.e., the strategy only depends on the last node.

Theorem 3 (cf. [13, 33]). Games with a parity winning condition are deter-
mined, and if Player j has a winning strategy, then Player j has a winning
memoryless strategy.

Parameterized Pushdown Games. We now introduce the special case of games
played on the infinite transition system induced by a round-bounded PPS.

A round-bounded parameterized pushdown game is described by a PPS P =
(S,L, Γ, sin, `in, ∆, Fglob, Floc) together with a partition S = S0]S1. For a bound
B ≥ 1, the B-round-bounded parameterized pushdown game induced by P is the
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game GBP given by the transition system JPKB = (V B , EB , vBin ) where a node
v = (c, p, r) ∈ V B with c = (s, (`1, γ1), . . . , (`k, γk)) belongs to Player j if s ∈ Sj .
We consider the reachability winning condition WF given by F = {(c, p, r) ∈
V B | c is a final configuration of P}. Since a reachability game can be easily
transformed into a parity game, Theorem 3 implies that GBP is determined.

Parameterized games on PFS are defined similarly as for PPS. Note that,
without a bound on the number of rounds, games on PFS are already undecid-
able, which is shown by an easy adaptation of the undecidability proof for VASS
games [1]. Therefore, we only define control for round-bounded games:

Controlrb

I: PPS P = (S0 ] S1, L, Γ, sin, `in, ∆, Fglob, Floc); B ≥ 1

Q: Does Player 0 have a winning strategy in GBP ?

We are now ready to present our main result, which is shown in the remainder
of this section:

Theorem 4. Controlrb is decidable, and inherently non-elementary.

3.2 Upper bound

Decidability of Controlrb comes from decidability of games on phase-bounded
multi-pushdown systems (short: multi-pushdown games), which were first stud-
ied in [29] and rely on the phase-bounded multi-pushdown automata from [22].

Multi-Pushdown Games. Intuitively, a phase is a sequence of actions in a run
during which only one fixed ”active” stack can be read (i.e., either make a
pop transition or a zero-test transition), but push and internal transitions are
unrestricted. There are no other constraints on the number of transitions or the
order of the transitions done during a phase.

Definition 2. A multi-pushdown system (MPS) is a tuple M = (κ,N, S0 ]
S1, Γ,∆, sin, α) where the natural number κ ≥ 1 is the phase bound, N ∈ N is
the number of stacks, S = S0 ]S1 is the partitioned finite set of states, Γ is the
finite stack alphabet, ∆ ⊆ S × Actzero × {1, . . . , N} × Γ × S is the transition
relation where Actzero = {push, pop, int, zero}, sin ∈ S is the initial state, and
α : S → Col with Col ⊆ N a finite set is the ranking function.

The associated game GM is then played on the transition system JMK =
(V = V0 ] V1, E, vin) defined as follows.

A node v ∈ V is of the form v = (s, γ1, . . . , γN , st , ph) where s ∈ S, γσ ∈ Γ ∗ is
the content of stack σ, and st ∈ {0, . . . , N} and ph ∈ {1, . . . , κ} are used to keep
track of the current active stack (0 when it is undefined) and the current phase,
respectively. For j ∈ {0, 1}, we let Vj = {(s, γ1, . . . , γN , st , ph) ∈ V | s ∈ Sj}.

Given nodes v = (s, γ1, . . . , γN , st , ph) ∈ V and v′ = (s′, γ′1, . . . , γ
′
N , st ′, ph ′) ∈

V , we have an edge (v, v′) ∈ E if and only if there exist op ∈ Actzero, σ ∈
{1, . . . , N}, and A ∈ Γ such that (s, op, σ, A, s′) ∈ ∆ and the following hold:

9



– γτ = γ′τ for all τ 6= σ,

– γσ = γ′σ if op = int, γ′σ = A · γσ if op = push, γσ = A · γ′σ if op = pop, and
γσ = γ′σ = ε if op = zero,

– if op ∈ {int, push}, then st = st ′ and ph = ph ′ (the active stack and, hence,
the phase do not change),

– if op ∈ {pop, zero}, then either st = 0, st ′ = σ, and ph = ph ′ = 1 (this is the
first time a current stack is defined), or st = σ, st ′ = σ, and ph = ph ′ (the
stack σ corresponds to the current active stack), or st 6= σ, ph < κ, st ′ = σ,
and ph ′ = ph +1 (stack σ is not the active stack so that a new phase starts).

The initial node is vin = (sin, ε, . . . , ε, 0, 1). The winning condition of GM is a
parity condition given by α : V → Col where, for v = (s, γ1, . . . , γN , st , ph), we
let α(v) = α(s).

The control problem for MPS, denoted by ControlMPS, is defined as follows:
Given an MPS M, does Player 0 have a winning strategy in GM?

Theorem 5 ([5,29]). ControlMPS is decidable, and is non-elementary in the
number of phases.

The upper bound was first shown in [29] by adopting the technique from [32],
which reduces pushdown games to games played on finite-state arenas. On the
other hand, [5] proceeds by induction on the number of phases, reducing a (κ+1)-
phase game to a κ-phase game. Similarly, we could try a direct proof of our
Theorem 4 by induction on the number of rounds. However, this proof would be
very technical and essentially reduce round-bounded parameterized systems to
multi-pushdown systems. Therefore, we proceed by reduction to multi-pushdown
games, providing a modular proof with clearly separated parts.

From Parameterized Pushdown Games to Multi-Pushdown Games.
We reduce Controlrb to ControlMPS. Let P = (S,L, Γ, sin, `in, ∆, Fglob, Floc),
with S = S0 ] S1, be a PPS and B ≥ 1. We will build an MPS M such that
Player 0 has a winning strategy in GBP if and only if Player 0 has a winning
strategy in GM. In the following, given s ∈ S, we let pl(s) ∈ {0, 1} denote the
player associated with s, i.e., pl(s) = 0 if and only if s ∈ S0.

The main idea of the reduction is to represent a configuration

(s, (`1,
xγ1 ), . . . , (`p−1,

xγp−1 ), (`p,
xγp ), (`p+1,

xγp+1 ), . . . , (`k,
xγk ), p, r)

of GBP as a configuration in GM of the form depicted in Figure 2.
Component j ∈ {0, 1} of the global state denotes the current player (which,

by default, is pl(s)). We explain f1 and f2 further below.
The process p that has moved last is considered as the active process whose

local state `p is kept in the global state of GM along with s, and whose stack
contents γp is accessible on stack 1 (in the correct order). This allows the multi-
pushdown game to simulate transitions of process p, modifying its local state and
stack contents accordingly (see Basic Transitions in the formalization below).
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((s, `p, f1, f2, j, r),

xγp
(`p+1, gp+1)xγp+1

...
(`k, gk)xγk

,

yγp−1

(`p−1, gp−1)
...yγ1

(`1, g1)

, st , ph)

Fig. 2. Encoding of a configuration in GBP by a configuration in GM

If a player decides to take a transition for some process p′ > p, she will store
`p on stack 2 and shift the contents of stack 1 onto stack 2 until she retrieves the
local state `p′ of p′ along with its stack contents γp′ (see Figure 3 and Transitions
for Process Change in the formalization of M).

If, on the other hand, the player decides to take a transition for some process
p′ < p, then she stores `p on stack 1 and shifts the contents of stack 2 onto
stack 1 to recover the local state `p′ and stack contents γp′ (see Figure 4 and
Transitions for Round Change). This may imply two phase switches, one to shift
stack symbols from 2 to 1, and another one to continue simulating the current
process on stack 1. However, 2B − 1 phases are sufficient to simulate B rounds.

There are a few subtleties: First, at any time, we need to know whether
the current configuration of GM corresponds to a final configuration in GBP . To
this aim, the state component (s, `p, f1, f2, j, r) of M contains the flags f1, f2 ∈
{3,7} where, as an invariant, we maintain f1 = 3 if and only if {`p+1, . . . , `k} ⊆
Floc and f2 = 3 if and only if {`1, . . . , `p−1} ⊆ Floc. Thus, Player 0 wins in GM as
soon as she reaches a configuration with global state (s, `, f1, f2, j, r) such that
s ∈ Fglob, ` ∈ Floc, and f1 = f2 = 3. To faithfully maintain the invariant, every
local state `q that is pushed on one of the two stacks, comes with an additional
flag gq ∈ {3,7}, which is 3 if and only if all local states strictly below on the
stack are contained in Floc. It is then possible to keep track of a property of
all local states on a given stack simply by inspecting and locally updating the
topmost stack symbols.

Second, one single transition in P is potentially simulated by several transi-
tions in M in terms of the gadgets given in Figures 3 and 4. The problem here
is that once Player j commits to taking a transition by entering a gadget, she is
not allowed to get stuck. To ensure progress, there are transitions from inside a
gadget to a state win1−j that is winning for Player 1− j.

Third, suppose that, in a non-final configuration of GBP , it is Player 1’s turn,
but no transition is available. Then, Player 1 wins the play. But how can Player 1
prove in GM that no transition is available in the original game GBP ? Actually,
he will give the control to Player 0, who will eventually get stuck and, therefore,
lose (cf. transitions for Change of Player below).
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Let us define the MPS M = (κ,N, S′ = S′0 ] S′1, Γ ′, ∆′, s′in, α) formally. We
let κ = 2B − 1, N = 2 (the number of stacks), and Γ ′ = Γ ] (L× {3,7}).

States. The set of states is S′ = {s′in} ] Ssim ] {win0,win1} ] I where s′in is
the initial state. Moreover, Ssim = S × L × {3,7}2 × {0, 1} × {1, . . . , B}. A
state (s, `, f1, f2, j, r) ∈ Ssim stores the global state s and the local state ` of
the last process p that executed a transition. The third and forth component
f1 and f2 tell us whether all processes p′ > p and, respectively, p′ < p of the
current configuration are in a local final state (indicated by 3). Then, j denotes
the player that is about to play (usually, we have j = pl(s), but there will
be deviations). Finally, r is the current round that is simulated. Recall that
(s, `, f1, f2, j, r) represents a final configuration if and only if s ∈ Fglob, ` ∈ Floc,
and f1 = f2 = 3. Let F ⊆ Ssim be the set of such states. The states win0 and
win1 are self-explanatory. Finally, we use several intermediate states, contained
in I, which will be determined below along with the transitions.

The partition S′ = S′0 ] S′1 is defined as follows: First, we have s′in ∈ S′pl(sin).
Concerning states from Ssim, we let (s, `, f1, f2, j, r) ∈ S′j . The states win0 and
win1 both belong to Player 0 (but this does not really matter). Membership of
intermediate states is defined below. The ranking function α maps win0 to 0,
and everything else to 1. In fact, we only need a reachability objective and use
the parity condition to a very limited extent.

Initial Transitions. For all transitions (sin, `in)
(op,A)−−−−→ (s′, `′) in P, we intro-

duce, in M, a transition s′in
(op,1,A)−−−−−−→ (s′, `′,3,3, pl(s′), 1).

Final Transitions. For all states (s, `, f1, f2, j, r) ∈ F, we will have a transition

(s, `, f1, f2, j, r)
int−−→ win0 (we omit the stack symbol, as it is meaningless), which

will be the only transition outgoing from (s, `, f1, f2, j, r). Moreover, win0
int−−→

win0 and win1
int−−→ win1.

Basic Transitions. We now define the transitions of M simulating transitions
of P that do not change the process. For all (s, `, f1, f2, j, r) ∈ Ssim \ F and

transitions (s, `)
(op,A)−−−−→ (s′, `′) from ∆ (in P), the MPS M has a transition

(s, `, f1, f2, j, r)
(op,1,A)−−−−−−→ (s′, `′, f1, f2, pl(s′), r).

Transitions for Process Change. For all (s, `, f1, f2, j, r) ∈ Ssim \ F, we intro-
duce, in M, the gadget given in Figure 3. As we move to another process, the
current local state ` is pushed on stack 2, along with flag f2, which tells us
whether, henceforth, all states on stack 2 below the new stack symbol are local
accepting states. Afterwards, the value of f2 kept in the global state has to be
updated, depending on whether ` ∈ Floc or not. Actually, maintaining the value
of f2 is done in terms of additional (but finitely many) states. For the sake of
readability, however, we rather consider that f2 is a variable and use upd(f2, `)
to update its value. We continue shifting the contents of stack 1 onto stack 2
(updating f2 when retrieving a local state). Now, there are two possibilities. We
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s `
f1 f2
j r

B B ∈ Γ

`′′ `′′ ∈ L

s ˆ̀

f ′1 f2

s′ `′

f ′1 f2
pl(s′) r

for all transitions

(s, ˆ̀)
(op,A)−−−−→ (s′, `′)

in ∆

push 2 (`, f2) ;
upd(f2, `)

pop 1 B push 2 B

pop 1 (ˆ̀, f ′1)(
ˆ̀∈ L

f ′1 ∈ {3, 7}

)

zero 1
ˆ̀ := `in
f ′1 := 3

op 1 A

pop 1 (`′′, )
push 2 (`′′, f2) ;

upd(f2, `
′′)

win1−j

Fig. 3. Change from process p to some process p′ > p (staying in the same round).
All intermediate states belong to Player j; from every intermediate state, there is an
outgoing internal transition to win1−j . Moreover, upd(f2, ¯̀) stands for the update rule
If (f2 = 3 ∧ ¯̀∈ Floc) Then f2 := 3 Else f2 := 7.

may eventually pop a new current local state ˆ̀ and then simulate the transition
of the corresponding existing process. Or, when there are no more symbols on
stack 1, we create a new process.

Transitions for Round Change. For all (s, `, f1, f2, j, r) ∈ Ssim \ F such that
r < B, we introduce, in M, the gadget given in Figure 4. It is similar to the
previous gadget. However, we now shift symbols from stack 2 onto stack 1 and
have to update f1 accordingly.

Change of Player. When Player 1 thinks he does not have an outgoing transi-
tions (in P), he can give the token to Player 0. That is, for all (s, `, f1, f2, 1, r) ∈
Ssim \ F, we introduce the transition (s, `, f1, f2, 1, r)

int−−→ (s, `, f1, f2, 0, r).

Lemma 2. Player 0 has a winning strategy in GM if and only if Player 0 has
a winning strategy in GBP .

The proof of this lemma can be found in Appendix D and E.
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s `
f1 f2
j r

B B ∈ Γ

`′′ `′′ ∈ L

s ˆ̀

f1 f
′
2

s′ `′

f1 f ′2
pl(s′) r + 1

for all transitions

(s, ˆ̀)
(op,A)−−−−→ (s′, `′)

in ∆

push 1 (`, f1) ;
upd(f1, `)

pop 2 B push 1 B

pop 2 (ˆ̀, f ′2)(
ˆ̀∈ L

f ′2 ∈ {3, 7}

)
op 1 A

pop 2 (`′′, )
push 1 (`′′, f1) ;

upd(f1, `
′′)

win1−j

Fig. 4. Go from a process p to some process p′ < p (involving a round change). All
intermediate states belong to Player j; from every intermediate state, there is an out-
going internal transition to win1−j . Moreover, upd(f1, ¯̀) stands for the update rule
If (f1 = 3 ∧ ¯̀∈ Floc) Then f1 := 3 Else f1 := 7.

3.3 Lower bound

Our lower-bound proof is inspired by [5], but we reduce from the satisfiability
problem for first-order formulas on finite words, which is known to be non-
elementary [30]. Note that the lower bound already holds for PFS.

Let Var be a countably infinite set of variables and Σ a finite alphabet.
Formulas ϕ are built by the grammar ϕ ::= a(x) | x < y | ¬(x < y) | ϕ∨ϕ | ϕ∧
ϕ | ∃x.ϕ | ∀x.ϕ where x, y ∈ Var and a ∈ Σ.

Let w = a0 . . . an−1 ∈ Σ∗ be a word. Variables are interpreted as positions of
w, so a valuation is a (partial) function ν : Var→ {0, . . . , n−1}. The satisfaction
relation is defined as follows. We let w, ν |= a(x) if and only if aν(x) = a.
Moreover, w, ν |= x < y if and only if ν(x) < ν(y). Quantification, negation,
disjunction, and conjunction are defined as usual. We refer to [31] for details.
A formula ϕ without free variables is satisfiable if there is a word w such that
w, ∅ |= ϕ. We suppose that ϕ is given in prenex normal form.

We build a PFS-based round-bounded game that is winning for Player 0 if
and only if ϕ is satisfiable. In the first round of the game, Player 0 chooses a
word w by creating a different process for each letter of w, each of them holding
the corresponding letter in its local state. To prove that w is indeed a model of
ϕ, the following rounds are devoted to the valuation of the variables appearing
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in ϕ, ν(x) = i being represented by memorizing the variable x in the local state
of the ith process. If x appears in the scope of a universal quantifier, the choice
of the process is made by Player 1, otherwise it is made by Player 0. The last
round is used to check the valuation of the variables. To this end, the players will
inductively choose a subformula to check, until they reach an atomic proposition:
If the subformula is a disjunction ϕ1∨ϕ2, Player 0 chooses either ϕ1 or ϕ2; if it is
a conjunction, Player 1 chooses the next subformula. Finally, to verify whether
a(x) is satisfied, we check that there is a process with letter a and variable x in
its local state. For x < y, we check that the process with x in its local state is
eventually followed by a distinct process with y in its local state. This check is
done during the same round, which guarantees that the positions corresponding
to x and y are in the correct order. The number of states needed and the number
of rounds are linearly bounded in the length of the formula. A formalization of
this construction and its correctness proof can be found in Appendix F.

4 Conclusion

We extended the verification of round-bounded parameterized systems to a
game-based setting, which allows us to model an uncontrollable environment.
It would be interesting to consider game-based extensions for the setting from
[6], too. Moreover, as games constitute an important approach to verifying
branching-time properties (e.g., [26]), our results may be used for branching-time
model checking of parameterized systems (using a variant of data logics [20] and
a reduction of the model-checking problem to a parameterized pushdown game).
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A Proof of Lemma 1

Given a configuration c = (s, (`1, γ1), . . . , (`k, γk)), we let projS(c) = s, and
projL,i(c) = (`i, γi) if i ≤ k and projL,i(c) = (`in, ε) if k < i.

Let ρ be an accepting run of JPKB using k processes. Note that ρ can be
divided into ρ = ρ0ρ1 · · · ρB′ , with B′ ≤ B, where each ρj is the part of the
run corresponding to round j, and ρ0 = ((sin), 0, 1). For every 1 ≤ i ≤ k

and 1 ≤ j ≤ B′, let (c
(i,j)
α )α≤n(i,j) be the (possibly empty) finite sequence of

configurations visited by process i during round j in the run ρ. Formally, for

each 1 ≤ j ≤ B′, ρj = ρ1j · · · ρkj , with ρij = (c
(i,j)
1 , i, j) · · · (c(i,j)n(i,j), i, j). Note

that ρij may be empty. Fix a round 1 ≤ j ≤ B′, and a process 1 ≤ i ≤ k.
Let i′,j′ be such that ρi

′j′ is the last non-empty part of ρ before ρij . Let

s
(i,j)
0 = projS(c

(i′,j′)
n(i′,j′)) and (`

(i,j)
0 , γ

(i,j)
0 ) = projL,i(c

(i′,j′)
n(i′,j′)) be respectively the

global state and local state reached by process i just before process i starts in

round j. Let s
(i,j)
m = projS(c

(i,j)
m ) and (`

(i,j)
m , γ

(i,j)
m ) = projL,i(c

(i,j)
m ), for 1 ≤

m ≤ n(i,j). Since ((c
(i′,j′)
n(i′,j′), i

′, j′), (c
(i,j)
1 , i, j)) ∈ EB and, for all 1 ≤ m < n(i, j),

((c
(i,j)
m , i, j), (c

(i,j)
m+1, i, j)) ∈ EB , by definition, we have (c

(i′,j′)
n(i′,j′), c

(i,j)
1 ) ∈ Ei and,

for all 1 ≤ m < n(i, j), (c
(i,j)
m , c

(i,j)
m+1) ∈ Ei. Observe that this implies that

((s
(i,j)
m , (`

(i,j)
m , γ

(i,j)
m )), (s

(i,j)
m+1, (`

(i,j)
m+1, γ

(i,j)
m+1))) ∈ E, for all 0 ≤ m < n(i, j). Hence

there is a finite run in JPK from (s
(i,j)
0 , (`

(i,j)
0 , γ

(i,j)
0 )) to (s

(i,j)
n(i,j), (`

(i,j)
n(i,j), γ

(i,j)
n(i,j))).

If ρij is empty we let s
(i,j)
n(i,j) = s

(i,j)
0 and (`

(i,j)
n(i,j), γ

(i,j)
n(i,j))) = ((`

(i,j)
0 , γ

(i,j)
0 )). For

all B′ < j ≤ B, for all 1 ≤ i ≤ k, let n(i, j) = 0, and s
(i,j)
0 = s

(k,B′)
n(k,B′), and

(`
(i,j)
0 , γ

(i,j)
0 ) = (`

(i,B′)
n(i,B′), γ

(i,B′)
n(i,B′)), i.e. the global state stays unchanged since the

end of the run ρ, and the local state and stack of each process stays at it was at
the end of their local run in the last round B′.

For each process i, let ti be the smallest round 1 ≤ j ≤ B′ such that ρij is not

empty. Thus, for all 1 ≤ i ≤ k, we define the interface Ii = [ti, (s
(i,1)
0 , . . . , s

(i,B)
0 ),

(s
(i,1)
n(i,1), . . . , s

(i,B)
n(i,B))]. From the above, we know that there exists a finite run

in JPK from (s
(i,j)
0 , (`

(i,j)
0 , γ

(i,j)
0 )) to (s

(i,j)
n(i,j), (`

(i,j)
n(i,j), γ

(i,j)
n(i,j))), for all 1 ≤ j ≤ B.

Moreover, in the first round, if a process plays, it is for the first time. Hence, by

definition, (`
(i,1)
0 , γ

(i,1)
0 ) = projL,i(c) for a configuration c of size smaller than i.

Then, (`
(i,1)
0 , γ

(i,1)
0 ) = (`in, ε). Since ρ is winning, every process ends in a final

local state, i.e., `
(i,B)
n(i,B) is accepting, for all i. Finally, for all j < ti, ρ

ij is empty.

By construction then, s
(i,j)
0 = s

(i,j)
n(i,j). All of this ensures that Ii is indeed an

interface. By construction, for all process 1 < i ≤ k and for all rounds j ≥ 1

we have s
(i,j)
0 = s

(i−1,j)
n(i−1,j). Moreover, by definition of a run of P, if a process i

appears in round j, then necessarily, process i + 1 appears for the first time in
round j′ ≥ j. Hence for all 1 ≤ i < k, ti ≤ ti+1 and interface Ii is compatible

with interface I2. By construction, for all 1 ≤ j ≤ B, s
(1,j)
0 = s

(k,j−1)
n(k,j−1), and
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because ρ is winning we also have s
(1,1)
0 = sin and s

(k,B)
n(k,B)

is accepting, then all
the conditions of the lemma are fulfilled.

Conversely, let I1, . . . , Ik be interfaces verifying the conditions. Let s(i,j) be
the j-th component of I`i and s′(i,j) be the j-th component of Iri and consider the

following partial run in JPK: ρij = (s
(i,j)
1 , (`

(i,j)
1 , γ

(i,j)
1 )) . . . (s

(i,j)
n(i,j), (`

(i,j)
n(i,j), γ

(i,j)
n(i,j)))

with s
(i,j)
1 = s(i,j) and si,jn(i,j) = s′(i,j). The existence of such a run, as well as the

local states and stack contents, is ensured by the definition of an interface. More-

over, (`
(i,j)
1 , γ

(i,j)
1 ) = (`

(i,j−1)
n(i,j−1), γ

(i,j−1)
n(i,j−1)), for all j > 1 and (`

(i,j)
1 , γ

(i,j)
1 ) = (`in, ε)

if j = 1.
We build a run ρ of P as follows. For 1 ≤ j ≤ B, and 1 ≤ i ≤ k such that tIi ≤

j, let ρ(i,j) be the (possibly empty) sequence of nodes (c
(i,j)
2 , i, j), . . . , (c

(i,j)
n(i,j), i, j)

where c
(i,j)
m = (s

(i,j)
m , (`1, γ1), . . . , (`k′ , γk′)) with k′ ≤ k the greatest element of

the set {1 ≤ i′ ≤ k | tIi′ < j} ∪ {i} and

– `i = `
(i,j)
m and γi = γ

(i,j)
m ,

– for p < i, `p = `
(p,j)
n(p,j) (i.e. the last local state of process p) and γp = γ

(p,j)
n(p,j),

– for i < p ≤ k′, `p = `
(p,j−1)
n(p,j−1) and γp = γ

(p,j−1)
n(p,j−1) (same but with the previous

round)

For i such that tIi > j, ρ(i,j) = ε, and we let ρ(0,0) = ((sin), 0, 1).
We show that the sequence ρ = ρ(0,0)ρ(1,1) . . . ρ(k,1)ρ(1,2) . . . ρ(k,B) is a run in

JPKB by induction on the pair (i, j). The base case where i = 0, j = 0 is trivial.
Let 1 ≤ i < k and 1 ≤ j ≤ B and assume that ρ(0,0)ρ(1,1) . . . ρ(i,j) is a run. Let
(i′, j′) be the successor of (i, j).

– Suppose that j = j′ and i′ = i + 1. Without loss of generality, assume

that ρ(i,j) and ρ(i+1,j) are not empty. Let k′ = |c(i+1,j)
2 |. If k′ > i + 1, then

k′ = |c(i,j)n(i,j)| and tIi < j by compatibility of the interfaces, hence j > 1.

Then,

c
(i,j)
n(i,j) = (s

(i,j)
n(i,j), (`1, γ1) . . . (`k′ , γk′))

with

(`i+1, γi+1) = (`
(i+1,j−1)
n(i+1,j−1), γ

(i+1,j−1)
n(i+1,j−1)) = (`

(i+1,j)
1 , γ

(i+1,j)
1 ))

and
c
(i+1,j)
2 = (s

(i+1,j)
2 , (`′1, γ

′
1) . . . (`′k′ , γ

′
k′))

with
(`′i+1, γ

′
i+1) = (`

(i+1,j)
2 , γ

(i+1,j)
2 )).

Moreover, for all p ≤ i, (`i, γi) = (`′i, γ
′
i) = (`

(p,j)
n(p,j), γ

(p,j)
n(p,j)) and for all

i + 1 < p ≤ k′, (`p, γp) = (`′p, γ
′
p) = (`

(p,j−1)
n(p,j−1), γ

(p,j−1)
n(p,j−1)). Since s

(i+1,j)
1 =

s(i+1,j) = s′
(i,j)

= s
(i,j)
n(i,j) because Ii is compatible with Ii+1, and by defini-

tion of an interface, ((s
(i,j)
n(i,j), (`i+1, γi+1)), (s

(i+1,j)
2 , (`′i+1, γ

′
i+1))) ∈ E. Hence
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from the above equalities, ((c
(i,j)
n(i,j), i, j), (c

(i+1,j)
2 , i + 1, j)) ∈ EB . Again, by

definition of an interface and by definition of ρ(i+1,j), ρ(i+1,j) is a partial
run of EB . Hence ρ(0,0) · · · ρ(i+1,j) is a run in JPKB . Now, suppose that

k′ = i + 1. Either |c(i,j)n(i,j)| = i + 1 (if tIi = tIi+1 = j or if tIi+1 < j), or

|c(i,j)n(i,j)| = i (if tIi+1 = j and tIi < j). In the first case, with the same reason-

ning than above, we can conclude. In the second case, it means that c
(i,j)
n(i,j) =

(s
(i,j)
n(i,j), (`1, γ1) . . . (`i, γi)) and c

(i+1,j)
2 = (s

(i+1,j)
2 , (`′1, γ

′
1) . . . (`′i+1, γ

′
i+1) with

(`′i+1, γ
′
i+1) = (`

(i+1,j)
2 , γ

(i+1,j)
2 ). Since tIi+1

= j, by definition of the inter-

face, we know that (`
(i+1,j)
1 , γ

(i+1,j)
1 ) = (`in, ε) and that

(
(s(i+1,j), (`in, ε)),

(s
(i+1,j)
2 , (`

(i+1,j)
2 , γ

(i+1,j)
2 ))

)
∈ E. It is then easy to check that we have

((c
(i,j)
n(i,j), i, j), (c

(i+1,j)
2 , i+ 1, j)) ∈ EB and we can conclude as above.

– Suppose now that j′ = j+1. Necessarily, since tIi′ ≤ tIi , |c
(i,j)
n(i,j)| = |c

(i′,j+1)
2 |.

Again, without loss of generality, suppose that i = k and i′ = 1. Then

c
(1,j+1)
2 = (s

(1,j+1)
2 , (`′1, γ

′
1), . . . , (`′k, γ

′
k))

= (s
(1,j+1)
2 , (`

(1,j+1)
2 , γ

(1,j+1)
2 ), . . . , (`

(k,j)
n(k,j), γ

(k,j)
n(k,j))),

and

c
(k,j)
n(k,j) = (s

(k,j)
n(k,j), (`1, γ1), . . . , (`k, γk))

= (s
(k,j)
n(k,j), (`

(1,j)
n(1,j), γ

(1,j)
n(1,j)), . . . , (`

(k,j)
n(k,j), γ

(k,j)
n(k,j))).

By the second condition of the lemma, one can conclude that s
(k,j)
n(k,j) =

s′(k,j) = s(1,j+1) = s
(1,j+1)
1 . The existence of the run ρ1j+1 allows to conclude.

As we used the runs in JPK given by the interfaces to build ρ(i,j), then using
the same transitions of P shows that ρ(i,j) is a valid run in JPKB . Since Ii
and Ii+1 are compatible (for i < k), using the first step (s

(i,j)
1 , (`

(i,j)
1 , γ

(i,j)
1 )) →

(s
(i,j)
2 , (`

(i,j)
2 , γ

(i,j)
2 )) shows that there is also an edge in JPKB from (c

(i,j)
n(i,j)

, i, j)

to (c
(i+1,j)
2 , i + 1, j). Similarly, the second condition of the lemma ensures that

there is an edge from (c
(k,j)
n(k,j)

, k, j) to (c
(1,j+1)
n(1,j+1)

, 1, j + 1) for j < B.

Finally, the second condition of the lemma ensures that the last global state
is accepting, thus ρ is accepting.

Observe that we have supposed in this proof that no ρ(i,j) was empty. If this
was not the case, the global state will remain the same in the different interfaces,
and the same proof applies, with tedious modifications of the indices. Again, if
a whole round is missing, or if the run does not start in round 1, then one can
rewrite the numbers of the round in a correct way, with no other modification,
and with the number of rounds even smaller than before.
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B Checking Validity of an Interface

We define the pushdown automaton AI = (Q,Σ, Γ ] {Z}, δ, q0, Z, F ) with Q =
{Win} ∪ (S × L× {1, . . . , B}) ∪

(
S × L× {1, . . . , B}

)
with S = {s | s ∈ S},

q0 = (s1, `0, 1) if t > 1, q0 = (s1, `0, 1) otherwise, F = {Win}, and δ defined as
follows. For every X,A ∈ Γ , for every s, s′ ∈ S, for every `, `′ ∈ L, for every
j ∈ 1, . . . , B, for every a ∈ Σ,

1. ((s, `, j), X)
a−→ ((s′, `′, j), AX) if j ≥ t, a ∈ Σpush and ((s, `), (a,A), (s′, `′)) ∈

∆,
((s, `, j), A)

a−→ ((s′, `′, j), ε) if j ≥ t, a ∈ Σpop and ((s, `), (a,A), (s′, `′)) ∈ ∆,

((s, `, j), X)
a−→ ((s′, `′, j), X) if j ≥ t, a ∈ Σint and ((s, `), (a,A), (s′, `′)) ∈

∆,
2. ((s, `, j), X)

a−→ ((s′, `′, j), AX) if a ∈ Σpush and ((s, `), (a,A), (s′, `′)) ∈ ∆,

((s, `, j), A)
a−→ ((s′, `′, j), ε) if a ∈ Σpop and ((s, `), (a,A), (s′, `′)) ∈ ∆,

((s, `, j), X)
a−→ ((s′, `′, j), X) if a ∈ Σint and ((s, `), (a,A), (s′, `′)) ∈ ∆,

3. ((s′j , `, j), X)
ε−→ ((sj+1, `, j + 1), X) if j < B and j 6= t− 1,

4. ((s′t−1, `, t− 1), X)
ε−→ ((st, `, t), X),

5. ((s′B , `, B − 1), X)
ε−→ (Win, X) if ` ∈ Floc.

Intuitively, the two first kind of transitions corresponds to the transitions of P for
a single process, while the third and fourth kinds allow to non-deterministically
change the global state from s′j to sj+1, and then check correspondence between
the next components of the interface (and in P corresponds to other processes
acting and modifying the global state). The third component of Q allows us to
track the index of the component of the interface we are following. AI accepts
only after taking each transition of the third or fourth kind exactly once, and
after that reaching global state s′B with an accepting local state, which is the
only way to reach the final state Win through the last kind of transition. The
second and fourth kind of transitions lead to a copy of the global state in the
round corresponding to the first round of the interface, to ensure that the run
being simulated is not empty.

The correctness of our construction is established in the following lemma.

Lemma 3. There is an accepting run of AI if and only if I is an interface.

Proof. Suppose there is an accepting run of AI . By construction, it is neces-
sarily of the form ρ1 · ρ2 · · · ρB · (Win, γB), where, for all 1 ≤ j ≤ B, ρj =

((s1j , `
1
j , j), γ

1
j ) · · · ((sijj , `

ij
j , j), γ

ij
j ) with s1j = sj , the j-th component of I` if

j 6= t, and s1j = sj otherwise, s
ij
j = s′j , the j-th component of Ir, and for all

1 ≤ i ≤ ij , γ
i
j = Z · γ′ij , for some γ′

i
j ∈ Γ ∗. Moreover, for all 1 ≤ j ≤ B − 1,

`
ij
j = `1j+1. Finally, for all 1 ≤ i < ij , ((sij , (`

i
j , γ
′i
j)), (s

i+1
j , (`i+1

j , γi+1
j ))) ∈ E1.

For all j < t, by construction, no transition of the first kind can be taken,
which ensures that ρj = ((s1j , `

1
j , j), γ

1
j ) and thus that sj = s1j = s′j . Again, by

the structure of AI , |ρt| > 1.
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For t − 1 ≤ j < B, let `j = `1j+1, γj = γ′
1
j+1, `B = `iBB and γB = γiBB .

Then, for all j ≥ t, there is a partial run in JPK starting in cj = (s1j , (`
1
j , γ

1
j )) =

(sj , (`j−1, γj−1)) to c′j = (s
ij
j , (`

ij
j , γ

ij
j ) = (s′j , (`

1
j+1, γ

1
j+1)) = (s′j , (`j , γj)).

Since ρ1 starts in ((s1, `in, 1), Z), and since all run ρj for 1 ≤ j < t, ρj =
((s1, `0, j), Z), by construction `t−1 = `in, and γt−1 = ε. By construction of AI ,
`B = `iBB ∈ Floc. So, I is indeed an interface.

Conversely, suppose I is an interface. One can build an accepting run of AI :
ρ1 · · · ρt · · · ρB , where ρj = ((sj , `0, j), Z) for all 1 ≤ j ≤ t− 1. For t ≤ j ≤ B, let

(sj , (`j−1, γj−1))(sj1, (`
j
1, γ

j
1)) . . . (sjij−1, (`

j
ij−1, γ

j
ij−1))(s′j , (`j , γj))

be the run of JPK ensured by I. Then, when j = t, ρt = ((st, `in, t), Z)((st1, `
t
1, t), γ

t
1·

Z) . . . ((sjit−1, `
t
it−1, t), γ

t
it−1·Z)((s′t, `t, t)γt·Z). If t < j < B, ρj = ((sj , `j−1, j), γj−1·

Z)((sj1, `
j
1, j), γ

j
1 ·Z) . . . ((sjij−1, `

j
ij−1, j), γ

j
ij−1 ·Z)((s′j , `j , j)γj ·Z), which is a run

ofAI using only transitions of the first type. Finally, ρB = ρj = ((sj , `j−1, j), γj−1·
Z)(sj1, `

j
1, j), γ

j
1 ·Z) . . . (sjij−1, `

j
ij−1, j), γ

j
ij−1 ·Z)(s′j , `j , j)γj ·Z)(Win, γj ·Z). The

last transition is possible because `B is accepting.

Transitions from ρj to ρj+1 are transitions of the third type (fourth type
when j = t − 1). When j < t, it is possible since for all 1 ≤ j < t, sj = s′j .

Moreover, the transition from ρt to ρt+1 is possible since the run of JPK is not
empty, so the last configuration reached in ρt is necessarily in S × L× t.

C Lower Bound of Theorem 2

Let A1, . . . ,An be n finite automata over a finite alphabet Σ. That is, Ai =
(Qi, δi, q

i
0, Fi) where δi ⊆ Qi × Σ × Qi is the transition relation. We denote

by L(Ai) ⊆ Σ∗ the language of Ai, which is defined as usual. The intersection
problem asks whether there is a (nonempty) word w ∈ Σ+ such that w ∈ L(Ai)
for all i ∈ {1, . . . , n}.

The bound B on the number of rounds will be the number of finite automata
n. We construct a PFS that non-deterministically guesses a word w ∈ Σ+ in
the first round. Moreover, in round i, it will check that w is accepted by Ai.
To do this, each process will simulate one transition of Ai on one letter of w.
That is, the number of processes is |w|. Each process will do exactly one action
each round, and, to ensure that the word w is the same for each Ai, will store in
its local state which letter it represents. The global state stores the state of the
currently simulated automaton. If we get a final state at the end of each round,
it means that each Ai accepts the same word w.

Formally, we define P = (S,L, sin, `in, ∆, Fglob, Floc) as follows:

– S = {sin} ∪
((⋃

i∈{1,...,n}Qi
)
× {1, . . . , n}

)
,

– L = {`in} ∪ (Σ × {0, 1} × {1, . . . , n}),
– Fglob = Fn × {n}, Floc = Σ × {0, 1} × {n}, and
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– ∆ = ∆1 ∪∆2 ∪∆3 ∪∆4 where:

∆1 = { (sin, `in) −→ ((q′, 1), (a, 1, 1)) | (q10 , a, q
′) ∈ δ1 }

∆2 = { ((q, 1), `in) −→ ((q′, 1), (a, 0, 1)) | (q, a, q′) ∈ δ1 }

∆3 =

 ((qf , i), (a, 1, i)) −→ ((q′, i+ 1), (a, 1, i+ 1))

∣∣∣∣∣∣
qf ∈ Fi
i ∈ {1, . . . , n− 1}
(qi+1

0 , a, q′) ∈ δi+1


∆4 =

 ((q, i), (a, 0, i− 1)) −→ ((q′, i), (a, 0, i))

∣∣∣∣∣∣ i ∈ {2, . . . , n}
(q, a, q′) ∈ δi


The only technical point here is that we need to differentiate between the

first process and the others, because the first process has to initiate the next
round. This is the meaning of the second component of the local state: the only
process that will store 1 is the first process to play, all the others will store 0.
Similarly, we also store the number of the round in the global state and each
local state to ensure that every process plays exactly once in each round.

There are four kinds of transitions: ∆1 and ∆2 are the first transitions of
respectively the first process and the non-first processes, while ∆3 and ∆4 are re-
spectively the transitions of the first and non-first processes in the other rounds.

Lemma 4. There is an accepting n-run of P if and only if
⋂

1≤i≤n

L(Ai) \ {ε} 6= ∅.

The rest of this section is devoted to the proof of the lemma.
⇒ Let qi0

a1−−→ . . .
ak−−→ qik be an accepting run of Ai. Then we have the

following run of P: (sin) · ρ1 · · · ρn with

ρi = ((qi1, i)(a1, 1, i)) · · · ((qik, i)(a1, 1, i) · · · (ak, 0, i))

for all 1 ≤ i ≤ n. It is easily verifiable from the definitions that it is a run, using
the fact that qik ∈ Fi for all 1 ≤ i < n. It is accepting because qnk ∈ Fn.
⇐ The structure of P impose that in an accepting run with k processes

each process does exactly one transition in each round, and since we are re-
stricted to round-bounded runs they also play in the correct order. Hence an
accepting run with k processes is necessarily of the form (sin) · ρ1 · · · ρn with
ρi = ((qi1, i)(a1, 1, i)) · · · ((qik, i)(a1, 1, i) · · · (ak, 0, i)) for all 1 ≤ i ≤ n given above
with some qij ∈ Qi and aj ∈ Σ for 1 ≤ i ≤ n and 1 ≤ j ≤ k. Since transitions

from ∆3 are the only way to start a new round, we can also deduce that qik ∈ Fi
for all 1 ≤ i ≤ n− 1, and since the run is accepting then also qnk ∈ Fn.

Let us pose w = a1 . . . ak. By definition of P, for each Ai and 1 ≤ j ≤ k,
there is a transition (qij−1, aj , q

i
j) ∈ δi. Thus for each Ai there is an accepting

run qi0
a1−−→ . . .

ak−−→ qik on w.

D List of states and transitions of GM

Here is the list of states and transitions used in GM that were left undefined.
We will define three sets I?, INP, INR such that I = I? ] INP ] INR.
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First, for all s ∈ S, ` ∈ L, f1, f2 ∈ {3,7}, j ∈ {0, 1}, r ≤ B we have
?(s, `, f1, f2, j, r) ∈ I?. For all such states, there is a transition

1. ?(s, `, f1, f2, j, r)
int−−→ win1−j

Moreover, for all (s, `)
(op,A)−−−−→ (s′, `′) in ∆, there is

2. ?(s, `, f1, f2, j, r)
op 1 A−−−−−→ (s′, `′, f1, f2, pl(s′), r).

Finally if there exists at least one transition (s, `)
(op,A)−−−−→ (s′, `′) in ∆, and

j 6= pl(s), then there is an additional transition

3. ?(s, `, f1, f2, j, r)
int−−→ winj if j 6= pl(s).

Then we have the set INP of intermediate states for a process change. For
every B ∈ Γ, s ∈ S, ` ∈ L, f2, g ∈ {3,7}, j ∈ {0, 1}, r ≤ B, we have np(s, f2, j, r),
npB(s, f2, j, r), and np`(s, f2, j, r) in INP. The associated transitions are:

1. (s, `, f1, f2, j, r)
push 2 (`,f2)−−−−−−−−→ np(s, upd(f2, `), j, r),

2. np(s, f2, j, r)
pop 1 B−−−−−→ npB(s, f2, j, r),

3. npB(s, f2, j, r)
push 2 B−−−−−−→ np(s, f2, j, r),

4. np(s, f2, j, r)
pop 1 (`, )−−−−−−−→ np`(s, f2, j, r),

5. np`(s, f2, j, r)
push 2 (`,f2)−−−−−−−−→ np(s, upd(f2, `), j, r),

6. np(s, f2, j, r)
pop 1 (`,g)−−−−−−−→?(s, `, g, f2, j, r), and

7. np(s, f2, j, r)
zero 1−−−−→?(s, `0,3, f2, j, r).

where upd(f2, `) = 3 iff f2 = 3 ∧ ` ∈ Floc.
And finally there is the set INR of intermediate states for a round change. For

every B ∈ Γ, s ∈ S, ` ∈ L, f1, g ∈ {3,7}, j ∈ {0, 1}, r ≤ B, we have nr(s, f1, j, r),
nrB(s, f1, j, r), and nr`(s, f1, j, r) in INR., with the following transitions:

1. (s, `, f1, f2, j, r)
push 2 (`,f1)−−−−−−−−→ nr(s, upd(f1, `), j, r),

2. nr(s, f1, j, r)
pop 2 B−−−−−→ nrB(s, f1, j, r),

3. nrB(s, f1, j, r)
push 1 B−−−−−−→ nr(s, f1, j, r),

4. nr(s, f1, j, r)
pop 2 (`, )−−−−−−−→ nr`(s, f1, j, r),

5. nr`(s, f1, j, r)
push 1 (`,f1)−−−−−−−−→ nr(s, upd(f1, `), j, r), and

6. nr(s, f1, j, r)
pop 2 (`,g)−−−−−−−→?(s, `, f1, g, j, r + 1).

To simplify the proof of correctness, we assume that after a transition of type
6 the first stack becomes the active stack, forcing a phase change so that the
phase number is always incremented by 2 after going in a round change gadget.
This can be done for instance by using intermediate states and doing dummy
push then pop transitions on stack 1.
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E Proof of Lemma 2

By construction, every play of GBP is closely mirrored by a play of the game
GM we built (and vice-versa). Despite having more intermediate states in the
gadgets, the possible plays in GM are restricted in a way such that basically the
only thing a player can choose is a process and a transition to be executed by
that process, which corresponds to what a player can do in GBP . Let us formalize
this intuition by giving a mapping π from plays of GBP to plays of GM.

In the base game GBP , for all configurations c, c′, round r and processes p′ < p,
there is a transition (c, p, r) −→ (c′, p′, r+1) iff there is a transition (c, p′, r+1) −→
(c′, p′, r + 1). Similarly, for all p′ > p, there is a transition (c, p, r) −→ (c′, p′, r)
iff there is a transition (c, p′, r) −→ (c′, p′, r). In GM, a transition from ”(c, p, r)”
to ”(c′, p′, r + 1)” will be simulated by a sequence of transitions corresponding
to a ”dummy transition” from ”(c, p, r)” to ”(c, p′, r+ 1)” followed by an actual
transition to ”(c′, p′, r + 1)”. This will be similar for p′ > p.

By abuse of notation, we say that a node v is in Ssim if v = (s, γ1, γ2, st , ph)
with s ∈ Ssim.

Let v = ((s, `, f1, f2, j, r), γ1, γ2, 1, ph) ∈ Ssim be a node of GM, with

γ1 = γp · (`p+1, gp+1) · γp+1 · · · (`k, gk) · γk

γ2 = γ̃p−1 · (`p−1, gp−1) · · · γ̃1 · (`1, g1)

for some `1, . . . , `k ∈ L, γ1, . . . , γk ∈ Γ ∗, and g1, . . . , gk ∈ {3,7}, where γ̃ denotes
the mirror of γ.

We say that v is well-defined if the following conditions are satisfied:

1. For all 1 ≤ i ≤ p− 1, gi = 3 if and only if for all 1 ≤ p′ < i, `p′ ∈ Floc,

2. For all p+ 1 ≤ i ≤ k, gi = 3 if and only if for all i < p′ ≤ k, `p′ ∈ Floc,

3. f1 = 3 if and only if for all p < p′ ≤ k, `p′ ∈ Floc,

4. f2 = 3 if and only if for all 1 ≤ p′ < p, `p′ ∈ Floc,

5. j = pl(s), and

6. ph = 2r.

Note that every reachable v ∈ Ssim in GM is either well-defined, or only fails
item 5 because j = 0 6= 1 = pl(s) (in case of a ”Change of Player” initiated
by Player 1). We extend this definition to nodes of I? in the following way:
(?(s, `, f1, f2, j, r), γ1, γ2, 1, ph) is well-defined if ((s, `, f1, f2, j, r), γ1, γ2, 1, ph) is
well-defined.

First, we give this mapping on individual nodes. We will extend it to plays
after that. For a configuration c = (s, (`1, γ1) . . . (`k, γk)) and a process p ∈
{1, . . . , k}, we define the following flags

g<(c, p) = 3 iff `1, . . . , `p−1 ∈ Floc

g>(c, p) = 3 iff `p+1, . . . , `k ∈ Floc
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and the following two stacks

τ1(c, p) = γp·(`p+1, g
>(c, p+ 1)) · γp+1 · · · (`k, g>(c, k)) · γk

τ2(c, p) = γ̃p−1 · (`p−1, g<(c, p− 1)) · · · γ̃1 · (`1, g<(c, 1))

Let c = (s, (`1, γ1) . . . (`k, γk)) and u = (c, p, r). Its image is defined by

π(u) = ((s, `p, g
>(c, p), g<(c, p), pl(s), r), τ1(c, p), τ2(c, p), 1, 2r)

Observe that π(u) is well-defined and is in Ssim.

Conversely, if v ∈ Ssim is well-defined, then v = ((s, `p, f1, f2, pl(s), r), γ1, γ2, 1, 2r)
with

γ1 = γp · (`p+1, gp+1) · γp+1 · · · (`k, gk) · γk

γ2 = γ̃p−1 · (`p−1, gp−1) · · · γ̃1 · (`1, g1)

We then define π̂(v) = ((s, (`1, γ1) . . . (`k, γk)), p, r). π̂ is similarly defined on
well-defined nodes in I?. If v ∈ Ssim, then π(π̂(v)) = v.

When u′ = (c′, p′, r′) is a successor of u = (c, p, r) in GBP , we do not necessarily
have π(u′) successor of π(u) in GM, because of the mechanism of process or round
change. We introduce a notation to describe the (unique) part of run that allows
to go from π(u) to π(u′).

Let v = ((s, `, f1, f2, j, r), γ1, γ2, 1, ph) ∈ Ssim a node of GM, with

γ1 = γp · (`p+1, gp+1) · γp+1 · · · (`k, gk) · γk

γ2 = γ̃p−1 · (`p−1, gp−1) · · · γ̃1 · (`1, g1)

for some `1, . . . , `k ∈ L, γ1, . . . , γk ∈ Γ ∗, and g1, . . . , gk ∈ {3,7}. Moreover, for
1 ≤ i ≤ k, let γi = Bi1 · · ·Bi|γi|.

For every p′ ∈ {1, . . . , p− 1} ∪ {p+ 1, . . . , k+ 1}, we define a run nextp
′

v that
ends in a node vp′ = (?(s, `p′ , f1, f2, j, r

′), γ′1, γ
′
2, st , ph ′), with

γ′1 = γp′ · (`p′+1, g
′
p′+1) · γp′+1 · · · (`k, g′k) · γk

γ′2 = γ̃p′−1 · (`p′−1, g′p′−1) · · · γ̃1 · (`1, g′1).

and r′ = r if p′ > p, r′ = r + 1 otherwise.

Let 1 ≤ i ≤ k + 1 − p, we define nextp+iv . For that, we use the following
notations: for 0 ≤ x ≤ i− 1,

– for all 1 ≤ n ≤ |γp+x|, γ(x)1,n−1 = Bp+xn · γ(x)1,n and Bp+xn · γ(x)2,n−1 = γ
(x)
2,n

with γ
(0)
1,0 = γ1, γ

(0)
2,0 = (`p, f2) · γ2, γ

(x)
1,|γp+x| = (`p+x+1, gp+x+1) · γ(x+1)

1,0 and

γ
(x+1)
2,0 = (`p+x+1, g

′x) · γ(x)2,|γp+x|
– g′x = upd(g′x−1, `p+x), with g′−1 = f2,
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Then, we can define nextp+iv :

nextp+iv = Πi−1
x=0(transferNP

`p+x · transferNP
γp+x) · (?(s, `p+i, gp+i, g

′i−1, j, r), γ
(i)
1,0, γ2

(i−1), 1, ph)

where

– transferNP
`p+x =

(
np`p+x(s, g′x−1, j, r), γ

(x)
1,0 , γ2

(x), 1, ph
)
·
(
np(s, g′x, j, r), γ

(x)
1,0 , γ

(x)
2,0 , 1, ph

)
for x ≥ 1 with γ2

(x) = γ
(x)
2,|γp+x|,

– transferNP
`p =

(
np(s, g′0, j, r), γ

(0)
1,0, γ

(0)
2,0, 1, ph

)
.

– transferNP
γp+x = Π

|γp+x|
n=1

(
npB

p+x
n (s, g′x, j, r), γ

(x)
1,n, γ

(x)
2,n−1, 1, ph

)
·
(
np(s, g′x, j, r), γ

(x)
1,n, γ

(x)
2,n, 1, ph

)
,

– `k+1 = `0, gk+1 = 3, and γ
(k+1)
1,0 = ε.

Let now 1 ≤ i ≤ p − 1, we define nextp−iv , using similar notations: for 0 ≤
x ≤ i− 1,

– for all 1 ≤ n ≤ |γp+x|, γ′
(x)

2,n−1 = Bp−x|γp−x|−n+1 · γ′
(x)

2,n and Bp−x|γp−x|−n+1 ·

γ′
(x)

1,n−1 = γ′
(x)

1,n with γ′
(0)

1,0 = (`p, f1) · γ1, γ′
(0)

2,0 = γ2, γ′
(x+1)

1,0 = (`p−x, g
x−1) ·

γ′
(x)

1,|γp−x| and γ′
(x)

2,|γp−x| = (`p−x, gp−x) · γ′(x+1)

2,0

– gx = upd(gx−1, `p−x), with g−1 = f1 .

We then have

nextp−iv = transferNR
`p ·Π

i−1
x=1(transferNR

γp−x · transferNR
`p−x) · transferNR

γp−i ·

(?(s, `p−i, g
i−1, gp−i, j, r + 1), γ′1

(i)
, γ′

(i+1)

2,0 , 2, ph + 2)

where

– transferNR
`p =

(
nr(s, g0, j, r), γ′

(0)

1,0, γ
′(0)
2,0, 1, ph

)
,

– transferNR
γp−x = Π

|γp−x|
n=1

(
nr
Bp−x|γp−x|−n+1(s, gx−1, j, r), γ′

(x)

1,n−1, γ
′(x)
2,n, 2, ph + 1

)
·(

nr(s, gx−1, j, r), γ′
(x)

1,n, γ
′(x)
2,n, 2, ph + 1

)
,

– transferNR
`p−x =

(
nr`p−x(s, gx−1, j, r), γ′1

(x)
, γ′

(x)

2,0 , 2, ph+1
)
·
(
nr(s, gx, j, r), γ′

(x)

1,0 , γ
′(x)
2,0 , 2, ph+

1
)

for x ≥ 1 with γ′1
(x)

= γ′
(x)

1,|γp−x|.

By convention, we let nextpv = ε.

Lemma 5. Let ρ̂ be a finite play of GM ending in v = π(u) for some u. If
ρ̂ · ρ̂′ ·v′ is a play where v′ is in Ssim and ρ̂′ is a partial play (or ε) with no nodes
in Ssim, then there is a unique p′ such that ρ̂′ is of the form nextp

′

v and a unique
u′ successor of u such that v′ = π(u′).

Let c = ((s, (`1, γ1) . . . (`k, γk)) and u = (c, p, r) and v = ((s, `, f1, f2, j, r), γ1, γ2, 1, ph).
There are three possible ways to go from v to v′: either directly with a basic
transition, by doing a process change, or by doing a round change.
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In the case of a basic transition, this corresponds to p′ = p (so nextp
′

v = ε),

and by definition of a basic transition there is a transition δ = (s, `)
op A−−−−→

(s′, `′) ∈ ∆ with v′ = ((s′, `′, f1, f2, pl(s′), r), γ1
′, γ2, 1, ph) = π(u′) where u′ is

the successor of u reached by transition δ.
If ρ̂′ 6= ε, then the last node of ρ̂′ is in I? because a node in Ssim can only be

reached from another node in Ssim or a node in I?, and ρ′ does not have any node
in Ssim by hypothesis. For any node of the form ((np(s, f2, j, r)), γ1, γ2, 1, ph),
the available successors depend only on the top of the first stack γ1. If there are
stack letters from Γ on the top, then only a state of the form npB(s, f2, j, r)
can be reached, from which the only successor is again np(s, f2, j, r). Therefore
if γ is on top of γ1, then all plays will start by transferNP

γ . If there is a local

state (`, f1) on the top, there are two available successors: np`(s, f2, j, r) and
?(s, `, f1, f2, j, r). The second case leaves INP so it will only occurs once per
process change, but the first case loops back to np(s, f ′2, j, r) so it may happen
multiple times (this corresponds to a transferNP

` ). Finally if the first stack is
empty, then only the successor ?(s, `in,3, f2, j, r) is available, so for the same
reason as above this can only occur once per process change.

If ρ̂′ goes in INP, then by the remarks above it can be decomposed into
ρ̂′ = ρ̂′0 · · · ρ̂′m−1 · v? such that v? ∈ I? and for all 0 ≤ i ≤ m − 1 the last

node of ρ′i is of the form ((np(s, f i2, j, r)), γ
i
1, γ

i
2, 1, ph) with a local state on top

of γi1. Moreover, as γ1 = γp · (`p+1, gp+1) · γp+1 · · · γk, each ρ′i is of the form

transferNP
`p+i · transferNP

γp+i . Thus ρ′ = nextp+mv . The proof is similar for a round
change, except the roles of γ1 and γ2 are reversed.

Finally, we have an edge between v? and v, there is an edge between π̂(v?)
and u′ = π̂(v). As π̂(v?) = (c, p′, r′) and π̂(v) = (c′, p′, r′) for some configuration
c′, then there is an edge between u = (c, p, r) and u′.

Now we extend the definition of π on plays. We define

π(((sin), 0, 1) = (s′in, ε, ε, 1, 1)

and for all transitions (sin, `in)
op A−−−−→ (s, `) in ∆, we have

π(((sin), 0, 1) · ((s, (`, γ1)), 1, 1)) = (s′in, ε, ε, 1, 1) · ((s, `,3,3, pl(s), 1), γ1, ε, 1, 1)

Let ρ be a finite play of GBP ending in u = (c, p, r), with p 6= 0, and u′ =
(c′, p′, r′) a successor of u.

π(ρ·u′) =


π(ρ) if ρ is winning, else

π(ρ) · nextp
′

π(u) · π(u′) · (win0, γ1
′, γ2

′, 1, ph ′)ω if u′ ∈ F , else

π(ρ) · nextp
′

π(u) · π(u′) · Ch0 · nextp
′+1
π(u′) · (win1, γ1

′, γ2
′, 1, ph ′)ω if u′ has no successor, else

π(ρ) · nextp
′

π(u) · π(u′).

where π(u′) = ((s′, `′, f ′1, f
′
2, j
′, r′), γ1

′, γ2
′, 1, ph ′) and Ch0 = ((s′, `′, f ′1, f

′
2, 0, r

′), γ1
′, γ2

′, 1, ph ′)
if j′ = 1, ε otherwise. Assume that π(ρ) is a finite play of GM. By construction,
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π(ρ) · nextp
′

π(u) · π(u′) is a play of GM. If u′ ∈ F , then since π(u′) is well-defined,

π(u′) ∈ F and π(ρ · u′) is a play of GM. Otherwise, since it is always possible to
go to a state win1 from any ((s′, `′, f ′1, f

′
2, 0, r

′), γ1
′, γ2

′, 1, ph ′), π(ρ · u′) is also a
play of GM.

If ρ is an infinite play, we let π(ρ) = limρ′vρ π(ρ′).
Conversely, for all plays ρ̂′ and nodes v in GM, we define

π̂(ρ̂ · v) =

{
π̂(ρ̂) · π̂(v) if v is a well-defined node in Ssim

π̂(ρ̂) otherwise.

Let fM be a winning strategy of GM and ρ be a finite play of GBP ending in
u ∈ V0. If π(ρ) is a finite fM-play, then we show that there is a unique u′(ρ, fM)
successor of u such that π(ρ · u′(ρ, fM)) is also a fM-play. First observe that if
π(ρ) is finite, it ends in π(u).

If fM(π(ρ)) = v with v in Ssim, then u′(ρ, fM) = π̂(v) and obviously, π(ρ ·
u′(ρ, fM)) is a fM-play. Since in that case, π(ρ · u′(ρ, fM)) = π(ρ) · v, v is
a successor of π(u) in GM, and by Lemma 5, π̂(v) is a successor of u. Hence
ρ · u′(ρ, fM) is a play of GBP . Otherwise, v ∈ I. Indeed, if it is win1, fM cannot
be winning, and it cannot be win0, since π(ρ) is finite, u /∈ F , hence, no successor
of u can have its state in win0. Assume now that there is a fM-play starting
in π(ρ) · v that never visits again a node whose state is in Ssim. Then this run
would stay forever in I or would end in win1, which is impossible since fM is
winning. Then any fM-run starting in π(ρ) ·v is of the form π(ρ) · ρ̂′ ·v′ · ρ̂′′, with

v′ = ((s′, `′, f ′1, f
′
2, j
′, r′), γ1

′, γ2
′, 1, ph ′). By Lemma 5, ρ̂′ is of the form nextp

′

π(u)

and π̂(v′) is a successor of u. As every node of ρ′ belongs to Player 0, this prefix is
the same for every maximal extension of π(ρ), thus we define u′(ρ, fM) = π̂(v′).

We build the following strategy fP for Player 0 in GBP : if ρ is a play of GBP
ending in a node u ∈ V0, then

fP(ρ) =

{
u′(ρ, fM) if π(ρ) is a finite fM-play,

any successor of u otherwise.

By induction, if ρ is a fP -play, then π(ρ) is a fM-play. Assume there is a maximal
fP -play ρ that is not winning. Then if ρ is finite, π̂(ρ) cannot be winning, and
since π(ρ) is a fM-run, it is impossible. If ρ is infinite, by construction, π̂(ρ)
never visits a node whose state is in win0, hence again π(ρ) is not winning,
which is impossible. Hence, fP is a winning strategy in GBP .

Let fP be a winning strategy of GBP and ρ̂ a play of GM ending in a node
v of Player 0. Suppose that π̂(ρ̂) is a finite fP -play ending in u. If π̂(ρ̂) is not
winning, u has at least one successor because fP is a winning strategy.

Let ρ̂′ be the smallest prefix of ρ̂ whose last node belongs to Player 0 such
that π̂(ρ̂) = π̂(ρ̂′) (which means its last node is in Ssim). If u has at least a
successor, let u′ = fP(π̂(ρ̂)) if u ∈ V0 and some successor of u if u ∈ V1. By

construction, π̂(ρ̂) · u′ is a fP -play, thus there is a play ρ̂ · nextp
′

π(u) · π(u′) in GBP
where u′ = (c′, p′, r′). Let nextp

′

π(u) = v1 . . . vm.
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We define fM as follows:
fM(ρ̂) = any successor of v is u has no successor, else

fM(ρ̂′ · v1 · · · vk) = vk+1 for 0 ≤ k < m,

fM(ρ̂′ · v1 · · · vm) = π(u′).

By induction, if ρ̂ is a fM-play, then π̂(ρ̂) is a fP -play. Suppose there is a fM-
play ρ̂ that is maximal (i.e infinite) and not winning. That means either at some
point ρ̂ reached win1 which is a sink state, or ρ̂ visits Ssim infinitely often.

The only way the first case can happen is if the last node of π̂(ρ̂) has no
successor. Since ρ̂ is not winning, so is π̂(ρ̂). Hence we have a fP -play that is
maximal and not winning, which is a contradiction.

In the second case, this means that π̂(ρ̂) is also infinite. Furthermore, π̂(ρ̂)
does not visit a final configuration, otherwise ρ̂ would end in win0. Again, this
means that π̂(ρ̂) is a fP -play that is maximal and not winning, thus we have a
contradiction. Hence, fM is a winning strategy.

F Proof Details for Lower Bound of Theorem 4

Formally let ϕ be a formula, Cl(ϕ) the set of subformulas (non-strict) of ϕ, and
Varϕ ⊂ Var the set of variables appearing in ϕ. We define B = |Varϕ| + 2 and
P = (S0 ] S1, L, sin, `in, ∆, Fglob, Floc) as follows:

– S = {sin,Guess,Win}∪{Win-if-x | x ∈ Varϕ}∪{ψ | ψ ∈ Cl(ϕ)}∪{ ψ | ψ ∈
Cl(ϕ)}
A state is in S1 if it is of the form ψ ∧ ψ′ or ∀x.ψ, otherwise it is in S0.
The initial state is sin, and Fglob = {Win}.

– L = {`in,first} ∪
(
Σ × 2Varϕ

)
, with initial state `in and Floc = L.

– ∆ contains the following transitions:

1. (sin, `in) −→ (Guess,first)
2. (Guess, `in) −→ (Guess, (a, ∅))
3. (Guess,first) −→ (ϕ,first)

4. ( ψ ,first) −→ (ψ,first)

5. (?x.ψ, (a, S)) −→ ( ψ , (a, S ∪ {x})) for ? ∈ {∃,∀}
6. (ψ1?ψ2,first) −→ (ψi,first) for ? ∈ {∨,∧} and i ∈ {1, 2}
7. (a(x), (a, S)) −→ (Win, (a, S)) if x ∈ S
8. (¬a(x), (b, S)) −→ (Win, (b, S)) if x ∈ S and b 6= a
9. (x < y, (a, S)) −→ (Win-if-y, (a, ∅)) if x ∈ S

10. (¬(x < y), (a, S)) −→ (Win-if-x, (a, S)) if y ∈ S
11. (Win-if-x, (a, S)) −→ (Win, (a, S)) if x ∈ S

Lemma 6. There is a winning strategy for Player 0 in P if and only if ϕ is
satisfiable.
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Proof. Given a configuration c = (s,first, (a1, S1), . . . , (an, Sn)) of size n + 1,
we define the associated (partial) valuation ν(c)(x) = i if x ∈ Si, which is well
defined as there is no possible way in the game to have a single variable x in Si
and Sj if i 6= j. Conversely, given a state s, a word w = a1 . . . an and a valuation
ν, the associated configuration is c(s, w, ν) = (s,first, (a, S1), . . . , (a, Sn)) where
Si = {x | ν(x) = i}.

Let f be a winning strategy for Player 0. From the initial node (which be-
longs to Player 0), f will necessarily first do one transition of type 1, then n
transitions of type 2 (for n ∈ N), then one transition of type 3, reaching a
node of the form vϕ = ((ϕ,first, (a1, ∅), . . . , (an, ∅)), 1, 2). We fix wf = a1 . . . an.
Let f ′ be a strategy for Player 1, and ρ the winning (f, f ′)−play. We show
by recursion on the subformula ψ that for all nodes vψ = (cψ, 1, r) with cψ =
(ψ,first, (a1, S1), . . . , (an, Sn)) visited during ρ, we have wf , ν(cψ) |= ψ.

First, note that if ψ is a term (or negated term), then necessarily vψ is reached
during the last round r = B = |Varϕ|+ 2 as it takes one round to reach vϕ and
then |Varϕ| rounds to go through every quantifier of ϕ.

– If ψ = a(x), then as ρ is winning there is a process with local state (ai, Si)
with ai = a and x ∈ Si (transition of type 7), in other words ν(cψ)(x) = i,
so we have wf , ν(cψ) |= ψ.

– If ψ = x < y, let v1 = ((Win-if-y, . . . , (ai, ∅), . . . ), i + 1, B) and v2 =
((Win, . . . ), j + 1, B) such that ρ ends in vψv1v2 (transitions 9 then 11).
Then we have ν(cψ)(x) = i and ν(cψ)(y) = j. Since v1 and v2 are visited in
the same round (see note above), then i ≤ j. And since after v1 Si = ∅, we
know that i 6= j, thus i < j.

– Similarly for ψ = ¬(x < y), we have ν(cψ)(x) = i and ν(cψ)(y) = j with
j ≤ i but this time no strict inequality.

– If ψ = ψ1 ∨ ψ2, then let i ∈ {1, 2} such that the next node has global state
ψi (transition 6), as we know recursively that wf , ν(cψi) |= ψi and that
ν(cψi) = ν(cψ) (as no local state is changed during the transition), then
wf , ν(cψ) |= ψi, which in turn means that wf , ν(cψ) |= ψ.

– Similarly if ψ = ψ1∧ψ2, for every i ∈ {1, 2} representing the choice of Player
1 we have wf , ν(cψi) |= ψi and ν(cψi) = ν(cψ), thus wf , ν(cψ) |= ψ.

– If ψ = ∃x.ψ′, let v1 = (( ψ′ , . . . ), i + 1, r) with 1 ≤ i the successor node of

vψ in ρ, and v2 = ((ψ′, . . . ), 1, r + 1) the successor of v1 (transitions 5 then
4). By recursion we have that wf , ν(cψ′) |= ψ′, and ν(cψ′) = ν(cψ)]{x→ i}
by construction. Thus wf , ν(cψ) |= ψ.

– If ψ = ∀x.ψ′, for all 1 ≤ i ≤ n we let vi1 = (( ψ′ , . . . ), i + 1, r) and vi2 =

(ciψ′ , 1, r+1) the i possible successors of vψ corresponding to Player 1’s choice.

Similarly, we know that for all i wf , ν(ciψ′) |= ψ′ and ν(ciψ′) = ν(cψ) ] {x→
i}. Thus wf , ν(cψ) |= ψ.

From this we conclude that wf , ν(cϕ) |= ϕ and as ν(cϕ) is the empty valuation,
then wf satisfies ϕ.
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Now suppose that ϕ is satisfied by w = a1 . . . an. Let ρ be a run ending in v.
We build fϕ as follows:

– If v = ((Guess,first, (a1, ∅), . . . , (ak, ∅)), k+ 1, 1) for 0 ≤ k < n then fϕ(ρ) =
((Guess,first, (a1, ∅) . . . , (ak, ∅), (ak+1, ∅)), k + 2, 1). If k = n, then fϕ(ρ) =
((ϕ,first, (a1, ∅), . . . , (ak, ∅)), 1, 2)

– If v = (cψ, 1, r) with cψ = (∃x.ψ′,first, (a1, S1), . . . , (an, Sn)), then assuming
that w, ν(cψ) |= ψ we pick one i ≤ n such that w, ν(cψ) ] {x→ i} |= ψ′ and

we define fϕ(ρ) = (( ψ′ , (a1, S
′
1), . . . , (an, S

′
n)), i + 1, r) with S′i = Si ] {x}

and S′j = Sj for j 6= i.
– If v = (cψ, 1, r) with cψ = (ψ1 ∨ ψ2, . . . ), then assuming w, ν(cψ) |= ψ we

know that there is at least one i ∈ {1, 2} such that w, ν(cψ) |= ψi. We pick
one such i, and define fϕ(ρ) = ((ψi, . . . ), 1, r).

– For all other cases, there is at most one transition available so fϕ is defined
unambiguously.

Let f ′ be a strategy for Player 1, and ρ = v0 . . . vm the resulting (fϕ, f
′)-play.

We show that ρ is winning.
By definition of fϕ and since v0 to vn are owned by Player 0, we have that

vn+1 = (c(ϕ,w, ∅), 1, 2). Let k ∈ {n+ 1, n+ 3, . . . , n+ 2 · (|Varϕ| − 1)}. We have
the following two properties:

1. If vk = (c(∃x.ψ′, w, ν), 1, r) such that w, ν |= ∃x.ψ′, then by construction of

fϕ we have vk+1 = (c( ψ′ , w, ν′), i + 1, r) and vk+2 = (c(ψ′, w, ν′), 1, r + 1)

for some 1 ≤ i ≤ n and ν′ = ν ] {x→ i}, and furthermore w, ν′ |= ψ′.
2. If vk = (c(∀x.ψ′, w, ν), 1, r) such that w, ν |= ∀x.ψ′, then for some 1 ≤ i ≤ n

(defined by f ′) we have ν′ = ν ]{x→ i} such that vk+1 = (c( ψ′ , w, ν′), i+

1, r) and vk+2 = (c(ψ′, w, ν′), 1, r + 1). By definition since w, ν |= ∀x.ψ′, we
deduce that w, ν′ |= ψ′.

By those two properties, combined with the fact that vn+1 = (c(ϕ,w, ∅), 1, 2),
we deduce that vn+2·|Varϕ| = (c(ψ′, w, ν), 1, B) where ψ′ has no quantifiers and
w, ν |= ψ′.

Let k ≥ n+ 2 · |Varϕ|, again we have two similar-looking properties:

1. If vk = (c(ψ1 ∨ ψ2, w, ν), 1, B) and w, ν |= ψ1 ∨ ψ2 then by definition of fϕ,
vk+1 = (c(ψi, w, ν), 1, B) with i ∈ {1, 2} and w, ν |= ψi.

2. If vk = (c(ψ1 ∧ ψ2, w, ν), 1, B) and w, ν |= ψ1 ∧ ψ2 then for some i ∈ {1, 2}
defined by f ′, vk+1 = (c(ψi, w, ν), 1, B). By definition of satisfiability, we
also have that w, ν |= ψi.

Using those two properties, we deduce that there exists m′ ≥ n + 2 · |Varϕ|
such that vm′ = (c(t, w, ν), 1, B) where t is a term or a negated term such that
w, ν |= t. Here m′ depends not only on ϕ but also on both strategies fϕ and f ′.
There are 4 possible cases for t:

1. t = a(x): as w, ν |= t we know that aν(x) = a, and vm′ = (c(t, w, ν), 1, B) so
vm′+1 = (c(Win, w, ν), ν(x) + 1, B).
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2. t = ¬a(x): similarly, we have vm′+1 = (c(Win, w, ν), ν(x) + 1, B).
3. t = x < y: we know that ν(x) < ν(y) so vm′+1 = (c(Win-if-y, w, ν′), ν(x), B)

where ν′ = ν−{{x′ → ν(x)} | x′ ∈ Varϕ}. Since ν(x) 6= ν(y), ν′(y) = ν(y) >
ν(x). So vm′+2 = (c(Win, w, ν′), ν(y), B).

4. t = ¬(x < y): in this case ν(y) ≤ ν(x) and we have vm′+1 = (c(Win-if-x,w, ν), ν(y), B)
and vm′+2 = (c(Win, w, ν), ν(x), B).

Every case ends in an accepting node, therefore ρ is winning.
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